Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
14/*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29#ifndef __ASSEMBLY__
30#include <linux/sched.h>
31#include <linux/mm_types.h>
32#include <linux/page-flags.h>
33#include <asm/bug.h>
34#include <asm/page.h>
35
36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37extern void paging_init(void);
38extern void vmem_map_init(void);
39
40/*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44#define update_mmu_cache(vma, address, ptep) do { } while (0)
45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46
47/*
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
50 */
51
52extern unsigned long empty_zero_page;
53extern unsigned long zero_page_mask;
54
55#define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58#define __HAVE_COLOR_ZERO_PAGE
59
60/* TODO: s390 cannot support io_remap_pfn_range... */
61#endif /* !__ASSEMBLY__ */
62
63/*
64 * PMD_SHIFT determines the size of the area a second-level page
65 * table can map
66 * PGDIR_SHIFT determines what a third-level page table entry can map
67 */
68#ifndef CONFIG_64BIT
69# define PMD_SHIFT 20
70# define PUD_SHIFT 20
71# define PGDIR_SHIFT 20
72#else /* CONFIG_64BIT */
73# define PMD_SHIFT 20
74# define PUD_SHIFT 31
75# define PGDIR_SHIFT 42
76#endif /* CONFIG_64BIT */
77
78#define PMD_SIZE (1UL << PMD_SHIFT)
79#define PMD_MASK (~(PMD_SIZE-1))
80#define PUD_SIZE (1UL << PUD_SHIFT)
81#define PUD_MASK (~(PUD_SIZE-1))
82#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83#define PGDIR_MASK (~(PGDIR_SIZE-1))
84
85/*
86 * entries per page directory level: the S390 is two-level, so
87 * we don't really have any PMD directory physically.
88 * for S390 segment-table entries are combined to one PGD
89 * that leads to 1024 pte per pgd
90 */
91#define PTRS_PER_PTE 256
92#ifndef CONFIG_64BIT
93#define PTRS_PER_PMD 1
94#define PTRS_PER_PUD 1
95#else /* CONFIG_64BIT */
96#define PTRS_PER_PMD 2048
97#define PTRS_PER_PUD 2048
98#endif /* CONFIG_64BIT */
99#define PTRS_PER_PGD 2048
100
101#define FIRST_USER_ADDRESS 0
102
103#define pte_ERROR(e) \
104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105#define pmd_ERROR(e) \
106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107#define pud_ERROR(e) \
108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109#define pgd_ERROR(e) \
110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
111
112#ifndef __ASSEMBLY__
113/*
114 * The vmalloc and module area will always be on the topmost area of the kernel
115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117 * modules will reside. That makes sure that inter module branches always
118 * happen without trampolines and in addition the placement within a 2GB frame
119 * is branch prediction unit friendly.
120 */
121extern unsigned long VMALLOC_START;
122extern unsigned long VMALLOC_END;
123extern struct page *vmemmap;
124
125#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
126
127#ifdef CONFIG_64BIT
128extern unsigned long MODULES_VADDR;
129extern unsigned long MODULES_END;
130#define MODULES_VADDR MODULES_VADDR
131#define MODULES_END MODULES_END
132#define MODULES_LEN (1UL << 31)
133#endif
134
135/*
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
141 *
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
144 *
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
150 *
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
154 *
155 * The 31 bit segmenttable origin of S390 has following format:
156 *
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
161 *
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
167 *
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IPC| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
172 *
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 * C Change-bit override: HW is not required to set change bit
176 *
177 * A 64 bit segmenttable entry of S390 has following format:
178 * | P-table origin | TT
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
181 *
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * C Common-Segment Bit: Segment is not private (PoP 3-30)
184 * P Page-Protection Bit: Store access not possible for page
185 * TT Type 00
186 *
187 * A 64 bit region table entry of S390 has following format:
188 * | S-table origin | TF TTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
191 *
192 * I Segment-Invalid Bit: Segment is not available for address-translation
193 * TT Type 01
194 * TF
195 * TL Table length
196 *
197 * The 64 bit regiontable origin of S390 has following format:
198 * | region table origon | DTTL
199 * 0000000000111111111122222222223333333333444444444455555555556666
200 * 0123456789012345678901234567890123456789012345678901234567890123
201 *
202 * X Space-Switch event:
203 * G Segment-Invalid Bit:
204 * P Private-Space Bit:
205 * S Storage-Alteration:
206 * R Real space
207 * TL Table-Length:
208 *
209 * A storage key has the following format:
210 * | ACC |F|R|C|0|
211 * 0 3 4 5 6 7
212 * ACC: access key
213 * F : fetch protection bit
214 * R : referenced bit
215 * C : changed bit
216 */
217
218/* Hardware bits in the page table entry */
219#define _PAGE_CO 0x100 /* HW Change-bit override */
220#define _PAGE_PROTECT 0x200 /* HW read-only bit */
221#define _PAGE_INVALID 0x400 /* HW invalid bit */
222#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
223
224/* Software bits in the page table entry */
225#define _PAGE_PRESENT 0x001 /* SW pte present bit */
226#define _PAGE_TYPE 0x002 /* SW pte type bit */
227#define _PAGE_YOUNG 0x004 /* SW pte young bit */
228#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
229#define _PAGE_READ 0x010 /* SW pte read bit */
230#define _PAGE_WRITE 0x020 /* SW pte write bit */
231#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
232#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
233#define __HAVE_ARCH_PTE_SPECIAL
234
235/* Set of bits not changed in pte_modify */
236#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 _PAGE_DIRTY | _PAGE_YOUNG)
238
239/*
240 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
241 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
242 * is used to distinguish present from not-present ptes. It is changed only
243 * with the page table lock held.
244 *
245 * The following table gives the different possible bit combinations for
246 * the pte hardware and software bits in the last 12 bits of a pte:
247 *
248 * 842100000000
249 * 000084210000
250 * 000000008421
251 * .IR...wrdytp
252 * empty .10...000000
253 * swap .10...xxxx10
254 * file .11...xxxxx0
255 * prot-none, clean, old .11...000001
256 * prot-none, clean, young .11...000101
257 * prot-none, dirty, old .10...001001
258 * prot-none, dirty, young .10...001101
259 * read-only, clean, old .11...010001
260 * read-only, clean, young .01...010101
261 * read-only, dirty, old .11...011001
262 * read-only, dirty, young .01...011101
263 * read-write, clean, old .11...110001
264 * read-write, clean, young .01...110101
265 * read-write, dirty, old .10...111001
266 * read-write, dirty, young .00...111101
267 *
268 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
269 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
270 * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
271 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
272 */
273
274#ifndef CONFIG_64BIT
275
276/* Bits in the segment table address-space-control-element */
277#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
278#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
279#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
280#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
281#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
282
283/* Bits in the segment table entry */
284#define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
285#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
286#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
287#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
288#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
289#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
290#define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_PROTECT
291
292#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
293#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
294
295/*
296 * Segment table entry encoding (I = invalid, R = read-only bit):
297 * ..R...I.....
298 * prot-none ..1...1.....
299 * read-only ..1...0.....
300 * read-write ..0...0.....
301 * empty ..0...1.....
302 */
303
304/* Page status table bits for virtualization */
305#define PGSTE_ACC_BITS 0xf0000000UL
306#define PGSTE_FP_BIT 0x08000000UL
307#define PGSTE_PCL_BIT 0x00800000UL
308#define PGSTE_HR_BIT 0x00400000UL
309#define PGSTE_HC_BIT 0x00200000UL
310#define PGSTE_GR_BIT 0x00040000UL
311#define PGSTE_GC_BIT 0x00020000UL
312#define PGSTE_UC_BIT 0x00008000UL /* user dirty (migration) */
313#define PGSTE_IN_BIT 0x00004000UL /* IPTE notify bit */
314
315#else /* CONFIG_64BIT */
316
317/* Bits in the segment/region table address-space-control-element */
318#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
319#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
320#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
321#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
322#define _ASCE_REAL_SPACE 0x20 /* real space control */
323#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
324#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
325#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
326#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
327#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
328#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
329
330/* Bits in the region table entry */
331#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
332#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
333#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
334#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
335#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
336#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
337#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
338#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
339
340#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
341#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
342#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
343#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
344#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
345#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
346
347#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
348#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
349#define _REGION3_ENTRY_CO 0x100 /* change-recording override */
350
351/* Bits in the segment table entry */
352#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
353#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
354#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
355#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
356#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
357#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
358
359#define _SEGMENT_ENTRY (0)
360#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
361
362#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
363#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
364#define _SEGMENT_ENTRY_SPLIT 0x001 /* THP splitting bit */
365#define _SEGMENT_ENTRY_YOUNG 0x002 /* SW segment young bit */
366#define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_YOUNG
367
368/*
369 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
370 * ..R...I...y.
371 * prot-none, old ..0...1...1.
372 * prot-none, young ..1...1...1.
373 * read-only, old ..1...1...0.
374 * read-only, young ..1...0...1.
375 * read-write, old ..0...1...0.
376 * read-write, young ..0...0...1.
377 * The segment table origin is used to distinguish empty (origin==0) from
378 * read-write, old segment table entries (origin!=0)
379 */
380
381#define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
382
383/* Set of bits not changed in pmd_modify */
384#define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
385 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
386
387/* Page status table bits for virtualization */
388#define PGSTE_ACC_BITS 0xf000000000000000UL
389#define PGSTE_FP_BIT 0x0800000000000000UL
390#define PGSTE_PCL_BIT 0x0080000000000000UL
391#define PGSTE_HR_BIT 0x0040000000000000UL
392#define PGSTE_HC_BIT 0x0020000000000000UL
393#define PGSTE_GR_BIT 0x0004000000000000UL
394#define PGSTE_GC_BIT 0x0002000000000000UL
395#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
396#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
397
398#endif /* CONFIG_64BIT */
399
400/* Guest Page State used for virtualization */
401#define _PGSTE_GPS_ZERO 0x0000000080000000UL
402#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
403#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
404#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
405
406/*
407 * A user page table pointer has the space-switch-event bit, the
408 * private-space-control bit and the storage-alteration-event-control
409 * bit set. A kernel page table pointer doesn't need them.
410 */
411#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
412 _ASCE_ALT_EVENT)
413
414/*
415 * Page protection definitions.
416 */
417#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
418#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
419 _PAGE_INVALID | _PAGE_PROTECT)
420#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
421 _PAGE_INVALID | _PAGE_PROTECT)
422
423#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 _PAGE_YOUNG | _PAGE_DIRTY)
425#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
426 _PAGE_YOUNG | _PAGE_DIRTY)
427#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
428 _PAGE_PROTECT)
429
430/*
431 * On s390 the page table entry has an invalid bit and a read-only bit.
432 * Read permission implies execute permission and write permission
433 * implies read permission.
434 */
435 /*xwr*/
436#define __P000 PAGE_NONE
437#define __P001 PAGE_READ
438#define __P010 PAGE_READ
439#define __P011 PAGE_READ
440#define __P100 PAGE_READ
441#define __P101 PAGE_READ
442#define __P110 PAGE_READ
443#define __P111 PAGE_READ
444
445#define __S000 PAGE_NONE
446#define __S001 PAGE_READ
447#define __S010 PAGE_WRITE
448#define __S011 PAGE_WRITE
449#define __S100 PAGE_READ
450#define __S101 PAGE_READ
451#define __S110 PAGE_WRITE
452#define __S111 PAGE_WRITE
453
454/*
455 * Segment entry (large page) protection definitions.
456 */
457#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
458 _SEGMENT_ENTRY_NONE)
459#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_INVALID | \
460 _SEGMENT_ENTRY_PROTECT)
461#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_INVALID)
462
463static inline int mm_has_pgste(struct mm_struct *mm)
464{
465#ifdef CONFIG_PGSTE
466 if (unlikely(mm->context.has_pgste))
467 return 1;
468#endif
469 return 0;
470}
471
472static inline int mm_use_skey(struct mm_struct *mm)
473{
474#ifdef CONFIG_PGSTE
475 if (mm->context.use_skey)
476 return 1;
477#endif
478 return 0;
479}
480
481/*
482 * pgd/pmd/pte query functions
483 */
484#ifndef CONFIG_64BIT
485
486static inline int pgd_present(pgd_t pgd) { return 1; }
487static inline int pgd_none(pgd_t pgd) { return 0; }
488static inline int pgd_bad(pgd_t pgd) { return 0; }
489
490static inline int pud_present(pud_t pud) { return 1; }
491static inline int pud_none(pud_t pud) { return 0; }
492static inline int pud_large(pud_t pud) { return 0; }
493static inline int pud_bad(pud_t pud) { return 0; }
494
495#else /* CONFIG_64BIT */
496
497static inline int pgd_present(pgd_t pgd)
498{
499 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
500 return 1;
501 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
502}
503
504static inline int pgd_none(pgd_t pgd)
505{
506 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
507 return 0;
508 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
509}
510
511static inline int pgd_bad(pgd_t pgd)
512{
513 /*
514 * With dynamic page table levels the pgd can be a region table
515 * entry or a segment table entry. Check for the bit that are
516 * invalid for either table entry.
517 */
518 unsigned long mask =
519 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
520 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
521 return (pgd_val(pgd) & mask) != 0;
522}
523
524static inline int pud_present(pud_t pud)
525{
526 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
527 return 1;
528 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
529}
530
531static inline int pud_none(pud_t pud)
532{
533 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
534 return 0;
535 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
536}
537
538static inline int pud_large(pud_t pud)
539{
540 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
541 return 0;
542 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
543}
544
545static inline int pud_bad(pud_t pud)
546{
547 /*
548 * With dynamic page table levels the pud can be a region table
549 * entry or a segment table entry. Check for the bit that are
550 * invalid for either table entry.
551 */
552 unsigned long mask =
553 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
554 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
555 return (pud_val(pud) & mask) != 0;
556}
557
558#endif /* CONFIG_64BIT */
559
560static inline int pmd_present(pmd_t pmd)
561{
562 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
563}
564
565static inline int pmd_none(pmd_t pmd)
566{
567 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
568}
569
570static inline int pmd_large(pmd_t pmd)
571{
572#ifdef CONFIG_64BIT
573 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
574#else
575 return 0;
576#endif
577}
578
579static inline int pmd_prot_none(pmd_t pmd)
580{
581 return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
582 (pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
583}
584
585static inline int pmd_bad(pmd_t pmd)
586{
587#ifdef CONFIG_64BIT
588 if (pmd_large(pmd))
589 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
590#endif
591 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
592}
593
594#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
595extern void pmdp_splitting_flush(struct vm_area_struct *vma,
596 unsigned long addr, pmd_t *pmdp);
597
598#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
599extern int pmdp_set_access_flags(struct vm_area_struct *vma,
600 unsigned long address, pmd_t *pmdp,
601 pmd_t entry, int dirty);
602
603#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
604extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
605 unsigned long address, pmd_t *pmdp);
606
607#define __HAVE_ARCH_PMD_WRITE
608static inline int pmd_write(pmd_t pmd)
609{
610 if (pmd_prot_none(pmd))
611 return 0;
612 return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
613}
614
615static inline int pmd_young(pmd_t pmd)
616{
617 int young = 0;
618#ifdef CONFIG_64BIT
619 if (pmd_prot_none(pmd))
620 young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
621 else
622 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
623#endif
624 return young;
625}
626
627static inline int pte_present(pte_t pte)
628{
629 /* Bit pattern: (pte & 0x001) == 0x001 */
630 return (pte_val(pte) & _PAGE_PRESENT) != 0;
631}
632
633static inline int pte_none(pte_t pte)
634{
635 /* Bit pattern: pte == 0x400 */
636 return pte_val(pte) == _PAGE_INVALID;
637}
638
639static inline int pte_swap(pte_t pte)
640{
641 /* Bit pattern: (pte & 0x603) == 0x402 */
642 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
643 _PAGE_TYPE | _PAGE_PRESENT))
644 == (_PAGE_INVALID | _PAGE_TYPE);
645}
646
647static inline int pte_file(pte_t pte)
648{
649 /* Bit pattern: (pte & 0x601) == 0x600 */
650 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
651 == (_PAGE_INVALID | _PAGE_PROTECT);
652}
653
654static inline int pte_special(pte_t pte)
655{
656 return (pte_val(pte) & _PAGE_SPECIAL);
657}
658
659#define __HAVE_ARCH_PTE_SAME
660static inline int pte_same(pte_t a, pte_t b)
661{
662 return pte_val(a) == pte_val(b);
663}
664
665static inline pgste_t pgste_get_lock(pte_t *ptep)
666{
667 unsigned long new = 0;
668#ifdef CONFIG_PGSTE
669 unsigned long old;
670
671 preempt_disable();
672 asm(
673 " lg %0,%2\n"
674 "0: lgr %1,%0\n"
675 " nihh %0,0xff7f\n" /* clear PCL bit in old */
676 " oihh %1,0x0080\n" /* set PCL bit in new */
677 " csg %0,%1,%2\n"
678 " jl 0b\n"
679 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
680 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
681#endif
682 return __pgste(new);
683}
684
685static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
686{
687#ifdef CONFIG_PGSTE
688 asm(
689 " nihh %1,0xff7f\n" /* clear PCL bit */
690 " stg %1,%0\n"
691 : "=Q" (ptep[PTRS_PER_PTE])
692 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
693 : "cc", "memory");
694 preempt_enable();
695#endif
696}
697
698static inline pgste_t pgste_get(pte_t *ptep)
699{
700 unsigned long pgste = 0;
701#ifdef CONFIG_PGSTE
702 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
703#endif
704 return __pgste(pgste);
705}
706
707static inline void pgste_set(pte_t *ptep, pgste_t pgste)
708{
709#ifdef CONFIG_PGSTE
710 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
711#endif
712}
713
714static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
715 struct mm_struct *mm)
716{
717#ifdef CONFIG_PGSTE
718 unsigned long address, bits, skey;
719
720 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
721 return pgste;
722 address = pte_val(*ptep) & PAGE_MASK;
723 skey = (unsigned long) page_get_storage_key(address);
724 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
725 /* Transfer page changed & referenced bit to guest bits in pgste */
726 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
727 /* Copy page access key and fetch protection bit to pgste */
728 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
729 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
730#endif
731 return pgste;
732
733}
734
735static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
736 struct mm_struct *mm)
737{
738#ifdef CONFIG_PGSTE
739 unsigned long address;
740 unsigned long nkey;
741
742 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
743 return;
744 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
745 address = pte_val(entry) & PAGE_MASK;
746 /*
747 * Set page access key and fetch protection bit from pgste.
748 * The guest C/R information is still in the PGSTE, set real
749 * key C/R to 0.
750 */
751 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
752 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
753 page_set_storage_key(address, nkey, 0);
754#endif
755}
756
757static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
758{
759 if ((pte_val(entry) & _PAGE_PRESENT) &&
760 (pte_val(entry) & _PAGE_WRITE) &&
761 !(pte_val(entry) & _PAGE_INVALID)) {
762 if (!MACHINE_HAS_ESOP) {
763 /*
764 * Without enhanced suppression-on-protection force
765 * the dirty bit on for all writable ptes.
766 */
767 pte_val(entry) |= _PAGE_DIRTY;
768 pte_val(entry) &= ~_PAGE_PROTECT;
769 }
770 if (!(pte_val(entry) & _PAGE_PROTECT))
771 /* This pte allows write access, set user-dirty */
772 pgste_val(pgste) |= PGSTE_UC_BIT;
773 }
774 *ptep = entry;
775 return pgste;
776}
777
778/**
779 * struct gmap_struct - guest address space
780 * @mm: pointer to the parent mm_struct
781 * @table: pointer to the page directory
782 * @asce: address space control element for gmap page table
783 * @crst_list: list of all crst tables used in the guest address space
784 * @pfault_enabled: defines if pfaults are applicable for the guest
785 */
786struct gmap {
787 struct list_head list;
788 struct mm_struct *mm;
789 unsigned long *table;
790 unsigned long asce;
791 void *private;
792 struct list_head crst_list;
793 bool pfault_enabled;
794};
795
796/**
797 * struct gmap_rmap - reverse mapping for segment table entries
798 * @gmap: pointer to the gmap_struct
799 * @entry: pointer to a segment table entry
800 * @vmaddr: virtual address in the guest address space
801 */
802struct gmap_rmap {
803 struct list_head list;
804 struct gmap *gmap;
805 unsigned long *entry;
806 unsigned long vmaddr;
807};
808
809/**
810 * struct gmap_pgtable - gmap information attached to a page table
811 * @vmaddr: address of the 1MB segment in the process virtual memory
812 * @mapper: list of segment table entries mapping a page table
813 */
814struct gmap_pgtable {
815 unsigned long vmaddr;
816 struct list_head mapper;
817};
818
819/**
820 * struct gmap_notifier - notify function block for page invalidation
821 * @notifier_call: address of callback function
822 */
823struct gmap_notifier {
824 struct list_head list;
825 void (*notifier_call)(struct gmap *gmap, unsigned long address);
826};
827
828struct gmap *gmap_alloc(struct mm_struct *mm);
829void gmap_free(struct gmap *gmap);
830void gmap_enable(struct gmap *gmap);
831void gmap_disable(struct gmap *gmap);
832int gmap_map_segment(struct gmap *gmap, unsigned long from,
833 unsigned long to, unsigned long len);
834int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
835unsigned long __gmap_translate(unsigned long address, struct gmap *);
836unsigned long gmap_translate(unsigned long address, struct gmap *);
837unsigned long __gmap_fault(unsigned long address, struct gmap *);
838unsigned long gmap_fault(unsigned long address, struct gmap *);
839void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
840void __gmap_zap(unsigned long address, struct gmap *);
841bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
842
843
844void gmap_register_ipte_notifier(struct gmap_notifier *);
845void gmap_unregister_ipte_notifier(struct gmap_notifier *);
846int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
847void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
848
849static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
850 pte_t *ptep, pgste_t pgste)
851{
852#ifdef CONFIG_PGSTE
853 if (pgste_val(pgste) & PGSTE_IN_BIT) {
854 pgste_val(pgste) &= ~PGSTE_IN_BIT;
855 gmap_do_ipte_notify(mm, ptep);
856 }
857#endif
858 return pgste;
859}
860
861/*
862 * Certain architectures need to do special things when PTEs
863 * within a page table are directly modified. Thus, the following
864 * hook is made available.
865 */
866static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
867 pte_t *ptep, pte_t entry)
868{
869 pgste_t pgste;
870
871 if (mm_has_pgste(mm)) {
872 pgste = pgste_get_lock(ptep);
873 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
874 pgste_set_key(ptep, pgste, entry, mm);
875 pgste = pgste_set_pte(ptep, pgste, entry);
876 pgste_set_unlock(ptep, pgste);
877 } else {
878 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
879 pte_val(entry) |= _PAGE_CO;
880 *ptep = entry;
881 }
882}
883
884/*
885 * query functions pte_write/pte_dirty/pte_young only work if
886 * pte_present() is true. Undefined behaviour if not..
887 */
888static inline int pte_write(pte_t pte)
889{
890 return (pte_val(pte) & _PAGE_WRITE) != 0;
891}
892
893static inline int pte_dirty(pte_t pte)
894{
895 return (pte_val(pte) & _PAGE_DIRTY) != 0;
896}
897
898static inline int pte_young(pte_t pte)
899{
900 return (pte_val(pte) & _PAGE_YOUNG) != 0;
901}
902
903#define __HAVE_ARCH_PTE_UNUSED
904static inline int pte_unused(pte_t pte)
905{
906 return pte_val(pte) & _PAGE_UNUSED;
907}
908
909/*
910 * pgd/pmd/pte modification functions
911 */
912
913static inline void pgd_clear(pgd_t *pgd)
914{
915#ifdef CONFIG_64BIT
916 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
917 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
918#endif
919}
920
921static inline void pud_clear(pud_t *pud)
922{
923#ifdef CONFIG_64BIT
924 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
925 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
926#endif
927}
928
929static inline void pmd_clear(pmd_t *pmdp)
930{
931 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
932}
933
934static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
935{
936 pte_val(*ptep) = _PAGE_INVALID;
937}
938
939/*
940 * The following pte modification functions only work if
941 * pte_present() is true. Undefined behaviour if not..
942 */
943static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
944{
945 pte_val(pte) &= _PAGE_CHG_MASK;
946 pte_val(pte) |= pgprot_val(newprot);
947 /*
948 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
949 * invalid bit set, clear it again for readable, young pages
950 */
951 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
952 pte_val(pte) &= ~_PAGE_INVALID;
953 /*
954 * newprot for PAGE_READ and PAGE_WRITE has the page protection
955 * bit set, clear it again for writable, dirty pages
956 */
957 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
958 pte_val(pte) &= ~_PAGE_PROTECT;
959 return pte;
960}
961
962static inline pte_t pte_wrprotect(pte_t pte)
963{
964 pte_val(pte) &= ~_PAGE_WRITE;
965 pte_val(pte) |= _PAGE_PROTECT;
966 return pte;
967}
968
969static inline pte_t pte_mkwrite(pte_t pte)
970{
971 pte_val(pte) |= _PAGE_WRITE;
972 if (pte_val(pte) & _PAGE_DIRTY)
973 pte_val(pte) &= ~_PAGE_PROTECT;
974 return pte;
975}
976
977static inline pte_t pte_mkclean(pte_t pte)
978{
979 pte_val(pte) &= ~_PAGE_DIRTY;
980 pte_val(pte) |= _PAGE_PROTECT;
981 return pte;
982}
983
984static inline pte_t pte_mkdirty(pte_t pte)
985{
986 pte_val(pte) |= _PAGE_DIRTY;
987 if (pte_val(pte) & _PAGE_WRITE)
988 pte_val(pte) &= ~_PAGE_PROTECT;
989 return pte;
990}
991
992static inline pte_t pte_mkold(pte_t pte)
993{
994 pte_val(pte) &= ~_PAGE_YOUNG;
995 pte_val(pte) |= _PAGE_INVALID;
996 return pte;
997}
998
999static inline pte_t pte_mkyoung(pte_t pte)
1000{
1001 pte_val(pte) |= _PAGE_YOUNG;
1002 if (pte_val(pte) & _PAGE_READ)
1003 pte_val(pte) &= ~_PAGE_INVALID;
1004 return pte;
1005}
1006
1007static inline pte_t pte_mkspecial(pte_t pte)
1008{
1009 pte_val(pte) |= _PAGE_SPECIAL;
1010 return pte;
1011}
1012
1013#ifdef CONFIG_HUGETLB_PAGE
1014static inline pte_t pte_mkhuge(pte_t pte)
1015{
1016 pte_val(pte) |= _PAGE_LARGE;
1017 return pte;
1018}
1019#endif
1020
1021static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1022{
1023 unsigned long pto = (unsigned long) ptep;
1024
1025#ifndef CONFIG_64BIT
1026 /* pto in ESA mode must point to the start of the segment table */
1027 pto &= 0x7ffffc00;
1028#endif
1029 /* Invalidation + global TLB flush for the pte */
1030 asm volatile(
1031 " ipte %2,%3"
1032 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1033}
1034
1035static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1036{
1037 unsigned long pto = (unsigned long) ptep;
1038
1039#ifndef CONFIG_64BIT
1040 /* pto in ESA mode must point to the start of the segment table */
1041 pto &= 0x7ffffc00;
1042#endif
1043 /* Invalidation + local TLB flush for the pte */
1044 asm volatile(
1045 " .insn rrf,0xb2210000,%2,%3,0,1"
1046 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1047}
1048
1049static inline void ptep_flush_direct(struct mm_struct *mm,
1050 unsigned long address, pte_t *ptep)
1051{
1052 int active, count;
1053
1054 if (pte_val(*ptep) & _PAGE_INVALID)
1055 return;
1056 active = (mm == current->active_mm) ? 1 : 0;
1057 count = atomic_add_return(0x10000, &mm->context.attach_count);
1058 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1059 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1060 __ptep_ipte_local(address, ptep);
1061 else
1062 __ptep_ipte(address, ptep);
1063 atomic_sub(0x10000, &mm->context.attach_count);
1064}
1065
1066static inline void ptep_flush_lazy(struct mm_struct *mm,
1067 unsigned long address, pte_t *ptep)
1068{
1069 int active, count;
1070
1071 if (pte_val(*ptep) & _PAGE_INVALID)
1072 return;
1073 active = (mm == current->active_mm) ? 1 : 0;
1074 count = atomic_add_return(0x10000, &mm->context.attach_count);
1075 if ((count & 0xffff) <= active) {
1076 pte_val(*ptep) |= _PAGE_INVALID;
1077 mm->context.flush_mm = 1;
1078 } else
1079 __ptep_ipte(address, ptep);
1080 atomic_sub(0x10000, &mm->context.attach_count);
1081}
1082
1083/*
1084 * Get (and clear) the user dirty bit for a pte.
1085 */
1086static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1087 unsigned long addr,
1088 pte_t *ptep)
1089{
1090 pgste_t pgste;
1091 pte_t pte;
1092 int dirty;
1093
1094 if (!mm_has_pgste(mm))
1095 return 0;
1096 pgste = pgste_get_lock(ptep);
1097 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1098 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1099 pte = *ptep;
1100 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1101 pgste = pgste_ipte_notify(mm, ptep, pgste);
1102 __ptep_ipte(addr, ptep);
1103 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1104 pte_val(pte) |= _PAGE_PROTECT;
1105 else
1106 pte_val(pte) |= _PAGE_INVALID;
1107 *ptep = pte;
1108 }
1109 pgste_set_unlock(ptep, pgste);
1110 return dirty;
1111}
1112
1113#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1114static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1115 unsigned long addr, pte_t *ptep)
1116{
1117 pgste_t pgste;
1118 pte_t pte;
1119 int young;
1120
1121 if (mm_has_pgste(vma->vm_mm)) {
1122 pgste = pgste_get_lock(ptep);
1123 pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1124 }
1125
1126 pte = *ptep;
1127 ptep_flush_direct(vma->vm_mm, addr, ptep);
1128 young = pte_young(pte);
1129 pte = pte_mkold(pte);
1130
1131 if (mm_has_pgste(vma->vm_mm)) {
1132 pgste = pgste_set_pte(ptep, pgste, pte);
1133 pgste_set_unlock(ptep, pgste);
1134 } else
1135 *ptep = pte;
1136
1137 return young;
1138}
1139
1140#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1141static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1142 unsigned long address, pte_t *ptep)
1143{
1144 return ptep_test_and_clear_young(vma, address, ptep);
1145}
1146
1147/*
1148 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1149 * both clear the TLB for the unmapped pte. The reason is that
1150 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1151 * to modify an active pte. The sequence is
1152 * 1) ptep_get_and_clear
1153 * 2) set_pte_at
1154 * 3) flush_tlb_range
1155 * On s390 the tlb needs to get flushed with the modification of the pte
1156 * if the pte is active. The only way how this can be implemented is to
1157 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1158 * is a nop.
1159 */
1160#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1161static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1162 unsigned long address, pte_t *ptep)
1163{
1164 pgste_t pgste;
1165 pte_t pte;
1166
1167 if (mm_has_pgste(mm)) {
1168 pgste = pgste_get_lock(ptep);
1169 pgste = pgste_ipte_notify(mm, ptep, pgste);
1170 }
1171
1172 pte = *ptep;
1173 ptep_flush_lazy(mm, address, ptep);
1174 pte_val(*ptep) = _PAGE_INVALID;
1175
1176 if (mm_has_pgste(mm)) {
1177 pgste = pgste_update_all(&pte, pgste, mm);
1178 pgste_set_unlock(ptep, pgste);
1179 }
1180 return pte;
1181}
1182
1183#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1184static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1185 unsigned long address,
1186 pte_t *ptep)
1187{
1188 pgste_t pgste;
1189 pte_t pte;
1190
1191 if (mm_has_pgste(mm)) {
1192 pgste = pgste_get_lock(ptep);
1193 pgste_ipte_notify(mm, ptep, pgste);
1194 }
1195
1196 pte = *ptep;
1197 ptep_flush_lazy(mm, address, ptep);
1198
1199 if (mm_has_pgste(mm)) {
1200 pgste = pgste_update_all(&pte, pgste, mm);
1201 pgste_set(ptep, pgste);
1202 }
1203 return pte;
1204}
1205
1206static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1207 unsigned long address,
1208 pte_t *ptep, pte_t pte)
1209{
1210 pgste_t pgste;
1211
1212 if (mm_has_pgste(mm)) {
1213 pgste = pgste_get(ptep);
1214 pgste_set_key(ptep, pgste, pte, mm);
1215 pgste = pgste_set_pte(ptep, pgste, pte);
1216 pgste_set_unlock(ptep, pgste);
1217 } else
1218 *ptep = pte;
1219}
1220
1221#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1222static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1223 unsigned long address, pte_t *ptep)
1224{
1225 pgste_t pgste;
1226 pte_t pte;
1227
1228 if (mm_has_pgste(vma->vm_mm)) {
1229 pgste = pgste_get_lock(ptep);
1230 pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1231 }
1232
1233 pte = *ptep;
1234 ptep_flush_direct(vma->vm_mm, address, ptep);
1235 pte_val(*ptep) = _PAGE_INVALID;
1236
1237 if (mm_has_pgste(vma->vm_mm)) {
1238 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1239 _PGSTE_GPS_USAGE_UNUSED)
1240 pte_val(pte) |= _PAGE_UNUSED;
1241 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1242 pgste_set_unlock(ptep, pgste);
1243 }
1244 return pte;
1245}
1246
1247/*
1248 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1249 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1250 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1251 * cannot be accessed while the batched unmap is running. In this case
1252 * full==1 and a simple pte_clear is enough. See tlb.h.
1253 */
1254#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1255static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1256 unsigned long address,
1257 pte_t *ptep, int full)
1258{
1259 pgste_t pgste;
1260 pte_t pte;
1261
1262 if (!full && mm_has_pgste(mm)) {
1263 pgste = pgste_get_lock(ptep);
1264 pgste = pgste_ipte_notify(mm, ptep, pgste);
1265 }
1266
1267 pte = *ptep;
1268 if (!full)
1269 ptep_flush_lazy(mm, address, ptep);
1270 pte_val(*ptep) = _PAGE_INVALID;
1271
1272 if (!full && mm_has_pgste(mm)) {
1273 pgste = pgste_update_all(&pte, pgste, mm);
1274 pgste_set_unlock(ptep, pgste);
1275 }
1276 return pte;
1277}
1278
1279#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1280static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1281 unsigned long address, pte_t *ptep)
1282{
1283 pgste_t pgste;
1284 pte_t pte = *ptep;
1285
1286 if (pte_write(pte)) {
1287 if (mm_has_pgste(mm)) {
1288 pgste = pgste_get_lock(ptep);
1289 pgste = pgste_ipte_notify(mm, ptep, pgste);
1290 }
1291
1292 ptep_flush_lazy(mm, address, ptep);
1293 pte = pte_wrprotect(pte);
1294
1295 if (mm_has_pgste(mm)) {
1296 pgste = pgste_set_pte(ptep, pgste, pte);
1297 pgste_set_unlock(ptep, pgste);
1298 } else
1299 *ptep = pte;
1300 }
1301 return pte;
1302}
1303
1304#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1305static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1306 unsigned long address, pte_t *ptep,
1307 pte_t entry, int dirty)
1308{
1309 pgste_t pgste;
1310
1311 if (pte_same(*ptep, entry))
1312 return 0;
1313 if (mm_has_pgste(vma->vm_mm)) {
1314 pgste = pgste_get_lock(ptep);
1315 pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1316 }
1317
1318 ptep_flush_direct(vma->vm_mm, address, ptep);
1319
1320 if (mm_has_pgste(vma->vm_mm)) {
1321 pgste = pgste_set_pte(ptep, pgste, entry);
1322 pgste_set_unlock(ptep, pgste);
1323 } else
1324 *ptep = entry;
1325 return 1;
1326}
1327
1328/*
1329 * Conversion functions: convert a page and protection to a page entry,
1330 * and a page entry and page directory to the page they refer to.
1331 */
1332static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1333{
1334 pte_t __pte;
1335 pte_val(__pte) = physpage + pgprot_val(pgprot);
1336 return pte_mkyoung(__pte);
1337}
1338
1339static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1340{
1341 unsigned long physpage = page_to_phys(page);
1342 pte_t __pte = mk_pte_phys(physpage, pgprot);
1343
1344 if (pte_write(__pte) && PageDirty(page))
1345 __pte = pte_mkdirty(__pte);
1346 return __pte;
1347}
1348
1349#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1350#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1351#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1352#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1353
1354#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1355#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1356
1357#ifndef CONFIG_64BIT
1358
1359#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1360#define pud_deref(pmd) ({ BUG(); 0UL; })
1361#define pgd_deref(pmd) ({ BUG(); 0UL; })
1362
1363#define pud_offset(pgd, address) ((pud_t *) pgd)
1364#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1365
1366#else /* CONFIG_64BIT */
1367
1368#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1369#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1370#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1371
1372static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1373{
1374 pud_t *pud = (pud_t *) pgd;
1375 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1376 pud = (pud_t *) pgd_deref(*pgd);
1377 return pud + pud_index(address);
1378}
1379
1380static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1381{
1382 pmd_t *pmd = (pmd_t *) pud;
1383 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1384 pmd = (pmd_t *) pud_deref(*pud);
1385 return pmd + pmd_index(address);
1386}
1387
1388#endif /* CONFIG_64BIT */
1389
1390#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1391#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1392#define pte_page(x) pfn_to_page(pte_pfn(x))
1393
1394#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1395
1396/* Find an entry in the lowest level page table.. */
1397#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1398#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1399#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1400#define pte_unmap(pte) do { } while (0)
1401
1402#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1403static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1404{
1405 /*
1406 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1407 * Convert to segment table entry format.
1408 */
1409 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1410 return pgprot_val(SEGMENT_NONE);
1411 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1412 return pgprot_val(SEGMENT_READ);
1413 return pgprot_val(SEGMENT_WRITE);
1414}
1415
1416static inline pmd_t pmd_mkyoung(pmd_t pmd)
1417{
1418#ifdef CONFIG_64BIT
1419 if (pmd_prot_none(pmd)) {
1420 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1421 } else {
1422 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1423 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1424 }
1425#endif
1426 return pmd;
1427}
1428
1429static inline pmd_t pmd_mkold(pmd_t pmd)
1430{
1431#ifdef CONFIG_64BIT
1432 if (pmd_prot_none(pmd)) {
1433 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1434 } else {
1435 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1436 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1437 }
1438#endif
1439 return pmd;
1440}
1441
1442static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1443{
1444 int young;
1445
1446 young = pmd_young(pmd);
1447 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1448 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1449 if (young)
1450 pmd = pmd_mkyoung(pmd);
1451 return pmd;
1452}
1453
1454static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1455{
1456 pmd_t __pmd;
1457 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1458 return pmd_mkyoung(__pmd);
1459}
1460
1461static inline pmd_t pmd_mkwrite(pmd_t pmd)
1462{
1463 /* Do not clobber PROT_NONE segments! */
1464 if (!pmd_prot_none(pmd))
1465 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1466 return pmd;
1467}
1468#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1469
1470static inline void __pmdp_csp(pmd_t *pmdp)
1471{
1472 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1473 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1474 _SEGMENT_ENTRY_INVALID;
1475 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1476
1477 asm volatile(
1478 " csp %1,%3"
1479 : "=m" (*pmdp)
1480 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1481}
1482
1483static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1484{
1485 unsigned long sto;
1486
1487 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1488 asm volatile(
1489 " .insn rrf,0xb98e0000,%2,%3,0,0"
1490 : "=m" (*pmdp)
1491 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1492 : "cc" );
1493}
1494
1495static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1496{
1497 unsigned long sto;
1498
1499 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1500 asm volatile(
1501 " .insn rrf,0xb98e0000,%2,%3,0,1"
1502 : "=m" (*pmdp)
1503 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1504 : "cc" );
1505}
1506
1507static inline void pmdp_flush_direct(struct mm_struct *mm,
1508 unsigned long address, pmd_t *pmdp)
1509{
1510 int active, count;
1511
1512 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1513 return;
1514 if (!MACHINE_HAS_IDTE) {
1515 __pmdp_csp(pmdp);
1516 return;
1517 }
1518 active = (mm == current->active_mm) ? 1 : 0;
1519 count = atomic_add_return(0x10000, &mm->context.attach_count);
1520 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1521 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1522 __pmdp_idte_local(address, pmdp);
1523 else
1524 __pmdp_idte(address, pmdp);
1525 atomic_sub(0x10000, &mm->context.attach_count);
1526}
1527
1528static inline void pmdp_flush_lazy(struct mm_struct *mm,
1529 unsigned long address, pmd_t *pmdp)
1530{
1531 int active, count;
1532
1533 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1534 return;
1535 active = (mm == current->active_mm) ? 1 : 0;
1536 count = atomic_add_return(0x10000, &mm->context.attach_count);
1537 if ((count & 0xffff) <= active) {
1538 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1539 mm->context.flush_mm = 1;
1540 } else if (MACHINE_HAS_IDTE)
1541 __pmdp_idte(address, pmdp);
1542 else
1543 __pmdp_csp(pmdp);
1544 atomic_sub(0x10000, &mm->context.attach_count);
1545}
1546
1547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1548
1549#define __HAVE_ARCH_PGTABLE_DEPOSIT
1550extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1551 pgtable_t pgtable);
1552
1553#define __HAVE_ARCH_PGTABLE_WITHDRAW
1554extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1555
1556static inline int pmd_trans_splitting(pmd_t pmd)
1557{
1558 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1559}
1560
1561static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1562 pmd_t *pmdp, pmd_t entry)
1563{
1564 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1565 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1566 *pmdp = entry;
1567}
1568
1569static inline pmd_t pmd_mkhuge(pmd_t pmd)
1570{
1571 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1572 return pmd;
1573}
1574
1575static inline pmd_t pmd_wrprotect(pmd_t pmd)
1576{
1577 /* Do not clobber PROT_NONE segments! */
1578 if (!pmd_prot_none(pmd))
1579 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1580 return pmd;
1581}
1582
1583static inline pmd_t pmd_mkdirty(pmd_t pmd)
1584{
1585 /* No dirty bit in the segment table entry. */
1586 return pmd;
1587}
1588
1589#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1590static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1591 unsigned long address, pmd_t *pmdp)
1592{
1593 pmd_t pmd;
1594
1595 pmd = *pmdp;
1596 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1597 *pmdp = pmd_mkold(pmd);
1598 return pmd_young(pmd);
1599}
1600
1601#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1602static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1603 unsigned long address, pmd_t *pmdp)
1604{
1605 pmd_t pmd = *pmdp;
1606
1607 pmdp_flush_direct(mm, address, pmdp);
1608 pmd_clear(pmdp);
1609 return pmd;
1610}
1611
1612#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1613static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1614 unsigned long address, pmd_t *pmdp)
1615{
1616 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1617}
1618
1619#define __HAVE_ARCH_PMDP_INVALIDATE
1620static inline void pmdp_invalidate(struct vm_area_struct *vma,
1621 unsigned long address, pmd_t *pmdp)
1622{
1623 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1624}
1625
1626#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1627static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1628 unsigned long address, pmd_t *pmdp)
1629{
1630 pmd_t pmd = *pmdp;
1631
1632 if (pmd_write(pmd)) {
1633 pmdp_flush_direct(mm, address, pmdp);
1634 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1635 }
1636}
1637
1638#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1639#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1640
1641static inline int pmd_trans_huge(pmd_t pmd)
1642{
1643 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1644}
1645
1646static inline int has_transparent_hugepage(void)
1647{
1648 return MACHINE_HAS_HPAGE ? 1 : 0;
1649}
1650
1651static inline unsigned long pmd_pfn(pmd_t pmd)
1652{
1653 return pmd_val(pmd) >> PAGE_SHIFT;
1654}
1655#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1656
1657/*
1658 * 31 bit swap entry format:
1659 * A page-table entry has some bits we have to treat in a special way.
1660 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1661 * exception will occur instead of a page translation exception. The
1662 * specifiation exception has the bad habit not to store necessary
1663 * information in the lowcore.
1664 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1665 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1666 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1667 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1668 * plus 24 for the offset.
1669 * 0| offset |0110|o|type |00|
1670 * 0 0000000001111111111 2222 2 22222 33
1671 * 0 1234567890123456789 0123 4 56789 01
1672 *
1673 * 64 bit swap entry format:
1674 * A page-table entry has some bits we have to treat in a special way.
1675 * Bits 52 and bit 55 have to be zero, otherwise an specification
1676 * exception will occur instead of a page translation exception. The
1677 * specifiation exception has the bad habit not to store necessary
1678 * information in the lowcore.
1679 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1680 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1681 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1682 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1683 * plus 56 for the offset.
1684 * | offset |0110|o|type |00|
1685 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1686 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1687 */
1688#ifndef CONFIG_64BIT
1689#define __SWP_OFFSET_MASK (~0UL >> 12)
1690#else
1691#define __SWP_OFFSET_MASK (~0UL >> 11)
1692#endif
1693static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1694{
1695 pte_t pte;
1696 offset &= __SWP_OFFSET_MASK;
1697 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1698 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1699 return pte;
1700}
1701
1702#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1703#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1704#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1705
1706#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1707#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1708
1709#ifndef CONFIG_64BIT
1710# define PTE_FILE_MAX_BITS 26
1711#else /* CONFIG_64BIT */
1712# define PTE_FILE_MAX_BITS 59
1713#endif /* CONFIG_64BIT */
1714
1715#define pte_to_pgoff(__pte) \
1716 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1717
1718#define pgoff_to_pte(__off) \
1719 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1720 | _PAGE_INVALID | _PAGE_PROTECT })
1721
1722#endif /* !__ASSEMBLY__ */
1723
1724#define kern_addr_valid(addr) (1)
1725
1726extern int vmem_add_mapping(unsigned long start, unsigned long size);
1727extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1728extern int s390_enable_sie(void);
1729extern void s390_enable_skey(void);
1730
1731/*
1732 * No page table caches to initialise
1733 */
1734static inline void pgtable_cache_init(void) { }
1735static inline void check_pgt_cache(void) { }
1736
1737#include <asm-generic/pgtable.h>
1738
1739#endif /* _S390_PAGE_H */