at v3.16-rc7 26 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/mmdebug.h> 5#include <linux/preempt.h> 6#include <linux/smp.h> 7#include <linux/cpumask.h> 8#include <linux/pfn.h> 9#include <linux/init.h> 10 11#include <asm/percpu.h> 12 13/* enough to cover all DEFINE_PER_CPUs in modules */ 14#ifdef CONFIG_MODULES 15#define PERCPU_MODULE_RESERVE (8 << 10) 16#else 17#define PERCPU_MODULE_RESERVE 0 18#endif 19 20#ifndef PERCPU_ENOUGH_ROOM 21#define PERCPU_ENOUGH_ROOM \ 22 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 23 PERCPU_MODULE_RESERVE) 24#endif 25 26/* 27 * Must be an lvalue. Since @var must be a simple identifier, 28 * we force a syntax error here if it isn't. 29 */ 30#define get_cpu_var(var) (*({ \ 31 preempt_disable(); \ 32 this_cpu_ptr(&var); })) 33 34/* 35 * The weird & is necessary because sparse considers (void)(var) to be 36 * a direct dereference of percpu variable (var). 37 */ 38#define put_cpu_var(var) do { \ 39 (void)&(var); \ 40 preempt_enable(); \ 41} while (0) 42 43#define get_cpu_ptr(var) ({ \ 44 preempt_disable(); \ 45 this_cpu_ptr(var); }) 46 47#define put_cpu_ptr(var) do { \ 48 (void)(var); \ 49 preempt_enable(); \ 50} while (0) 51 52/* minimum unit size, also is the maximum supported allocation size */ 53#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 54 55/* 56 * Percpu allocator can serve percpu allocations before slab is 57 * initialized which allows slab to depend on the percpu allocator. 58 * The following two parameters decide how much resource to 59 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 60 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 61 */ 62#define PERCPU_DYNAMIC_EARLY_SLOTS 128 63#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 64 65/* 66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 67 * back on the first chunk for dynamic percpu allocation if arch is 68 * manually allocating and mapping it for faster access (as a part of 69 * large page mapping for example). 70 * 71 * The following values give between one and two pages of free space 72 * after typical minimal boot (2-way SMP, single disk and NIC) with 73 * both defconfig and a distro config on x86_64 and 32. More 74 * intelligent way to determine this would be nice. 75 */ 76#if BITS_PER_LONG > 32 77#define PERCPU_DYNAMIC_RESERVE (20 << 10) 78#else 79#define PERCPU_DYNAMIC_RESERVE (12 << 10) 80#endif 81 82extern void *pcpu_base_addr; 83extern const unsigned long *pcpu_unit_offsets; 84 85struct pcpu_group_info { 86 int nr_units; /* aligned # of units */ 87 unsigned long base_offset; /* base address offset */ 88 unsigned int *cpu_map; /* unit->cpu map, empty 89 * entries contain NR_CPUS */ 90}; 91 92struct pcpu_alloc_info { 93 size_t static_size; 94 size_t reserved_size; 95 size_t dyn_size; 96 size_t unit_size; 97 size_t atom_size; 98 size_t alloc_size; 99 size_t __ai_size; /* internal, don't use */ 100 int nr_groups; /* 0 if grouping unnecessary */ 101 struct pcpu_group_info groups[]; 102}; 103 104enum pcpu_fc { 105 PCPU_FC_AUTO, 106 PCPU_FC_EMBED, 107 PCPU_FC_PAGE, 108 109 PCPU_FC_NR, 110}; 111extern const char * const pcpu_fc_names[PCPU_FC_NR]; 112 113extern enum pcpu_fc pcpu_chosen_fc; 114 115typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 116 size_t align); 117typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 118typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 119typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 120 121extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 122 int nr_units); 123extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 124 125extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 126 void *base_addr); 127 128#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 129extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 130 size_t atom_size, 131 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 132 pcpu_fc_alloc_fn_t alloc_fn, 133 pcpu_fc_free_fn_t free_fn); 134#endif 135 136#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 137extern int __init pcpu_page_first_chunk(size_t reserved_size, 138 pcpu_fc_alloc_fn_t alloc_fn, 139 pcpu_fc_free_fn_t free_fn, 140 pcpu_fc_populate_pte_fn_t populate_pte_fn); 141#endif 142 143/* 144 * Use this to get to a cpu's version of the per-cpu object 145 * dynamically allocated. Non-atomic access to the current CPU's 146 * version should probably be combined with get_cpu()/put_cpu(). 147 */ 148#ifdef CONFIG_SMP 149#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 150#else 151#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 152#endif 153 154extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 155extern bool is_kernel_percpu_address(unsigned long addr); 156 157#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 158extern void __init setup_per_cpu_areas(void); 159#endif 160extern void __init percpu_init_late(void); 161 162extern void __percpu *__alloc_percpu(size_t size, size_t align); 163extern void free_percpu(void __percpu *__pdata); 164extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 165 166#define alloc_percpu(type) \ 167 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 168 169/* 170 * Branching function to split up a function into a set of functions that 171 * are called for different scalar sizes of the objects handled. 172 */ 173 174extern void __bad_size_call_parameter(void); 175 176#ifdef CONFIG_DEBUG_PREEMPT 177extern void __this_cpu_preempt_check(const char *op); 178#else 179static inline void __this_cpu_preempt_check(const char *op) { } 180#endif 181 182#define __pcpu_size_call_return(stem, variable) \ 183({ typeof(variable) pscr_ret__; \ 184 __verify_pcpu_ptr(&(variable)); \ 185 switch(sizeof(variable)) { \ 186 case 1: pscr_ret__ = stem##1(variable);break; \ 187 case 2: pscr_ret__ = stem##2(variable);break; \ 188 case 4: pscr_ret__ = stem##4(variable);break; \ 189 case 8: pscr_ret__ = stem##8(variable);break; \ 190 default: \ 191 __bad_size_call_parameter();break; \ 192 } \ 193 pscr_ret__; \ 194}) 195 196#define __pcpu_size_call_return2(stem, variable, ...) \ 197({ \ 198 typeof(variable) pscr2_ret__; \ 199 __verify_pcpu_ptr(&(variable)); \ 200 switch(sizeof(variable)) { \ 201 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 202 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 203 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 204 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 205 default: \ 206 __bad_size_call_parameter(); break; \ 207 } \ 208 pscr2_ret__; \ 209}) 210 211/* 212 * Special handling for cmpxchg_double. cmpxchg_double is passed two 213 * percpu variables. The first has to be aligned to a double word 214 * boundary and the second has to follow directly thereafter. 215 * We enforce this on all architectures even if they don't support 216 * a double cmpxchg instruction, since it's a cheap requirement, and it 217 * avoids breaking the requirement for architectures with the instruction. 218 */ 219#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 220({ \ 221 bool pdcrb_ret__; \ 222 __verify_pcpu_ptr(&pcp1); \ 223 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 224 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 225 VM_BUG_ON((unsigned long)(&pcp2) != \ 226 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 227 switch(sizeof(pcp1)) { \ 228 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 229 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 230 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 231 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 232 default: \ 233 __bad_size_call_parameter(); break; \ 234 } \ 235 pdcrb_ret__; \ 236}) 237 238#define __pcpu_size_call(stem, variable, ...) \ 239do { \ 240 __verify_pcpu_ptr(&(variable)); \ 241 switch(sizeof(variable)) { \ 242 case 1: stem##1(variable, __VA_ARGS__);break; \ 243 case 2: stem##2(variable, __VA_ARGS__);break; \ 244 case 4: stem##4(variable, __VA_ARGS__);break; \ 245 case 8: stem##8(variable, __VA_ARGS__);break; \ 246 default: \ 247 __bad_size_call_parameter();break; \ 248 } \ 249} while (0) 250 251/* 252 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com> 253 * 254 * Optimized manipulation for memory allocated through the per cpu 255 * allocator or for addresses of per cpu variables. 256 * 257 * These operation guarantee exclusivity of access for other operations 258 * on the *same* processor. The assumption is that per cpu data is only 259 * accessed by a single processor instance (the current one). 260 * 261 * The first group is used for accesses that must be done in a 262 * preemption safe way since we know that the context is not preempt 263 * safe. Interrupts may occur. If the interrupt modifies the variable 264 * too then RMW actions will not be reliable. 265 * 266 * The arch code can provide optimized functions in two ways: 267 * 268 * 1. Override the function completely. F.e. define this_cpu_add(). 269 * The arch must then ensure that the various scalar format passed 270 * are handled correctly. 271 * 272 * 2. Provide functions for certain scalar sizes. F.e. provide 273 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 274 * sized RMW actions. If arch code does not provide operations for 275 * a scalar size then the fallback in the generic code will be 276 * used. 277 */ 278 279#define _this_cpu_generic_read(pcp) \ 280({ typeof(pcp) ret__; \ 281 preempt_disable(); \ 282 ret__ = *this_cpu_ptr(&(pcp)); \ 283 preempt_enable(); \ 284 ret__; \ 285}) 286 287#ifndef this_cpu_read 288# ifndef this_cpu_read_1 289# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 290# endif 291# ifndef this_cpu_read_2 292# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 293# endif 294# ifndef this_cpu_read_4 295# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 296# endif 297# ifndef this_cpu_read_8 298# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 299# endif 300# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 301#endif 302 303#define _this_cpu_generic_to_op(pcp, val, op) \ 304do { \ 305 unsigned long flags; \ 306 raw_local_irq_save(flags); \ 307 *raw_cpu_ptr(&(pcp)) op val; \ 308 raw_local_irq_restore(flags); \ 309} while (0) 310 311#ifndef this_cpu_write 312# ifndef this_cpu_write_1 313# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 314# endif 315# ifndef this_cpu_write_2 316# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 317# endif 318# ifndef this_cpu_write_4 319# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 320# endif 321# ifndef this_cpu_write_8 322# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 323# endif 324# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 325#endif 326 327#ifndef this_cpu_add 328# ifndef this_cpu_add_1 329# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 330# endif 331# ifndef this_cpu_add_2 332# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 333# endif 334# ifndef this_cpu_add_4 335# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 336# endif 337# ifndef this_cpu_add_8 338# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 339# endif 340# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 341#endif 342 343#ifndef this_cpu_sub 344# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val)) 345#endif 346 347#ifndef this_cpu_inc 348# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 349#endif 350 351#ifndef this_cpu_dec 352# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 353#endif 354 355#ifndef this_cpu_and 356# ifndef this_cpu_and_1 357# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 358# endif 359# ifndef this_cpu_and_2 360# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 361# endif 362# ifndef this_cpu_and_4 363# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 364# endif 365# ifndef this_cpu_and_8 366# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 367# endif 368# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 369#endif 370 371#ifndef this_cpu_or 372# ifndef this_cpu_or_1 373# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 374# endif 375# ifndef this_cpu_or_2 376# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 377# endif 378# ifndef this_cpu_or_4 379# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 380# endif 381# ifndef this_cpu_or_8 382# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 383# endif 384# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 385#endif 386 387#define _this_cpu_generic_add_return(pcp, val) \ 388({ \ 389 typeof(pcp) ret__; \ 390 unsigned long flags; \ 391 raw_local_irq_save(flags); \ 392 raw_cpu_add(pcp, val); \ 393 ret__ = raw_cpu_read(pcp); \ 394 raw_local_irq_restore(flags); \ 395 ret__; \ 396}) 397 398#ifndef this_cpu_add_return 399# ifndef this_cpu_add_return_1 400# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 401# endif 402# ifndef this_cpu_add_return_2 403# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 404# endif 405# ifndef this_cpu_add_return_4 406# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 407# endif 408# ifndef this_cpu_add_return_8 409# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 410# endif 411# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 412#endif 413 414#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) 415#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 416#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 417 418#define _this_cpu_generic_xchg(pcp, nval) \ 419({ typeof(pcp) ret__; \ 420 unsigned long flags; \ 421 raw_local_irq_save(flags); \ 422 ret__ = raw_cpu_read(pcp); \ 423 raw_cpu_write(pcp, nval); \ 424 raw_local_irq_restore(flags); \ 425 ret__; \ 426}) 427 428#ifndef this_cpu_xchg 429# ifndef this_cpu_xchg_1 430# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 431# endif 432# ifndef this_cpu_xchg_2 433# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 434# endif 435# ifndef this_cpu_xchg_4 436# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 437# endif 438# ifndef this_cpu_xchg_8 439# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 440# endif 441# define this_cpu_xchg(pcp, nval) \ 442 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 443#endif 444 445#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 446({ \ 447 typeof(pcp) ret__; \ 448 unsigned long flags; \ 449 raw_local_irq_save(flags); \ 450 ret__ = raw_cpu_read(pcp); \ 451 if (ret__ == (oval)) \ 452 raw_cpu_write(pcp, nval); \ 453 raw_local_irq_restore(flags); \ 454 ret__; \ 455}) 456 457#ifndef this_cpu_cmpxchg 458# ifndef this_cpu_cmpxchg_1 459# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 460# endif 461# ifndef this_cpu_cmpxchg_2 462# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 463# endif 464# ifndef this_cpu_cmpxchg_4 465# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 466# endif 467# ifndef this_cpu_cmpxchg_8 468# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 469# endif 470# define this_cpu_cmpxchg(pcp, oval, nval) \ 471 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 472#endif 473 474/* 475 * cmpxchg_double replaces two adjacent scalars at once. The first 476 * two parameters are per cpu variables which have to be of the same 477 * size. A truth value is returned to indicate success or failure 478 * (since a double register result is difficult to handle). There is 479 * very limited hardware support for these operations, so only certain 480 * sizes may work. 481 */ 482#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 483({ \ 484 int ret__; \ 485 unsigned long flags; \ 486 raw_local_irq_save(flags); \ 487 ret__ = raw_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 488 oval1, oval2, nval1, nval2); \ 489 raw_local_irq_restore(flags); \ 490 ret__; \ 491}) 492 493#ifndef this_cpu_cmpxchg_double 494# ifndef this_cpu_cmpxchg_double_1 495# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 496 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 497# endif 498# ifndef this_cpu_cmpxchg_double_2 499# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 500 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 501# endif 502# ifndef this_cpu_cmpxchg_double_4 503# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 504 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 505# endif 506# ifndef this_cpu_cmpxchg_double_8 507# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 508 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 509# endif 510# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 511 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 512#endif 513 514/* 515 * Generic percpu operations for contexts where we do not want to do 516 * any checks for preemptiosn. 517 * 518 * If there is no other protection through preempt disable and/or 519 * disabling interupts then one of these RMW operations can show unexpected 520 * behavior because the execution thread was rescheduled on another processor 521 * or an interrupt occurred and the same percpu variable was modified from 522 * the interrupt context. 523 */ 524#ifndef raw_cpu_read 525# ifndef raw_cpu_read_1 526# define raw_cpu_read_1(pcp) (*raw_cpu_ptr(&(pcp))) 527# endif 528# ifndef raw_cpu_read_2 529# define raw_cpu_read_2(pcp) (*raw_cpu_ptr(&(pcp))) 530# endif 531# ifndef raw_cpu_read_4 532# define raw_cpu_read_4(pcp) (*raw_cpu_ptr(&(pcp))) 533# endif 534# ifndef raw_cpu_read_8 535# define raw_cpu_read_8(pcp) (*raw_cpu_ptr(&(pcp))) 536# endif 537# define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, (pcp)) 538#endif 539 540#define raw_cpu_generic_to_op(pcp, val, op) \ 541do { \ 542 *raw_cpu_ptr(&(pcp)) op val; \ 543} while (0) 544 545 546#ifndef raw_cpu_write 547# ifndef raw_cpu_write_1 548# define raw_cpu_write_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) 549# endif 550# ifndef raw_cpu_write_2 551# define raw_cpu_write_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) 552# endif 553# ifndef raw_cpu_write_4 554# define raw_cpu_write_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) 555# endif 556# ifndef raw_cpu_write_8 557# define raw_cpu_write_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), =) 558# endif 559# define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, (pcp), (val)) 560#endif 561 562#ifndef raw_cpu_add 563# ifndef raw_cpu_add_1 564# define raw_cpu_add_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) 565# endif 566# ifndef raw_cpu_add_2 567# define raw_cpu_add_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) 568# endif 569# ifndef raw_cpu_add_4 570# define raw_cpu_add_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) 571# endif 572# ifndef raw_cpu_add_8 573# define raw_cpu_add_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), +=) 574# endif 575# define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, (pcp), (val)) 576#endif 577 578#ifndef raw_cpu_sub 579# define raw_cpu_sub(pcp, val) raw_cpu_add((pcp), -(val)) 580#endif 581 582#ifndef raw_cpu_inc 583# define raw_cpu_inc(pcp) raw_cpu_add((pcp), 1) 584#endif 585 586#ifndef raw_cpu_dec 587# define raw_cpu_dec(pcp) raw_cpu_sub((pcp), 1) 588#endif 589 590#ifndef raw_cpu_and 591# ifndef raw_cpu_and_1 592# define raw_cpu_and_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) 593# endif 594# ifndef raw_cpu_and_2 595# define raw_cpu_and_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) 596# endif 597# ifndef raw_cpu_and_4 598# define raw_cpu_and_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) 599# endif 600# ifndef raw_cpu_and_8 601# define raw_cpu_and_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), &=) 602# endif 603# define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, (pcp), (val)) 604#endif 605 606#ifndef raw_cpu_or 607# ifndef raw_cpu_or_1 608# define raw_cpu_or_1(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) 609# endif 610# ifndef raw_cpu_or_2 611# define raw_cpu_or_2(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) 612# endif 613# ifndef raw_cpu_or_4 614# define raw_cpu_or_4(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) 615# endif 616# ifndef raw_cpu_or_8 617# define raw_cpu_or_8(pcp, val) raw_cpu_generic_to_op((pcp), (val), |=) 618# endif 619# define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, (pcp), (val)) 620#endif 621 622#define raw_cpu_generic_add_return(pcp, val) \ 623({ \ 624 raw_cpu_add(pcp, val); \ 625 raw_cpu_read(pcp); \ 626}) 627 628#ifndef raw_cpu_add_return 629# ifndef raw_cpu_add_return_1 630# define raw_cpu_add_return_1(pcp, val) raw_cpu_generic_add_return(pcp, val) 631# endif 632# ifndef raw_cpu_add_return_2 633# define raw_cpu_add_return_2(pcp, val) raw_cpu_generic_add_return(pcp, val) 634# endif 635# ifndef raw_cpu_add_return_4 636# define raw_cpu_add_return_4(pcp, val) raw_cpu_generic_add_return(pcp, val) 637# endif 638# ifndef raw_cpu_add_return_8 639# define raw_cpu_add_return_8(pcp, val) raw_cpu_generic_add_return(pcp, val) 640# endif 641# define raw_cpu_add_return(pcp, val) \ 642 __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val) 643#endif 644 645#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val)) 646#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1) 647#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1) 648 649#define raw_cpu_generic_xchg(pcp, nval) \ 650({ typeof(pcp) ret__; \ 651 ret__ = raw_cpu_read(pcp); \ 652 raw_cpu_write(pcp, nval); \ 653 ret__; \ 654}) 655 656#ifndef raw_cpu_xchg 657# ifndef raw_cpu_xchg_1 658# define raw_cpu_xchg_1(pcp, nval) raw_cpu_generic_xchg(pcp, nval) 659# endif 660# ifndef raw_cpu_xchg_2 661# define raw_cpu_xchg_2(pcp, nval) raw_cpu_generic_xchg(pcp, nval) 662# endif 663# ifndef raw_cpu_xchg_4 664# define raw_cpu_xchg_4(pcp, nval) raw_cpu_generic_xchg(pcp, nval) 665# endif 666# ifndef raw_cpu_xchg_8 667# define raw_cpu_xchg_8(pcp, nval) raw_cpu_generic_xchg(pcp, nval) 668# endif 669# define raw_cpu_xchg(pcp, nval) \ 670 __pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval) 671#endif 672 673#define raw_cpu_generic_cmpxchg(pcp, oval, nval) \ 674({ \ 675 typeof(pcp) ret__; \ 676 ret__ = raw_cpu_read(pcp); \ 677 if (ret__ == (oval)) \ 678 raw_cpu_write(pcp, nval); \ 679 ret__; \ 680}) 681 682#ifndef raw_cpu_cmpxchg 683# ifndef raw_cpu_cmpxchg_1 684# define raw_cpu_cmpxchg_1(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) 685# endif 686# ifndef raw_cpu_cmpxchg_2 687# define raw_cpu_cmpxchg_2(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) 688# endif 689# ifndef raw_cpu_cmpxchg_4 690# define raw_cpu_cmpxchg_4(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) 691# endif 692# ifndef raw_cpu_cmpxchg_8 693# define raw_cpu_cmpxchg_8(pcp, oval, nval) raw_cpu_generic_cmpxchg(pcp, oval, nval) 694# endif 695# define raw_cpu_cmpxchg(pcp, oval, nval) \ 696 __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval) 697#endif 698 699#define raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 700({ \ 701 int __ret = 0; \ 702 if (raw_cpu_read(pcp1) == (oval1) && \ 703 raw_cpu_read(pcp2) == (oval2)) { \ 704 raw_cpu_write(pcp1, (nval1)); \ 705 raw_cpu_write(pcp2, (nval2)); \ 706 __ret = 1; \ 707 } \ 708 (__ret); \ 709}) 710 711#ifndef raw_cpu_cmpxchg_double 712# ifndef raw_cpu_cmpxchg_double_1 713# define raw_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 714 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 715# endif 716# ifndef raw_cpu_cmpxchg_double_2 717# define raw_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 718 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 719# endif 720# ifndef raw_cpu_cmpxchg_double_4 721# define raw_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 722 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 723# endif 724# ifndef raw_cpu_cmpxchg_double_8 725# define raw_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 726 raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 727# endif 728# define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 729 __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 730#endif 731 732/* 733 * Generic percpu operations for context that are safe from preemption/interrupts. 734 */ 735#ifndef __this_cpu_read 736# define __this_cpu_read(pcp) \ 737 (__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp))) 738#endif 739 740#ifndef __this_cpu_write 741# define __this_cpu_write(pcp, val) \ 742do { __this_cpu_preempt_check("write"); \ 743 __pcpu_size_call(raw_cpu_write_, (pcp), (val)); \ 744} while (0) 745#endif 746 747#ifndef __this_cpu_add 748# define __this_cpu_add(pcp, val) \ 749do { __this_cpu_preempt_check("add"); \ 750 __pcpu_size_call(raw_cpu_add_, (pcp), (val)); \ 751} while (0) 752#endif 753 754#ifndef __this_cpu_sub 755# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val)) 756#endif 757 758#ifndef __this_cpu_inc 759# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 760#endif 761 762#ifndef __this_cpu_dec 763# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 764#endif 765 766#ifndef __this_cpu_and 767# define __this_cpu_and(pcp, val) \ 768do { __this_cpu_preempt_check("and"); \ 769 __pcpu_size_call(raw_cpu_and_, (pcp), (val)); \ 770} while (0) 771 772#endif 773 774#ifndef __this_cpu_or 775# define __this_cpu_or(pcp, val) \ 776do { __this_cpu_preempt_check("or"); \ 777 __pcpu_size_call(raw_cpu_or_, (pcp), (val)); \ 778} while (0) 779#endif 780 781#ifndef __this_cpu_add_return 782# define __this_cpu_add_return(pcp, val) \ 783 (__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)) 784#endif 785 786#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) 787#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) 788#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) 789 790#ifndef __this_cpu_xchg 791# define __this_cpu_xchg(pcp, nval) \ 792 (__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)) 793#endif 794 795#ifndef __this_cpu_cmpxchg 796# define __this_cpu_cmpxchg(pcp, oval, nval) \ 797 (__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)) 798#endif 799 800#ifndef __this_cpu_cmpxchg_double 801# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 802 (__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))) 803#endif 804 805#endif /* __LINUX_PERCPU_H */