at v3.16 482 lines 12 kB view raw
1/* 2 * Copyright IBM Corp. 1999,2013 3 * 4 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>, 5 * 6 * The description below was taken in large parts from the powerpc 7 * bitops header file: 8 * Within a word, bits are numbered LSB first. Lot's of places make 9 * this assumption by directly testing bits with (val & (1<<nr)). 10 * This can cause confusion for large (> 1 word) bitmaps on a 11 * big-endian system because, unlike little endian, the number of each 12 * bit depends on the word size. 13 * 14 * The bitop functions are defined to work on unsigned longs, so for an 15 * s390x system the bits end up numbered: 16 * |63..............0|127............64|191...........128|255...........192| 17 * and on s390: 18 * |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224| 19 * 20 * There are a few little-endian macros used mostly for filesystem 21 * bitmaps, these work on similar bit arrays layouts, but 22 * byte-oriented: 23 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56| 24 * 25 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit 26 * number field needs to be reversed compared to the big-endian bit 27 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b). 28 * 29 * We also have special functions which work with an MSB0 encoding: 30 * on an s390x system the bits are numbered: 31 * |0..............63|64............127|128...........191|192...........255| 32 * and on s390: 33 * |0.....31|32....63|64....95|96...127|128..159|160..191|192..223|224..255| 34 * 35 * The main difference is that bit 0-63 (64b) or 0-31 (32b) in the bit 36 * number field needs to be reversed compared to the LSB0 encoded bit 37 * fields. This can be achieved by XOR with 0x3f (64b) or 0x1f (32b). 38 * 39 */ 40 41#ifndef _S390_BITOPS_H 42#define _S390_BITOPS_H 43 44#ifndef _LINUX_BITOPS_H 45#error only <linux/bitops.h> can be included directly 46#endif 47 48#include <linux/typecheck.h> 49#include <linux/compiler.h> 50#include <asm/barrier.h> 51 52#define __BITOPS_NO_BARRIER "\n" 53 54#ifndef CONFIG_64BIT 55 56#define __BITOPS_OR "or" 57#define __BITOPS_AND "nr" 58#define __BITOPS_XOR "xr" 59#define __BITOPS_BARRIER "\n" 60 61#define __BITOPS_LOOP(__addr, __val, __op_string, __barrier) \ 62({ \ 63 unsigned long __old, __new; \ 64 \ 65 typecheck(unsigned long *, (__addr)); \ 66 asm volatile( \ 67 " l %0,%2\n" \ 68 "0: lr %1,%0\n" \ 69 __op_string " %1,%3\n" \ 70 " cs %0,%1,%2\n" \ 71 " jl 0b" \ 72 : "=&d" (__old), "=&d" (__new), "+Q" (*(__addr))\ 73 : "d" (__val) \ 74 : "cc", "memory"); \ 75 __old; \ 76}) 77 78#else /* CONFIG_64BIT */ 79 80#ifdef CONFIG_HAVE_MARCH_Z196_FEATURES 81 82#define __BITOPS_OR "laog" 83#define __BITOPS_AND "lang" 84#define __BITOPS_XOR "laxg" 85#define __BITOPS_BARRIER "bcr 14,0\n" 86 87#define __BITOPS_LOOP(__addr, __val, __op_string, __barrier) \ 88({ \ 89 unsigned long __old; \ 90 \ 91 typecheck(unsigned long *, (__addr)); \ 92 asm volatile( \ 93 __barrier \ 94 __op_string " %0,%2,%1\n" \ 95 __barrier \ 96 : "=d" (__old), "+Q" (*(__addr)) \ 97 : "d" (__val) \ 98 : "cc", "memory"); \ 99 __old; \ 100}) 101 102#else /* CONFIG_HAVE_MARCH_Z196_FEATURES */ 103 104#define __BITOPS_OR "ogr" 105#define __BITOPS_AND "ngr" 106#define __BITOPS_XOR "xgr" 107#define __BITOPS_BARRIER "\n" 108 109#define __BITOPS_LOOP(__addr, __val, __op_string, __barrier) \ 110({ \ 111 unsigned long __old, __new; \ 112 \ 113 typecheck(unsigned long *, (__addr)); \ 114 asm volatile( \ 115 " lg %0,%2\n" \ 116 "0: lgr %1,%0\n" \ 117 __op_string " %1,%3\n" \ 118 " csg %0,%1,%2\n" \ 119 " jl 0b" \ 120 : "=&d" (__old), "=&d" (__new), "+Q" (*(__addr))\ 121 : "d" (__val) \ 122 : "cc", "memory"); \ 123 __old; \ 124}) 125 126#endif /* CONFIG_HAVE_MARCH_Z196_FEATURES */ 127 128#endif /* CONFIG_64BIT */ 129 130#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG) 131 132static inline unsigned long * 133__bitops_word(unsigned long nr, volatile unsigned long *ptr) 134{ 135 unsigned long addr; 136 137 addr = (unsigned long)ptr + ((nr ^ (nr & (BITS_PER_LONG - 1))) >> 3); 138 return (unsigned long *)addr; 139} 140 141static inline unsigned char * 142__bitops_byte(unsigned long nr, volatile unsigned long *ptr) 143{ 144 return ((unsigned char *)ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3); 145} 146 147static inline void set_bit(unsigned long nr, volatile unsigned long *ptr) 148{ 149 unsigned long *addr = __bitops_word(nr, ptr); 150 unsigned long mask; 151 152#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES 153 if (__builtin_constant_p(nr)) { 154 unsigned char *caddr = __bitops_byte(nr, ptr); 155 156 asm volatile( 157 "oi %0,%b1\n" 158 : "+Q" (*caddr) 159 : "i" (1 << (nr & 7)) 160 : "cc", "memory"); 161 return; 162 } 163#endif 164 mask = 1UL << (nr & (BITS_PER_LONG - 1)); 165 __BITOPS_LOOP(addr, mask, __BITOPS_OR, __BITOPS_NO_BARRIER); 166} 167 168static inline void clear_bit(unsigned long nr, volatile unsigned long *ptr) 169{ 170 unsigned long *addr = __bitops_word(nr, ptr); 171 unsigned long mask; 172 173#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES 174 if (__builtin_constant_p(nr)) { 175 unsigned char *caddr = __bitops_byte(nr, ptr); 176 177 asm volatile( 178 "ni %0,%b1\n" 179 : "+Q" (*caddr) 180 : "i" (~(1 << (nr & 7))) 181 : "cc", "memory"); 182 return; 183 } 184#endif 185 mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); 186 __BITOPS_LOOP(addr, mask, __BITOPS_AND, __BITOPS_NO_BARRIER); 187} 188 189static inline void change_bit(unsigned long nr, volatile unsigned long *ptr) 190{ 191 unsigned long *addr = __bitops_word(nr, ptr); 192 unsigned long mask; 193 194#ifdef CONFIG_HAVE_MARCH_ZEC12_FEATURES 195 if (__builtin_constant_p(nr)) { 196 unsigned char *caddr = __bitops_byte(nr, ptr); 197 198 asm volatile( 199 "xi %0,%b1\n" 200 : "+Q" (*caddr) 201 : "i" (1 << (nr & 7)) 202 : "cc", "memory"); 203 return; 204 } 205#endif 206 mask = 1UL << (nr & (BITS_PER_LONG - 1)); 207 __BITOPS_LOOP(addr, mask, __BITOPS_XOR, __BITOPS_NO_BARRIER); 208} 209 210static inline int 211test_and_set_bit(unsigned long nr, volatile unsigned long *ptr) 212{ 213 unsigned long *addr = __bitops_word(nr, ptr); 214 unsigned long old, mask; 215 216 mask = 1UL << (nr & (BITS_PER_LONG - 1)); 217 old = __BITOPS_LOOP(addr, mask, __BITOPS_OR, __BITOPS_BARRIER); 218 return (old & mask) != 0; 219} 220 221static inline int 222test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr) 223{ 224 unsigned long *addr = __bitops_word(nr, ptr); 225 unsigned long old, mask; 226 227 mask = ~(1UL << (nr & (BITS_PER_LONG - 1))); 228 old = __BITOPS_LOOP(addr, mask, __BITOPS_AND, __BITOPS_BARRIER); 229 return (old & ~mask) != 0; 230} 231 232static inline int 233test_and_change_bit(unsigned long nr, volatile unsigned long *ptr) 234{ 235 unsigned long *addr = __bitops_word(nr, ptr); 236 unsigned long old, mask; 237 238 mask = 1UL << (nr & (BITS_PER_LONG - 1)); 239 old = __BITOPS_LOOP(addr, mask, __BITOPS_XOR, __BITOPS_BARRIER); 240 return (old & mask) != 0; 241} 242 243static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr) 244{ 245 unsigned char *addr = __bitops_byte(nr, ptr); 246 247 *addr |= 1 << (nr & 7); 248} 249 250static inline void 251__clear_bit(unsigned long nr, volatile unsigned long *ptr) 252{ 253 unsigned char *addr = __bitops_byte(nr, ptr); 254 255 *addr &= ~(1 << (nr & 7)); 256} 257 258static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr) 259{ 260 unsigned char *addr = __bitops_byte(nr, ptr); 261 262 *addr ^= 1 << (nr & 7); 263} 264 265static inline int 266__test_and_set_bit(unsigned long nr, volatile unsigned long *ptr) 267{ 268 unsigned char *addr = __bitops_byte(nr, ptr); 269 unsigned char ch; 270 271 ch = *addr; 272 *addr |= 1 << (nr & 7); 273 return (ch >> (nr & 7)) & 1; 274} 275 276static inline int 277__test_and_clear_bit(unsigned long nr, volatile unsigned long *ptr) 278{ 279 unsigned char *addr = __bitops_byte(nr, ptr); 280 unsigned char ch; 281 282 ch = *addr; 283 *addr &= ~(1 << (nr & 7)); 284 return (ch >> (nr & 7)) & 1; 285} 286 287static inline int 288__test_and_change_bit(unsigned long nr, volatile unsigned long *ptr) 289{ 290 unsigned char *addr = __bitops_byte(nr, ptr); 291 unsigned char ch; 292 293 ch = *addr; 294 *addr ^= 1 << (nr & 7); 295 return (ch >> (nr & 7)) & 1; 296} 297 298static inline int test_bit(unsigned long nr, const volatile unsigned long *ptr) 299{ 300 const volatile unsigned char *addr; 301 302 addr = ((const volatile unsigned char *)ptr); 303 addr += (nr ^ (BITS_PER_LONG - 8)) >> 3; 304 return (*addr >> (nr & 7)) & 1; 305} 306 307/* 308 * Functions which use MSB0 bit numbering. 309 * On an s390x system the bits are numbered: 310 * |0..............63|64............127|128...........191|192...........255| 311 * and on s390: 312 * |0.....31|32....63|64....95|96...127|128..159|160..191|192..223|224..255| 313 */ 314unsigned long find_first_bit_inv(const unsigned long *addr, unsigned long size); 315unsigned long find_next_bit_inv(const unsigned long *addr, unsigned long size, 316 unsigned long offset); 317 318static inline void set_bit_inv(unsigned long nr, volatile unsigned long *ptr) 319{ 320 return set_bit(nr ^ (BITS_PER_LONG - 1), ptr); 321} 322 323static inline void clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) 324{ 325 return clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); 326} 327 328static inline void __set_bit_inv(unsigned long nr, volatile unsigned long *ptr) 329{ 330 return __set_bit(nr ^ (BITS_PER_LONG - 1), ptr); 331} 332 333static inline void __clear_bit_inv(unsigned long nr, volatile unsigned long *ptr) 334{ 335 return __clear_bit(nr ^ (BITS_PER_LONG - 1), ptr); 336} 337 338static inline int test_bit_inv(unsigned long nr, 339 const volatile unsigned long *ptr) 340{ 341 return test_bit(nr ^ (BITS_PER_LONG - 1), ptr); 342} 343 344#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES 345 346/** 347 * __flogr - find leftmost one 348 * @word - The word to search 349 * 350 * Returns the bit number of the most significant bit set, 351 * where the most significant bit has bit number 0. 352 * If no bit is set this function returns 64. 353 */ 354static inline unsigned char __flogr(unsigned long word) 355{ 356 if (__builtin_constant_p(word)) { 357 unsigned long bit = 0; 358 359 if (!word) 360 return 64; 361 if (!(word & 0xffffffff00000000UL)) { 362 word <<= 32; 363 bit += 32; 364 } 365 if (!(word & 0xffff000000000000UL)) { 366 word <<= 16; 367 bit += 16; 368 } 369 if (!(word & 0xff00000000000000UL)) { 370 word <<= 8; 371 bit += 8; 372 } 373 if (!(word & 0xf000000000000000UL)) { 374 word <<= 4; 375 bit += 4; 376 } 377 if (!(word & 0xc000000000000000UL)) { 378 word <<= 2; 379 bit += 2; 380 } 381 if (!(word & 0x8000000000000000UL)) { 382 word <<= 1; 383 bit += 1; 384 } 385 return bit; 386 } else { 387 register unsigned long bit asm("4") = word; 388 register unsigned long out asm("5"); 389 390 asm volatile( 391 " flogr %[bit],%[bit]\n" 392 : [bit] "+d" (bit), [out] "=d" (out) : : "cc"); 393 return bit; 394 } 395} 396 397/** 398 * __ffs - find first bit in word. 399 * @word: The word to search 400 * 401 * Undefined if no bit exists, so code should check against 0 first. 402 */ 403static inline unsigned long __ffs(unsigned long word) 404{ 405 return __flogr(-word & word) ^ (BITS_PER_LONG - 1); 406} 407 408/** 409 * ffs - find first bit set 410 * @word: the word to search 411 * 412 * This is defined the same way as the libc and 413 * compiler builtin ffs routines (man ffs). 414 */ 415static inline int ffs(int word) 416{ 417 unsigned long mask = 2 * BITS_PER_LONG - 1; 418 unsigned int val = (unsigned int)word; 419 420 return (1 + (__flogr(-val & val) ^ (BITS_PER_LONG - 1))) & mask; 421} 422 423/** 424 * __fls - find last (most-significant) set bit in a long word 425 * @word: the word to search 426 * 427 * Undefined if no set bit exists, so code should check against 0 first. 428 */ 429static inline unsigned long __fls(unsigned long word) 430{ 431 return __flogr(word) ^ (BITS_PER_LONG - 1); 432} 433 434/** 435 * fls64 - find last set bit in a 64-bit word 436 * @word: the word to search 437 * 438 * This is defined in a similar way as the libc and compiler builtin 439 * ffsll, but returns the position of the most significant set bit. 440 * 441 * fls64(value) returns 0 if value is 0 or the position of the last 442 * set bit if value is nonzero. The last (most significant) bit is 443 * at position 64. 444 */ 445static inline int fls64(unsigned long word) 446{ 447 unsigned long mask = 2 * BITS_PER_LONG - 1; 448 449 return (1 + (__flogr(word) ^ (BITS_PER_LONG - 1))) & mask; 450} 451 452/** 453 * fls - find last (most-significant) bit set 454 * @word: the word to search 455 * 456 * This is defined the same way as ffs. 457 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. 458 */ 459static inline int fls(int word) 460{ 461 return fls64((unsigned int)word); 462} 463 464#else /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */ 465 466#include <asm-generic/bitops/__ffs.h> 467#include <asm-generic/bitops/ffs.h> 468#include <asm-generic/bitops/__fls.h> 469#include <asm-generic/bitops/fls.h> 470#include <asm-generic/bitops/fls64.h> 471 472#endif /* CONFIG_HAVE_MARCH_Z9_109_FEATURES */ 473 474#include <asm-generic/bitops/ffz.h> 475#include <asm-generic/bitops/find.h> 476#include <asm-generic/bitops/hweight.h> 477#include <asm-generic/bitops/lock.h> 478#include <asm-generic/bitops/sched.h> 479#include <asm-generic/bitops/le.h> 480#include <asm-generic/bitops/ext2-atomic-setbit.h> 481 482#endif /* _S390_BITOPS_H */