at v3.16-rc2 1115 lines 41 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47#include <linux/percpu.h> 48#include <asm/barrier.h> 49 50extern int rcu_expedited; /* for sysctl */ 51#ifdef CONFIG_RCU_TORTURE_TEST 52extern int rcutorture_runnable; /* for sysctl */ 53#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 54 55enum rcutorture_type { 56 RCU_FLAVOR, 57 RCU_BH_FLAVOR, 58 RCU_SCHED_FLAVOR, 59 SRCU_FLAVOR, 60 INVALID_RCU_FLAVOR 61}; 62 63#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 64void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 65 unsigned long *gpnum, unsigned long *completed); 66void rcutorture_record_test_transition(void); 67void rcutorture_record_progress(unsigned long vernum); 68void do_trace_rcu_torture_read(const char *rcutorturename, 69 struct rcu_head *rhp, 70 unsigned long secs, 71 unsigned long c_old, 72 unsigned long c); 73#else 74static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 75 int *flags, 76 unsigned long *gpnum, 77 unsigned long *completed) 78{ 79 *flags = 0; 80 *gpnum = 0; 81 *completed = 0; 82} 83static inline void rcutorture_record_test_transition(void) 84{ 85} 86static inline void rcutorture_record_progress(unsigned long vernum) 87{ 88} 89#ifdef CONFIG_RCU_TRACE 90void do_trace_rcu_torture_read(const char *rcutorturename, 91 struct rcu_head *rhp, 92 unsigned long secs, 93 unsigned long c_old, 94 unsigned long c); 95#else 96#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 97 do { } while (0) 98#endif 99#endif 100 101#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 102#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 103#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 104#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 105#define ulong2long(a) (*(long *)(&(a))) 106 107/* Exported common interfaces */ 108 109#ifdef CONFIG_PREEMPT_RCU 110 111/** 112 * call_rcu() - Queue an RCU callback for invocation after a grace period. 113 * @head: structure to be used for queueing the RCU updates. 114 * @func: actual callback function to be invoked after the grace period 115 * 116 * The callback function will be invoked some time after a full grace 117 * period elapses, in other words after all pre-existing RCU read-side 118 * critical sections have completed. However, the callback function 119 * might well execute concurrently with RCU read-side critical sections 120 * that started after call_rcu() was invoked. RCU read-side critical 121 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 122 * and may be nested. 123 * 124 * Note that all CPUs must agree that the grace period extended beyond 125 * all pre-existing RCU read-side critical section. On systems with more 126 * than one CPU, this means that when "func()" is invoked, each CPU is 127 * guaranteed to have executed a full memory barrier since the end of its 128 * last RCU read-side critical section whose beginning preceded the call 129 * to call_rcu(). It also means that each CPU executing an RCU read-side 130 * critical section that continues beyond the start of "func()" must have 131 * executed a memory barrier after the call_rcu() but before the beginning 132 * of that RCU read-side critical section. Note that these guarantees 133 * include CPUs that are offline, idle, or executing in user mode, as 134 * well as CPUs that are executing in the kernel. 135 * 136 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 137 * resulting RCU callback function "func()", then both CPU A and CPU B are 138 * guaranteed to execute a full memory barrier during the time interval 139 * between the call to call_rcu() and the invocation of "func()" -- even 140 * if CPU A and CPU B are the same CPU (but again only if the system has 141 * more than one CPU). 142 */ 143void call_rcu(struct rcu_head *head, 144 void (*func)(struct rcu_head *head)); 145 146#else /* #ifdef CONFIG_PREEMPT_RCU */ 147 148/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 149#define call_rcu call_rcu_sched 150 151#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 152 153/** 154 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 155 * @head: structure to be used for queueing the RCU updates. 156 * @func: actual callback function to be invoked after the grace period 157 * 158 * The callback function will be invoked some time after a full grace 159 * period elapses, in other words after all currently executing RCU 160 * read-side critical sections have completed. call_rcu_bh() assumes 161 * that the read-side critical sections end on completion of a softirq 162 * handler. This means that read-side critical sections in process 163 * context must not be interrupted by softirqs. This interface is to be 164 * used when most of the read-side critical sections are in softirq context. 165 * RCU read-side critical sections are delimited by : 166 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 167 * OR 168 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 169 * These may be nested. 170 * 171 * See the description of call_rcu() for more detailed information on 172 * memory ordering guarantees. 173 */ 174void call_rcu_bh(struct rcu_head *head, 175 void (*func)(struct rcu_head *head)); 176 177/** 178 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 179 * @head: structure to be used for queueing the RCU updates. 180 * @func: actual callback function to be invoked after the grace period 181 * 182 * The callback function will be invoked some time after a full grace 183 * period elapses, in other words after all currently executing RCU 184 * read-side critical sections have completed. call_rcu_sched() assumes 185 * that the read-side critical sections end on enabling of preemption 186 * or on voluntary preemption. 187 * RCU read-side critical sections are delimited by : 188 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 189 * OR 190 * anything that disables preemption. 191 * These may be nested. 192 * 193 * See the description of call_rcu() for more detailed information on 194 * memory ordering guarantees. 195 */ 196void call_rcu_sched(struct rcu_head *head, 197 void (*func)(struct rcu_head *rcu)); 198 199void synchronize_sched(void); 200 201#ifdef CONFIG_PREEMPT_RCU 202 203void __rcu_read_lock(void); 204void __rcu_read_unlock(void); 205void rcu_read_unlock_special(struct task_struct *t); 206void synchronize_rcu(void); 207 208/* 209 * Defined as a macro as it is a very low level header included from 210 * areas that don't even know about current. This gives the rcu_read_lock() 211 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 212 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 213 */ 214#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 215 216#else /* #ifdef CONFIG_PREEMPT_RCU */ 217 218static inline void __rcu_read_lock(void) 219{ 220 preempt_disable(); 221} 222 223static inline void __rcu_read_unlock(void) 224{ 225 preempt_enable(); 226} 227 228static inline void synchronize_rcu(void) 229{ 230 synchronize_sched(); 231} 232 233static inline int rcu_preempt_depth(void) 234{ 235 return 0; 236} 237 238#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 239 240/* Internal to kernel */ 241void rcu_init(void); 242void rcu_sched_qs(int cpu); 243void rcu_bh_qs(int cpu); 244void rcu_check_callbacks(int cpu, int user); 245struct notifier_block; 246void rcu_idle_enter(void); 247void rcu_idle_exit(void); 248void rcu_irq_enter(void); 249void rcu_irq_exit(void); 250 251#ifdef CONFIG_RCU_STALL_COMMON 252void rcu_sysrq_start(void); 253void rcu_sysrq_end(void); 254#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 255static inline void rcu_sysrq_start(void) 256{ 257} 258static inline void rcu_sysrq_end(void) 259{ 260} 261#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 262 263#ifdef CONFIG_RCU_USER_QS 264void rcu_user_enter(void); 265void rcu_user_exit(void); 266#else 267static inline void rcu_user_enter(void) { } 268static inline void rcu_user_exit(void) { } 269static inline void rcu_user_hooks_switch(struct task_struct *prev, 270 struct task_struct *next) { } 271#endif /* CONFIG_RCU_USER_QS */ 272 273/** 274 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 275 * @a: Code that RCU needs to pay attention to. 276 * 277 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 278 * in the inner idle loop, that is, between the rcu_idle_enter() and 279 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 280 * critical sections. However, things like powertop need tracepoints 281 * in the inner idle loop. 282 * 283 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 284 * will tell RCU that it needs to pay attending, invoke its argument 285 * (in this example, a call to the do_something_with_RCU() function), 286 * and then tell RCU to go back to ignoring this CPU. It is permissible 287 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 288 * quite limited. If deeper nesting is required, it will be necessary 289 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 290 */ 291#define RCU_NONIDLE(a) \ 292 do { \ 293 rcu_irq_enter(); \ 294 do { a; } while (0); \ 295 rcu_irq_exit(); \ 296 } while (0) 297 298#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 299bool __rcu_is_watching(void); 300#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 301 302/* 303 * Hooks for cond_resched() and friends to avoid RCU CPU stall warnings. 304 */ 305 306#define RCU_COND_RESCHED_LIM 256 /* ms vs. 100s of ms. */ 307DECLARE_PER_CPU(int, rcu_cond_resched_count); 308void rcu_resched(void); 309 310/* 311 * Is it time to report RCU quiescent states? 312 * 313 * Note unsynchronized access to rcu_cond_resched_count. Yes, we might 314 * increment some random CPU's count, and possibly also load the result from 315 * yet another CPU's count. We might even clobber some other CPU's attempt 316 * to zero its counter. This is all OK because the goal is not precision, 317 * but rather reasonable amortization of rcu_note_context_switch() overhead 318 * and extremely high probability of avoiding RCU CPU stall warnings. 319 * Note that this function has to be preempted in just the wrong place, 320 * many thousands of times in a row, for anything bad to happen. 321 */ 322static inline bool rcu_should_resched(void) 323{ 324 return raw_cpu_inc_return(rcu_cond_resched_count) >= 325 RCU_COND_RESCHED_LIM; 326} 327 328/* 329 * Report quiscent states to RCU if it is time to do so. 330 */ 331static inline void rcu_cond_resched(void) 332{ 333 if (unlikely(rcu_should_resched())) 334 rcu_resched(); 335} 336 337/* 338 * Infrastructure to implement the synchronize_() primitives in 339 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 340 */ 341 342typedef void call_rcu_func_t(struct rcu_head *head, 343 void (*func)(struct rcu_head *head)); 344void wait_rcu_gp(call_rcu_func_t crf); 345 346#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 347#include <linux/rcutree.h> 348#elif defined(CONFIG_TINY_RCU) 349#include <linux/rcutiny.h> 350#else 351#error "Unknown RCU implementation specified to kernel configuration" 352#endif 353 354/* 355 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 356 * initialization and destruction of rcu_head on the stack. rcu_head structures 357 * allocated dynamically in the heap or defined statically don't need any 358 * initialization. 359 */ 360#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 361void init_rcu_head_on_stack(struct rcu_head *head); 362void destroy_rcu_head_on_stack(struct rcu_head *head); 363#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 364static inline void init_rcu_head_on_stack(struct rcu_head *head) 365{ 366} 367 368static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 369{ 370} 371#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 372 373#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 374bool rcu_lockdep_current_cpu_online(void); 375#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 376static inline bool rcu_lockdep_current_cpu_online(void) 377{ 378 return 1; 379} 380#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 381 382#ifdef CONFIG_DEBUG_LOCK_ALLOC 383 384static inline void rcu_lock_acquire(struct lockdep_map *map) 385{ 386 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 387} 388 389static inline void rcu_lock_release(struct lockdep_map *map) 390{ 391 lock_release(map, 1, _THIS_IP_); 392} 393 394extern struct lockdep_map rcu_lock_map; 395extern struct lockdep_map rcu_bh_lock_map; 396extern struct lockdep_map rcu_sched_lock_map; 397extern struct lockdep_map rcu_callback_map; 398int debug_lockdep_rcu_enabled(void); 399 400/** 401 * rcu_read_lock_held() - might we be in RCU read-side critical section? 402 * 403 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 404 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 405 * this assumes we are in an RCU read-side critical section unless it can 406 * prove otherwise. This is useful for debug checks in functions that 407 * require that they be called within an RCU read-side critical section. 408 * 409 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 410 * and while lockdep is disabled. 411 * 412 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 413 * occur in the same context, for example, it is illegal to invoke 414 * rcu_read_unlock() in process context if the matching rcu_read_lock() 415 * was invoked from within an irq handler. 416 * 417 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 418 * offline from an RCU perspective, so check for those as well. 419 */ 420static inline int rcu_read_lock_held(void) 421{ 422 if (!debug_lockdep_rcu_enabled()) 423 return 1; 424 if (!rcu_is_watching()) 425 return 0; 426 if (!rcu_lockdep_current_cpu_online()) 427 return 0; 428 return lock_is_held(&rcu_lock_map); 429} 430 431/* 432 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 433 * hell. 434 */ 435int rcu_read_lock_bh_held(void); 436 437/** 438 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 439 * 440 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 441 * RCU-sched read-side critical section. In absence of 442 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 443 * critical section unless it can prove otherwise. Note that disabling 444 * of preemption (including disabling irqs) counts as an RCU-sched 445 * read-side critical section. This is useful for debug checks in functions 446 * that required that they be called within an RCU-sched read-side 447 * critical section. 448 * 449 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 450 * and while lockdep is disabled. 451 * 452 * Note that if the CPU is in the idle loop from an RCU point of 453 * view (ie: that we are in the section between rcu_idle_enter() and 454 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 455 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 456 * that are in such a section, considering these as in extended quiescent 457 * state, so such a CPU is effectively never in an RCU read-side critical 458 * section regardless of what RCU primitives it invokes. This state of 459 * affairs is required --- we need to keep an RCU-free window in idle 460 * where the CPU may possibly enter into low power mode. This way we can 461 * notice an extended quiescent state to other CPUs that started a grace 462 * period. Otherwise we would delay any grace period as long as we run in 463 * the idle task. 464 * 465 * Similarly, we avoid claiming an SRCU read lock held if the current 466 * CPU is offline. 467 */ 468#ifdef CONFIG_PREEMPT_COUNT 469static inline int rcu_read_lock_sched_held(void) 470{ 471 int lockdep_opinion = 0; 472 473 if (!debug_lockdep_rcu_enabled()) 474 return 1; 475 if (!rcu_is_watching()) 476 return 0; 477 if (!rcu_lockdep_current_cpu_online()) 478 return 0; 479 if (debug_locks) 480 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 481 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 482} 483#else /* #ifdef CONFIG_PREEMPT_COUNT */ 484static inline int rcu_read_lock_sched_held(void) 485{ 486 return 1; 487} 488#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 489 490#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 491 492# define rcu_lock_acquire(a) do { } while (0) 493# define rcu_lock_release(a) do { } while (0) 494 495static inline int rcu_read_lock_held(void) 496{ 497 return 1; 498} 499 500static inline int rcu_read_lock_bh_held(void) 501{ 502 return 1; 503} 504 505#ifdef CONFIG_PREEMPT_COUNT 506static inline int rcu_read_lock_sched_held(void) 507{ 508 return preempt_count() != 0 || irqs_disabled(); 509} 510#else /* #ifdef CONFIG_PREEMPT_COUNT */ 511static inline int rcu_read_lock_sched_held(void) 512{ 513 return 1; 514} 515#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 516 517#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 518 519#ifdef CONFIG_PROVE_RCU 520 521/** 522 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 523 * @c: condition to check 524 * @s: informative message 525 */ 526#define rcu_lockdep_assert(c, s) \ 527 do { \ 528 static bool __section(.data.unlikely) __warned; \ 529 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 530 __warned = true; \ 531 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 532 } \ 533 } while (0) 534 535#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 536static inline void rcu_preempt_sleep_check(void) 537{ 538 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 539 "Illegal context switch in RCU read-side critical section"); 540} 541#else /* #ifdef CONFIG_PROVE_RCU */ 542static inline void rcu_preempt_sleep_check(void) 543{ 544} 545#endif /* #else #ifdef CONFIG_PROVE_RCU */ 546 547#define rcu_sleep_check() \ 548 do { \ 549 rcu_preempt_sleep_check(); \ 550 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 551 "Illegal context switch in RCU-bh read-side critical section"); \ 552 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 553 "Illegal context switch in RCU-sched read-side critical section"); \ 554 } while (0) 555 556#else /* #ifdef CONFIG_PROVE_RCU */ 557 558#define rcu_lockdep_assert(c, s) do { } while (0) 559#define rcu_sleep_check() do { } while (0) 560 561#endif /* #else #ifdef CONFIG_PROVE_RCU */ 562 563/* 564 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 565 * and rcu_assign_pointer(). Some of these could be folded into their 566 * callers, but they are left separate in order to ease introduction of 567 * multiple flavors of pointers to match the multiple flavors of RCU 568 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 569 * the future. 570 */ 571 572#ifdef __CHECKER__ 573#define rcu_dereference_sparse(p, space) \ 574 ((void)(((typeof(*p) space *)p) == p)) 575#else /* #ifdef __CHECKER__ */ 576#define rcu_dereference_sparse(p, space) 577#endif /* #else #ifdef __CHECKER__ */ 578 579#define __rcu_access_pointer(p, space) \ 580({ \ 581 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \ 582 rcu_dereference_sparse(p, space); \ 583 ((typeof(*p) __force __kernel *)(_________p1)); \ 584}) 585#define __rcu_dereference_check(p, c, space) \ 586({ \ 587 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \ 588 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \ 589 rcu_dereference_sparse(p, space); \ 590 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 591 ((typeof(*p) __force __kernel *)(_________p1)); \ 592}) 593#define __rcu_dereference_protected(p, c, space) \ 594({ \ 595 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \ 596 rcu_dereference_sparse(p, space); \ 597 ((typeof(*p) __force __kernel *)(p)); \ 598}) 599 600#define __rcu_access_index(p, space) \ 601({ \ 602 typeof(p) _________p1 = ACCESS_ONCE(p); \ 603 rcu_dereference_sparse(p, space); \ 604 (_________p1); \ 605}) 606#define __rcu_dereference_index_check(p, c) \ 607({ \ 608 typeof(p) _________p1 = ACCESS_ONCE(p); \ 609 rcu_lockdep_assert(c, \ 610 "suspicious rcu_dereference_index_check() usage"); \ 611 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 612 (_________p1); \ 613}) 614 615/** 616 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 617 * @v: The value to statically initialize with. 618 */ 619#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 620 621/** 622 * rcu_assign_pointer() - assign to RCU-protected pointer 623 * @p: pointer to assign to 624 * @v: value to assign (publish) 625 * 626 * Assigns the specified value to the specified RCU-protected 627 * pointer, ensuring that any concurrent RCU readers will see 628 * any prior initialization. 629 * 630 * Inserts memory barriers on architectures that require them 631 * (which is most of them), and also prevents the compiler from 632 * reordering the code that initializes the structure after the pointer 633 * assignment. More importantly, this call documents which pointers 634 * will be dereferenced by RCU read-side code. 635 * 636 * In some special cases, you may use RCU_INIT_POINTER() instead 637 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 638 * to the fact that it does not constrain either the CPU or the compiler. 639 * That said, using RCU_INIT_POINTER() when you should have used 640 * rcu_assign_pointer() is a very bad thing that results in 641 * impossible-to-diagnose memory corruption. So please be careful. 642 * See the RCU_INIT_POINTER() comment header for details. 643 * 644 * Note that rcu_assign_pointer() evaluates each of its arguments only 645 * once, appearances notwithstanding. One of the "extra" evaluations 646 * is in typeof() and the other visible only to sparse (__CHECKER__), 647 * neither of which actually execute the argument. As with most cpp 648 * macros, this execute-arguments-only-once property is important, so 649 * please be careful when making changes to rcu_assign_pointer() and the 650 * other macros that it invokes. 651 */ 652#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) 653 654/** 655 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 656 * @p: The pointer to read 657 * 658 * Return the value of the specified RCU-protected pointer, but omit the 659 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 660 * when the value of this pointer is accessed, but the pointer is not 661 * dereferenced, for example, when testing an RCU-protected pointer against 662 * NULL. Although rcu_access_pointer() may also be used in cases where 663 * update-side locks prevent the value of the pointer from changing, you 664 * should instead use rcu_dereference_protected() for this use case. 665 * 666 * It is also permissible to use rcu_access_pointer() when read-side 667 * access to the pointer was removed at least one grace period ago, as 668 * is the case in the context of the RCU callback that is freeing up 669 * the data, or after a synchronize_rcu() returns. This can be useful 670 * when tearing down multi-linked structures after a grace period 671 * has elapsed. 672 */ 673#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 674 675/** 676 * rcu_dereference_check() - rcu_dereference with debug checking 677 * @p: The pointer to read, prior to dereferencing 678 * @c: The conditions under which the dereference will take place 679 * 680 * Do an rcu_dereference(), but check that the conditions under which the 681 * dereference will take place are correct. Typically the conditions 682 * indicate the various locking conditions that should be held at that 683 * point. The check should return true if the conditions are satisfied. 684 * An implicit check for being in an RCU read-side critical section 685 * (rcu_read_lock()) is included. 686 * 687 * For example: 688 * 689 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 690 * 691 * could be used to indicate to lockdep that foo->bar may only be dereferenced 692 * if either rcu_read_lock() is held, or that the lock required to replace 693 * the bar struct at foo->bar is held. 694 * 695 * Note that the list of conditions may also include indications of when a lock 696 * need not be held, for example during initialisation or destruction of the 697 * target struct: 698 * 699 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 700 * atomic_read(&foo->usage) == 0); 701 * 702 * Inserts memory barriers on architectures that require them 703 * (currently only the Alpha), prevents the compiler from refetching 704 * (and from merging fetches), and, more importantly, documents exactly 705 * which pointers are protected by RCU and checks that the pointer is 706 * annotated as __rcu. 707 */ 708#define rcu_dereference_check(p, c) \ 709 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 710 711/** 712 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 713 * @p: The pointer to read, prior to dereferencing 714 * @c: The conditions under which the dereference will take place 715 * 716 * This is the RCU-bh counterpart to rcu_dereference_check(). 717 */ 718#define rcu_dereference_bh_check(p, c) \ 719 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 720 721/** 722 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 723 * @p: The pointer to read, prior to dereferencing 724 * @c: The conditions under which the dereference will take place 725 * 726 * This is the RCU-sched counterpart to rcu_dereference_check(). 727 */ 728#define rcu_dereference_sched_check(p, c) \ 729 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 730 __rcu) 731 732#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 733 734/* 735 * The tracing infrastructure traces RCU (we want that), but unfortunately 736 * some of the RCU checks causes tracing to lock up the system. 737 * 738 * The tracing version of rcu_dereference_raw() must not call 739 * rcu_read_lock_held(). 740 */ 741#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 742 743/** 744 * rcu_access_index() - fetch RCU index with no dereferencing 745 * @p: The index to read 746 * 747 * Return the value of the specified RCU-protected index, but omit the 748 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 749 * when the value of this index is accessed, but the index is not 750 * dereferenced, for example, when testing an RCU-protected index against 751 * -1. Although rcu_access_index() may also be used in cases where 752 * update-side locks prevent the value of the index from changing, you 753 * should instead use rcu_dereference_index_protected() for this use case. 754 */ 755#define rcu_access_index(p) __rcu_access_index((p), __rcu) 756 757/** 758 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 759 * @p: The pointer to read, prior to dereferencing 760 * @c: The conditions under which the dereference will take place 761 * 762 * Similar to rcu_dereference_check(), but omits the sparse checking. 763 * This allows rcu_dereference_index_check() to be used on integers, 764 * which can then be used as array indices. Attempting to use 765 * rcu_dereference_check() on an integer will give compiler warnings 766 * because the sparse address-space mechanism relies on dereferencing 767 * the RCU-protected pointer. Dereferencing integers is not something 768 * that even gcc will put up with. 769 * 770 * Note that this function does not implicitly check for RCU read-side 771 * critical sections. If this function gains lots of uses, it might 772 * make sense to provide versions for each flavor of RCU, but it does 773 * not make sense as of early 2010. 774 */ 775#define rcu_dereference_index_check(p, c) \ 776 __rcu_dereference_index_check((p), (c)) 777 778/** 779 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 780 * @p: The pointer to read, prior to dereferencing 781 * @c: The conditions under which the dereference will take place 782 * 783 * Return the value of the specified RCU-protected pointer, but omit 784 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 785 * is useful in cases where update-side locks prevent the value of the 786 * pointer from changing. Please note that this primitive does -not- 787 * prevent the compiler from repeating this reference or combining it 788 * with other references, so it should not be used without protection 789 * of appropriate locks. 790 * 791 * This function is only for update-side use. Using this function 792 * when protected only by rcu_read_lock() will result in infrequent 793 * but very ugly failures. 794 */ 795#define rcu_dereference_protected(p, c) \ 796 __rcu_dereference_protected((p), (c), __rcu) 797 798 799/** 800 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 801 * @p: The pointer to read, prior to dereferencing 802 * 803 * This is a simple wrapper around rcu_dereference_check(). 804 */ 805#define rcu_dereference(p) rcu_dereference_check(p, 0) 806 807/** 808 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 809 * @p: The pointer to read, prior to dereferencing 810 * 811 * Makes rcu_dereference_check() do the dirty work. 812 */ 813#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 814 815/** 816 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 817 * @p: The pointer to read, prior to dereferencing 818 * 819 * Makes rcu_dereference_check() do the dirty work. 820 */ 821#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 822 823/** 824 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 825 * 826 * When synchronize_rcu() is invoked on one CPU while other CPUs 827 * are within RCU read-side critical sections, then the 828 * synchronize_rcu() is guaranteed to block until after all the other 829 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 830 * on one CPU while other CPUs are within RCU read-side critical 831 * sections, invocation of the corresponding RCU callback is deferred 832 * until after the all the other CPUs exit their critical sections. 833 * 834 * Note, however, that RCU callbacks are permitted to run concurrently 835 * with new RCU read-side critical sections. One way that this can happen 836 * is via the following sequence of events: (1) CPU 0 enters an RCU 837 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 838 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 839 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 840 * callback is invoked. This is legal, because the RCU read-side critical 841 * section that was running concurrently with the call_rcu() (and which 842 * therefore might be referencing something that the corresponding RCU 843 * callback would free up) has completed before the corresponding 844 * RCU callback is invoked. 845 * 846 * RCU read-side critical sections may be nested. Any deferred actions 847 * will be deferred until the outermost RCU read-side critical section 848 * completes. 849 * 850 * You can avoid reading and understanding the next paragraph by 851 * following this rule: don't put anything in an rcu_read_lock() RCU 852 * read-side critical section that would block in a !PREEMPT kernel. 853 * But if you want the full story, read on! 854 * 855 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 856 * is illegal to block while in an RCU read-side critical section. In 857 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 858 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 859 * be preempted, but explicit blocking is illegal. Finally, in preemptible 860 * RCU implementations in real-time (with -rt patchset) kernel builds, 861 * RCU read-side critical sections may be preempted and they may also 862 * block, but only when acquiring spinlocks that are subject to priority 863 * inheritance. 864 */ 865static inline void rcu_read_lock(void) 866{ 867 __rcu_read_lock(); 868 __acquire(RCU); 869 rcu_lock_acquire(&rcu_lock_map); 870 rcu_lockdep_assert(rcu_is_watching(), 871 "rcu_read_lock() used illegally while idle"); 872} 873 874/* 875 * So where is rcu_write_lock()? It does not exist, as there is no 876 * way for writers to lock out RCU readers. This is a feature, not 877 * a bug -- this property is what provides RCU's performance benefits. 878 * Of course, writers must coordinate with each other. The normal 879 * spinlock primitives work well for this, but any other technique may be 880 * used as well. RCU does not care how the writers keep out of each 881 * others' way, as long as they do so. 882 */ 883 884/** 885 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 886 * 887 * See rcu_read_lock() for more information. 888 */ 889static inline void rcu_read_unlock(void) 890{ 891 rcu_lockdep_assert(rcu_is_watching(), 892 "rcu_read_unlock() used illegally while idle"); 893 rcu_lock_release(&rcu_lock_map); 894 __release(RCU); 895 __rcu_read_unlock(); 896} 897 898/** 899 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 900 * 901 * This is equivalent of rcu_read_lock(), but to be used when updates 902 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 903 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 904 * softirq handler to be a quiescent state, a process in RCU read-side 905 * critical section must be protected by disabling softirqs. Read-side 906 * critical sections in interrupt context can use just rcu_read_lock(), 907 * though this should at least be commented to avoid confusing people 908 * reading the code. 909 * 910 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 911 * must occur in the same context, for example, it is illegal to invoke 912 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 913 * was invoked from some other task. 914 */ 915static inline void rcu_read_lock_bh(void) 916{ 917 local_bh_disable(); 918 __acquire(RCU_BH); 919 rcu_lock_acquire(&rcu_bh_lock_map); 920 rcu_lockdep_assert(rcu_is_watching(), 921 "rcu_read_lock_bh() used illegally while idle"); 922} 923 924/* 925 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 926 * 927 * See rcu_read_lock_bh() for more information. 928 */ 929static inline void rcu_read_unlock_bh(void) 930{ 931 rcu_lockdep_assert(rcu_is_watching(), 932 "rcu_read_unlock_bh() used illegally while idle"); 933 rcu_lock_release(&rcu_bh_lock_map); 934 __release(RCU_BH); 935 local_bh_enable(); 936} 937 938/** 939 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 940 * 941 * This is equivalent of rcu_read_lock(), but to be used when updates 942 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 943 * Read-side critical sections can also be introduced by anything that 944 * disables preemption, including local_irq_disable() and friends. 945 * 946 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 947 * must occur in the same context, for example, it is illegal to invoke 948 * rcu_read_unlock_sched() from process context if the matching 949 * rcu_read_lock_sched() was invoked from an NMI handler. 950 */ 951static inline void rcu_read_lock_sched(void) 952{ 953 preempt_disable(); 954 __acquire(RCU_SCHED); 955 rcu_lock_acquire(&rcu_sched_lock_map); 956 rcu_lockdep_assert(rcu_is_watching(), 957 "rcu_read_lock_sched() used illegally while idle"); 958} 959 960/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 961static inline notrace void rcu_read_lock_sched_notrace(void) 962{ 963 preempt_disable_notrace(); 964 __acquire(RCU_SCHED); 965} 966 967/* 968 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 969 * 970 * See rcu_read_lock_sched for more information. 971 */ 972static inline void rcu_read_unlock_sched(void) 973{ 974 rcu_lockdep_assert(rcu_is_watching(), 975 "rcu_read_unlock_sched() used illegally while idle"); 976 rcu_lock_release(&rcu_sched_lock_map); 977 __release(RCU_SCHED); 978 preempt_enable(); 979} 980 981/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 982static inline notrace void rcu_read_unlock_sched_notrace(void) 983{ 984 __release(RCU_SCHED); 985 preempt_enable_notrace(); 986} 987 988/** 989 * RCU_INIT_POINTER() - initialize an RCU protected pointer 990 * 991 * Initialize an RCU-protected pointer in special cases where readers 992 * do not need ordering constraints on the CPU or the compiler. These 993 * special cases are: 994 * 995 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 996 * 2. The caller has taken whatever steps are required to prevent 997 * RCU readers from concurrently accessing this pointer -or- 998 * 3. The referenced data structure has already been exposed to 999 * readers either at compile time or via rcu_assign_pointer() -and- 1000 * a. You have not made -any- reader-visible changes to 1001 * this structure since then -or- 1002 * b. It is OK for readers accessing this structure from its 1003 * new location to see the old state of the structure. (For 1004 * example, the changes were to statistical counters or to 1005 * other state where exact synchronization is not required.) 1006 * 1007 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1008 * result in impossible-to-diagnose memory corruption. As in the structures 1009 * will look OK in crash dumps, but any concurrent RCU readers might 1010 * see pre-initialized values of the referenced data structure. So 1011 * please be very careful how you use RCU_INIT_POINTER()!!! 1012 * 1013 * If you are creating an RCU-protected linked structure that is accessed 1014 * by a single external-to-structure RCU-protected pointer, then you may 1015 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1016 * pointers, but you must use rcu_assign_pointer() to initialize the 1017 * external-to-structure pointer -after- you have completely initialized 1018 * the reader-accessible portions of the linked structure. 1019 * 1020 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1021 * ordering guarantees for either the CPU or the compiler. 1022 */ 1023#define RCU_INIT_POINTER(p, v) \ 1024 do { \ 1025 p = RCU_INITIALIZER(v); \ 1026 } while (0) 1027 1028/** 1029 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1030 * 1031 * GCC-style initialization for an RCU-protected pointer in a structure field. 1032 */ 1033#define RCU_POINTER_INITIALIZER(p, v) \ 1034 .p = RCU_INITIALIZER(v) 1035 1036/* 1037 * Does the specified offset indicate that the corresponding rcu_head 1038 * structure can be handled by kfree_rcu()? 1039 */ 1040#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1041 1042/* 1043 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1044 */ 1045#define __kfree_rcu(head, offset) \ 1046 do { \ 1047 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1048 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 1049 } while (0) 1050 1051/** 1052 * kfree_rcu() - kfree an object after a grace period. 1053 * @ptr: pointer to kfree 1054 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1055 * 1056 * Many rcu callbacks functions just call kfree() on the base structure. 1057 * These functions are trivial, but their size adds up, and furthermore 1058 * when they are used in a kernel module, that module must invoke the 1059 * high-latency rcu_barrier() function at module-unload time. 1060 * 1061 * The kfree_rcu() function handles this issue. Rather than encoding a 1062 * function address in the embedded rcu_head structure, kfree_rcu() instead 1063 * encodes the offset of the rcu_head structure within the base structure. 1064 * Because the functions are not allowed in the low-order 4096 bytes of 1065 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1066 * If the offset is larger than 4095 bytes, a compile-time error will 1067 * be generated in __kfree_rcu(). If this error is triggered, you can 1068 * either fall back to use of call_rcu() or rearrange the structure to 1069 * position the rcu_head structure into the first 4096 bytes. 1070 * 1071 * Note that the allowable offset might decrease in the future, for example, 1072 * to allow something like kmem_cache_free_rcu(). 1073 * 1074 * The BUILD_BUG_ON check must not involve any function calls, hence the 1075 * checks are done in macros here. 1076 */ 1077#define kfree_rcu(ptr, rcu_head) \ 1078 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1079 1080#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) 1081static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) 1082{ 1083 *delta_jiffies = ULONG_MAX; 1084 return 0; 1085} 1086#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */ 1087 1088#if defined(CONFIG_RCU_NOCB_CPU_ALL) 1089static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1090#elif defined(CONFIG_RCU_NOCB_CPU) 1091bool rcu_is_nocb_cpu(int cpu); 1092#else 1093static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1094#endif 1095 1096 1097/* Only for use by adaptive-ticks code. */ 1098#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1099bool rcu_sys_is_idle(void); 1100void rcu_sysidle_force_exit(void); 1101#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1102 1103static inline bool rcu_sys_is_idle(void) 1104{ 1105 return false; 1106} 1107 1108static inline void rcu_sysidle_force_exit(void) 1109{ 1110} 1111 1112#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1113 1114 1115#endif /* __LINUX_RCUPDATE_H */