at v3.15 86 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35#include <linux/sched.h> 36#include <net/flow_keys.h> 37 38/* A. Checksumming of received packets by device. 39 * 40 * CHECKSUM_NONE: 41 * 42 * Device failed to checksum this packet e.g. due to lack of capabilities. 43 * The packet contains full (though not verified) checksum in packet but 44 * not in skb->csum. Thus, skb->csum is undefined in this case. 45 * 46 * CHECKSUM_UNNECESSARY: 47 * 48 * The hardware you're dealing with doesn't calculate the full checksum 49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 50 * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will 51 * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still 52 * undefined in this case though. It is a bad option, but, unfortunately, 53 * nowadays most vendors do this. Apparently with the secret goal to sell 54 * you new devices, when you will add new protocol to your host, f.e. IPv6 8) 55 * 56 * CHECKSUM_COMPLETE: 57 * 58 * This is the most generic way. The device supplied checksum of the _whole_ 59 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 60 * hardware doesn't need to parse L3/L4 headers to implement this. 61 * 62 * Note: Even if device supports only some protocols, but is able to produce 63 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 64 * 65 * CHECKSUM_PARTIAL: 66 * 67 * This is identical to the case for output below. This may occur on a packet 68 * received directly from another Linux OS, e.g., a virtualized Linux kernel 69 * on the same host. The packet can be treated in the same way as 70 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 71 * checksum must be filled in by the OS or the hardware. 72 * 73 * B. Checksumming on output. 74 * 75 * CHECKSUM_NONE: 76 * 77 * The skb was already checksummed by the protocol, or a checksum is not 78 * required. 79 * 80 * CHECKSUM_PARTIAL: 81 * 82 * The device is required to checksum the packet as seen by hard_start_xmit() 83 * from skb->csum_start up to the end, and to record/write the checksum at 84 * offset skb->csum_start + skb->csum_offset. 85 * 86 * The device must show its capabilities in dev->features, set up at device 87 * setup time, e.g. netdev_features.h: 88 * 89 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 90 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 91 * IPv4. Sigh. Vendors like this way for an unknown reason. 92 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 93 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 94 * NETIF_F_... - Well, you get the picture. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * Normally, the device will do per protocol specific checksumming. Protocol 99 * implementations that do not want the NIC to perform the checksum 100 * calculation should use this flag in their outgoing skbs. 101 * 102 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109/* Don't change this without changing skb_csum_unnecessary! */ 110#define CHECKSUM_NONE 0 111#define CHECKSUM_UNNECESSARY 1 112#define CHECKSUM_COMPLETE 2 113#define CHECKSUM_PARTIAL 3 114 115#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 116 ~(SMP_CACHE_BYTES - 1)) 117#define SKB_WITH_OVERHEAD(X) \ 118 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 119#define SKB_MAX_ORDER(X, ORDER) \ 120 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 121#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 122#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 123 124/* return minimum truesize of one skb containing X bytes of data */ 125#define SKB_TRUESIZE(X) ((X) + \ 126 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 127 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 128 129struct net_device; 130struct scatterlist; 131struct pipe_inode_info; 132 133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 134struct nf_conntrack { 135 atomic_t use; 136}; 137#endif 138 139#ifdef CONFIG_BRIDGE_NETFILTER 140struct nf_bridge_info { 141 atomic_t use; 142 unsigned int mask; 143 struct net_device *physindev; 144 struct net_device *physoutdev; 145 unsigned long data[32 / sizeof(unsigned long)]; 146}; 147#endif 148 149struct sk_buff_head { 150 /* These two members must be first. */ 151 struct sk_buff *next; 152 struct sk_buff *prev; 153 154 __u32 qlen; 155 spinlock_t lock; 156}; 157 158struct sk_buff; 159 160/* To allow 64K frame to be packed as single skb without frag_list we 161 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 162 * buffers which do not start on a page boundary. 163 * 164 * Since GRO uses frags we allocate at least 16 regardless of page 165 * size. 166 */ 167#if (65536/PAGE_SIZE + 1) < 16 168#define MAX_SKB_FRAGS 16UL 169#else 170#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 171#endif 172 173typedef struct skb_frag_struct skb_frag_t; 174 175struct skb_frag_struct { 176 struct { 177 struct page *p; 178 } page; 179#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 180 __u32 page_offset; 181 __u32 size; 182#else 183 __u16 page_offset; 184 __u16 size; 185#endif 186}; 187 188static inline unsigned int skb_frag_size(const skb_frag_t *frag) 189{ 190 return frag->size; 191} 192 193static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 194{ 195 frag->size = size; 196} 197 198static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 199{ 200 frag->size += delta; 201} 202 203static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 204{ 205 frag->size -= delta; 206} 207 208#define HAVE_HW_TIME_STAMP 209 210/** 211 * struct skb_shared_hwtstamps - hardware time stamps 212 * @hwtstamp: hardware time stamp transformed into duration 213 * since arbitrary point in time 214 * @syststamp: hwtstamp transformed to system time base 215 * 216 * Software time stamps generated by ktime_get_real() are stored in 217 * skb->tstamp. The relation between the different kinds of time 218 * stamps is as follows: 219 * 220 * syststamp and tstamp can be compared against each other in 221 * arbitrary combinations. The accuracy of a 222 * syststamp/tstamp/"syststamp from other device" comparison is 223 * limited by the accuracy of the transformation into system time 224 * base. This depends on the device driver and its underlying 225 * hardware. 226 * 227 * hwtstamps can only be compared against other hwtstamps from 228 * the same device. 229 * 230 * This structure is attached to packets as part of the 231 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 232 */ 233struct skb_shared_hwtstamps { 234 ktime_t hwtstamp; 235 ktime_t syststamp; 236}; 237 238/* Definitions for tx_flags in struct skb_shared_info */ 239enum { 240 /* generate hardware time stamp */ 241 SKBTX_HW_TSTAMP = 1 << 0, 242 243 /* generate software time stamp */ 244 SKBTX_SW_TSTAMP = 1 << 1, 245 246 /* device driver is going to provide hardware time stamp */ 247 SKBTX_IN_PROGRESS = 1 << 2, 248 249 /* device driver supports TX zero-copy buffers */ 250 SKBTX_DEV_ZEROCOPY = 1 << 3, 251 252 /* generate wifi status information (where possible) */ 253 SKBTX_WIFI_STATUS = 1 << 4, 254 255 /* This indicates at least one fragment might be overwritten 256 * (as in vmsplice(), sendfile() ...) 257 * If we need to compute a TX checksum, we'll need to copy 258 * all frags to avoid possible bad checksum 259 */ 260 SKBTX_SHARED_FRAG = 1 << 5, 261}; 262 263/* 264 * The callback notifies userspace to release buffers when skb DMA is done in 265 * lower device, the skb last reference should be 0 when calling this. 266 * The zerocopy_success argument is true if zero copy transmit occurred, 267 * false on data copy or out of memory error caused by data copy attempt. 268 * The ctx field is used to track device context. 269 * The desc field is used to track userspace buffer index. 270 */ 271struct ubuf_info { 272 void (*callback)(struct ubuf_info *, bool zerocopy_success); 273 void *ctx; 274 unsigned long desc; 275}; 276 277/* This data is invariant across clones and lives at 278 * the end of the header data, ie. at skb->end. 279 */ 280struct skb_shared_info { 281 unsigned char nr_frags; 282 __u8 tx_flags; 283 unsigned short gso_size; 284 /* Warning: this field is not always filled in (UFO)! */ 285 unsigned short gso_segs; 286 unsigned short gso_type; 287 struct sk_buff *frag_list; 288 struct skb_shared_hwtstamps hwtstamps; 289 __be32 ip6_frag_id; 290 291 /* 292 * Warning : all fields before dataref are cleared in __alloc_skb() 293 */ 294 atomic_t dataref; 295 296 /* Intermediate layers must ensure that destructor_arg 297 * remains valid until skb destructor */ 298 void * destructor_arg; 299 300 /* must be last field, see pskb_expand_head() */ 301 skb_frag_t frags[MAX_SKB_FRAGS]; 302}; 303 304/* We divide dataref into two halves. The higher 16 bits hold references 305 * to the payload part of skb->data. The lower 16 bits hold references to 306 * the entire skb->data. A clone of a headerless skb holds the length of 307 * the header in skb->hdr_len. 308 * 309 * All users must obey the rule that the skb->data reference count must be 310 * greater than or equal to the payload reference count. 311 * 312 * Holding a reference to the payload part means that the user does not 313 * care about modifications to the header part of skb->data. 314 */ 315#define SKB_DATAREF_SHIFT 16 316#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 317 318 319enum { 320 SKB_FCLONE_UNAVAILABLE, 321 SKB_FCLONE_ORIG, 322 SKB_FCLONE_CLONE, 323}; 324 325enum { 326 SKB_GSO_TCPV4 = 1 << 0, 327 SKB_GSO_UDP = 1 << 1, 328 329 /* This indicates the skb is from an untrusted source. */ 330 SKB_GSO_DODGY = 1 << 2, 331 332 /* This indicates the tcp segment has CWR set. */ 333 SKB_GSO_TCP_ECN = 1 << 3, 334 335 SKB_GSO_TCPV6 = 1 << 4, 336 337 SKB_GSO_FCOE = 1 << 5, 338 339 SKB_GSO_GRE = 1 << 6, 340 341 SKB_GSO_IPIP = 1 << 7, 342 343 SKB_GSO_SIT = 1 << 8, 344 345 SKB_GSO_UDP_TUNNEL = 1 << 9, 346 347 SKB_GSO_MPLS = 1 << 10, 348}; 349 350#if BITS_PER_LONG > 32 351#define NET_SKBUFF_DATA_USES_OFFSET 1 352#endif 353 354#ifdef NET_SKBUFF_DATA_USES_OFFSET 355typedef unsigned int sk_buff_data_t; 356#else 357typedef unsigned char *sk_buff_data_t; 358#endif 359 360/** 361 * struct skb_mstamp - multi resolution time stamps 362 * @stamp_us: timestamp in us resolution 363 * @stamp_jiffies: timestamp in jiffies 364 */ 365struct skb_mstamp { 366 union { 367 u64 v64; 368 struct { 369 u32 stamp_us; 370 u32 stamp_jiffies; 371 }; 372 }; 373}; 374 375/** 376 * skb_mstamp_get - get current timestamp 377 * @cl: place to store timestamps 378 */ 379static inline void skb_mstamp_get(struct skb_mstamp *cl) 380{ 381 u64 val = local_clock(); 382 383 do_div(val, NSEC_PER_USEC); 384 cl->stamp_us = (u32)val; 385 cl->stamp_jiffies = (u32)jiffies; 386} 387 388/** 389 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 390 * @t1: pointer to newest sample 391 * @t0: pointer to oldest sample 392 */ 393static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 394 const struct skb_mstamp *t0) 395{ 396 s32 delta_us = t1->stamp_us - t0->stamp_us; 397 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 398 399 /* If delta_us is negative, this might be because interval is too big, 400 * or local_clock() drift is too big : fallback using jiffies. 401 */ 402 if (delta_us <= 0 || 403 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 404 405 delta_us = jiffies_to_usecs(delta_jiffies); 406 407 return delta_us; 408} 409 410 411/** 412 * struct sk_buff - socket buffer 413 * @next: Next buffer in list 414 * @prev: Previous buffer in list 415 * @tstamp: Time we arrived/left 416 * @sk: Socket we are owned by 417 * @dev: Device we arrived on/are leaving by 418 * @cb: Control buffer. Free for use by every layer. Put private vars here 419 * @_skb_refdst: destination entry (with norefcount bit) 420 * @sp: the security path, used for xfrm 421 * @len: Length of actual data 422 * @data_len: Data length 423 * @mac_len: Length of link layer header 424 * @hdr_len: writable header length of cloned skb 425 * @csum: Checksum (must include start/offset pair) 426 * @csum_start: Offset from skb->head where checksumming should start 427 * @csum_offset: Offset from csum_start where checksum should be stored 428 * @priority: Packet queueing priority 429 * @local_df: allow local fragmentation 430 * @cloned: Head may be cloned (check refcnt to be sure) 431 * @ip_summed: Driver fed us an IP checksum 432 * @nohdr: Payload reference only, must not modify header 433 * @nfctinfo: Relationship of this skb to the connection 434 * @pkt_type: Packet class 435 * @fclone: skbuff clone status 436 * @ipvs_property: skbuff is owned by ipvs 437 * @peeked: this packet has been seen already, so stats have been 438 * done for it, don't do them again 439 * @nf_trace: netfilter packet trace flag 440 * @protocol: Packet protocol from driver 441 * @destructor: Destruct function 442 * @nfct: Associated connection, if any 443 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 444 * @skb_iif: ifindex of device we arrived on 445 * @tc_index: Traffic control index 446 * @tc_verd: traffic control verdict 447 * @hash: the packet hash 448 * @queue_mapping: Queue mapping for multiqueue devices 449 * @ndisc_nodetype: router type (from link layer) 450 * @ooo_okay: allow the mapping of a socket to a queue to be changed 451 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 452 * ports. 453 * @wifi_acked_valid: wifi_acked was set 454 * @wifi_acked: whether frame was acked on wifi or not 455 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 456 * @dma_cookie: a cookie to one of several possible DMA operations 457 * done by skb DMA functions 458 * @napi_id: id of the NAPI struct this skb came from 459 * @secmark: security marking 460 * @mark: Generic packet mark 461 * @dropcount: total number of sk_receive_queue overflows 462 * @vlan_proto: vlan encapsulation protocol 463 * @vlan_tci: vlan tag control information 464 * @inner_protocol: Protocol (encapsulation) 465 * @inner_transport_header: Inner transport layer header (encapsulation) 466 * @inner_network_header: Network layer header (encapsulation) 467 * @inner_mac_header: Link layer header (encapsulation) 468 * @transport_header: Transport layer header 469 * @network_header: Network layer header 470 * @mac_header: Link layer header 471 * @tail: Tail pointer 472 * @end: End pointer 473 * @head: Head of buffer 474 * @data: Data head pointer 475 * @truesize: Buffer size 476 * @users: User count - see {datagram,tcp}.c 477 */ 478 479struct sk_buff { 480 /* These two members must be first. */ 481 struct sk_buff *next; 482 struct sk_buff *prev; 483 484 union { 485 ktime_t tstamp; 486 struct skb_mstamp skb_mstamp; 487 }; 488 489 struct sock *sk; 490 struct net_device *dev; 491 492 /* 493 * This is the control buffer. It is free to use for every 494 * layer. Please put your private variables there. If you 495 * want to keep them across layers you have to do a skb_clone() 496 * first. This is owned by whoever has the skb queued ATM. 497 */ 498 char cb[48] __aligned(8); 499 500 unsigned long _skb_refdst; 501#ifdef CONFIG_XFRM 502 struct sec_path *sp; 503#endif 504 unsigned int len, 505 data_len; 506 __u16 mac_len, 507 hdr_len; 508 union { 509 __wsum csum; 510 struct { 511 __u16 csum_start; 512 __u16 csum_offset; 513 }; 514 }; 515 __u32 priority; 516 kmemcheck_bitfield_begin(flags1); 517 __u8 local_df:1, 518 cloned:1, 519 ip_summed:2, 520 nohdr:1, 521 nfctinfo:3; 522 __u8 pkt_type:3, 523 fclone:2, 524 ipvs_property:1, 525 peeked:1, 526 nf_trace:1; 527 kmemcheck_bitfield_end(flags1); 528 __be16 protocol; 529 530 void (*destructor)(struct sk_buff *skb); 531#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 532 struct nf_conntrack *nfct; 533#endif 534#ifdef CONFIG_BRIDGE_NETFILTER 535 struct nf_bridge_info *nf_bridge; 536#endif 537 538 int skb_iif; 539 540 __u32 hash; 541 542 __be16 vlan_proto; 543 __u16 vlan_tci; 544 545#ifdef CONFIG_NET_SCHED 546 __u16 tc_index; /* traffic control index */ 547#ifdef CONFIG_NET_CLS_ACT 548 __u16 tc_verd; /* traffic control verdict */ 549#endif 550#endif 551 552 __u16 queue_mapping; 553 kmemcheck_bitfield_begin(flags2); 554#ifdef CONFIG_IPV6_NDISC_NODETYPE 555 __u8 ndisc_nodetype:2; 556#endif 557 __u8 pfmemalloc:1; 558 __u8 ooo_okay:1; 559 __u8 l4_hash:1; 560 __u8 wifi_acked_valid:1; 561 __u8 wifi_acked:1; 562 __u8 no_fcs:1; 563 __u8 head_frag:1; 564 /* Encapsulation protocol and NIC drivers should use 565 * this flag to indicate to each other if the skb contains 566 * encapsulated packet or not and maybe use the inner packet 567 * headers if needed 568 */ 569 __u8 encapsulation:1; 570 /* 6/8 bit hole (depending on ndisc_nodetype presence) */ 571 kmemcheck_bitfield_end(flags2); 572 573#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL 574 union { 575 unsigned int napi_id; 576 dma_cookie_t dma_cookie; 577 }; 578#endif 579#ifdef CONFIG_NETWORK_SECMARK 580 __u32 secmark; 581#endif 582 union { 583 __u32 mark; 584 __u32 dropcount; 585 __u32 reserved_tailroom; 586 }; 587 588 __be16 inner_protocol; 589 __u16 inner_transport_header; 590 __u16 inner_network_header; 591 __u16 inner_mac_header; 592 __u16 transport_header; 593 __u16 network_header; 594 __u16 mac_header; 595 /* These elements must be at the end, see alloc_skb() for details. */ 596 sk_buff_data_t tail; 597 sk_buff_data_t end; 598 unsigned char *head, 599 *data; 600 unsigned int truesize; 601 atomic_t users; 602}; 603 604#ifdef __KERNEL__ 605/* 606 * Handling routines are only of interest to the kernel 607 */ 608#include <linux/slab.h> 609 610 611#define SKB_ALLOC_FCLONE 0x01 612#define SKB_ALLOC_RX 0x02 613 614/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 615static inline bool skb_pfmemalloc(const struct sk_buff *skb) 616{ 617 return unlikely(skb->pfmemalloc); 618} 619 620/* 621 * skb might have a dst pointer attached, refcounted or not. 622 * _skb_refdst low order bit is set if refcount was _not_ taken 623 */ 624#define SKB_DST_NOREF 1UL 625#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 626 627/** 628 * skb_dst - returns skb dst_entry 629 * @skb: buffer 630 * 631 * Returns skb dst_entry, regardless of reference taken or not. 632 */ 633static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 634{ 635 /* If refdst was not refcounted, check we still are in a 636 * rcu_read_lock section 637 */ 638 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 639 !rcu_read_lock_held() && 640 !rcu_read_lock_bh_held()); 641 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 642} 643 644/** 645 * skb_dst_set - sets skb dst 646 * @skb: buffer 647 * @dst: dst entry 648 * 649 * Sets skb dst, assuming a reference was taken on dst and should 650 * be released by skb_dst_drop() 651 */ 652static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 653{ 654 skb->_skb_refdst = (unsigned long)dst; 655} 656 657void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 658 bool force); 659 660/** 661 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 662 * @skb: buffer 663 * @dst: dst entry 664 * 665 * Sets skb dst, assuming a reference was not taken on dst. 666 * If dst entry is cached, we do not take reference and dst_release 667 * will be avoided by refdst_drop. If dst entry is not cached, we take 668 * reference, so that last dst_release can destroy the dst immediately. 669 */ 670static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 671{ 672 __skb_dst_set_noref(skb, dst, false); 673} 674 675/** 676 * skb_dst_set_noref_force - sets skb dst, without taking reference 677 * @skb: buffer 678 * @dst: dst entry 679 * 680 * Sets skb dst, assuming a reference was not taken on dst. 681 * No reference is taken and no dst_release will be called. While for 682 * cached dsts deferred reclaim is a basic feature, for entries that are 683 * not cached it is caller's job to guarantee that last dst_release for 684 * provided dst happens when nobody uses it, eg. after a RCU grace period. 685 */ 686static inline void skb_dst_set_noref_force(struct sk_buff *skb, 687 struct dst_entry *dst) 688{ 689 __skb_dst_set_noref(skb, dst, true); 690} 691 692/** 693 * skb_dst_is_noref - Test if skb dst isn't refcounted 694 * @skb: buffer 695 */ 696static inline bool skb_dst_is_noref(const struct sk_buff *skb) 697{ 698 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 699} 700 701static inline struct rtable *skb_rtable(const struct sk_buff *skb) 702{ 703 return (struct rtable *)skb_dst(skb); 704} 705 706void kfree_skb(struct sk_buff *skb); 707void kfree_skb_list(struct sk_buff *segs); 708void skb_tx_error(struct sk_buff *skb); 709void consume_skb(struct sk_buff *skb); 710void __kfree_skb(struct sk_buff *skb); 711extern struct kmem_cache *skbuff_head_cache; 712 713void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 714bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 715 bool *fragstolen, int *delta_truesize); 716 717struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 718 int node); 719struct sk_buff *build_skb(void *data, unsigned int frag_size); 720static inline struct sk_buff *alloc_skb(unsigned int size, 721 gfp_t priority) 722{ 723 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 724} 725 726static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 727 gfp_t priority) 728{ 729 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 730} 731 732struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 733static inline struct sk_buff *alloc_skb_head(gfp_t priority) 734{ 735 return __alloc_skb_head(priority, -1); 736} 737 738struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 739int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 740struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 741struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 742struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); 743 744int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 745struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 746 unsigned int headroom); 747struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 748 int newtailroom, gfp_t priority); 749int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 750 int offset, int len); 751int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 752 int len); 753int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 754int skb_pad(struct sk_buff *skb, int pad); 755#define dev_kfree_skb(a) consume_skb(a) 756 757int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 758 int getfrag(void *from, char *to, int offset, 759 int len, int odd, struct sk_buff *skb), 760 void *from, int length); 761 762struct skb_seq_state { 763 __u32 lower_offset; 764 __u32 upper_offset; 765 __u32 frag_idx; 766 __u32 stepped_offset; 767 struct sk_buff *root_skb; 768 struct sk_buff *cur_skb; 769 __u8 *frag_data; 770}; 771 772void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 773 unsigned int to, struct skb_seq_state *st); 774unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 775 struct skb_seq_state *st); 776void skb_abort_seq_read(struct skb_seq_state *st); 777 778unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 779 unsigned int to, struct ts_config *config, 780 struct ts_state *state); 781 782/* 783 * Packet hash types specify the type of hash in skb_set_hash. 784 * 785 * Hash types refer to the protocol layer addresses which are used to 786 * construct a packet's hash. The hashes are used to differentiate or identify 787 * flows of the protocol layer for the hash type. Hash types are either 788 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 789 * 790 * Properties of hashes: 791 * 792 * 1) Two packets in different flows have different hash values 793 * 2) Two packets in the same flow should have the same hash value 794 * 795 * A hash at a higher layer is considered to be more specific. A driver should 796 * set the most specific hash possible. 797 * 798 * A driver cannot indicate a more specific hash than the layer at which a hash 799 * was computed. For instance an L3 hash cannot be set as an L4 hash. 800 * 801 * A driver may indicate a hash level which is less specific than the 802 * actual layer the hash was computed on. For instance, a hash computed 803 * at L4 may be considered an L3 hash. This should only be done if the 804 * driver can't unambiguously determine that the HW computed the hash at 805 * the higher layer. Note that the "should" in the second property above 806 * permits this. 807 */ 808enum pkt_hash_types { 809 PKT_HASH_TYPE_NONE, /* Undefined type */ 810 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 811 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 812 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 813}; 814 815static inline void 816skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 817{ 818 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 819 skb->hash = hash; 820} 821 822void __skb_get_hash(struct sk_buff *skb); 823static inline __u32 skb_get_hash(struct sk_buff *skb) 824{ 825 if (!skb->l4_hash) 826 __skb_get_hash(skb); 827 828 return skb->hash; 829} 830 831static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 832{ 833 return skb->hash; 834} 835 836static inline void skb_clear_hash(struct sk_buff *skb) 837{ 838 skb->hash = 0; 839 skb->l4_hash = 0; 840} 841 842static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 843{ 844 if (!skb->l4_hash) 845 skb_clear_hash(skb); 846} 847 848static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 849{ 850 to->hash = from->hash; 851 to->l4_hash = from->l4_hash; 852}; 853 854#ifdef NET_SKBUFF_DATA_USES_OFFSET 855static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 856{ 857 return skb->head + skb->end; 858} 859 860static inline unsigned int skb_end_offset(const struct sk_buff *skb) 861{ 862 return skb->end; 863} 864#else 865static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 866{ 867 return skb->end; 868} 869 870static inline unsigned int skb_end_offset(const struct sk_buff *skb) 871{ 872 return skb->end - skb->head; 873} 874#endif 875 876/* Internal */ 877#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 878 879static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 880{ 881 return &skb_shinfo(skb)->hwtstamps; 882} 883 884/** 885 * skb_queue_empty - check if a queue is empty 886 * @list: queue head 887 * 888 * Returns true if the queue is empty, false otherwise. 889 */ 890static inline int skb_queue_empty(const struct sk_buff_head *list) 891{ 892 return list->next == (const struct sk_buff *) list; 893} 894 895/** 896 * skb_queue_is_last - check if skb is the last entry in the queue 897 * @list: queue head 898 * @skb: buffer 899 * 900 * Returns true if @skb is the last buffer on the list. 901 */ 902static inline bool skb_queue_is_last(const struct sk_buff_head *list, 903 const struct sk_buff *skb) 904{ 905 return skb->next == (const struct sk_buff *) list; 906} 907 908/** 909 * skb_queue_is_first - check if skb is the first entry in the queue 910 * @list: queue head 911 * @skb: buffer 912 * 913 * Returns true if @skb is the first buffer on the list. 914 */ 915static inline bool skb_queue_is_first(const struct sk_buff_head *list, 916 const struct sk_buff *skb) 917{ 918 return skb->prev == (const struct sk_buff *) list; 919} 920 921/** 922 * skb_queue_next - return the next packet in the queue 923 * @list: queue head 924 * @skb: current buffer 925 * 926 * Return the next packet in @list after @skb. It is only valid to 927 * call this if skb_queue_is_last() evaluates to false. 928 */ 929static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 930 const struct sk_buff *skb) 931{ 932 /* This BUG_ON may seem severe, but if we just return then we 933 * are going to dereference garbage. 934 */ 935 BUG_ON(skb_queue_is_last(list, skb)); 936 return skb->next; 937} 938 939/** 940 * skb_queue_prev - return the prev packet in the queue 941 * @list: queue head 942 * @skb: current buffer 943 * 944 * Return the prev packet in @list before @skb. It is only valid to 945 * call this if skb_queue_is_first() evaluates to false. 946 */ 947static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 948 const struct sk_buff *skb) 949{ 950 /* This BUG_ON may seem severe, but if we just return then we 951 * are going to dereference garbage. 952 */ 953 BUG_ON(skb_queue_is_first(list, skb)); 954 return skb->prev; 955} 956 957/** 958 * skb_get - reference buffer 959 * @skb: buffer to reference 960 * 961 * Makes another reference to a socket buffer and returns a pointer 962 * to the buffer. 963 */ 964static inline struct sk_buff *skb_get(struct sk_buff *skb) 965{ 966 atomic_inc(&skb->users); 967 return skb; 968} 969 970/* 971 * If users == 1, we are the only owner and are can avoid redundant 972 * atomic change. 973 */ 974 975/** 976 * skb_cloned - is the buffer a clone 977 * @skb: buffer to check 978 * 979 * Returns true if the buffer was generated with skb_clone() and is 980 * one of multiple shared copies of the buffer. Cloned buffers are 981 * shared data so must not be written to under normal circumstances. 982 */ 983static inline int skb_cloned(const struct sk_buff *skb) 984{ 985 return skb->cloned && 986 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 987} 988 989static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 990{ 991 might_sleep_if(pri & __GFP_WAIT); 992 993 if (skb_cloned(skb)) 994 return pskb_expand_head(skb, 0, 0, pri); 995 996 return 0; 997} 998 999/** 1000 * skb_header_cloned - is the header a clone 1001 * @skb: buffer to check 1002 * 1003 * Returns true if modifying the header part of the buffer requires 1004 * the data to be copied. 1005 */ 1006static inline int skb_header_cloned(const struct sk_buff *skb) 1007{ 1008 int dataref; 1009 1010 if (!skb->cloned) 1011 return 0; 1012 1013 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1014 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1015 return dataref != 1; 1016} 1017 1018/** 1019 * skb_header_release - release reference to header 1020 * @skb: buffer to operate on 1021 * 1022 * Drop a reference to the header part of the buffer. This is done 1023 * by acquiring a payload reference. You must not read from the header 1024 * part of skb->data after this. 1025 */ 1026static inline void skb_header_release(struct sk_buff *skb) 1027{ 1028 BUG_ON(skb->nohdr); 1029 skb->nohdr = 1; 1030 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1031} 1032 1033/** 1034 * skb_shared - is the buffer shared 1035 * @skb: buffer to check 1036 * 1037 * Returns true if more than one person has a reference to this 1038 * buffer. 1039 */ 1040static inline int skb_shared(const struct sk_buff *skb) 1041{ 1042 return atomic_read(&skb->users) != 1; 1043} 1044 1045/** 1046 * skb_share_check - check if buffer is shared and if so clone it 1047 * @skb: buffer to check 1048 * @pri: priority for memory allocation 1049 * 1050 * If the buffer is shared the buffer is cloned and the old copy 1051 * drops a reference. A new clone with a single reference is returned. 1052 * If the buffer is not shared the original buffer is returned. When 1053 * being called from interrupt status or with spinlocks held pri must 1054 * be GFP_ATOMIC. 1055 * 1056 * NULL is returned on a memory allocation failure. 1057 */ 1058static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1059{ 1060 might_sleep_if(pri & __GFP_WAIT); 1061 if (skb_shared(skb)) { 1062 struct sk_buff *nskb = skb_clone(skb, pri); 1063 1064 if (likely(nskb)) 1065 consume_skb(skb); 1066 else 1067 kfree_skb(skb); 1068 skb = nskb; 1069 } 1070 return skb; 1071} 1072 1073/* 1074 * Copy shared buffers into a new sk_buff. We effectively do COW on 1075 * packets to handle cases where we have a local reader and forward 1076 * and a couple of other messy ones. The normal one is tcpdumping 1077 * a packet thats being forwarded. 1078 */ 1079 1080/** 1081 * skb_unshare - make a copy of a shared buffer 1082 * @skb: buffer to check 1083 * @pri: priority for memory allocation 1084 * 1085 * If the socket buffer is a clone then this function creates a new 1086 * copy of the data, drops a reference count on the old copy and returns 1087 * the new copy with the reference count at 1. If the buffer is not a clone 1088 * the original buffer is returned. When called with a spinlock held or 1089 * from interrupt state @pri must be %GFP_ATOMIC 1090 * 1091 * %NULL is returned on a memory allocation failure. 1092 */ 1093static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1094 gfp_t pri) 1095{ 1096 might_sleep_if(pri & __GFP_WAIT); 1097 if (skb_cloned(skb)) { 1098 struct sk_buff *nskb = skb_copy(skb, pri); 1099 kfree_skb(skb); /* Free our shared copy */ 1100 skb = nskb; 1101 } 1102 return skb; 1103} 1104 1105/** 1106 * skb_peek - peek at the head of an &sk_buff_head 1107 * @list_: list to peek at 1108 * 1109 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1110 * be careful with this one. A peek leaves the buffer on the 1111 * list and someone else may run off with it. You must hold 1112 * the appropriate locks or have a private queue to do this. 1113 * 1114 * Returns %NULL for an empty list or a pointer to the head element. 1115 * The reference count is not incremented and the reference is therefore 1116 * volatile. Use with caution. 1117 */ 1118static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1119{ 1120 struct sk_buff *skb = list_->next; 1121 1122 if (skb == (struct sk_buff *)list_) 1123 skb = NULL; 1124 return skb; 1125} 1126 1127/** 1128 * skb_peek_next - peek skb following the given one from a queue 1129 * @skb: skb to start from 1130 * @list_: list to peek at 1131 * 1132 * Returns %NULL when the end of the list is met or a pointer to the 1133 * next element. The reference count is not incremented and the 1134 * reference is therefore volatile. Use with caution. 1135 */ 1136static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1137 const struct sk_buff_head *list_) 1138{ 1139 struct sk_buff *next = skb->next; 1140 1141 if (next == (struct sk_buff *)list_) 1142 next = NULL; 1143 return next; 1144} 1145 1146/** 1147 * skb_peek_tail - peek at the tail of an &sk_buff_head 1148 * @list_: list to peek at 1149 * 1150 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1151 * be careful with this one. A peek leaves the buffer on the 1152 * list and someone else may run off with it. You must hold 1153 * the appropriate locks or have a private queue to do this. 1154 * 1155 * Returns %NULL for an empty list or a pointer to the tail element. 1156 * The reference count is not incremented and the reference is therefore 1157 * volatile. Use with caution. 1158 */ 1159static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1160{ 1161 struct sk_buff *skb = list_->prev; 1162 1163 if (skb == (struct sk_buff *)list_) 1164 skb = NULL; 1165 return skb; 1166 1167} 1168 1169/** 1170 * skb_queue_len - get queue length 1171 * @list_: list to measure 1172 * 1173 * Return the length of an &sk_buff queue. 1174 */ 1175static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1176{ 1177 return list_->qlen; 1178} 1179 1180/** 1181 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1182 * @list: queue to initialize 1183 * 1184 * This initializes only the list and queue length aspects of 1185 * an sk_buff_head object. This allows to initialize the list 1186 * aspects of an sk_buff_head without reinitializing things like 1187 * the spinlock. It can also be used for on-stack sk_buff_head 1188 * objects where the spinlock is known to not be used. 1189 */ 1190static inline void __skb_queue_head_init(struct sk_buff_head *list) 1191{ 1192 list->prev = list->next = (struct sk_buff *)list; 1193 list->qlen = 0; 1194} 1195 1196/* 1197 * This function creates a split out lock class for each invocation; 1198 * this is needed for now since a whole lot of users of the skb-queue 1199 * infrastructure in drivers have different locking usage (in hardirq) 1200 * than the networking core (in softirq only). In the long run either the 1201 * network layer or drivers should need annotation to consolidate the 1202 * main types of usage into 3 classes. 1203 */ 1204static inline void skb_queue_head_init(struct sk_buff_head *list) 1205{ 1206 spin_lock_init(&list->lock); 1207 __skb_queue_head_init(list); 1208} 1209 1210static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1211 struct lock_class_key *class) 1212{ 1213 skb_queue_head_init(list); 1214 lockdep_set_class(&list->lock, class); 1215} 1216 1217/* 1218 * Insert an sk_buff on a list. 1219 * 1220 * The "__skb_xxxx()" functions are the non-atomic ones that 1221 * can only be called with interrupts disabled. 1222 */ 1223void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1224 struct sk_buff_head *list); 1225static inline void __skb_insert(struct sk_buff *newsk, 1226 struct sk_buff *prev, struct sk_buff *next, 1227 struct sk_buff_head *list) 1228{ 1229 newsk->next = next; 1230 newsk->prev = prev; 1231 next->prev = prev->next = newsk; 1232 list->qlen++; 1233} 1234 1235static inline void __skb_queue_splice(const struct sk_buff_head *list, 1236 struct sk_buff *prev, 1237 struct sk_buff *next) 1238{ 1239 struct sk_buff *first = list->next; 1240 struct sk_buff *last = list->prev; 1241 1242 first->prev = prev; 1243 prev->next = first; 1244 1245 last->next = next; 1246 next->prev = last; 1247} 1248 1249/** 1250 * skb_queue_splice - join two skb lists, this is designed for stacks 1251 * @list: the new list to add 1252 * @head: the place to add it in the first list 1253 */ 1254static inline void skb_queue_splice(const struct sk_buff_head *list, 1255 struct sk_buff_head *head) 1256{ 1257 if (!skb_queue_empty(list)) { 1258 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1259 head->qlen += list->qlen; 1260 } 1261} 1262 1263/** 1264 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1265 * @list: the new list to add 1266 * @head: the place to add it in the first list 1267 * 1268 * The list at @list is reinitialised 1269 */ 1270static inline void skb_queue_splice_init(struct sk_buff_head *list, 1271 struct sk_buff_head *head) 1272{ 1273 if (!skb_queue_empty(list)) { 1274 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1275 head->qlen += list->qlen; 1276 __skb_queue_head_init(list); 1277 } 1278} 1279 1280/** 1281 * skb_queue_splice_tail - join two skb lists, each list being a queue 1282 * @list: the new list to add 1283 * @head: the place to add it in the first list 1284 */ 1285static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1286 struct sk_buff_head *head) 1287{ 1288 if (!skb_queue_empty(list)) { 1289 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1290 head->qlen += list->qlen; 1291 } 1292} 1293 1294/** 1295 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1296 * @list: the new list to add 1297 * @head: the place to add it in the first list 1298 * 1299 * Each of the lists is a queue. 1300 * The list at @list is reinitialised 1301 */ 1302static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1303 struct sk_buff_head *head) 1304{ 1305 if (!skb_queue_empty(list)) { 1306 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1307 head->qlen += list->qlen; 1308 __skb_queue_head_init(list); 1309 } 1310} 1311 1312/** 1313 * __skb_queue_after - queue a buffer at the list head 1314 * @list: list to use 1315 * @prev: place after this buffer 1316 * @newsk: buffer to queue 1317 * 1318 * Queue a buffer int the middle of a list. This function takes no locks 1319 * and you must therefore hold required locks before calling it. 1320 * 1321 * A buffer cannot be placed on two lists at the same time. 1322 */ 1323static inline void __skb_queue_after(struct sk_buff_head *list, 1324 struct sk_buff *prev, 1325 struct sk_buff *newsk) 1326{ 1327 __skb_insert(newsk, prev, prev->next, list); 1328} 1329 1330void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1331 struct sk_buff_head *list); 1332 1333static inline void __skb_queue_before(struct sk_buff_head *list, 1334 struct sk_buff *next, 1335 struct sk_buff *newsk) 1336{ 1337 __skb_insert(newsk, next->prev, next, list); 1338} 1339 1340/** 1341 * __skb_queue_head - queue a buffer at the list head 1342 * @list: list to use 1343 * @newsk: buffer to queue 1344 * 1345 * Queue a buffer at the start of a list. This function takes no locks 1346 * and you must therefore hold required locks before calling it. 1347 * 1348 * A buffer cannot be placed on two lists at the same time. 1349 */ 1350void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1351static inline void __skb_queue_head(struct sk_buff_head *list, 1352 struct sk_buff *newsk) 1353{ 1354 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1355} 1356 1357/** 1358 * __skb_queue_tail - queue a buffer at the list tail 1359 * @list: list to use 1360 * @newsk: buffer to queue 1361 * 1362 * Queue a buffer at the end of a list. This function takes no locks 1363 * and you must therefore hold required locks before calling it. 1364 * 1365 * A buffer cannot be placed on two lists at the same time. 1366 */ 1367void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1368static inline void __skb_queue_tail(struct sk_buff_head *list, 1369 struct sk_buff *newsk) 1370{ 1371 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1372} 1373 1374/* 1375 * remove sk_buff from list. _Must_ be called atomically, and with 1376 * the list known.. 1377 */ 1378void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1379static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1380{ 1381 struct sk_buff *next, *prev; 1382 1383 list->qlen--; 1384 next = skb->next; 1385 prev = skb->prev; 1386 skb->next = skb->prev = NULL; 1387 next->prev = prev; 1388 prev->next = next; 1389} 1390 1391/** 1392 * __skb_dequeue - remove from the head of the queue 1393 * @list: list to dequeue from 1394 * 1395 * Remove the head of the list. This function does not take any locks 1396 * so must be used with appropriate locks held only. The head item is 1397 * returned or %NULL if the list is empty. 1398 */ 1399struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1400static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1401{ 1402 struct sk_buff *skb = skb_peek(list); 1403 if (skb) 1404 __skb_unlink(skb, list); 1405 return skb; 1406} 1407 1408/** 1409 * __skb_dequeue_tail - remove from the tail of the queue 1410 * @list: list to dequeue from 1411 * 1412 * Remove the tail of the list. This function does not take any locks 1413 * so must be used with appropriate locks held only. The tail item is 1414 * returned or %NULL if the list is empty. 1415 */ 1416struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1417static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1418{ 1419 struct sk_buff *skb = skb_peek_tail(list); 1420 if (skb) 1421 __skb_unlink(skb, list); 1422 return skb; 1423} 1424 1425 1426static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1427{ 1428 return skb->data_len; 1429} 1430 1431static inline unsigned int skb_headlen(const struct sk_buff *skb) 1432{ 1433 return skb->len - skb->data_len; 1434} 1435 1436static inline int skb_pagelen(const struct sk_buff *skb) 1437{ 1438 int i, len = 0; 1439 1440 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1441 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1442 return len + skb_headlen(skb); 1443} 1444 1445/** 1446 * __skb_fill_page_desc - initialise a paged fragment in an skb 1447 * @skb: buffer containing fragment to be initialised 1448 * @i: paged fragment index to initialise 1449 * @page: the page to use for this fragment 1450 * @off: the offset to the data with @page 1451 * @size: the length of the data 1452 * 1453 * Initialises the @i'th fragment of @skb to point to &size bytes at 1454 * offset @off within @page. 1455 * 1456 * Does not take any additional reference on the fragment. 1457 */ 1458static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1459 struct page *page, int off, int size) 1460{ 1461 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1462 1463 /* 1464 * Propagate page->pfmemalloc to the skb if we can. The problem is 1465 * that not all callers have unique ownership of the page. If 1466 * pfmemalloc is set, we check the mapping as a mapping implies 1467 * page->index is set (index and pfmemalloc share space). 1468 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1469 * do not lose pfmemalloc information as the pages would not be 1470 * allocated using __GFP_MEMALLOC. 1471 */ 1472 frag->page.p = page; 1473 frag->page_offset = off; 1474 skb_frag_size_set(frag, size); 1475 1476 page = compound_head(page); 1477 if (page->pfmemalloc && !page->mapping) 1478 skb->pfmemalloc = true; 1479} 1480 1481/** 1482 * skb_fill_page_desc - initialise a paged fragment in an skb 1483 * @skb: buffer containing fragment to be initialised 1484 * @i: paged fragment index to initialise 1485 * @page: the page to use for this fragment 1486 * @off: the offset to the data with @page 1487 * @size: the length of the data 1488 * 1489 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1490 * @skb to point to @size bytes at offset @off within @page. In 1491 * addition updates @skb such that @i is the last fragment. 1492 * 1493 * Does not take any additional reference on the fragment. 1494 */ 1495static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1496 struct page *page, int off, int size) 1497{ 1498 __skb_fill_page_desc(skb, i, page, off, size); 1499 skb_shinfo(skb)->nr_frags = i + 1; 1500} 1501 1502void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1503 int size, unsigned int truesize); 1504 1505void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1506 unsigned int truesize); 1507 1508#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1509#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1510#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1511 1512#ifdef NET_SKBUFF_DATA_USES_OFFSET 1513static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1514{ 1515 return skb->head + skb->tail; 1516} 1517 1518static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1519{ 1520 skb->tail = skb->data - skb->head; 1521} 1522 1523static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1524{ 1525 skb_reset_tail_pointer(skb); 1526 skb->tail += offset; 1527} 1528 1529#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1530static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1531{ 1532 return skb->tail; 1533} 1534 1535static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1536{ 1537 skb->tail = skb->data; 1538} 1539 1540static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1541{ 1542 skb->tail = skb->data + offset; 1543} 1544 1545#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1546 1547/* 1548 * Add data to an sk_buff 1549 */ 1550unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1551unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1552static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1553{ 1554 unsigned char *tmp = skb_tail_pointer(skb); 1555 SKB_LINEAR_ASSERT(skb); 1556 skb->tail += len; 1557 skb->len += len; 1558 return tmp; 1559} 1560 1561unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1562static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1563{ 1564 skb->data -= len; 1565 skb->len += len; 1566 return skb->data; 1567} 1568 1569unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1570static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1571{ 1572 skb->len -= len; 1573 BUG_ON(skb->len < skb->data_len); 1574 return skb->data += len; 1575} 1576 1577static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1578{ 1579 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1580} 1581 1582unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1583 1584static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1585{ 1586 if (len > skb_headlen(skb) && 1587 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1588 return NULL; 1589 skb->len -= len; 1590 return skb->data += len; 1591} 1592 1593static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1594{ 1595 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1596} 1597 1598static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1599{ 1600 if (likely(len <= skb_headlen(skb))) 1601 return 1; 1602 if (unlikely(len > skb->len)) 1603 return 0; 1604 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1605} 1606 1607/** 1608 * skb_headroom - bytes at buffer head 1609 * @skb: buffer to check 1610 * 1611 * Return the number of bytes of free space at the head of an &sk_buff. 1612 */ 1613static inline unsigned int skb_headroom(const struct sk_buff *skb) 1614{ 1615 return skb->data - skb->head; 1616} 1617 1618/** 1619 * skb_tailroom - bytes at buffer end 1620 * @skb: buffer to check 1621 * 1622 * Return the number of bytes of free space at the tail of an sk_buff 1623 */ 1624static inline int skb_tailroom(const struct sk_buff *skb) 1625{ 1626 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1627} 1628 1629/** 1630 * skb_availroom - bytes at buffer end 1631 * @skb: buffer to check 1632 * 1633 * Return the number of bytes of free space at the tail of an sk_buff 1634 * allocated by sk_stream_alloc() 1635 */ 1636static inline int skb_availroom(const struct sk_buff *skb) 1637{ 1638 if (skb_is_nonlinear(skb)) 1639 return 0; 1640 1641 return skb->end - skb->tail - skb->reserved_tailroom; 1642} 1643 1644/** 1645 * skb_reserve - adjust headroom 1646 * @skb: buffer to alter 1647 * @len: bytes to move 1648 * 1649 * Increase the headroom of an empty &sk_buff by reducing the tail 1650 * room. This is only allowed for an empty buffer. 1651 */ 1652static inline void skb_reserve(struct sk_buff *skb, int len) 1653{ 1654 skb->data += len; 1655 skb->tail += len; 1656} 1657 1658static inline void skb_reset_inner_headers(struct sk_buff *skb) 1659{ 1660 skb->inner_mac_header = skb->mac_header; 1661 skb->inner_network_header = skb->network_header; 1662 skb->inner_transport_header = skb->transport_header; 1663} 1664 1665static inline void skb_reset_mac_len(struct sk_buff *skb) 1666{ 1667 skb->mac_len = skb->network_header - skb->mac_header; 1668} 1669 1670static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1671 *skb) 1672{ 1673 return skb->head + skb->inner_transport_header; 1674} 1675 1676static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1677{ 1678 skb->inner_transport_header = skb->data - skb->head; 1679} 1680 1681static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1682 const int offset) 1683{ 1684 skb_reset_inner_transport_header(skb); 1685 skb->inner_transport_header += offset; 1686} 1687 1688static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1689{ 1690 return skb->head + skb->inner_network_header; 1691} 1692 1693static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1694{ 1695 skb->inner_network_header = skb->data - skb->head; 1696} 1697 1698static inline void skb_set_inner_network_header(struct sk_buff *skb, 1699 const int offset) 1700{ 1701 skb_reset_inner_network_header(skb); 1702 skb->inner_network_header += offset; 1703} 1704 1705static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1706{ 1707 return skb->head + skb->inner_mac_header; 1708} 1709 1710static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1711{ 1712 skb->inner_mac_header = skb->data - skb->head; 1713} 1714 1715static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1716 const int offset) 1717{ 1718 skb_reset_inner_mac_header(skb); 1719 skb->inner_mac_header += offset; 1720} 1721static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1722{ 1723 return skb->transport_header != (typeof(skb->transport_header))~0U; 1724} 1725 1726static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1727{ 1728 return skb->head + skb->transport_header; 1729} 1730 1731static inline void skb_reset_transport_header(struct sk_buff *skb) 1732{ 1733 skb->transport_header = skb->data - skb->head; 1734} 1735 1736static inline void skb_set_transport_header(struct sk_buff *skb, 1737 const int offset) 1738{ 1739 skb_reset_transport_header(skb); 1740 skb->transport_header += offset; 1741} 1742 1743static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1744{ 1745 return skb->head + skb->network_header; 1746} 1747 1748static inline void skb_reset_network_header(struct sk_buff *skb) 1749{ 1750 skb->network_header = skb->data - skb->head; 1751} 1752 1753static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1754{ 1755 skb_reset_network_header(skb); 1756 skb->network_header += offset; 1757} 1758 1759static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1760{ 1761 return skb->head + skb->mac_header; 1762} 1763 1764static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1765{ 1766 return skb->mac_header != (typeof(skb->mac_header))~0U; 1767} 1768 1769static inline void skb_reset_mac_header(struct sk_buff *skb) 1770{ 1771 skb->mac_header = skb->data - skb->head; 1772} 1773 1774static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1775{ 1776 skb_reset_mac_header(skb); 1777 skb->mac_header += offset; 1778} 1779 1780static inline void skb_pop_mac_header(struct sk_buff *skb) 1781{ 1782 skb->mac_header = skb->network_header; 1783} 1784 1785static inline void skb_probe_transport_header(struct sk_buff *skb, 1786 const int offset_hint) 1787{ 1788 struct flow_keys keys; 1789 1790 if (skb_transport_header_was_set(skb)) 1791 return; 1792 else if (skb_flow_dissect(skb, &keys)) 1793 skb_set_transport_header(skb, keys.thoff); 1794 else 1795 skb_set_transport_header(skb, offset_hint); 1796} 1797 1798static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1799{ 1800 if (skb_mac_header_was_set(skb)) { 1801 const unsigned char *old_mac = skb_mac_header(skb); 1802 1803 skb_set_mac_header(skb, -skb->mac_len); 1804 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1805 } 1806} 1807 1808static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1809{ 1810 return skb->csum_start - skb_headroom(skb); 1811} 1812 1813static inline int skb_transport_offset(const struct sk_buff *skb) 1814{ 1815 return skb_transport_header(skb) - skb->data; 1816} 1817 1818static inline u32 skb_network_header_len(const struct sk_buff *skb) 1819{ 1820 return skb->transport_header - skb->network_header; 1821} 1822 1823static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1824{ 1825 return skb->inner_transport_header - skb->inner_network_header; 1826} 1827 1828static inline int skb_network_offset(const struct sk_buff *skb) 1829{ 1830 return skb_network_header(skb) - skb->data; 1831} 1832 1833static inline int skb_inner_network_offset(const struct sk_buff *skb) 1834{ 1835 return skb_inner_network_header(skb) - skb->data; 1836} 1837 1838static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1839{ 1840 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1841} 1842 1843/* 1844 * CPUs often take a performance hit when accessing unaligned memory 1845 * locations. The actual performance hit varies, it can be small if the 1846 * hardware handles it or large if we have to take an exception and fix it 1847 * in software. 1848 * 1849 * Since an ethernet header is 14 bytes network drivers often end up with 1850 * the IP header at an unaligned offset. The IP header can be aligned by 1851 * shifting the start of the packet by 2 bytes. Drivers should do this 1852 * with: 1853 * 1854 * skb_reserve(skb, NET_IP_ALIGN); 1855 * 1856 * The downside to this alignment of the IP header is that the DMA is now 1857 * unaligned. On some architectures the cost of an unaligned DMA is high 1858 * and this cost outweighs the gains made by aligning the IP header. 1859 * 1860 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1861 * to be overridden. 1862 */ 1863#ifndef NET_IP_ALIGN 1864#define NET_IP_ALIGN 2 1865#endif 1866 1867/* 1868 * The networking layer reserves some headroom in skb data (via 1869 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1870 * the header has to grow. In the default case, if the header has to grow 1871 * 32 bytes or less we avoid the reallocation. 1872 * 1873 * Unfortunately this headroom changes the DMA alignment of the resulting 1874 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1875 * on some architectures. An architecture can override this value, 1876 * perhaps setting it to a cacheline in size (since that will maintain 1877 * cacheline alignment of the DMA). It must be a power of 2. 1878 * 1879 * Various parts of the networking layer expect at least 32 bytes of 1880 * headroom, you should not reduce this. 1881 * 1882 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1883 * to reduce average number of cache lines per packet. 1884 * get_rps_cpus() for example only access one 64 bytes aligned block : 1885 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1886 */ 1887#ifndef NET_SKB_PAD 1888#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1889#endif 1890 1891int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1892 1893static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1894{ 1895 if (unlikely(skb_is_nonlinear(skb))) { 1896 WARN_ON(1); 1897 return; 1898 } 1899 skb->len = len; 1900 skb_set_tail_pointer(skb, len); 1901} 1902 1903void skb_trim(struct sk_buff *skb, unsigned int len); 1904 1905static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1906{ 1907 if (skb->data_len) 1908 return ___pskb_trim(skb, len); 1909 __skb_trim(skb, len); 1910 return 0; 1911} 1912 1913static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1914{ 1915 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1916} 1917 1918/** 1919 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1920 * @skb: buffer to alter 1921 * @len: new length 1922 * 1923 * This is identical to pskb_trim except that the caller knows that 1924 * the skb is not cloned so we should never get an error due to out- 1925 * of-memory. 1926 */ 1927static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1928{ 1929 int err = pskb_trim(skb, len); 1930 BUG_ON(err); 1931} 1932 1933/** 1934 * skb_orphan - orphan a buffer 1935 * @skb: buffer to orphan 1936 * 1937 * If a buffer currently has an owner then we call the owner's 1938 * destructor function and make the @skb unowned. The buffer continues 1939 * to exist but is no longer charged to its former owner. 1940 */ 1941static inline void skb_orphan(struct sk_buff *skb) 1942{ 1943 if (skb->destructor) { 1944 skb->destructor(skb); 1945 skb->destructor = NULL; 1946 skb->sk = NULL; 1947 } else { 1948 BUG_ON(skb->sk); 1949 } 1950} 1951 1952/** 1953 * skb_orphan_frags - orphan the frags contained in a buffer 1954 * @skb: buffer to orphan frags from 1955 * @gfp_mask: allocation mask for replacement pages 1956 * 1957 * For each frag in the SKB which needs a destructor (i.e. has an 1958 * owner) create a copy of that frag and release the original 1959 * page by calling the destructor. 1960 */ 1961static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1962{ 1963 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1964 return 0; 1965 return skb_copy_ubufs(skb, gfp_mask); 1966} 1967 1968/** 1969 * __skb_queue_purge - empty a list 1970 * @list: list to empty 1971 * 1972 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1973 * the list and one reference dropped. This function does not take the 1974 * list lock and the caller must hold the relevant locks to use it. 1975 */ 1976void skb_queue_purge(struct sk_buff_head *list); 1977static inline void __skb_queue_purge(struct sk_buff_head *list) 1978{ 1979 struct sk_buff *skb; 1980 while ((skb = __skb_dequeue(list)) != NULL) 1981 kfree_skb(skb); 1982} 1983 1984#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1985#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1986#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1987 1988void *netdev_alloc_frag(unsigned int fragsz); 1989 1990struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 1991 gfp_t gfp_mask); 1992 1993/** 1994 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1995 * @dev: network device to receive on 1996 * @length: length to allocate 1997 * 1998 * Allocate a new &sk_buff and assign it a usage count of one. The 1999 * buffer has unspecified headroom built in. Users should allocate 2000 * the headroom they think they need without accounting for the 2001 * built in space. The built in space is used for optimisations. 2002 * 2003 * %NULL is returned if there is no free memory. Although this function 2004 * allocates memory it can be called from an interrupt. 2005 */ 2006static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2007 unsigned int length) 2008{ 2009 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2010} 2011 2012/* legacy helper around __netdev_alloc_skb() */ 2013static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2014 gfp_t gfp_mask) 2015{ 2016 return __netdev_alloc_skb(NULL, length, gfp_mask); 2017} 2018 2019/* legacy helper around netdev_alloc_skb() */ 2020static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2021{ 2022 return netdev_alloc_skb(NULL, length); 2023} 2024 2025 2026static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2027 unsigned int length, gfp_t gfp) 2028{ 2029 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2030 2031 if (NET_IP_ALIGN && skb) 2032 skb_reserve(skb, NET_IP_ALIGN); 2033 return skb; 2034} 2035 2036static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2037 unsigned int length) 2038{ 2039 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2040} 2041 2042/** 2043 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2044 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2045 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2046 * @order: size of the allocation 2047 * 2048 * Allocate a new page. 2049 * 2050 * %NULL is returned if there is no free memory. 2051*/ 2052static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2053 struct sk_buff *skb, 2054 unsigned int order) 2055{ 2056 struct page *page; 2057 2058 gfp_mask |= __GFP_COLD; 2059 2060 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2061 gfp_mask |= __GFP_MEMALLOC; 2062 2063 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2064 if (skb && page && page->pfmemalloc) 2065 skb->pfmemalloc = true; 2066 2067 return page; 2068} 2069 2070/** 2071 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2072 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2073 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2074 * 2075 * Allocate a new page. 2076 * 2077 * %NULL is returned if there is no free memory. 2078 */ 2079static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2080 struct sk_buff *skb) 2081{ 2082 return __skb_alloc_pages(gfp_mask, skb, 0); 2083} 2084 2085/** 2086 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2087 * @page: The page that was allocated from skb_alloc_page 2088 * @skb: The skb that may need pfmemalloc set 2089 */ 2090static inline void skb_propagate_pfmemalloc(struct page *page, 2091 struct sk_buff *skb) 2092{ 2093 if (page && page->pfmemalloc) 2094 skb->pfmemalloc = true; 2095} 2096 2097/** 2098 * skb_frag_page - retrieve the page referred to by a paged fragment 2099 * @frag: the paged fragment 2100 * 2101 * Returns the &struct page associated with @frag. 2102 */ 2103static inline struct page *skb_frag_page(const skb_frag_t *frag) 2104{ 2105 return frag->page.p; 2106} 2107 2108/** 2109 * __skb_frag_ref - take an addition reference on a paged fragment. 2110 * @frag: the paged fragment 2111 * 2112 * Takes an additional reference on the paged fragment @frag. 2113 */ 2114static inline void __skb_frag_ref(skb_frag_t *frag) 2115{ 2116 get_page(skb_frag_page(frag)); 2117} 2118 2119/** 2120 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2121 * @skb: the buffer 2122 * @f: the fragment offset. 2123 * 2124 * Takes an additional reference on the @f'th paged fragment of @skb. 2125 */ 2126static inline void skb_frag_ref(struct sk_buff *skb, int f) 2127{ 2128 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2129} 2130 2131/** 2132 * __skb_frag_unref - release a reference on a paged fragment. 2133 * @frag: the paged fragment 2134 * 2135 * Releases a reference on the paged fragment @frag. 2136 */ 2137static inline void __skb_frag_unref(skb_frag_t *frag) 2138{ 2139 put_page(skb_frag_page(frag)); 2140} 2141 2142/** 2143 * skb_frag_unref - release a reference on a paged fragment of an skb. 2144 * @skb: the buffer 2145 * @f: the fragment offset 2146 * 2147 * Releases a reference on the @f'th paged fragment of @skb. 2148 */ 2149static inline void skb_frag_unref(struct sk_buff *skb, int f) 2150{ 2151 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2152} 2153 2154/** 2155 * skb_frag_address - gets the address of the data contained in a paged fragment 2156 * @frag: the paged fragment buffer 2157 * 2158 * Returns the address of the data within @frag. The page must already 2159 * be mapped. 2160 */ 2161static inline void *skb_frag_address(const skb_frag_t *frag) 2162{ 2163 return page_address(skb_frag_page(frag)) + frag->page_offset; 2164} 2165 2166/** 2167 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2168 * @frag: the paged fragment buffer 2169 * 2170 * Returns the address of the data within @frag. Checks that the page 2171 * is mapped and returns %NULL otherwise. 2172 */ 2173static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2174{ 2175 void *ptr = page_address(skb_frag_page(frag)); 2176 if (unlikely(!ptr)) 2177 return NULL; 2178 2179 return ptr + frag->page_offset; 2180} 2181 2182/** 2183 * __skb_frag_set_page - sets the page contained in a paged fragment 2184 * @frag: the paged fragment 2185 * @page: the page to set 2186 * 2187 * Sets the fragment @frag to contain @page. 2188 */ 2189static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2190{ 2191 frag->page.p = page; 2192} 2193 2194/** 2195 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2196 * @skb: the buffer 2197 * @f: the fragment offset 2198 * @page: the page to set 2199 * 2200 * Sets the @f'th fragment of @skb to contain @page. 2201 */ 2202static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2203 struct page *page) 2204{ 2205 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2206} 2207 2208bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2209 2210/** 2211 * skb_frag_dma_map - maps a paged fragment via the DMA API 2212 * @dev: the device to map the fragment to 2213 * @frag: the paged fragment to map 2214 * @offset: the offset within the fragment (starting at the 2215 * fragment's own offset) 2216 * @size: the number of bytes to map 2217 * @dir: the direction of the mapping (%PCI_DMA_*) 2218 * 2219 * Maps the page associated with @frag to @device. 2220 */ 2221static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2222 const skb_frag_t *frag, 2223 size_t offset, size_t size, 2224 enum dma_data_direction dir) 2225{ 2226 return dma_map_page(dev, skb_frag_page(frag), 2227 frag->page_offset + offset, size, dir); 2228} 2229 2230static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2231 gfp_t gfp_mask) 2232{ 2233 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2234} 2235 2236/** 2237 * skb_clone_writable - is the header of a clone writable 2238 * @skb: buffer to check 2239 * @len: length up to which to write 2240 * 2241 * Returns true if modifying the header part of the cloned buffer 2242 * does not requires the data to be copied. 2243 */ 2244static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2245{ 2246 return !skb_header_cloned(skb) && 2247 skb_headroom(skb) + len <= skb->hdr_len; 2248} 2249 2250static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2251 int cloned) 2252{ 2253 int delta = 0; 2254 2255 if (headroom > skb_headroom(skb)) 2256 delta = headroom - skb_headroom(skb); 2257 2258 if (delta || cloned) 2259 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2260 GFP_ATOMIC); 2261 return 0; 2262} 2263 2264/** 2265 * skb_cow - copy header of skb when it is required 2266 * @skb: buffer to cow 2267 * @headroom: needed headroom 2268 * 2269 * If the skb passed lacks sufficient headroom or its data part 2270 * is shared, data is reallocated. If reallocation fails, an error 2271 * is returned and original skb is not changed. 2272 * 2273 * The result is skb with writable area skb->head...skb->tail 2274 * and at least @headroom of space at head. 2275 */ 2276static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2277{ 2278 return __skb_cow(skb, headroom, skb_cloned(skb)); 2279} 2280 2281/** 2282 * skb_cow_head - skb_cow but only making the head writable 2283 * @skb: buffer to cow 2284 * @headroom: needed headroom 2285 * 2286 * This function is identical to skb_cow except that we replace the 2287 * skb_cloned check by skb_header_cloned. It should be used when 2288 * you only need to push on some header and do not need to modify 2289 * the data. 2290 */ 2291static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2292{ 2293 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2294} 2295 2296/** 2297 * skb_padto - pad an skbuff up to a minimal size 2298 * @skb: buffer to pad 2299 * @len: minimal length 2300 * 2301 * Pads up a buffer to ensure the trailing bytes exist and are 2302 * blanked. If the buffer already contains sufficient data it 2303 * is untouched. Otherwise it is extended. Returns zero on 2304 * success. The skb is freed on error. 2305 */ 2306 2307static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2308{ 2309 unsigned int size = skb->len; 2310 if (likely(size >= len)) 2311 return 0; 2312 return skb_pad(skb, len - size); 2313} 2314 2315static inline int skb_add_data(struct sk_buff *skb, 2316 char __user *from, int copy) 2317{ 2318 const int off = skb->len; 2319 2320 if (skb->ip_summed == CHECKSUM_NONE) { 2321 int err = 0; 2322 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2323 copy, 0, &err); 2324 if (!err) { 2325 skb->csum = csum_block_add(skb->csum, csum, off); 2326 return 0; 2327 } 2328 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2329 return 0; 2330 2331 __skb_trim(skb, off); 2332 return -EFAULT; 2333} 2334 2335static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2336 const struct page *page, int off) 2337{ 2338 if (i) { 2339 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2340 2341 return page == skb_frag_page(frag) && 2342 off == frag->page_offset + skb_frag_size(frag); 2343 } 2344 return false; 2345} 2346 2347static inline int __skb_linearize(struct sk_buff *skb) 2348{ 2349 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2350} 2351 2352/** 2353 * skb_linearize - convert paged skb to linear one 2354 * @skb: buffer to linarize 2355 * 2356 * If there is no free memory -ENOMEM is returned, otherwise zero 2357 * is returned and the old skb data released. 2358 */ 2359static inline int skb_linearize(struct sk_buff *skb) 2360{ 2361 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2362} 2363 2364/** 2365 * skb_has_shared_frag - can any frag be overwritten 2366 * @skb: buffer to test 2367 * 2368 * Return true if the skb has at least one frag that might be modified 2369 * by an external entity (as in vmsplice()/sendfile()) 2370 */ 2371static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2372{ 2373 return skb_is_nonlinear(skb) && 2374 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2375} 2376 2377/** 2378 * skb_linearize_cow - make sure skb is linear and writable 2379 * @skb: buffer to process 2380 * 2381 * If there is no free memory -ENOMEM is returned, otherwise zero 2382 * is returned and the old skb data released. 2383 */ 2384static inline int skb_linearize_cow(struct sk_buff *skb) 2385{ 2386 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2387 __skb_linearize(skb) : 0; 2388} 2389 2390/** 2391 * skb_postpull_rcsum - update checksum for received skb after pull 2392 * @skb: buffer to update 2393 * @start: start of data before pull 2394 * @len: length of data pulled 2395 * 2396 * After doing a pull on a received packet, you need to call this to 2397 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2398 * CHECKSUM_NONE so that it can be recomputed from scratch. 2399 */ 2400 2401static inline void skb_postpull_rcsum(struct sk_buff *skb, 2402 const void *start, unsigned int len) 2403{ 2404 if (skb->ip_summed == CHECKSUM_COMPLETE) 2405 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2406} 2407 2408unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2409 2410/** 2411 * pskb_trim_rcsum - trim received skb and update checksum 2412 * @skb: buffer to trim 2413 * @len: new length 2414 * 2415 * This is exactly the same as pskb_trim except that it ensures the 2416 * checksum of received packets are still valid after the operation. 2417 */ 2418 2419static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2420{ 2421 if (likely(len >= skb->len)) 2422 return 0; 2423 if (skb->ip_summed == CHECKSUM_COMPLETE) 2424 skb->ip_summed = CHECKSUM_NONE; 2425 return __pskb_trim(skb, len); 2426} 2427 2428#define skb_queue_walk(queue, skb) \ 2429 for (skb = (queue)->next; \ 2430 skb != (struct sk_buff *)(queue); \ 2431 skb = skb->next) 2432 2433#define skb_queue_walk_safe(queue, skb, tmp) \ 2434 for (skb = (queue)->next, tmp = skb->next; \ 2435 skb != (struct sk_buff *)(queue); \ 2436 skb = tmp, tmp = skb->next) 2437 2438#define skb_queue_walk_from(queue, skb) \ 2439 for (; skb != (struct sk_buff *)(queue); \ 2440 skb = skb->next) 2441 2442#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2443 for (tmp = skb->next; \ 2444 skb != (struct sk_buff *)(queue); \ 2445 skb = tmp, tmp = skb->next) 2446 2447#define skb_queue_reverse_walk(queue, skb) \ 2448 for (skb = (queue)->prev; \ 2449 skb != (struct sk_buff *)(queue); \ 2450 skb = skb->prev) 2451 2452#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2453 for (skb = (queue)->prev, tmp = skb->prev; \ 2454 skb != (struct sk_buff *)(queue); \ 2455 skb = tmp, tmp = skb->prev) 2456 2457#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2458 for (tmp = skb->prev; \ 2459 skb != (struct sk_buff *)(queue); \ 2460 skb = tmp, tmp = skb->prev) 2461 2462static inline bool skb_has_frag_list(const struct sk_buff *skb) 2463{ 2464 return skb_shinfo(skb)->frag_list != NULL; 2465} 2466 2467static inline void skb_frag_list_init(struct sk_buff *skb) 2468{ 2469 skb_shinfo(skb)->frag_list = NULL; 2470} 2471 2472static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2473{ 2474 frag->next = skb_shinfo(skb)->frag_list; 2475 skb_shinfo(skb)->frag_list = frag; 2476} 2477 2478#define skb_walk_frags(skb, iter) \ 2479 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2480 2481struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2482 int *peeked, int *off, int *err); 2483struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2484 int *err); 2485unsigned int datagram_poll(struct file *file, struct socket *sock, 2486 struct poll_table_struct *wait); 2487int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2488 struct iovec *to, int size); 2489int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2490 struct iovec *iov); 2491int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2492 const struct iovec *from, int from_offset, 2493 int len); 2494int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2495 int offset, size_t count); 2496int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2497 const struct iovec *to, int to_offset, 2498 int size); 2499void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2500void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2501int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2502int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2503int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2504__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2505 int len, __wsum csum); 2506int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2507 struct pipe_inode_info *pipe, unsigned int len, 2508 unsigned int flags); 2509void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2510unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2511int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2512 int len, int hlen); 2513void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2514int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2515void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2516unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2517struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2518 2519struct skb_checksum_ops { 2520 __wsum (*update)(const void *mem, int len, __wsum wsum); 2521 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2522}; 2523 2524__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2525 __wsum csum, const struct skb_checksum_ops *ops); 2526__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2527 __wsum csum); 2528 2529static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2530 int len, void *buffer) 2531{ 2532 int hlen = skb_headlen(skb); 2533 2534 if (hlen - offset >= len) 2535 return skb->data + offset; 2536 2537 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2538 return NULL; 2539 2540 return buffer; 2541} 2542 2543/** 2544 * skb_needs_linearize - check if we need to linearize a given skb 2545 * depending on the given device features. 2546 * @skb: socket buffer to check 2547 * @features: net device features 2548 * 2549 * Returns true if either: 2550 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2551 * 2. skb is fragmented and the device does not support SG. 2552 */ 2553static inline bool skb_needs_linearize(struct sk_buff *skb, 2554 netdev_features_t features) 2555{ 2556 return skb_is_nonlinear(skb) && 2557 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2558 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2559} 2560 2561static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2562 void *to, 2563 const unsigned int len) 2564{ 2565 memcpy(to, skb->data, len); 2566} 2567 2568static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2569 const int offset, void *to, 2570 const unsigned int len) 2571{ 2572 memcpy(to, skb->data + offset, len); 2573} 2574 2575static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2576 const void *from, 2577 const unsigned int len) 2578{ 2579 memcpy(skb->data, from, len); 2580} 2581 2582static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2583 const int offset, 2584 const void *from, 2585 const unsigned int len) 2586{ 2587 memcpy(skb->data + offset, from, len); 2588} 2589 2590void skb_init(void); 2591 2592static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2593{ 2594 return skb->tstamp; 2595} 2596 2597/** 2598 * skb_get_timestamp - get timestamp from a skb 2599 * @skb: skb to get stamp from 2600 * @stamp: pointer to struct timeval to store stamp in 2601 * 2602 * Timestamps are stored in the skb as offsets to a base timestamp. 2603 * This function converts the offset back to a struct timeval and stores 2604 * it in stamp. 2605 */ 2606static inline void skb_get_timestamp(const struct sk_buff *skb, 2607 struct timeval *stamp) 2608{ 2609 *stamp = ktime_to_timeval(skb->tstamp); 2610} 2611 2612static inline void skb_get_timestampns(const struct sk_buff *skb, 2613 struct timespec *stamp) 2614{ 2615 *stamp = ktime_to_timespec(skb->tstamp); 2616} 2617 2618static inline void __net_timestamp(struct sk_buff *skb) 2619{ 2620 skb->tstamp = ktime_get_real(); 2621} 2622 2623static inline ktime_t net_timedelta(ktime_t t) 2624{ 2625 return ktime_sub(ktime_get_real(), t); 2626} 2627 2628static inline ktime_t net_invalid_timestamp(void) 2629{ 2630 return ktime_set(0, 0); 2631} 2632 2633#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2634 2635void skb_clone_tx_timestamp(struct sk_buff *skb); 2636bool skb_defer_rx_timestamp(struct sk_buff *skb); 2637 2638#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2639 2640static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2641{ 2642} 2643 2644static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2645{ 2646 return false; 2647} 2648 2649#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2650 2651/** 2652 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2653 * 2654 * PHY drivers may accept clones of transmitted packets for 2655 * timestamping via their phy_driver.txtstamp method. These drivers 2656 * must call this function to return the skb back to the stack, with 2657 * or without a timestamp. 2658 * 2659 * @skb: clone of the the original outgoing packet 2660 * @hwtstamps: hardware time stamps, may be NULL if not available 2661 * 2662 */ 2663void skb_complete_tx_timestamp(struct sk_buff *skb, 2664 struct skb_shared_hwtstamps *hwtstamps); 2665 2666/** 2667 * skb_tstamp_tx - queue clone of skb with send time stamps 2668 * @orig_skb: the original outgoing packet 2669 * @hwtstamps: hardware time stamps, may be NULL if not available 2670 * 2671 * If the skb has a socket associated, then this function clones the 2672 * skb (thus sharing the actual data and optional structures), stores 2673 * the optional hardware time stamping information (if non NULL) or 2674 * generates a software time stamp (otherwise), then queues the clone 2675 * to the error queue of the socket. Errors are silently ignored. 2676 */ 2677void skb_tstamp_tx(struct sk_buff *orig_skb, 2678 struct skb_shared_hwtstamps *hwtstamps); 2679 2680static inline void sw_tx_timestamp(struct sk_buff *skb) 2681{ 2682 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2683 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2684 skb_tstamp_tx(skb, NULL); 2685} 2686 2687/** 2688 * skb_tx_timestamp() - Driver hook for transmit timestamping 2689 * 2690 * Ethernet MAC Drivers should call this function in their hard_xmit() 2691 * function immediately before giving the sk_buff to the MAC hardware. 2692 * 2693 * Specifically, one should make absolutely sure that this function is 2694 * called before TX completion of this packet can trigger. Otherwise 2695 * the packet could potentially already be freed. 2696 * 2697 * @skb: A socket buffer. 2698 */ 2699static inline void skb_tx_timestamp(struct sk_buff *skb) 2700{ 2701 skb_clone_tx_timestamp(skb); 2702 sw_tx_timestamp(skb); 2703} 2704 2705/** 2706 * skb_complete_wifi_ack - deliver skb with wifi status 2707 * 2708 * @skb: the original outgoing packet 2709 * @acked: ack status 2710 * 2711 */ 2712void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2713 2714__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2715__sum16 __skb_checksum_complete(struct sk_buff *skb); 2716 2717static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2718{ 2719 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2720} 2721 2722/** 2723 * skb_checksum_complete - Calculate checksum of an entire packet 2724 * @skb: packet to process 2725 * 2726 * This function calculates the checksum over the entire packet plus 2727 * the value of skb->csum. The latter can be used to supply the 2728 * checksum of a pseudo header as used by TCP/UDP. It returns the 2729 * checksum. 2730 * 2731 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2732 * this function can be used to verify that checksum on received 2733 * packets. In that case the function should return zero if the 2734 * checksum is correct. In particular, this function will return zero 2735 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2736 * hardware has already verified the correctness of the checksum. 2737 */ 2738static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2739{ 2740 return skb_csum_unnecessary(skb) ? 2741 0 : __skb_checksum_complete(skb); 2742} 2743 2744#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2745void nf_conntrack_destroy(struct nf_conntrack *nfct); 2746static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2747{ 2748 if (nfct && atomic_dec_and_test(&nfct->use)) 2749 nf_conntrack_destroy(nfct); 2750} 2751static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2752{ 2753 if (nfct) 2754 atomic_inc(&nfct->use); 2755} 2756#endif 2757#ifdef CONFIG_BRIDGE_NETFILTER 2758static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2759{ 2760 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2761 kfree(nf_bridge); 2762} 2763static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2764{ 2765 if (nf_bridge) 2766 atomic_inc(&nf_bridge->use); 2767} 2768#endif /* CONFIG_BRIDGE_NETFILTER */ 2769static inline void nf_reset(struct sk_buff *skb) 2770{ 2771#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2772 nf_conntrack_put(skb->nfct); 2773 skb->nfct = NULL; 2774#endif 2775#ifdef CONFIG_BRIDGE_NETFILTER 2776 nf_bridge_put(skb->nf_bridge); 2777 skb->nf_bridge = NULL; 2778#endif 2779} 2780 2781static inline void nf_reset_trace(struct sk_buff *skb) 2782{ 2783#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 2784 skb->nf_trace = 0; 2785#endif 2786} 2787 2788/* Note: This doesn't put any conntrack and bridge info in dst. */ 2789static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2790{ 2791#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2792 dst->nfct = src->nfct; 2793 nf_conntrack_get(src->nfct); 2794 dst->nfctinfo = src->nfctinfo; 2795#endif 2796#ifdef CONFIG_BRIDGE_NETFILTER 2797 dst->nf_bridge = src->nf_bridge; 2798 nf_bridge_get(src->nf_bridge); 2799#endif 2800#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 2801 dst->nf_trace = src->nf_trace; 2802#endif 2803} 2804 2805static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2806{ 2807#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2808 nf_conntrack_put(dst->nfct); 2809#endif 2810#ifdef CONFIG_BRIDGE_NETFILTER 2811 nf_bridge_put(dst->nf_bridge); 2812#endif 2813 __nf_copy(dst, src); 2814} 2815 2816#ifdef CONFIG_NETWORK_SECMARK 2817static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2818{ 2819 to->secmark = from->secmark; 2820} 2821 2822static inline void skb_init_secmark(struct sk_buff *skb) 2823{ 2824 skb->secmark = 0; 2825} 2826#else 2827static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2828{ } 2829 2830static inline void skb_init_secmark(struct sk_buff *skb) 2831{ } 2832#endif 2833 2834static inline bool skb_irq_freeable(const struct sk_buff *skb) 2835{ 2836 return !skb->destructor && 2837#if IS_ENABLED(CONFIG_XFRM) 2838 !skb->sp && 2839#endif 2840#if IS_ENABLED(CONFIG_NF_CONNTRACK) 2841 !skb->nfct && 2842#endif 2843 !skb->_skb_refdst && 2844 !skb_has_frag_list(skb); 2845} 2846 2847static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2848{ 2849 skb->queue_mapping = queue_mapping; 2850} 2851 2852static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2853{ 2854 return skb->queue_mapping; 2855} 2856 2857static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2858{ 2859 to->queue_mapping = from->queue_mapping; 2860} 2861 2862static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2863{ 2864 skb->queue_mapping = rx_queue + 1; 2865} 2866 2867static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2868{ 2869 return skb->queue_mapping - 1; 2870} 2871 2872static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2873{ 2874 return skb->queue_mapping != 0; 2875} 2876 2877u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2878 unsigned int num_tx_queues); 2879 2880static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2881{ 2882#ifdef CONFIG_XFRM 2883 return skb->sp; 2884#else 2885 return NULL; 2886#endif 2887} 2888 2889/* Keeps track of mac header offset relative to skb->head. 2890 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2891 * For non-tunnel skb it points to skb_mac_header() and for 2892 * tunnel skb it points to outer mac header. 2893 * Keeps track of level of encapsulation of network headers. 2894 */ 2895struct skb_gso_cb { 2896 int mac_offset; 2897 int encap_level; 2898}; 2899#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2900 2901static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2902{ 2903 return (skb_mac_header(inner_skb) - inner_skb->head) - 2904 SKB_GSO_CB(inner_skb)->mac_offset; 2905} 2906 2907static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 2908{ 2909 int new_headroom, headroom; 2910 int ret; 2911 2912 headroom = skb_headroom(skb); 2913 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 2914 if (ret) 2915 return ret; 2916 2917 new_headroom = skb_headroom(skb); 2918 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 2919 return 0; 2920} 2921 2922static inline bool skb_is_gso(const struct sk_buff *skb) 2923{ 2924 return skb_shinfo(skb)->gso_size; 2925} 2926 2927/* Note: Should be called only if skb_is_gso(skb) is true */ 2928static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2929{ 2930 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2931} 2932 2933void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2934 2935static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2936{ 2937 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2938 * wanted then gso_type will be set. */ 2939 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2940 2941 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2942 unlikely(shinfo->gso_type == 0)) { 2943 __skb_warn_lro_forwarding(skb); 2944 return true; 2945 } 2946 return false; 2947} 2948 2949static inline void skb_forward_csum(struct sk_buff *skb) 2950{ 2951 /* Unfortunately we don't support this one. Any brave souls? */ 2952 if (skb->ip_summed == CHECKSUM_COMPLETE) 2953 skb->ip_summed = CHECKSUM_NONE; 2954} 2955 2956/** 2957 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2958 * @skb: skb to check 2959 * 2960 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2961 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2962 * use this helper, to document places where we make this assertion. 2963 */ 2964static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2965{ 2966#ifdef DEBUG 2967 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2968#endif 2969} 2970 2971bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2972 2973int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 2974 2975u32 __skb_get_poff(const struct sk_buff *skb); 2976 2977/** 2978 * skb_head_is_locked - Determine if the skb->head is locked down 2979 * @skb: skb to check 2980 * 2981 * The head on skbs build around a head frag can be removed if they are 2982 * not cloned. This function returns true if the skb head is locked down 2983 * due to either being allocated via kmalloc, or by being a clone with 2984 * multiple references to the head. 2985 */ 2986static inline bool skb_head_is_locked(const struct sk_buff *skb) 2987{ 2988 return !skb->head_frag || skb_cloned(skb); 2989} 2990 2991/** 2992 * skb_gso_network_seglen - Return length of individual segments of a gso packet 2993 * 2994 * @skb: GSO skb 2995 * 2996 * skb_gso_network_seglen is used to determine the real size of the 2997 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 2998 * 2999 * The MAC/L2 header is not accounted for. 3000 */ 3001static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3002{ 3003 unsigned int hdr_len = skb_transport_header(skb) - 3004 skb_network_header(skb); 3005 return hdr_len + skb_gso_transport_seglen(skb); 3006} 3007#endif /* __KERNEL__ */ 3008#endif /* _LINUX_SKBUFF_H */