at v3.15 73 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * @streams: number of USB-3 streams allocated on the endpoint 61 * 62 * USB requests are always queued to a given endpoint, identified by a 63 * descriptor within an active interface in a given USB configuration. 64 */ 65struct usb_host_endpoint { 66 struct usb_endpoint_descriptor desc; 67 struct usb_ss_ep_comp_descriptor ss_ep_comp; 68 struct list_head urb_list; 69 void *hcpriv; 70 struct ep_device *ep_dev; /* For sysfs info */ 71 72 unsigned char *extra; /* Extra descriptors */ 73 int extralen; 74 int enabled; 75 int streams; 76}; 77 78/* host-side wrapper for one interface setting's parsed descriptors */ 79struct usb_host_interface { 80 struct usb_interface_descriptor desc; 81 82 int extralen; 83 unsigned char *extra; /* Extra descriptors */ 84 85 /* array of desc.bNumEndpoint endpoints associated with this 86 * interface setting. these will be in no particular order. 87 */ 88 struct usb_host_endpoint *endpoint; 89 90 char *string; /* iInterface string, if present */ 91}; 92 93enum usb_interface_condition { 94 USB_INTERFACE_UNBOUND = 0, 95 USB_INTERFACE_BINDING, 96 USB_INTERFACE_BOUND, 97 USB_INTERFACE_UNBINDING, 98}; 99 100/** 101 * struct usb_interface - what usb device drivers talk to 102 * @altsetting: array of interface structures, one for each alternate 103 * setting that may be selected. Each one includes a set of 104 * endpoint configurations. They will be in no particular order. 105 * @cur_altsetting: the current altsetting. 106 * @num_altsetting: number of altsettings defined. 107 * @intf_assoc: interface association descriptor 108 * @minor: the minor number assigned to this interface, if this 109 * interface is bound to a driver that uses the USB major number. 110 * If this interface does not use the USB major, this field should 111 * be unused. The driver should set this value in the probe() 112 * function of the driver, after it has been assigned a minor 113 * number from the USB core by calling usb_register_dev(). 114 * @condition: binding state of the interface: not bound, binding 115 * (in probe()), bound to a driver, or unbinding (in disconnect()) 116 * @sysfs_files_created: sysfs attributes exist 117 * @ep_devs_created: endpoint child pseudo-devices exist 118 * @unregistering: flag set when the interface is being unregistered 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 120 * capability during autosuspend. 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 122 * has been deferred. 123 * @needs_binding: flag set when the driver should be re-probed or unbound 124 * following a reset or suspend operation it doesn't support. 125 * @dev: driver model's view of this device 126 * @usb_dev: if an interface is bound to the USB major, this will point 127 * to the sysfs representation for that device. 128 * @pm_usage_cnt: PM usage counter for this interface 129 * @reset_ws: Used for scheduling resets from atomic context. 130 * @reset_running: set to 1 if the interface is currently running a 131 * queued reset so that usb_cancel_queued_reset() doesn't try to 132 * remove from the workqueue when running inside the worker 133 * thread. See __usb_queue_reset_device(). 134 * @resetting_device: USB core reset the device, so use alt setting 0 as 135 * current; needs bandwidth alloc after reset. 136 * 137 * USB device drivers attach to interfaces on a physical device. Each 138 * interface encapsulates a single high level function, such as feeding 139 * an audio stream to a speaker or reporting a change in a volume control. 140 * Many USB devices only have one interface. The protocol used to talk to 141 * an interface's endpoints can be defined in a usb "class" specification, 142 * or by a product's vendor. The (default) control endpoint is part of 143 * every interface, but is never listed among the interface's descriptors. 144 * 145 * The driver that is bound to the interface can use standard driver model 146 * calls such as dev_get_drvdata() on the dev member of this structure. 147 * 148 * Each interface may have alternate settings. The initial configuration 149 * of a device sets altsetting 0, but the device driver can change 150 * that setting using usb_set_interface(). Alternate settings are often 151 * used to control the use of periodic endpoints, such as by having 152 * different endpoints use different amounts of reserved USB bandwidth. 153 * All standards-conformant USB devices that use isochronous endpoints 154 * will use them in non-default settings. 155 * 156 * The USB specification says that alternate setting numbers must run from 157 * 0 to one less than the total number of alternate settings. But some 158 * devices manage to mess this up, and the structures aren't necessarily 159 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 160 * look up an alternate setting in the altsetting array based on its number. 161 */ 162struct usb_interface { 163 /* array of alternate settings for this interface, 164 * stored in no particular order */ 165 struct usb_host_interface *altsetting; 166 167 struct usb_host_interface *cur_altsetting; /* the currently 168 * active alternate setting */ 169 unsigned num_altsetting; /* number of alternate settings */ 170 171 /* If there is an interface association descriptor then it will list 172 * the associated interfaces */ 173 struct usb_interface_assoc_descriptor *intf_assoc; 174 175 int minor; /* minor number this interface is 176 * bound to */ 177 enum usb_interface_condition condition; /* state of binding */ 178 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 179 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 180 unsigned unregistering:1; /* unregistration is in progress */ 181 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 182 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 183 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 184 unsigned reset_running:1; 185 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 186 187 struct device dev; /* interface specific device info */ 188 struct device *usb_dev; 189 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 190 struct work_struct reset_ws; /* for resets in atomic context */ 191}; 192#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 193 194static inline void *usb_get_intfdata(struct usb_interface *intf) 195{ 196 return dev_get_drvdata(&intf->dev); 197} 198 199static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 200{ 201 dev_set_drvdata(&intf->dev, data); 202} 203 204struct usb_interface *usb_get_intf(struct usb_interface *intf); 205void usb_put_intf(struct usb_interface *intf); 206 207/* Hard limit */ 208#define USB_MAXENDPOINTS 30 209/* this maximum is arbitrary */ 210#define USB_MAXINTERFACES 32 211#define USB_MAXIADS (USB_MAXINTERFACES/2) 212 213/** 214 * struct usb_interface_cache - long-term representation of a device interface 215 * @num_altsetting: number of altsettings defined. 216 * @ref: reference counter. 217 * @altsetting: variable-length array of interface structures, one for 218 * each alternate setting that may be selected. Each one includes a 219 * set of endpoint configurations. They will be in no particular order. 220 * 221 * These structures persist for the lifetime of a usb_device, unlike 222 * struct usb_interface (which persists only as long as its configuration 223 * is installed). The altsetting arrays can be accessed through these 224 * structures at any time, permitting comparison of configurations and 225 * providing support for the /proc/bus/usb/devices pseudo-file. 226 */ 227struct usb_interface_cache { 228 unsigned num_altsetting; /* number of alternate settings */ 229 struct kref ref; /* reference counter */ 230 231 /* variable-length array of alternate settings for this interface, 232 * stored in no particular order */ 233 struct usb_host_interface altsetting[0]; 234}; 235#define ref_to_usb_interface_cache(r) \ 236 container_of(r, struct usb_interface_cache, ref) 237#define altsetting_to_usb_interface_cache(a) \ 238 container_of(a, struct usb_interface_cache, altsetting[0]) 239 240/** 241 * struct usb_host_config - representation of a device's configuration 242 * @desc: the device's configuration descriptor. 243 * @string: pointer to the cached version of the iConfiguration string, if 244 * present for this configuration. 245 * @intf_assoc: list of any interface association descriptors in this config 246 * @interface: array of pointers to usb_interface structures, one for each 247 * interface in the configuration. The number of interfaces is stored 248 * in desc.bNumInterfaces. These pointers are valid only while the 249 * the configuration is active. 250 * @intf_cache: array of pointers to usb_interface_cache structures, one 251 * for each interface in the configuration. These structures exist 252 * for the entire life of the device. 253 * @extra: pointer to buffer containing all extra descriptors associated 254 * with this configuration (those preceding the first interface 255 * descriptor). 256 * @extralen: length of the extra descriptors buffer. 257 * 258 * USB devices may have multiple configurations, but only one can be active 259 * at any time. Each encapsulates a different operational environment; 260 * for example, a dual-speed device would have separate configurations for 261 * full-speed and high-speed operation. The number of configurations 262 * available is stored in the device descriptor as bNumConfigurations. 263 * 264 * A configuration can contain multiple interfaces. Each corresponds to 265 * a different function of the USB device, and all are available whenever 266 * the configuration is active. The USB standard says that interfaces 267 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 268 * of devices get this wrong. In addition, the interface array is not 269 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 270 * look up an interface entry based on its number. 271 * 272 * Device drivers should not attempt to activate configurations. The choice 273 * of which configuration to install is a policy decision based on such 274 * considerations as available power, functionality provided, and the user's 275 * desires (expressed through userspace tools). However, drivers can call 276 * usb_reset_configuration() to reinitialize the current configuration and 277 * all its interfaces. 278 */ 279struct usb_host_config { 280 struct usb_config_descriptor desc; 281 282 char *string; /* iConfiguration string, if present */ 283 284 /* List of any Interface Association Descriptors in this 285 * configuration. */ 286 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 287 288 /* the interfaces associated with this configuration, 289 * stored in no particular order */ 290 struct usb_interface *interface[USB_MAXINTERFACES]; 291 292 /* Interface information available even when this is not the 293 * active configuration */ 294 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 295 296 unsigned char *extra; /* Extra descriptors */ 297 int extralen; 298}; 299 300/* USB2.0 and USB3.0 device BOS descriptor set */ 301struct usb_host_bos { 302 struct usb_bos_descriptor *desc; 303 304 /* wireless cap descriptor is handled by wusb */ 305 struct usb_ext_cap_descriptor *ext_cap; 306 struct usb_ss_cap_descriptor *ss_cap; 307 struct usb_ss_container_id_descriptor *ss_id; 308}; 309 310int __usb_get_extra_descriptor(char *buffer, unsigned size, 311 unsigned char type, void **ptr); 312#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 313 __usb_get_extra_descriptor((ifpoint)->extra, \ 314 (ifpoint)->extralen, \ 315 type, (void **)ptr) 316 317/* ----------------------------------------------------------------------- */ 318 319/* USB device number allocation bitmap */ 320struct usb_devmap { 321 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 322}; 323 324/* 325 * Allocated per bus (tree of devices) we have: 326 */ 327struct usb_bus { 328 struct device *controller; /* host/master side hardware */ 329 int busnum; /* Bus number (in order of reg) */ 330 const char *bus_name; /* stable id (PCI slot_name etc) */ 331 u8 uses_dma; /* Does the host controller use DMA? */ 332 u8 uses_pio_for_control; /* 333 * Does the host controller use PIO 334 * for control transfers? 335 */ 336 u8 otg_port; /* 0, or number of OTG/HNP port */ 337 unsigned is_b_host:1; /* true during some HNP roleswitches */ 338 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 339 unsigned no_stop_on_short:1; /* 340 * Quirk: some controllers don't stop 341 * the ep queue on a short transfer 342 * with the URB_SHORT_NOT_OK flag set. 343 */ 344 unsigned no_sg_constraint:1; /* no sg constraint */ 345 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 346 347 int devnum_next; /* Next open device number in 348 * round-robin allocation */ 349 350 struct usb_devmap devmap; /* device address allocation map */ 351 struct usb_device *root_hub; /* Root hub */ 352 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 353 struct list_head bus_list; /* list of busses */ 354 355 int bandwidth_allocated; /* on this bus: how much of the time 356 * reserved for periodic (intr/iso) 357 * requests is used, on average? 358 * Units: microseconds/frame. 359 * Limits: Full/low speed reserve 90%, 360 * while high speed reserves 80%. 361 */ 362 int bandwidth_int_reqs; /* number of Interrupt requests */ 363 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 364 365 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 366 367#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 368 struct mon_bus *mon_bus; /* non-null when associated */ 369 int monitored; /* non-zero when monitored */ 370#endif 371}; 372 373struct usb_dev_state; 374 375/* ----------------------------------------------------------------------- */ 376 377struct usb_tt; 378 379enum usb_device_removable { 380 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 381 USB_DEVICE_REMOVABLE, 382 USB_DEVICE_FIXED, 383}; 384 385enum usb_port_connect_type { 386 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 387 USB_PORT_CONNECT_TYPE_HOT_PLUG, 388 USB_PORT_CONNECT_TYPE_HARD_WIRED, 389 USB_PORT_NOT_USED, 390}; 391 392/* 393 * USB 2.0 Link Power Management (LPM) parameters. 394 */ 395struct usb2_lpm_parameters { 396 /* Best effort service latency indicate how long the host will drive 397 * resume on an exit from L1. 398 */ 399 unsigned int besl; 400 401 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 402 * When the timer counts to zero, the parent hub will initiate a LPM 403 * transition to L1. 404 */ 405 int timeout; 406}; 407 408/* 409 * USB 3.0 Link Power Management (LPM) parameters. 410 * 411 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 412 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 413 * All three are stored in nanoseconds. 414 */ 415struct usb3_lpm_parameters { 416 /* 417 * Maximum exit latency (MEL) for the host to send a packet to the 418 * device (either a Ping for isoc endpoints, or a data packet for 419 * interrupt endpoints), the hubs to decode the packet, and for all hubs 420 * in the path to transition the links to U0. 421 */ 422 unsigned int mel; 423 /* 424 * Maximum exit latency for a device-initiated LPM transition to bring 425 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 426 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 427 */ 428 unsigned int pel; 429 430 /* 431 * The System Exit Latency (SEL) includes PEL, and three other 432 * latencies. After a device initiates a U0 transition, it will take 433 * some time from when the device sends the ERDY to when it will finally 434 * receive the data packet. Basically, SEL should be the worse-case 435 * latency from when a device starts initiating a U0 transition to when 436 * it will get data. 437 */ 438 unsigned int sel; 439 /* 440 * The idle timeout value that is currently programmed into the parent 441 * hub for this device. When the timer counts to zero, the parent hub 442 * will initiate an LPM transition to either U1 or U2. 443 */ 444 int timeout; 445}; 446 447/** 448 * struct usb_device - kernel's representation of a USB device 449 * @devnum: device number; address on a USB bus 450 * @devpath: device ID string for use in messages (e.g., /port/...) 451 * @route: tree topology hex string for use with xHCI 452 * @state: device state: configured, not attached, etc. 453 * @speed: device speed: high/full/low (or error) 454 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 455 * @ttport: device port on that tt hub 456 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 457 * @parent: our hub, unless we're the root 458 * @bus: bus we're part of 459 * @ep0: endpoint 0 data (default control pipe) 460 * @dev: generic device interface 461 * @descriptor: USB device descriptor 462 * @bos: USB device BOS descriptor set 463 * @config: all of the device's configs 464 * @actconfig: the active configuration 465 * @ep_in: array of IN endpoints 466 * @ep_out: array of OUT endpoints 467 * @rawdescriptors: raw descriptors for each config 468 * @bus_mA: Current available from the bus 469 * @portnum: parent port number (origin 1) 470 * @level: number of USB hub ancestors 471 * @can_submit: URBs may be submitted 472 * @persist_enabled: USB_PERSIST enabled for this device 473 * @have_langid: whether string_langid is valid 474 * @authorized: policy has said we can use it; 475 * (user space) policy determines if we authorize this device to be 476 * used or not. By default, wired USB devices are authorized. 477 * WUSB devices are not, until we authorize them from user space. 478 * FIXME -- complete doc 479 * @authenticated: Crypto authentication passed 480 * @wusb: device is Wireless USB 481 * @lpm_capable: device supports LPM 482 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 483 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 484 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 485 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 486 * @usb3_lpm_enabled: USB3 hardware LPM enabled 487 * @string_langid: language ID for strings 488 * @product: iProduct string, if present (static) 489 * @manufacturer: iManufacturer string, if present (static) 490 * @serial: iSerialNumber string, if present (static) 491 * @filelist: usbfs files that are open to this device 492 * @maxchild: number of ports if hub 493 * @quirks: quirks of the whole device 494 * @urbnum: number of URBs submitted for the whole device 495 * @active_duration: total time device is not suspended 496 * @connect_time: time device was first connected 497 * @do_remote_wakeup: remote wakeup should be enabled 498 * @reset_resume: needs reset instead of resume 499 * @port_is_suspended: the upstream port is suspended (L2 or U3) 500 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 501 * specific data for the device. 502 * @slot_id: Slot ID assigned by xHCI 503 * @removable: Device can be physically removed from this port 504 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 505 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 506 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 507 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 508 * to keep track of the number of functions that require USB 3.0 Link Power 509 * Management to be disabled for this usb_device. This count should only 510 * be manipulated by those functions, with the bandwidth_mutex is held. 511 * 512 * Notes: 513 * Usbcore drivers should not set usbdev->state directly. Instead use 514 * usb_set_device_state(). 515 */ 516struct usb_device { 517 int devnum; 518 char devpath[16]; 519 u32 route; 520 enum usb_device_state state; 521 enum usb_device_speed speed; 522 523 struct usb_tt *tt; 524 int ttport; 525 526 unsigned int toggle[2]; 527 528 struct usb_device *parent; 529 struct usb_bus *bus; 530 struct usb_host_endpoint ep0; 531 532 struct device dev; 533 534 struct usb_device_descriptor descriptor; 535 struct usb_host_bos *bos; 536 struct usb_host_config *config; 537 538 struct usb_host_config *actconfig; 539 struct usb_host_endpoint *ep_in[16]; 540 struct usb_host_endpoint *ep_out[16]; 541 542 char **rawdescriptors; 543 544 unsigned short bus_mA; 545 u8 portnum; 546 u8 level; 547 548 unsigned can_submit:1; 549 unsigned persist_enabled:1; 550 unsigned have_langid:1; 551 unsigned authorized:1; 552 unsigned authenticated:1; 553 unsigned wusb:1; 554 unsigned lpm_capable:1; 555 unsigned usb2_hw_lpm_capable:1; 556 unsigned usb2_hw_lpm_besl_capable:1; 557 unsigned usb2_hw_lpm_enabled:1; 558 unsigned usb2_hw_lpm_allowed:1; 559 unsigned usb3_lpm_enabled:1; 560 int string_langid; 561 562 /* static strings from the device */ 563 char *product; 564 char *manufacturer; 565 char *serial; 566 567 struct list_head filelist; 568 569 int maxchild; 570 571 u32 quirks; 572 atomic_t urbnum; 573 574 unsigned long active_duration; 575 576#ifdef CONFIG_PM 577 unsigned long connect_time; 578 579 unsigned do_remote_wakeup:1; 580 unsigned reset_resume:1; 581 unsigned port_is_suspended:1; 582#endif 583 struct wusb_dev *wusb_dev; 584 int slot_id; 585 enum usb_device_removable removable; 586 struct usb2_lpm_parameters l1_params; 587 struct usb3_lpm_parameters u1_params; 588 struct usb3_lpm_parameters u2_params; 589 unsigned lpm_disable_count; 590}; 591#define to_usb_device(d) container_of(d, struct usb_device, dev) 592 593static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 594{ 595 return to_usb_device(intf->dev.parent); 596} 597 598extern struct usb_device *usb_get_dev(struct usb_device *dev); 599extern void usb_put_dev(struct usb_device *dev); 600extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 601 int port1); 602 603/** 604 * usb_hub_for_each_child - iterate over all child devices on the hub 605 * @hdev: USB device belonging to the usb hub 606 * @port1: portnum associated with child device 607 * @child: child device pointer 608 */ 609#define usb_hub_for_each_child(hdev, port1, child) \ 610 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 611 port1 <= hdev->maxchild; \ 612 child = usb_hub_find_child(hdev, ++port1)) \ 613 if (!child) continue; else 614 615/* USB device locking */ 616#define usb_lock_device(udev) device_lock(&(udev)->dev) 617#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 618#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 619extern int usb_lock_device_for_reset(struct usb_device *udev, 620 const struct usb_interface *iface); 621 622/* USB port reset for device reinitialization */ 623extern int usb_reset_device(struct usb_device *dev); 624extern void usb_queue_reset_device(struct usb_interface *dev); 625 626#ifdef CONFIG_ACPI 627extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 628 bool enable); 629extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 630#else 631static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 632 bool enable) { return 0; } 633static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 634 { return true; } 635#endif 636 637/* USB autosuspend and autoresume */ 638#ifdef CONFIG_PM_RUNTIME 639extern void usb_enable_autosuspend(struct usb_device *udev); 640extern void usb_disable_autosuspend(struct usb_device *udev); 641 642extern int usb_autopm_get_interface(struct usb_interface *intf); 643extern void usb_autopm_put_interface(struct usb_interface *intf); 644extern int usb_autopm_get_interface_async(struct usb_interface *intf); 645extern void usb_autopm_put_interface_async(struct usb_interface *intf); 646extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 647extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 648 649static inline void usb_mark_last_busy(struct usb_device *udev) 650{ 651 pm_runtime_mark_last_busy(&udev->dev); 652} 653 654#else 655 656static inline int usb_enable_autosuspend(struct usb_device *udev) 657{ return 0; } 658static inline int usb_disable_autosuspend(struct usb_device *udev) 659{ return 0; } 660 661static inline int usb_autopm_get_interface(struct usb_interface *intf) 662{ return 0; } 663static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 664{ return 0; } 665 666static inline void usb_autopm_put_interface(struct usb_interface *intf) 667{ } 668static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 669{ } 670static inline void usb_autopm_get_interface_no_resume( 671 struct usb_interface *intf) 672{ } 673static inline void usb_autopm_put_interface_no_suspend( 674 struct usb_interface *intf) 675{ } 676static inline void usb_mark_last_busy(struct usb_device *udev) 677{ } 678#endif 679 680extern int usb_disable_lpm(struct usb_device *udev); 681extern void usb_enable_lpm(struct usb_device *udev); 682/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 683extern int usb_unlocked_disable_lpm(struct usb_device *udev); 684extern void usb_unlocked_enable_lpm(struct usb_device *udev); 685 686extern int usb_disable_ltm(struct usb_device *udev); 687extern void usb_enable_ltm(struct usb_device *udev); 688 689static inline bool usb_device_supports_ltm(struct usb_device *udev) 690{ 691 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 692 return false; 693 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 694} 695 696static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 697{ 698 return udev && udev->bus && udev->bus->no_sg_constraint; 699} 700 701 702/*-------------------------------------------------------------------------*/ 703 704/* for drivers using iso endpoints */ 705extern int usb_get_current_frame_number(struct usb_device *usb_dev); 706 707/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 708extern int usb_alloc_streams(struct usb_interface *interface, 709 struct usb_host_endpoint **eps, unsigned int num_eps, 710 unsigned int num_streams, gfp_t mem_flags); 711 712/* Reverts a group of bulk endpoints back to not using stream IDs. */ 713extern int usb_free_streams(struct usb_interface *interface, 714 struct usb_host_endpoint **eps, unsigned int num_eps, 715 gfp_t mem_flags); 716 717/* used these for multi-interface device registration */ 718extern int usb_driver_claim_interface(struct usb_driver *driver, 719 struct usb_interface *iface, void *priv); 720 721/** 722 * usb_interface_claimed - returns true iff an interface is claimed 723 * @iface: the interface being checked 724 * 725 * Return: %true (nonzero) iff the interface is claimed, else %false 726 * (zero). 727 * 728 * Note: 729 * Callers must own the driver model's usb bus readlock. So driver 730 * probe() entries don't need extra locking, but other call contexts 731 * may need to explicitly claim that lock. 732 * 733 */ 734static inline int usb_interface_claimed(struct usb_interface *iface) 735{ 736 return (iface->dev.driver != NULL); 737} 738 739extern void usb_driver_release_interface(struct usb_driver *driver, 740 struct usb_interface *iface); 741const struct usb_device_id *usb_match_id(struct usb_interface *interface, 742 const struct usb_device_id *id); 743extern int usb_match_one_id(struct usb_interface *interface, 744 const struct usb_device_id *id); 745 746extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 747extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 748 int minor); 749extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 750 unsigned ifnum); 751extern struct usb_host_interface *usb_altnum_to_altsetting( 752 const struct usb_interface *intf, unsigned int altnum); 753extern struct usb_host_interface *usb_find_alt_setting( 754 struct usb_host_config *config, 755 unsigned int iface_num, 756 unsigned int alt_num); 757 758/* port claiming functions */ 759int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 760 struct usb_dev_state *owner); 761int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 762 struct usb_dev_state *owner); 763 764/** 765 * usb_make_path - returns stable device path in the usb tree 766 * @dev: the device whose path is being constructed 767 * @buf: where to put the string 768 * @size: how big is "buf"? 769 * 770 * Return: Length of the string (> 0) or negative if size was too small. 771 * 772 * Note: 773 * This identifier is intended to be "stable", reflecting physical paths in 774 * hardware such as physical bus addresses for host controllers or ports on 775 * USB hubs. That makes it stay the same until systems are physically 776 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 777 * controllers. Adding and removing devices, including virtual root hubs 778 * in host controller driver modules, does not change these path identifiers; 779 * neither does rebooting or re-enumerating. These are more useful identifiers 780 * than changeable ("unstable") ones like bus numbers or device addresses. 781 * 782 * With a partial exception for devices connected to USB 2.0 root hubs, these 783 * identifiers are also predictable. So long as the device tree isn't changed, 784 * plugging any USB device into a given hub port always gives it the same path. 785 * Because of the use of "companion" controllers, devices connected to ports on 786 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 787 * high speed, and a different one if they are full or low speed. 788 */ 789static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 790{ 791 int actual; 792 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 793 dev->devpath); 794 return (actual >= (int)size) ? -1 : actual; 795} 796 797/*-------------------------------------------------------------------------*/ 798 799#define USB_DEVICE_ID_MATCH_DEVICE \ 800 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 801#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 802 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 803#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 804 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 805#define USB_DEVICE_ID_MATCH_DEV_INFO \ 806 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 807 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 808 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 809#define USB_DEVICE_ID_MATCH_INT_INFO \ 810 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 811 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 812 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 813 814/** 815 * USB_DEVICE - macro used to describe a specific usb device 816 * @vend: the 16 bit USB Vendor ID 817 * @prod: the 16 bit USB Product ID 818 * 819 * This macro is used to create a struct usb_device_id that matches a 820 * specific device. 821 */ 822#define USB_DEVICE(vend, prod) \ 823 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 824 .idVendor = (vend), \ 825 .idProduct = (prod) 826/** 827 * USB_DEVICE_VER - describe a specific usb device with a version range 828 * @vend: the 16 bit USB Vendor ID 829 * @prod: the 16 bit USB Product ID 830 * @lo: the bcdDevice_lo value 831 * @hi: the bcdDevice_hi value 832 * 833 * This macro is used to create a struct usb_device_id that matches a 834 * specific device, with a version range. 835 */ 836#define USB_DEVICE_VER(vend, prod, lo, hi) \ 837 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 838 .idVendor = (vend), \ 839 .idProduct = (prod), \ 840 .bcdDevice_lo = (lo), \ 841 .bcdDevice_hi = (hi) 842 843/** 844 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 845 * @vend: the 16 bit USB Vendor ID 846 * @prod: the 16 bit USB Product ID 847 * @cl: bInterfaceClass value 848 * 849 * This macro is used to create a struct usb_device_id that matches a 850 * specific interface class of devices. 851 */ 852#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 853 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 854 USB_DEVICE_ID_MATCH_INT_CLASS, \ 855 .idVendor = (vend), \ 856 .idProduct = (prod), \ 857 .bInterfaceClass = (cl) 858 859/** 860 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 861 * @vend: the 16 bit USB Vendor ID 862 * @prod: the 16 bit USB Product ID 863 * @pr: bInterfaceProtocol value 864 * 865 * This macro is used to create a struct usb_device_id that matches a 866 * specific interface protocol of devices. 867 */ 868#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 869 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 870 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 871 .idVendor = (vend), \ 872 .idProduct = (prod), \ 873 .bInterfaceProtocol = (pr) 874 875/** 876 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 877 * @vend: the 16 bit USB Vendor ID 878 * @prod: the 16 bit USB Product ID 879 * @num: bInterfaceNumber value 880 * 881 * This macro is used to create a struct usb_device_id that matches a 882 * specific interface number of devices. 883 */ 884#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 885 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 886 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 887 .idVendor = (vend), \ 888 .idProduct = (prod), \ 889 .bInterfaceNumber = (num) 890 891/** 892 * USB_DEVICE_INFO - macro used to describe a class of usb devices 893 * @cl: bDeviceClass value 894 * @sc: bDeviceSubClass value 895 * @pr: bDeviceProtocol value 896 * 897 * This macro is used to create a struct usb_device_id that matches a 898 * specific class of devices. 899 */ 900#define USB_DEVICE_INFO(cl, sc, pr) \ 901 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 902 .bDeviceClass = (cl), \ 903 .bDeviceSubClass = (sc), \ 904 .bDeviceProtocol = (pr) 905 906/** 907 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 908 * @cl: bInterfaceClass value 909 * @sc: bInterfaceSubClass value 910 * @pr: bInterfaceProtocol value 911 * 912 * This macro is used to create a struct usb_device_id that matches a 913 * specific class of interfaces. 914 */ 915#define USB_INTERFACE_INFO(cl, sc, pr) \ 916 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 917 .bInterfaceClass = (cl), \ 918 .bInterfaceSubClass = (sc), \ 919 .bInterfaceProtocol = (pr) 920 921/** 922 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 923 * @vend: the 16 bit USB Vendor ID 924 * @prod: the 16 bit USB Product ID 925 * @cl: bInterfaceClass value 926 * @sc: bInterfaceSubClass value 927 * @pr: bInterfaceProtocol value 928 * 929 * This macro is used to create a struct usb_device_id that matches a 930 * specific device with a specific class of interfaces. 931 * 932 * This is especially useful when explicitly matching devices that have 933 * vendor specific bDeviceClass values, but standards-compliant interfaces. 934 */ 935#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 936 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 937 | USB_DEVICE_ID_MATCH_DEVICE, \ 938 .idVendor = (vend), \ 939 .idProduct = (prod), \ 940 .bInterfaceClass = (cl), \ 941 .bInterfaceSubClass = (sc), \ 942 .bInterfaceProtocol = (pr) 943 944/** 945 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 946 * @vend: the 16 bit USB Vendor ID 947 * @cl: bInterfaceClass value 948 * @sc: bInterfaceSubClass value 949 * @pr: bInterfaceProtocol value 950 * 951 * This macro is used to create a struct usb_device_id that matches a 952 * specific vendor with a specific class of interfaces. 953 * 954 * This is especially useful when explicitly matching devices that have 955 * vendor specific bDeviceClass values, but standards-compliant interfaces. 956 */ 957#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 958 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 959 | USB_DEVICE_ID_MATCH_VENDOR, \ 960 .idVendor = (vend), \ 961 .bInterfaceClass = (cl), \ 962 .bInterfaceSubClass = (sc), \ 963 .bInterfaceProtocol = (pr) 964 965/* ----------------------------------------------------------------------- */ 966 967/* Stuff for dynamic usb ids */ 968struct usb_dynids { 969 spinlock_t lock; 970 struct list_head list; 971}; 972 973struct usb_dynid { 974 struct list_head node; 975 struct usb_device_id id; 976}; 977 978extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 979 const struct usb_device_id *id_table, 980 struct device_driver *driver, 981 const char *buf, size_t count); 982 983extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 984 985/** 986 * struct usbdrv_wrap - wrapper for driver-model structure 987 * @driver: The driver-model core driver structure. 988 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 989 */ 990struct usbdrv_wrap { 991 struct device_driver driver; 992 int for_devices; 993}; 994 995/** 996 * struct usb_driver - identifies USB interface driver to usbcore 997 * @name: The driver name should be unique among USB drivers, 998 * and should normally be the same as the module name. 999 * @probe: Called to see if the driver is willing to manage a particular 1000 * interface on a device. If it is, probe returns zero and uses 1001 * usb_set_intfdata() to associate driver-specific data with the 1002 * interface. It may also use usb_set_interface() to specify the 1003 * appropriate altsetting. If unwilling to manage the interface, 1004 * return -ENODEV, if genuine IO errors occurred, an appropriate 1005 * negative errno value. 1006 * @disconnect: Called when the interface is no longer accessible, usually 1007 * because its device has been (or is being) disconnected or the 1008 * driver module is being unloaded. 1009 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1010 * the "usbfs" filesystem. This lets devices provide ways to 1011 * expose information to user space regardless of where they 1012 * do (or don't) show up otherwise in the filesystem. 1013 * @suspend: Called when the device is going to be suspended by the 1014 * system either from system sleep or runtime suspend context. The 1015 * return value will be ignored in system sleep context, so do NOT 1016 * try to continue using the device if suspend fails in this case. 1017 * Instead, let the resume or reset-resume routine recover from 1018 * the failure. 1019 * @resume: Called when the device is being resumed by the system. 1020 * @reset_resume: Called when the suspended device has been reset instead 1021 * of being resumed. 1022 * @pre_reset: Called by usb_reset_device() when the device is about to be 1023 * reset. This routine must not return until the driver has no active 1024 * URBs for the device, and no more URBs may be submitted until the 1025 * post_reset method is called. 1026 * @post_reset: Called by usb_reset_device() after the device 1027 * has been reset 1028 * @id_table: USB drivers use ID table to support hotplugging. 1029 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1030 * or your driver's probe function will never get called. 1031 * @dynids: used internally to hold the list of dynamically added device 1032 * ids for this driver. 1033 * @drvwrap: Driver-model core structure wrapper. 1034 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1035 * added to this driver by preventing the sysfs file from being created. 1036 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1037 * for interfaces bound to this driver. 1038 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1039 * endpoints before calling the driver's disconnect method. 1040 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 1041 * to initiate lower power link state transitions when an idle timeout 1042 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1043 * 1044 * USB interface drivers must provide a name, probe() and disconnect() 1045 * methods, and an id_table. Other driver fields are optional. 1046 * 1047 * The id_table is used in hotplugging. It holds a set of descriptors, 1048 * and specialized data may be associated with each entry. That table 1049 * is used by both user and kernel mode hotplugging support. 1050 * 1051 * The probe() and disconnect() methods are called in a context where 1052 * they can sleep, but they should avoid abusing the privilege. Most 1053 * work to connect to a device should be done when the device is opened, 1054 * and undone at the last close. The disconnect code needs to address 1055 * concurrency issues with respect to open() and close() methods, as 1056 * well as forcing all pending I/O requests to complete (by unlinking 1057 * them as necessary, and blocking until the unlinks complete). 1058 */ 1059struct usb_driver { 1060 const char *name; 1061 1062 int (*probe) (struct usb_interface *intf, 1063 const struct usb_device_id *id); 1064 1065 void (*disconnect) (struct usb_interface *intf); 1066 1067 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1068 void *buf); 1069 1070 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1071 int (*resume) (struct usb_interface *intf); 1072 int (*reset_resume)(struct usb_interface *intf); 1073 1074 int (*pre_reset)(struct usb_interface *intf); 1075 int (*post_reset)(struct usb_interface *intf); 1076 1077 const struct usb_device_id *id_table; 1078 1079 struct usb_dynids dynids; 1080 struct usbdrv_wrap drvwrap; 1081 unsigned int no_dynamic_id:1; 1082 unsigned int supports_autosuspend:1; 1083 unsigned int disable_hub_initiated_lpm:1; 1084 unsigned int soft_unbind:1; 1085}; 1086#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1087 1088/** 1089 * struct usb_device_driver - identifies USB device driver to usbcore 1090 * @name: The driver name should be unique among USB drivers, 1091 * and should normally be the same as the module name. 1092 * @probe: Called to see if the driver is willing to manage a particular 1093 * device. If it is, probe returns zero and uses dev_set_drvdata() 1094 * to associate driver-specific data with the device. If unwilling 1095 * to manage the device, return a negative errno value. 1096 * @disconnect: Called when the device is no longer accessible, usually 1097 * because it has been (or is being) disconnected or the driver's 1098 * module is being unloaded. 1099 * @suspend: Called when the device is going to be suspended by the system. 1100 * @resume: Called when the device is being resumed by the system. 1101 * @drvwrap: Driver-model core structure wrapper. 1102 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1103 * for devices bound to this driver. 1104 * 1105 * USB drivers must provide all the fields listed above except drvwrap. 1106 */ 1107struct usb_device_driver { 1108 const char *name; 1109 1110 int (*probe) (struct usb_device *udev); 1111 void (*disconnect) (struct usb_device *udev); 1112 1113 int (*suspend) (struct usb_device *udev, pm_message_t message); 1114 int (*resume) (struct usb_device *udev, pm_message_t message); 1115 struct usbdrv_wrap drvwrap; 1116 unsigned int supports_autosuspend:1; 1117}; 1118#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1119 drvwrap.driver) 1120 1121extern struct bus_type usb_bus_type; 1122 1123/** 1124 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1125 * @name: the usb class device name for this driver. Will show up in sysfs. 1126 * @devnode: Callback to provide a naming hint for a possible 1127 * device node to create. 1128 * @fops: pointer to the struct file_operations of this driver. 1129 * @minor_base: the start of the minor range for this driver. 1130 * 1131 * This structure is used for the usb_register_dev() and 1132 * usb_unregister_dev() functions, to consolidate a number of the 1133 * parameters used for them. 1134 */ 1135struct usb_class_driver { 1136 char *name; 1137 char *(*devnode)(struct device *dev, umode_t *mode); 1138 const struct file_operations *fops; 1139 int minor_base; 1140}; 1141 1142/* 1143 * use these in module_init()/module_exit() 1144 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1145 */ 1146extern int usb_register_driver(struct usb_driver *, struct module *, 1147 const char *); 1148 1149/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1150#define usb_register(driver) \ 1151 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1152 1153extern void usb_deregister(struct usb_driver *); 1154 1155/** 1156 * module_usb_driver() - Helper macro for registering a USB driver 1157 * @__usb_driver: usb_driver struct 1158 * 1159 * Helper macro for USB drivers which do not do anything special in module 1160 * init/exit. This eliminates a lot of boilerplate. Each module may only 1161 * use this macro once, and calling it replaces module_init() and module_exit() 1162 */ 1163#define module_usb_driver(__usb_driver) \ 1164 module_driver(__usb_driver, usb_register, \ 1165 usb_deregister) 1166 1167extern int usb_register_device_driver(struct usb_device_driver *, 1168 struct module *); 1169extern void usb_deregister_device_driver(struct usb_device_driver *); 1170 1171extern int usb_register_dev(struct usb_interface *intf, 1172 struct usb_class_driver *class_driver); 1173extern void usb_deregister_dev(struct usb_interface *intf, 1174 struct usb_class_driver *class_driver); 1175 1176extern int usb_disabled(void); 1177 1178/* ----------------------------------------------------------------------- */ 1179 1180/* 1181 * URB support, for asynchronous request completions 1182 */ 1183 1184/* 1185 * urb->transfer_flags: 1186 * 1187 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1188 */ 1189#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1190#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1191 * slot in the schedule */ 1192#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1193#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1194#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1195#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1196 * needed */ 1197#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1198 1199/* The following flags are used internally by usbcore and HCDs */ 1200#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1201#define URB_DIR_OUT 0 1202#define URB_DIR_MASK URB_DIR_IN 1203 1204#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1205#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1206#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1207#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1208#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1209#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1210#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1211#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1212 1213struct usb_iso_packet_descriptor { 1214 unsigned int offset; 1215 unsigned int length; /* expected length */ 1216 unsigned int actual_length; 1217 int status; 1218}; 1219 1220struct urb; 1221 1222struct usb_anchor { 1223 struct list_head urb_list; 1224 wait_queue_head_t wait; 1225 spinlock_t lock; 1226 atomic_t suspend_wakeups; 1227 unsigned int poisoned:1; 1228}; 1229 1230static inline void init_usb_anchor(struct usb_anchor *anchor) 1231{ 1232 memset(anchor, 0, sizeof(*anchor)); 1233 INIT_LIST_HEAD(&anchor->urb_list); 1234 init_waitqueue_head(&anchor->wait); 1235 spin_lock_init(&anchor->lock); 1236} 1237 1238typedef void (*usb_complete_t)(struct urb *); 1239 1240/** 1241 * struct urb - USB Request Block 1242 * @urb_list: For use by current owner of the URB. 1243 * @anchor_list: membership in the list of an anchor 1244 * @anchor: to anchor URBs to a common mooring 1245 * @ep: Points to the endpoint's data structure. Will eventually 1246 * replace @pipe. 1247 * @pipe: Holds endpoint number, direction, type, and more. 1248 * Create these values with the eight macros available; 1249 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1250 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1251 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1252 * numbers range from zero to fifteen. Note that "in" endpoint two 1253 * is a different endpoint (and pipe) from "out" endpoint two. 1254 * The current configuration controls the existence, type, and 1255 * maximum packet size of any given endpoint. 1256 * @stream_id: the endpoint's stream ID for bulk streams 1257 * @dev: Identifies the USB device to perform the request. 1258 * @status: This is read in non-iso completion functions to get the 1259 * status of the particular request. ISO requests only use it 1260 * to tell whether the URB was unlinked; detailed status for 1261 * each frame is in the fields of the iso_frame-desc. 1262 * @transfer_flags: A variety of flags may be used to affect how URB 1263 * submission, unlinking, or operation are handled. Different 1264 * kinds of URB can use different flags. 1265 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1266 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1267 * (however, do not leave garbage in transfer_buffer even then). 1268 * This buffer must be suitable for DMA; allocate it with 1269 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1270 * of this buffer will be modified. This buffer is used for the data 1271 * stage of control transfers. 1272 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1273 * the device driver is saying that it provided this DMA address, 1274 * which the host controller driver should use in preference to the 1275 * transfer_buffer. 1276 * @sg: scatter gather buffer list, the buffer size of each element in 1277 * the list (except the last) must be divisible by the endpoint's 1278 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1279 * @num_mapped_sgs: (internal) number of mapped sg entries 1280 * @num_sgs: number of entries in the sg list 1281 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1282 * be broken up into chunks according to the current maximum packet 1283 * size for the endpoint, which is a function of the configuration 1284 * and is encoded in the pipe. When the length is zero, neither 1285 * transfer_buffer nor transfer_dma is used. 1286 * @actual_length: This is read in non-iso completion functions, and 1287 * it tells how many bytes (out of transfer_buffer_length) were 1288 * transferred. It will normally be the same as requested, unless 1289 * either an error was reported or a short read was performed. 1290 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1291 * short reads be reported as errors. 1292 * @setup_packet: Only used for control transfers, this points to eight bytes 1293 * of setup data. Control transfers always start by sending this data 1294 * to the device. Then transfer_buffer is read or written, if needed. 1295 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1296 * this field; setup_packet must point to a valid buffer. 1297 * @start_frame: Returns the initial frame for isochronous transfers. 1298 * @number_of_packets: Lists the number of ISO transfer buffers. 1299 * @interval: Specifies the polling interval for interrupt or isochronous 1300 * transfers. The units are frames (milliseconds) for full and low 1301 * speed devices, and microframes (1/8 millisecond) for highspeed 1302 * and SuperSpeed devices. 1303 * @error_count: Returns the number of ISO transfers that reported errors. 1304 * @context: For use in completion functions. This normally points to 1305 * request-specific driver context. 1306 * @complete: Completion handler. This URB is passed as the parameter to the 1307 * completion function. The completion function may then do what 1308 * it likes with the URB, including resubmitting or freeing it. 1309 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1310 * collect the transfer status for each buffer. 1311 * 1312 * This structure identifies USB transfer requests. URBs must be allocated by 1313 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1314 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1315 * are submitted using usb_submit_urb(), and pending requests may be canceled 1316 * using usb_unlink_urb() or usb_kill_urb(). 1317 * 1318 * Data Transfer Buffers: 1319 * 1320 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1321 * taken from the general page pool. That is provided by transfer_buffer 1322 * (control requests also use setup_packet), and host controller drivers 1323 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1324 * mapping operations can be expensive on some platforms (perhaps using a dma 1325 * bounce buffer or talking to an IOMMU), 1326 * although they're cheap on commodity x86 and ppc hardware. 1327 * 1328 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1329 * which tells the host controller driver that no such mapping is needed for 1330 * the transfer_buffer since 1331 * the device driver is DMA-aware. For example, a device driver might 1332 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1333 * When this transfer flag is provided, host controller drivers will 1334 * attempt to use the dma address found in the transfer_dma 1335 * field rather than determining a dma address themselves. 1336 * 1337 * Note that transfer_buffer must still be set if the controller 1338 * does not support DMA (as indicated by bus.uses_dma) and when talking 1339 * to root hub. If you have to trasfer between highmem zone and the device 1340 * on such controller, create a bounce buffer or bail out with an error. 1341 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1342 * capable, assign NULL to it, so that usbmon knows not to use the value. 1343 * The setup_packet must always be set, so it cannot be located in highmem. 1344 * 1345 * Initialization: 1346 * 1347 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1348 * zero), and complete fields. All URBs must also initialize 1349 * transfer_buffer and transfer_buffer_length. They may provide the 1350 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1351 * to be treated as errors; that flag is invalid for write requests. 1352 * 1353 * Bulk URBs may 1354 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1355 * should always terminate with a short packet, even if it means adding an 1356 * extra zero length packet. 1357 * 1358 * Control URBs must provide a valid pointer in the setup_packet field. 1359 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1360 * beforehand. 1361 * 1362 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1363 * or, for highspeed devices, 125 microsecond units) 1364 * to poll for transfers. After the URB has been submitted, the interval 1365 * field reflects how the transfer was actually scheduled. 1366 * The polling interval may be more frequent than requested. 1367 * For example, some controllers have a maximum interval of 32 milliseconds, 1368 * while others support intervals of up to 1024 milliseconds. 1369 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1370 * endpoints, as well as high speed interrupt endpoints, the encoding of 1371 * the transfer interval in the endpoint descriptor is logarithmic. 1372 * Device drivers must convert that value to linear units themselves.) 1373 * 1374 * If an isochronous endpoint queue isn't already running, the host 1375 * controller will schedule a new URB to start as soon as bandwidth 1376 * utilization allows. If the queue is running then a new URB will be 1377 * scheduled to start in the first transfer slot following the end of the 1378 * preceding URB, if that slot has not already expired. If the slot has 1379 * expired (which can happen when IRQ delivery is delayed for a long time), 1380 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1381 * is clear then the URB will be scheduled to start in the expired slot, 1382 * implying that some of its packets will not be transferred; if the flag 1383 * is set then the URB will be scheduled in the first unexpired slot, 1384 * breaking the queue's synchronization. Upon URB completion, the 1385 * start_frame field will be set to the (micro)frame number in which the 1386 * transfer was scheduled. Ranges for frame counter values are HC-specific 1387 * and can go from as low as 256 to as high as 65536 frames. 1388 * 1389 * Isochronous URBs have a different data transfer model, in part because 1390 * the quality of service is only "best effort". Callers provide specially 1391 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1392 * at the end. Each such packet is an individual ISO transfer. Isochronous 1393 * URBs are normally queued, submitted by drivers to arrange that 1394 * transfers are at least double buffered, and then explicitly resubmitted 1395 * in completion handlers, so 1396 * that data (such as audio or video) streams at as constant a rate as the 1397 * host controller scheduler can support. 1398 * 1399 * Completion Callbacks: 1400 * 1401 * The completion callback is made in_interrupt(), and one of the first 1402 * things that a completion handler should do is check the status field. 1403 * The status field is provided for all URBs. It is used to report 1404 * unlinked URBs, and status for all non-ISO transfers. It should not 1405 * be examined before the URB is returned to the completion handler. 1406 * 1407 * The context field is normally used to link URBs back to the relevant 1408 * driver or request state. 1409 * 1410 * When the completion callback is invoked for non-isochronous URBs, the 1411 * actual_length field tells how many bytes were transferred. This field 1412 * is updated even when the URB terminated with an error or was unlinked. 1413 * 1414 * ISO transfer status is reported in the status and actual_length fields 1415 * of the iso_frame_desc array, and the number of errors is reported in 1416 * error_count. Completion callbacks for ISO transfers will normally 1417 * (re)submit URBs to ensure a constant transfer rate. 1418 * 1419 * Note that even fields marked "public" should not be touched by the driver 1420 * when the urb is owned by the hcd, that is, since the call to 1421 * usb_submit_urb() till the entry into the completion routine. 1422 */ 1423struct urb { 1424 /* private: usb core and host controller only fields in the urb */ 1425 struct kref kref; /* reference count of the URB */ 1426 void *hcpriv; /* private data for host controller */ 1427 atomic_t use_count; /* concurrent submissions counter */ 1428 atomic_t reject; /* submissions will fail */ 1429 int unlinked; /* unlink error code */ 1430 1431 /* public: documented fields in the urb that can be used by drivers */ 1432 struct list_head urb_list; /* list head for use by the urb's 1433 * current owner */ 1434 struct list_head anchor_list; /* the URB may be anchored */ 1435 struct usb_anchor *anchor; 1436 struct usb_device *dev; /* (in) pointer to associated device */ 1437 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1438 unsigned int pipe; /* (in) pipe information */ 1439 unsigned int stream_id; /* (in) stream ID */ 1440 int status; /* (return) non-ISO status */ 1441 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1442 void *transfer_buffer; /* (in) associated data buffer */ 1443 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1444 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1445 int num_mapped_sgs; /* (internal) mapped sg entries */ 1446 int num_sgs; /* (in) number of entries in the sg list */ 1447 u32 transfer_buffer_length; /* (in) data buffer length */ 1448 u32 actual_length; /* (return) actual transfer length */ 1449 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1450 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1451 int start_frame; /* (modify) start frame (ISO) */ 1452 int number_of_packets; /* (in) number of ISO packets */ 1453 int interval; /* (modify) transfer interval 1454 * (INT/ISO) */ 1455 int error_count; /* (return) number of ISO errors */ 1456 void *context; /* (in) context for completion */ 1457 usb_complete_t complete; /* (in) completion routine */ 1458 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1459 /* (in) ISO ONLY */ 1460}; 1461 1462/* ----------------------------------------------------------------------- */ 1463 1464/** 1465 * usb_fill_control_urb - initializes a control urb 1466 * @urb: pointer to the urb to initialize. 1467 * @dev: pointer to the struct usb_device for this urb. 1468 * @pipe: the endpoint pipe 1469 * @setup_packet: pointer to the setup_packet buffer 1470 * @transfer_buffer: pointer to the transfer buffer 1471 * @buffer_length: length of the transfer buffer 1472 * @complete_fn: pointer to the usb_complete_t function 1473 * @context: what to set the urb context to. 1474 * 1475 * Initializes a control urb with the proper information needed to submit 1476 * it to a device. 1477 */ 1478static inline void usb_fill_control_urb(struct urb *urb, 1479 struct usb_device *dev, 1480 unsigned int pipe, 1481 unsigned char *setup_packet, 1482 void *transfer_buffer, 1483 int buffer_length, 1484 usb_complete_t complete_fn, 1485 void *context) 1486{ 1487 urb->dev = dev; 1488 urb->pipe = pipe; 1489 urb->setup_packet = setup_packet; 1490 urb->transfer_buffer = transfer_buffer; 1491 urb->transfer_buffer_length = buffer_length; 1492 urb->complete = complete_fn; 1493 urb->context = context; 1494} 1495 1496/** 1497 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1498 * @urb: pointer to the urb to initialize. 1499 * @dev: pointer to the struct usb_device for this urb. 1500 * @pipe: the endpoint pipe 1501 * @transfer_buffer: pointer to the transfer buffer 1502 * @buffer_length: length of the transfer buffer 1503 * @complete_fn: pointer to the usb_complete_t function 1504 * @context: what to set the urb context to. 1505 * 1506 * Initializes a bulk urb with the proper information needed to submit it 1507 * to a device. 1508 */ 1509static inline void usb_fill_bulk_urb(struct urb *urb, 1510 struct usb_device *dev, 1511 unsigned int pipe, 1512 void *transfer_buffer, 1513 int buffer_length, 1514 usb_complete_t complete_fn, 1515 void *context) 1516{ 1517 urb->dev = dev; 1518 urb->pipe = pipe; 1519 urb->transfer_buffer = transfer_buffer; 1520 urb->transfer_buffer_length = buffer_length; 1521 urb->complete = complete_fn; 1522 urb->context = context; 1523} 1524 1525/** 1526 * usb_fill_int_urb - macro to help initialize a interrupt urb 1527 * @urb: pointer to the urb to initialize. 1528 * @dev: pointer to the struct usb_device for this urb. 1529 * @pipe: the endpoint pipe 1530 * @transfer_buffer: pointer to the transfer buffer 1531 * @buffer_length: length of the transfer buffer 1532 * @complete_fn: pointer to the usb_complete_t function 1533 * @context: what to set the urb context to. 1534 * @interval: what to set the urb interval to, encoded like 1535 * the endpoint descriptor's bInterval value. 1536 * 1537 * Initializes a interrupt urb with the proper information needed to submit 1538 * it to a device. 1539 * 1540 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1541 * encoding of the endpoint interval, and express polling intervals in 1542 * microframes (eight per millisecond) rather than in frames (one per 1543 * millisecond). 1544 * 1545 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1546 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1547 * through to the host controller, rather than being translated into microframe 1548 * units. 1549 */ 1550static inline void usb_fill_int_urb(struct urb *urb, 1551 struct usb_device *dev, 1552 unsigned int pipe, 1553 void *transfer_buffer, 1554 int buffer_length, 1555 usb_complete_t complete_fn, 1556 void *context, 1557 int interval) 1558{ 1559 urb->dev = dev; 1560 urb->pipe = pipe; 1561 urb->transfer_buffer = transfer_buffer; 1562 urb->transfer_buffer_length = buffer_length; 1563 urb->complete = complete_fn; 1564 urb->context = context; 1565 1566 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) { 1567 /* make sure interval is within allowed range */ 1568 interval = clamp(interval, 1, 16); 1569 1570 urb->interval = 1 << (interval - 1); 1571 } else { 1572 urb->interval = interval; 1573 } 1574 1575 urb->start_frame = -1; 1576} 1577 1578extern void usb_init_urb(struct urb *urb); 1579extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1580extern void usb_free_urb(struct urb *urb); 1581#define usb_put_urb usb_free_urb 1582extern struct urb *usb_get_urb(struct urb *urb); 1583extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1584extern int usb_unlink_urb(struct urb *urb); 1585extern void usb_kill_urb(struct urb *urb); 1586extern void usb_poison_urb(struct urb *urb); 1587extern void usb_unpoison_urb(struct urb *urb); 1588extern void usb_block_urb(struct urb *urb); 1589extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1590extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1591extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1592extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1593extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1594extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1595extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1596extern void usb_unanchor_urb(struct urb *urb); 1597extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1598 unsigned int timeout); 1599extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1600extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1601extern int usb_anchor_empty(struct usb_anchor *anchor); 1602 1603#define usb_unblock_urb usb_unpoison_urb 1604 1605/** 1606 * usb_urb_dir_in - check if an URB describes an IN transfer 1607 * @urb: URB to be checked 1608 * 1609 * Return: 1 if @urb describes an IN transfer (device-to-host), 1610 * otherwise 0. 1611 */ 1612static inline int usb_urb_dir_in(struct urb *urb) 1613{ 1614 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1615} 1616 1617/** 1618 * usb_urb_dir_out - check if an URB describes an OUT transfer 1619 * @urb: URB to be checked 1620 * 1621 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1622 * otherwise 0. 1623 */ 1624static inline int usb_urb_dir_out(struct urb *urb) 1625{ 1626 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1627} 1628 1629void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1630 gfp_t mem_flags, dma_addr_t *dma); 1631void usb_free_coherent(struct usb_device *dev, size_t size, 1632 void *addr, dma_addr_t dma); 1633 1634#if 0 1635struct urb *usb_buffer_map(struct urb *urb); 1636void usb_buffer_dmasync(struct urb *urb); 1637void usb_buffer_unmap(struct urb *urb); 1638#endif 1639 1640struct scatterlist; 1641int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1642 struct scatterlist *sg, int nents); 1643#if 0 1644void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1645 struct scatterlist *sg, int n_hw_ents); 1646#endif 1647void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1648 struct scatterlist *sg, int n_hw_ents); 1649 1650/*-------------------------------------------------------------------* 1651 * SYNCHRONOUS CALL SUPPORT * 1652 *-------------------------------------------------------------------*/ 1653 1654extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1655 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1656 void *data, __u16 size, int timeout); 1657extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1658 void *data, int len, int *actual_length, int timeout); 1659extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1660 void *data, int len, int *actual_length, 1661 int timeout); 1662 1663/* wrappers around usb_control_msg() for the most common standard requests */ 1664extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1665 unsigned char descindex, void *buf, int size); 1666extern int usb_get_status(struct usb_device *dev, 1667 int type, int target, void *data); 1668extern int usb_string(struct usb_device *dev, int index, 1669 char *buf, size_t size); 1670 1671/* wrappers that also update important state inside usbcore */ 1672extern int usb_clear_halt(struct usb_device *dev, int pipe); 1673extern int usb_reset_configuration(struct usb_device *dev); 1674extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1675extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1676 1677/* this request isn't really synchronous, but it belongs with the others */ 1678extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1679 1680/* choose and set configuration for device */ 1681extern int usb_choose_configuration(struct usb_device *udev); 1682extern int usb_set_configuration(struct usb_device *dev, int configuration); 1683 1684/* 1685 * timeouts, in milliseconds, used for sending/receiving control messages 1686 * they typically complete within a few frames (msec) after they're issued 1687 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1688 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1689 */ 1690#define USB_CTRL_GET_TIMEOUT 5000 1691#define USB_CTRL_SET_TIMEOUT 5000 1692 1693 1694/** 1695 * struct usb_sg_request - support for scatter/gather I/O 1696 * @status: zero indicates success, else negative errno 1697 * @bytes: counts bytes transferred. 1698 * 1699 * These requests are initialized using usb_sg_init(), and then are used 1700 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1701 * members of the request object aren't for driver access. 1702 * 1703 * The status and bytecount values are valid only after usb_sg_wait() 1704 * returns. If the status is zero, then the bytecount matches the total 1705 * from the request. 1706 * 1707 * After an error completion, drivers may need to clear a halt condition 1708 * on the endpoint. 1709 */ 1710struct usb_sg_request { 1711 int status; 1712 size_t bytes; 1713 1714 /* private: 1715 * members below are private to usbcore, 1716 * and are not provided for driver access! 1717 */ 1718 spinlock_t lock; 1719 1720 struct usb_device *dev; 1721 int pipe; 1722 1723 int entries; 1724 struct urb **urbs; 1725 1726 int count; 1727 struct completion complete; 1728}; 1729 1730int usb_sg_init( 1731 struct usb_sg_request *io, 1732 struct usb_device *dev, 1733 unsigned pipe, 1734 unsigned period, 1735 struct scatterlist *sg, 1736 int nents, 1737 size_t length, 1738 gfp_t mem_flags 1739); 1740void usb_sg_cancel(struct usb_sg_request *io); 1741void usb_sg_wait(struct usb_sg_request *io); 1742 1743 1744/* ----------------------------------------------------------------------- */ 1745 1746/* 1747 * For various legacy reasons, Linux has a small cookie that's paired with 1748 * a struct usb_device to identify an endpoint queue. Queue characteristics 1749 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1750 * an unsigned int encoded as: 1751 * 1752 * - direction: bit 7 (0 = Host-to-Device [Out], 1753 * 1 = Device-to-Host [In] ... 1754 * like endpoint bEndpointAddress) 1755 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1756 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1757 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1758 * 10 = control, 11 = bulk) 1759 * 1760 * Given the device address and endpoint descriptor, pipes are redundant. 1761 */ 1762 1763/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1764/* (yet ... they're the values used by usbfs) */ 1765#define PIPE_ISOCHRONOUS 0 1766#define PIPE_INTERRUPT 1 1767#define PIPE_CONTROL 2 1768#define PIPE_BULK 3 1769 1770#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1771#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1772 1773#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1774#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1775 1776#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1777#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1778#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1779#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1780#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1781 1782static inline unsigned int __create_pipe(struct usb_device *dev, 1783 unsigned int endpoint) 1784{ 1785 return (dev->devnum << 8) | (endpoint << 15); 1786} 1787 1788/* Create various pipes... */ 1789#define usb_sndctrlpipe(dev, endpoint) \ 1790 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1791#define usb_rcvctrlpipe(dev, endpoint) \ 1792 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1793#define usb_sndisocpipe(dev, endpoint) \ 1794 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1795#define usb_rcvisocpipe(dev, endpoint) \ 1796 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1797#define usb_sndbulkpipe(dev, endpoint) \ 1798 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1799#define usb_rcvbulkpipe(dev, endpoint) \ 1800 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1801#define usb_sndintpipe(dev, endpoint) \ 1802 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1803#define usb_rcvintpipe(dev, endpoint) \ 1804 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1805 1806static inline struct usb_host_endpoint * 1807usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1808{ 1809 struct usb_host_endpoint **eps; 1810 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1811 return eps[usb_pipeendpoint(pipe)]; 1812} 1813 1814/*-------------------------------------------------------------------------*/ 1815 1816static inline __u16 1817usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1818{ 1819 struct usb_host_endpoint *ep; 1820 unsigned epnum = usb_pipeendpoint(pipe); 1821 1822 if (is_out) { 1823 WARN_ON(usb_pipein(pipe)); 1824 ep = udev->ep_out[epnum]; 1825 } else { 1826 WARN_ON(usb_pipeout(pipe)); 1827 ep = udev->ep_in[epnum]; 1828 } 1829 if (!ep) 1830 return 0; 1831 1832 /* NOTE: only 0x07ff bits are for packet size... */ 1833 return usb_endpoint_maxp(&ep->desc); 1834} 1835 1836/* ----------------------------------------------------------------------- */ 1837 1838/* translate USB error codes to codes user space understands */ 1839static inline int usb_translate_errors(int error_code) 1840{ 1841 switch (error_code) { 1842 case 0: 1843 case -ENOMEM: 1844 case -ENODEV: 1845 case -EOPNOTSUPP: 1846 return error_code; 1847 default: 1848 return -EIO; 1849 } 1850} 1851 1852/* Events from the usb core */ 1853#define USB_DEVICE_ADD 0x0001 1854#define USB_DEVICE_REMOVE 0x0002 1855#define USB_BUS_ADD 0x0003 1856#define USB_BUS_REMOVE 0x0004 1857extern void usb_register_notify(struct notifier_block *nb); 1858extern void usb_unregister_notify(struct notifier_block *nb); 1859 1860/* debugfs stuff */ 1861extern struct dentry *usb_debug_root; 1862 1863#endif /* __KERNEL__ */ 1864 1865#endif