at v3.15 87 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6#include <linux/sched/prio.h> 7 8 9struct sched_param { 10 int sched_priority; 11}; 12 13#include <asm/param.h> /* for HZ */ 14 15#include <linux/capability.h> 16#include <linux/threads.h> 17#include <linux/kernel.h> 18#include <linux/types.h> 19#include <linux/timex.h> 20#include <linux/jiffies.h> 21#include <linux/plist.h> 22#include <linux/rbtree.h> 23#include <linux/thread_info.h> 24#include <linux/cpumask.h> 25#include <linux/errno.h> 26#include <linux/nodemask.h> 27#include <linux/mm_types.h> 28#include <linux/preempt_mask.h> 29 30#include <asm/page.h> 31#include <asm/ptrace.h> 32#include <linux/cputime.h> 33 34#include <linux/smp.h> 35#include <linux/sem.h> 36#include <linux/signal.h> 37#include <linux/compiler.h> 38#include <linux/completion.h> 39#include <linux/pid.h> 40#include <linux/percpu.h> 41#include <linux/topology.h> 42#include <linux/proportions.h> 43#include <linux/seccomp.h> 44#include <linux/rcupdate.h> 45#include <linux/rculist.h> 46#include <linux/rtmutex.h> 47 48#include <linux/time.h> 49#include <linux/param.h> 50#include <linux/resource.h> 51#include <linux/timer.h> 52#include <linux/hrtimer.h> 53#include <linux/task_io_accounting.h> 54#include <linux/latencytop.h> 55#include <linux/cred.h> 56#include <linux/llist.h> 57#include <linux/uidgid.h> 58#include <linux/gfp.h> 59 60#include <asm/processor.h> 61 62#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 63 64/* 65 * Extended scheduling parameters data structure. 66 * 67 * This is needed because the original struct sched_param can not be 68 * altered without introducing ABI issues with legacy applications 69 * (e.g., in sched_getparam()). 70 * 71 * However, the possibility of specifying more than just a priority for 72 * the tasks may be useful for a wide variety of application fields, e.g., 73 * multimedia, streaming, automation and control, and many others. 74 * 75 * This variant (sched_attr) is meant at describing a so-called 76 * sporadic time-constrained task. In such model a task is specified by: 77 * - the activation period or minimum instance inter-arrival time; 78 * - the maximum (or average, depending on the actual scheduling 79 * discipline) computation time of all instances, a.k.a. runtime; 80 * - the deadline (relative to the actual activation time) of each 81 * instance. 82 * Very briefly, a periodic (sporadic) task asks for the execution of 83 * some specific computation --which is typically called an instance-- 84 * (at most) every period. Moreover, each instance typically lasts no more 85 * than the runtime and must be completed by time instant t equal to 86 * the instance activation time + the deadline. 87 * 88 * This is reflected by the actual fields of the sched_attr structure: 89 * 90 * @size size of the structure, for fwd/bwd compat. 91 * 92 * @sched_policy task's scheduling policy 93 * @sched_flags for customizing the scheduler behaviour 94 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 95 * @sched_priority task's static priority (SCHED_FIFO/RR) 96 * @sched_deadline representative of the task's deadline 97 * @sched_runtime representative of the task's runtime 98 * @sched_period representative of the task's period 99 * 100 * Given this task model, there are a multiplicity of scheduling algorithms 101 * and policies, that can be used to ensure all the tasks will make their 102 * timing constraints. 103 * 104 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 105 * only user of this new interface. More information about the algorithm 106 * available in the scheduling class file or in Documentation/. 107 */ 108struct sched_attr { 109 u32 size; 110 111 u32 sched_policy; 112 u64 sched_flags; 113 114 /* SCHED_NORMAL, SCHED_BATCH */ 115 s32 sched_nice; 116 117 /* SCHED_FIFO, SCHED_RR */ 118 u32 sched_priority; 119 120 /* SCHED_DEADLINE */ 121 u64 sched_runtime; 122 u64 sched_deadline; 123 u64 sched_period; 124}; 125 126struct exec_domain; 127struct futex_pi_state; 128struct robust_list_head; 129struct bio_list; 130struct fs_struct; 131struct perf_event_context; 132struct blk_plug; 133struct filename; 134 135#define VMACACHE_BITS 2 136#define VMACACHE_SIZE (1U << VMACACHE_BITS) 137#define VMACACHE_MASK (VMACACHE_SIZE - 1) 138 139/* 140 * List of flags we want to share for kernel threads, 141 * if only because they are not used by them anyway. 142 */ 143#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 144 145/* 146 * These are the constant used to fake the fixed-point load-average 147 * counting. Some notes: 148 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 149 * a load-average precision of 10 bits integer + 11 bits fractional 150 * - if you want to count load-averages more often, you need more 151 * precision, or rounding will get you. With 2-second counting freq, 152 * the EXP_n values would be 1981, 2034 and 2043 if still using only 153 * 11 bit fractions. 154 */ 155extern unsigned long avenrun[]; /* Load averages */ 156extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 157 158#define FSHIFT 11 /* nr of bits of precision */ 159#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 160#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 161#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 162#define EXP_5 2014 /* 1/exp(5sec/5min) */ 163#define EXP_15 2037 /* 1/exp(5sec/15min) */ 164 165#define CALC_LOAD(load,exp,n) \ 166 load *= exp; \ 167 load += n*(FIXED_1-exp); \ 168 load >>= FSHIFT; 169 170extern unsigned long total_forks; 171extern int nr_threads; 172DECLARE_PER_CPU(unsigned long, process_counts); 173extern int nr_processes(void); 174extern unsigned long nr_running(void); 175extern unsigned long nr_iowait(void); 176extern unsigned long nr_iowait_cpu(int cpu); 177extern unsigned long this_cpu_load(void); 178 179 180extern void calc_global_load(unsigned long ticks); 181extern void update_cpu_load_nohz(void); 182 183extern unsigned long get_parent_ip(unsigned long addr); 184 185extern void dump_cpu_task(int cpu); 186 187struct seq_file; 188struct cfs_rq; 189struct task_group; 190#ifdef CONFIG_SCHED_DEBUG 191extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 192extern void proc_sched_set_task(struct task_struct *p); 193extern void 194print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 195#endif 196 197/* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207#define TASK_RUNNING 0 208#define TASK_INTERRUPTIBLE 1 209#define TASK_UNINTERRUPTIBLE 2 210#define __TASK_STOPPED 4 211#define __TASK_TRACED 8 212/* in tsk->exit_state */ 213#define EXIT_DEAD 16 214#define EXIT_ZOMBIE 32 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216/* in tsk->state again */ 217#define TASK_DEAD 64 218#define TASK_WAKEKILL 128 219#define TASK_WAKING 256 220#define TASK_PARKED 512 221#define TASK_STATE_MAX 1024 222 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 224 225extern char ___assert_task_state[1 - 2*!!( 226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 227 228/* Convenience macros for the sake of set_task_state */ 229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 232 233/* Convenience macros for the sake of wake_up */ 234#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 235#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 236 237/* get_task_state() */ 238#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 239 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 240 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 241 242#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 243#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 244#define task_is_stopped_or_traced(task) \ 245 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 246#define task_contributes_to_load(task) \ 247 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 248 (task->flags & PF_FROZEN) == 0) 249 250#define __set_task_state(tsk, state_value) \ 251 do { (tsk)->state = (state_value); } while (0) 252#define set_task_state(tsk, state_value) \ 253 set_mb((tsk)->state, (state_value)) 254 255/* 256 * set_current_state() includes a barrier so that the write of current->state 257 * is correctly serialised wrt the caller's subsequent test of whether to 258 * actually sleep: 259 * 260 * set_current_state(TASK_UNINTERRUPTIBLE); 261 * if (do_i_need_to_sleep()) 262 * schedule(); 263 * 264 * If the caller does not need such serialisation then use __set_current_state() 265 */ 266#define __set_current_state(state_value) \ 267 do { current->state = (state_value); } while (0) 268#define set_current_state(state_value) \ 269 set_mb(current->state, (state_value)) 270 271/* Task command name length */ 272#define TASK_COMM_LEN 16 273 274#include <linux/spinlock.h> 275 276/* 277 * This serializes "schedule()" and also protects 278 * the run-queue from deletions/modifications (but 279 * _adding_ to the beginning of the run-queue has 280 * a separate lock). 281 */ 282extern rwlock_t tasklist_lock; 283extern spinlock_t mmlist_lock; 284 285struct task_struct; 286 287#ifdef CONFIG_PROVE_RCU 288extern int lockdep_tasklist_lock_is_held(void); 289#endif /* #ifdef CONFIG_PROVE_RCU */ 290 291extern void sched_init(void); 292extern void sched_init_smp(void); 293extern asmlinkage void schedule_tail(struct task_struct *prev); 294extern void init_idle(struct task_struct *idle, int cpu); 295extern void init_idle_bootup_task(struct task_struct *idle); 296 297extern int runqueue_is_locked(int cpu); 298 299#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 300extern void nohz_balance_enter_idle(int cpu); 301extern void set_cpu_sd_state_idle(void); 302extern int get_nohz_timer_target(int pinned); 303#else 304static inline void nohz_balance_enter_idle(int cpu) { } 305static inline void set_cpu_sd_state_idle(void) { } 306static inline int get_nohz_timer_target(int pinned) 307{ 308 return smp_processor_id(); 309} 310#endif 311 312/* 313 * Only dump TASK_* tasks. (0 for all tasks) 314 */ 315extern void show_state_filter(unsigned long state_filter); 316 317static inline void show_state(void) 318{ 319 show_state_filter(0); 320} 321 322extern void show_regs(struct pt_regs *); 323 324/* 325 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 326 * task), SP is the stack pointer of the first frame that should be shown in the back 327 * trace (or NULL if the entire call-chain of the task should be shown). 328 */ 329extern void show_stack(struct task_struct *task, unsigned long *sp); 330 331void io_schedule(void); 332long io_schedule_timeout(long timeout); 333 334extern void cpu_init (void); 335extern void trap_init(void); 336extern void update_process_times(int user); 337extern void scheduler_tick(void); 338 339extern void sched_show_task(struct task_struct *p); 340 341#ifdef CONFIG_LOCKUP_DETECTOR 342extern void touch_softlockup_watchdog(void); 343extern void touch_softlockup_watchdog_sync(void); 344extern void touch_all_softlockup_watchdogs(void); 345extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 346 void __user *buffer, 347 size_t *lenp, loff_t *ppos); 348extern unsigned int softlockup_panic; 349void lockup_detector_init(void); 350#else 351static inline void touch_softlockup_watchdog(void) 352{ 353} 354static inline void touch_softlockup_watchdog_sync(void) 355{ 356} 357static inline void touch_all_softlockup_watchdogs(void) 358{ 359} 360static inline void lockup_detector_init(void) 361{ 362} 363#endif 364 365#ifdef CONFIG_DETECT_HUNG_TASK 366void reset_hung_task_detector(void); 367#else 368static inline void reset_hung_task_detector(void) 369{ 370} 371#endif 372 373/* Attach to any functions which should be ignored in wchan output. */ 374#define __sched __attribute__((__section__(".sched.text"))) 375 376/* Linker adds these: start and end of __sched functions */ 377extern char __sched_text_start[], __sched_text_end[]; 378 379/* Is this address in the __sched functions? */ 380extern int in_sched_functions(unsigned long addr); 381 382#define MAX_SCHEDULE_TIMEOUT LONG_MAX 383extern signed long schedule_timeout(signed long timeout); 384extern signed long schedule_timeout_interruptible(signed long timeout); 385extern signed long schedule_timeout_killable(signed long timeout); 386extern signed long schedule_timeout_uninterruptible(signed long timeout); 387asmlinkage void schedule(void); 388extern void schedule_preempt_disabled(void); 389 390struct nsproxy; 391struct user_namespace; 392 393#ifdef CONFIG_MMU 394extern void arch_pick_mmap_layout(struct mm_struct *mm); 395extern unsigned long 396arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 397 unsigned long, unsigned long); 398extern unsigned long 399arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 400 unsigned long len, unsigned long pgoff, 401 unsigned long flags); 402#else 403static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 404#endif 405 406#define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 407#define SUID_DUMP_USER 1 /* Dump as user of process */ 408#define SUID_DUMP_ROOT 2 /* Dump as root */ 409 410/* mm flags */ 411 412/* for SUID_DUMP_* above */ 413#define MMF_DUMPABLE_BITS 2 414#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 415 416extern void set_dumpable(struct mm_struct *mm, int value); 417/* 418 * This returns the actual value of the suid_dumpable flag. For things 419 * that are using this for checking for privilege transitions, it must 420 * test against SUID_DUMP_USER rather than treating it as a boolean 421 * value. 422 */ 423static inline int __get_dumpable(unsigned long mm_flags) 424{ 425 return mm_flags & MMF_DUMPABLE_MASK; 426} 427 428static inline int get_dumpable(struct mm_struct *mm) 429{ 430 return __get_dumpable(mm->flags); 431} 432 433/* coredump filter bits */ 434#define MMF_DUMP_ANON_PRIVATE 2 435#define MMF_DUMP_ANON_SHARED 3 436#define MMF_DUMP_MAPPED_PRIVATE 4 437#define MMF_DUMP_MAPPED_SHARED 5 438#define MMF_DUMP_ELF_HEADERS 6 439#define MMF_DUMP_HUGETLB_PRIVATE 7 440#define MMF_DUMP_HUGETLB_SHARED 8 441 442#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 443#define MMF_DUMP_FILTER_BITS 7 444#define MMF_DUMP_FILTER_MASK \ 445 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 446#define MMF_DUMP_FILTER_DEFAULT \ 447 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 448 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 449 450#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 451# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 452#else 453# define MMF_DUMP_MASK_DEFAULT_ELF 0 454#endif 455 /* leave room for more dump flags */ 456#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 457#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 458#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 459 460#define MMF_HAS_UPROBES 19 /* has uprobes */ 461#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 462 463#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 464 465struct sighand_struct { 466 atomic_t count; 467 struct k_sigaction action[_NSIG]; 468 spinlock_t siglock; 469 wait_queue_head_t signalfd_wqh; 470}; 471 472struct pacct_struct { 473 int ac_flag; 474 long ac_exitcode; 475 unsigned long ac_mem; 476 cputime_t ac_utime, ac_stime; 477 unsigned long ac_minflt, ac_majflt; 478}; 479 480struct cpu_itimer { 481 cputime_t expires; 482 cputime_t incr; 483 u32 error; 484 u32 incr_error; 485}; 486 487/** 488 * struct cputime - snaphsot of system and user cputime 489 * @utime: time spent in user mode 490 * @stime: time spent in system mode 491 * 492 * Gathers a generic snapshot of user and system time. 493 */ 494struct cputime { 495 cputime_t utime; 496 cputime_t stime; 497}; 498 499/** 500 * struct task_cputime - collected CPU time counts 501 * @utime: time spent in user mode, in &cputime_t units 502 * @stime: time spent in kernel mode, in &cputime_t units 503 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 504 * 505 * This is an extension of struct cputime that includes the total runtime 506 * spent by the task from the scheduler point of view. 507 * 508 * As a result, this structure groups together three kinds of CPU time 509 * that are tracked for threads and thread groups. Most things considering 510 * CPU time want to group these counts together and treat all three 511 * of them in parallel. 512 */ 513struct task_cputime { 514 cputime_t utime; 515 cputime_t stime; 516 unsigned long long sum_exec_runtime; 517}; 518/* Alternate field names when used to cache expirations. */ 519#define prof_exp stime 520#define virt_exp utime 521#define sched_exp sum_exec_runtime 522 523#define INIT_CPUTIME \ 524 (struct task_cputime) { \ 525 .utime = 0, \ 526 .stime = 0, \ 527 .sum_exec_runtime = 0, \ 528 } 529 530#ifdef CONFIG_PREEMPT_COUNT 531#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 532#else 533#define PREEMPT_DISABLED PREEMPT_ENABLED 534#endif 535 536/* 537 * Disable preemption until the scheduler is running. 538 * Reset by start_kernel()->sched_init()->init_idle(). 539 * 540 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 541 * before the scheduler is active -- see should_resched(). 542 */ 543#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 544 545/** 546 * struct thread_group_cputimer - thread group interval timer counts 547 * @cputime: thread group interval timers. 548 * @running: non-zero when there are timers running and 549 * @cputime receives updates. 550 * @lock: lock for fields in this struct. 551 * 552 * This structure contains the version of task_cputime, above, that is 553 * used for thread group CPU timer calculations. 554 */ 555struct thread_group_cputimer { 556 struct task_cputime cputime; 557 int running; 558 raw_spinlock_t lock; 559}; 560 561#include <linux/rwsem.h> 562struct autogroup; 563 564/* 565 * NOTE! "signal_struct" does not have its own 566 * locking, because a shared signal_struct always 567 * implies a shared sighand_struct, so locking 568 * sighand_struct is always a proper superset of 569 * the locking of signal_struct. 570 */ 571struct signal_struct { 572 atomic_t sigcnt; 573 atomic_t live; 574 int nr_threads; 575 struct list_head thread_head; 576 577 wait_queue_head_t wait_chldexit; /* for wait4() */ 578 579 /* current thread group signal load-balancing target: */ 580 struct task_struct *curr_target; 581 582 /* shared signal handling: */ 583 struct sigpending shared_pending; 584 585 /* thread group exit support */ 586 int group_exit_code; 587 /* overloaded: 588 * - notify group_exit_task when ->count is equal to notify_count 589 * - everyone except group_exit_task is stopped during signal delivery 590 * of fatal signals, group_exit_task processes the signal. 591 */ 592 int notify_count; 593 struct task_struct *group_exit_task; 594 595 /* thread group stop support, overloads group_exit_code too */ 596 int group_stop_count; 597 unsigned int flags; /* see SIGNAL_* flags below */ 598 599 /* 600 * PR_SET_CHILD_SUBREAPER marks a process, like a service 601 * manager, to re-parent orphan (double-forking) child processes 602 * to this process instead of 'init'. The service manager is 603 * able to receive SIGCHLD signals and is able to investigate 604 * the process until it calls wait(). All children of this 605 * process will inherit a flag if they should look for a 606 * child_subreaper process at exit. 607 */ 608 unsigned int is_child_subreaper:1; 609 unsigned int has_child_subreaper:1; 610 611 /* POSIX.1b Interval Timers */ 612 int posix_timer_id; 613 struct list_head posix_timers; 614 615 /* ITIMER_REAL timer for the process */ 616 struct hrtimer real_timer; 617 struct pid *leader_pid; 618 ktime_t it_real_incr; 619 620 /* 621 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 622 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 623 * values are defined to 0 and 1 respectively 624 */ 625 struct cpu_itimer it[2]; 626 627 /* 628 * Thread group totals for process CPU timers. 629 * See thread_group_cputimer(), et al, for details. 630 */ 631 struct thread_group_cputimer cputimer; 632 633 /* Earliest-expiration cache. */ 634 struct task_cputime cputime_expires; 635 636 struct list_head cpu_timers[3]; 637 638 struct pid *tty_old_pgrp; 639 640 /* boolean value for session group leader */ 641 int leader; 642 643 struct tty_struct *tty; /* NULL if no tty */ 644 645#ifdef CONFIG_SCHED_AUTOGROUP 646 struct autogroup *autogroup; 647#endif 648 /* 649 * Cumulative resource counters for dead threads in the group, 650 * and for reaped dead child processes forked by this group. 651 * Live threads maintain their own counters and add to these 652 * in __exit_signal, except for the group leader. 653 */ 654 cputime_t utime, stime, cutime, cstime; 655 cputime_t gtime; 656 cputime_t cgtime; 657#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 658 struct cputime prev_cputime; 659#endif 660 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 661 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 662 unsigned long inblock, oublock, cinblock, coublock; 663 unsigned long maxrss, cmaxrss; 664 struct task_io_accounting ioac; 665 666 /* 667 * Cumulative ns of schedule CPU time fo dead threads in the 668 * group, not including a zombie group leader, (This only differs 669 * from jiffies_to_ns(utime + stime) if sched_clock uses something 670 * other than jiffies.) 671 */ 672 unsigned long long sum_sched_runtime; 673 674 /* 675 * We don't bother to synchronize most readers of this at all, 676 * because there is no reader checking a limit that actually needs 677 * to get both rlim_cur and rlim_max atomically, and either one 678 * alone is a single word that can safely be read normally. 679 * getrlimit/setrlimit use task_lock(current->group_leader) to 680 * protect this instead of the siglock, because they really 681 * have no need to disable irqs. 682 */ 683 struct rlimit rlim[RLIM_NLIMITS]; 684 685#ifdef CONFIG_BSD_PROCESS_ACCT 686 struct pacct_struct pacct; /* per-process accounting information */ 687#endif 688#ifdef CONFIG_TASKSTATS 689 struct taskstats *stats; 690#endif 691#ifdef CONFIG_AUDIT 692 unsigned audit_tty; 693 unsigned audit_tty_log_passwd; 694 struct tty_audit_buf *tty_audit_buf; 695#endif 696#ifdef CONFIG_CGROUPS 697 /* 698 * group_rwsem prevents new tasks from entering the threadgroup and 699 * member tasks from exiting,a more specifically, setting of 700 * PF_EXITING. fork and exit paths are protected with this rwsem 701 * using threadgroup_change_begin/end(). Users which require 702 * threadgroup to remain stable should use threadgroup_[un]lock() 703 * which also takes care of exec path. Currently, cgroup is the 704 * only user. 705 */ 706 struct rw_semaphore group_rwsem; 707#endif 708 709 oom_flags_t oom_flags; 710 short oom_score_adj; /* OOM kill score adjustment */ 711 short oom_score_adj_min; /* OOM kill score adjustment min value. 712 * Only settable by CAP_SYS_RESOURCE. */ 713 714 struct mutex cred_guard_mutex; /* guard against foreign influences on 715 * credential calculations 716 * (notably. ptrace) */ 717}; 718 719/* 720 * Bits in flags field of signal_struct. 721 */ 722#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 723#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 724#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 725#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 726/* 727 * Pending notifications to parent. 728 */ 729#define SIGNAL_CLD_STOPPED 0x00000010 730#define SIGNAL_CLD_CONTINUED 0x00000020 731#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 732 733#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 734 735/* If true, all threads except ->group_exit_task have pending SIGKILL */ 736static inline int signal_group_exit(const struct signal_struct *sig) 737{ 738 return (sig->flags & SIGNAL_GROUP_EXIT) || 739 (sig->group_exit_task != NULL); 740} 741 742/* 743 * Some day this will be a full-fledged user tracking system.. 744 */ 745struct user_struct { 746 atomic_t __count; /* reference count */ 747 atomic_t processes; /* How many processes does this user have? */ 748 atomic_t files; /* How many open files does this user have? */ 749 atomic_t sigpending; /* How many pending signals does this user have? */ 750#ifdef CONFIG_INOTIFY_USER 751 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 752 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 753#endif 754#ifdef CONFIG_FANOTIFY 755 atomic_t fanotify_listeners; 756#endif 757#ifdef CONFIG_EPOLL 758 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 759#endif 760#ifdef CONFIG_POSIX_MQUEUE 761 /* protected by mq_lock */ 762 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 763#endif 764 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 765 766#ifdef CONFIG_KEYS 767 struct key *uid_keyring; /* UID specific keyring */ 768 struct key *session_keyring; /* UID's default session keyring */ 769#endif 770 771 /* Hash table maintenance information */ 772 struct hlist_node uidhash_node; 773 kuid_t uid; 774 775#ifdef CONFIG_PERF_EVENTS 776 atomic_long_t locked_vm; 777#endif 778}; 779 780extern int uids_sysfs_init(void); 781 782extern struct user_struct *find_user(kuid_t); 783 784extern struct user_struct root_user; 785#define INIT_USER (&root_user) 786 787 788struct backing_dev_info; 789struct reclaim_state; 790 791#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 792struct sched_info { 793 /* cumulative counters */ 794 unsigned long pcount; /* # of times run on this cpu */ 795 unsigned long long run_delay; /* time spent waiting on a runqueue */ 796 797 /* timestamps */ 798 unsigned long long last_arrival,/* when we last ran on a cpu */ 799 last_queued; /* when we were last queued to run */ 800}; 801#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 802 803#ifdef CONFIG_TASK_DELAY_ACCT 804struct task_delay_info { 805 spinlock_t lock; 806 unsigned int flags; /* Private per-task flags */ 807 808 /* For each stat XXX, add following, aligned appropriately 809 * 810 * struct timespec XXX_start, XXX_end; 811 * u64 XXX_delay; 812 * u32 XXX_count; 813 * 814 * Atomicity of updates to XXX_delay, XXX_count protected by 815 * single lock above (split into XXX_lock if contention is an issue). 816 */ 817 818 /* 819 * XXX_count is incremented on every XXX operation, the delay 820 * associated with the operation is added to XXX_delay. 821 * XXX_delay contains the accumulated delay time in nanoseconds. 822 */ 823 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 824 u64 blkio_delay; /* wait for sync block io completion */ 825 u64 swapin_delay; /* wait for swapin block io completion */ 826 u32 blkio_count; /* total count of the number of sync block */ 827 /* io operations performed */ 828 u32 swapin_count; /* total count of the number of swapin block */ 829 /* io operations performed */ 830 831 struct timespec freepages_start, freepages_end; 832 u64 freepages_delay; /* wait for memory reclaim */ 833 u32 freepages_count; /* total count of memory reclaim */ 834}; 835#endif /* CONFIG_TASK_DELAY_ACCT */ 836 837static inline int sched_info_on(void) 838{ 839#ifdef CONFIG_SCHEDSTATS 840 return 1; 841#elif defined(CONFIG_TASK_DELAY_ACCT) 842 extern int delayacct_on; 843 return delayacct_on; 844#else 845 return 0; 846#endif 847} 848 849enum cpu_idle_type { 850 CPU_IDLE, 851 CPU_NOT_IDLE, 852 CPU_NEWLY_IDLE, 853 CPU_MAX_IDLE_TYPES 854}; 855 856/* 857 * Increase resolution of cpu_power calculations 858 */ 859#define SCHED_POWER_SHIFT 10 860#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 861 862/* 863 * sched-domains (multiprocessor balancing) declarations: 864 */ 865#ifdef CONFIG_SMP 866#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 867#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 868#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 869#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 870#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 871#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 872#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 873#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 874#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 875#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 876#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 877#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 878#define SD_NUMA 0x4000 /* cross-node balancing */ 879 880extern int __weak arch_sd_sibiling_asym_packing(void); 881 882struct sched_domain_attr { 883 int relax_domain_level; 884}; 885 886#define SD_ATTR_INIT (struct sched_domain_attr) { \ 887 .relax_domain_level = -1, \ 888} 889 890extern int sched_domain_level_max; 891 892struct sched_group; 893 894struct sched_domain { 895 /* These fields must be setup */ 896 struct sched_domain *parent; /* top domain must be null terminated */ 897 struct sched_domain *child; /* bottom domain must be null terminated */ 898 struct sched_group *groups; /* the balancing groups of the domain */ 899 unsigned long min_interval; /* Minimum balance interval ms */ 900 unsigned long max_interval; /* Maximum balance interval ms */ 901 unsigned int busy_factor; /* less balancing by factor if busy */ 902 unsigned int imbalance_pct; /* No balance until over watermark */ 903 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 904 unsigned int busy_idx; 905 unsigned int idle_idx; 906 unsigned int newidle_idx; 907 unsigned int wake_idx; 908 unsigned int forkexec_idx; 909 unsigned int smt_gain; 910 911 int nohz_idle; /* NOHZ IDLE status */ 912 int flags; /* See SD_* */ 913 int level; 914 915 /* Runtime fields. */ 916 unsigned long last_balance; /* init to jiffies. units in jiffies */ 917 unsigned int balance_interval; /* initialise to 1. units in ms. */ 918 unsigned int nr_balance_failed; /* initialise to 0 */ 919 920 /* idle_balance() stats */ 921 u64 max_newidle_lb_cost; 922 unsigned long next_decay_max_lb_cost; 923 924#ifdef CONFIG_SCHEDSTATS 925 /* load_balance() stats */ 926 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 927 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 928 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 929 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 930 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 931 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 932 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 933 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 934 935 /* Active load balancing */ 936 unsigned int alb_count; 937 unsigned int alb_failed; 938 unsigned int alb_pushed; 939 940 /* SD_BALANCE_EXEC stats */ 941 unsigned int sbe_count; 942 unsigned int sbe_balanced; 943 unsigned int sbe_pushed; 944 945 /* SD_BALANCE_FORK stats */ 946 unsigned int sbf_count; 947 unsigned int sbf_balanced; 948 unsigned int sbf_pushed; 949 950 /* try_to_wake_up() stats */ 951 unsigned int ttwu_wake_remote; 952 unsigned int ttwu_move_affine; 953 unsigned int ttwu_move_balance; 954#endif 955#ifdef CONFIG_SCHED_DEBUG 956 char *name; 957#endif 958 union { 959 void *private; /* used during construction */ 960 struct rcu_head rcu; /* used during destruction */ 961 }; 962 963 unsigned int span_weight; 964 /* 965 * Span of all CPUs in this domain. 966 * 967 * NOTE: this field is variable length. (Allocated dynamically 968 * by attaching extra space to the end of the structure, 969 * depending on how many CPUs the kernel has booted up with) 970 */ 971 unsigned long span[0]; 972}; 973 974static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 975{ 976 return to_cpumask(sd->span); 977} 978 979extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 980 struct sched_domain_attr *dattr_new); 981 982/* Allocate an array of sched domains, for partition_sched_domains(). */ 983cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 984void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 985 986bool cpus_share_cache(int this_cpu, int that_cpu); 987 988#else /* CONFIG_SMP */ 989 990struct sched_domain_attr; 991 992static inline void 993partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 994 struct sched_domain_attr *dattr_new) 995{ 996} 997 998static inline bool cpus_share_cache(int this_cpu, int that_cpu) 999{ 1000 return true; 1001} 1002 1003#endif /* !CONFIG_SMP */ 1004 1005 1006struct io_context; /* See blkdev.h */ 1007 1008 1009#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1010extern void prefetch_stack(struct task_struct *t); 1011#else 1012static inline void prefetch_stack(struct task_struct *t) { } 1013#endif 1014 1015struct audit_context; /* See audit.c */ 1016struct mempolicy; 1017struct pipe_inode_info; 1018struct uts_namespace; 1019 1020struct load_weight { 1021 unsigned long weight; 1022 u32 inv_weight; 1023}; 1024 1025struct sched_avg { 1026 /* 1027 * These sums represent an infinite geometric series and so are bound 1028 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1029 * choices of y < 1-2^(-32)*1024. 1030 */ 1031 u32 runnable_avg_sum, runnable_avg_period; 1032 u64 last_runnable_update; 1033 s64 decay_count; 1034 unsigned long load_avg_contrib; 1035}; 1036 1037#ifdef CONFIG_SCHEDSTATS 1038struct sched_statistics { 1039 u64 wait_start; 1040 u64 wait_max; 1041 u64 wait_count; 1042 u64 wait_sum; 1043 u64 iowait_count; 1044 u64 iowait_sum; 1045 1046 u64 sleep_start; 1047 u64 sleep_max; 1048 s64 sum_sleep_runtime; 1049 1050 u64 block_start; 1051 u64 block_max; 1052 u64 exec_max; 1053 u64 slice_max; 1054 1055 u64 nr_migrations_cold; 1056 u64 nr_failed_migrations_affine; 1057 u64 nr_failed_migrations_running; 1058 u64 nr_failed_migrations_hot; 1059 u64 nr_forced_migrations; 1060 1061 u64 nr_wakeups; 1062 u64 nr_wakeups_sync; 1063 u64 nr_wakeups_migrate; 1064 u64 nr_wakeups_local; 1065 u64 nr_wakeups_remote; 1066 u64 nr_wakeups_affine; 1067 u64 nr_wakeups_affine_attempts; 1068 u64 nr_wakeups_passive; 1069 u64 nr_wakeups_idle; 1070}; 1071#endif 1072 1073struct sched_entity { 1074 struct load_weight load; /* for load-balancing */ 1075 struct rb_node run_node; 1076 struct list_head group_node; 1077 unsigned int on_rq; 1078 1079 u64 exec_start; 1080 u64 sum_exec_runtime; 1081 u64 vruntime; 1082 u64 prev_sum_exec_runtime; 1083 1084 u64 nr_migrations; 1085 1086#ifdef CONFIG_SCHEDSTATS 1087 struct sched_statistics statistics; 1088#endif 1089 1090#ifdef CONFIG_FAIR_GROUP_SCHED 1091 int depth; 1092 struct sched_entity *parent; 1093 /* rq on which this entity is (to be) queued: */ 1094 struct cfs_rq *cfs_rq; 1095 /* rq "owned" by this entity/group: */ 1096 struct cfs_rq *my_q; 1097#endif 1098 1099#ifdef CONFIG_SMP 1100 /* Per-entity load-tracking */ 1101 struct sched_avg avg; 1102#endif 1103}; 1104 1105struct sched_rt_entity { 1106 struct list_head run_list; 1107 unsigned long timeout; 1108 unsigned long watchdog_stamp; 1109 unsigned int time_slice; 1110 1111 struct sched_rt_entity *back; 1112#ifdef CONFIG_RT_GROUP_SCHED 1113 struct sched_rt_entity *parent; 1114 /* rq on which this entity is (to be) queued: */ 1115 struct rt_rq *rt_rq; 1116 /* rq "owned" by this entity/group: */ 1117 struct rt_rq *my_q; 1118#endif 1119}; 1120 1121struct sched_dl_entity { 1122 struct rb_node rb_node; 1123 1124 /* 1125 * Original scheduling parameters. Copied here from sched_attr 1126 * during sched_setscheduler2(), they will remain the same until 1127 * the next sched_setscheduler2(). 1128 */ 1129 u64 dl_runtime; /* maximum runtime for each instance */ 1130 u64 dl_deadline; /* relative deadline of each instance */ 1131 u64 dl_period; /* separation of two instances (period) */ 1132 u64 dl_bw; /* dl_runtime / dl_deadline */ 1133 1134 /* 1135 * Actual scheduling parameters. Initialized with the values above, 1136 * they are continously updated during task execution. Note that 1137 * the remaining runtime could be < 0 in case we are in overrun. 1138 */ 1139 s64 runtime; /* remaining runtime for this instance */ 1140 u64 deadline; /* absolute deadline for this instance */ 1141 unsigned int flags; /* specifying the scheduler behaviour */ 1142 1143 /* 1144 * Some bool flags: 1145 * 1146 * @dl_throttled tells if we exhausted the runtime. If so, the 1147 * task has to wait for a replenishment to be performed at the 1148 * next firing of dl_timer. 1149 * 1150 * @dl_new tells if a new instance arrived. If so we must 1151 * start executing it with full runtime and reset its absolute 1152 * deadline; 1153 * 1154 * @dl_boosted tells if we are boosted due to DI. If so we are 1155 * outside bandwidth enforcement mechanism (but only until we 1156 * exit the critical section); 1157 * 1158 * @dl_yielded tells if task gave up the cpu before consuming 1159 * all its available runtime during the last job. 1160 */ 1161 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1162 1163 /* 1164 * Bandwidth enforcement timer. Each -deadline task has its 1165 * own bandwidth to be enforced, thus we need one timer per task. 1166 */ 1167 struct hrtimer dl_timer; 1168}; 1169 1170struct rcu_node; 1171 1172enum perf_event_task_context { 1173 perf_invalid_context = -1, 1174 perf_hw_context = 0, 1175 perf_sw_context, 1176 perf_nr_task_contexts, 1177}; 1178 1179struct task_struct { 1180 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1181 void *stack; 1182 atomic_t usage; 1183 unsigned int flags; /* per process flags, defined below */ 1184 unsigned int ptrace; 1185 1186#ifdef CONFIG_SMP 1187 struct llist_node wake_entry; 1188 int on_cpu; 1189 struct task_struct *last_wakee; 1190 unsigned long wakee_flips; 1191 unsigned long wakee_flip_decay_ts; 1192 1193 int wake_cpu; 1194#endif 1195 int on_rq; 1196 1197 int prio, static_prio, normal_prio; 1198 unsigned int rt_priority; 1199 const struct sched_class *sched_class; 1200 struct sched_entity se; 1201 struct sched_rt_entity rt; 1202#ifdef CONFIG_CGROUP_SCHED 1203 struct task_group *sched_task_group; 1204#endif 1205 struct sched_dl_entity dl; 1206 1207#ifdef CONFIG_PREEMPT_NOTIFIERS 1208 /* list of struct preempt_notifier: */ 1209 struct hlist_head preempt_notifiers; 1210#endif 1211 1212#ifdef CONFIG_BLK_DEV_IO_TRACE 1213 unsigned int btrace_seq; 1214#endif 1215 1216 unsigned int policy; 1217 int nr_cpus_allowed; 1218 cpumask_t cpus_allowed; 1219 1220#ifdef CONFIG_PREEMPT_RCU 1221 int rcu_read_lock_nesting; 1222 char rcu_read_unlock_special; 1223 struct list_head rcu_node_entry; 1224#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1225#ifdef CONFIG_TREE_PREEMPT_RCU 1226 struct rcu_node *rcu_blocked_node; 1227#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1228#ifdef CONFIG_RCU_BOOST 1229 struct rt_mutex *rcu_boost_mutex; 1230#endif /* #ifdef CONFIG_RCU_BOOST */ 1231 1232#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1233 struct sched_info sched_info; 1234#endif 1235 1236 struct list_head tasks; 1237#ifdef CONFIG_SMP 1238 struct plist_node pushable_tasks; 1239 struct rb_node pushable_dl_tasks; 1240#endif 1241 1242 struct mm_struct *mm, *active_mm; 1243#ifdef CONFIG_COMPAT_BRK 1244 unsigned brk_randomized:1; 1245#endif 1246 /* per-thread vma caching */ 1247 u32 vmacache_seqnum; 1248 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1249#if defined(SPLIT_RSS_COUNTING) 1250 struct task_rss_stat rss_stat; 1251#endif 1252/* task state */ 1253 int exit_state; 1254 int exit_code, exit_signal; 1255 int pdeath_signal; /* The signal sent when the parent dies */ 1256 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1257 1258 /* Used for emulating ABI behavior of previous Linux versions */ 1259 unsigned int personality; 1260 1261 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1262 * execve */ 1263 unsigned in_iowait:1; 1264 1265 /* task may not gain privileges */ 1266 unsigned no_new_privs:1; 1267 1268 /* Revert to default priority/policy when forking */ 1269 unsigned sched_reset_on_fork:1; 1270 unsigned sched_contributes_to_load:1; 1271 1272 pid_t pid; 1273 pid_t tgid; 1274 1275#ifdef CONFIG_CC_STACKPROTECTOR 1276 /* Canary value for the -fstack-protector gcc feature */ 1277 unsigned long stack_canary; 1278#endif 1279 /* 1280 * pointers to (original) parent process, youngest child, younger sibling, 1281 * older sibling, respectively. (p->father can be replaced with 1282 * p->real_parent->pid) 1283 */ 1284 struct task_struct __rcu *real_parent; /* real parent process */ 1285 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1286 /* 1287 * children/sibling forms the list of my natural children 1288 */ 1289 struct list_head children; /* list of my children */ 1290 struct list_head sibling; /* linkage in my parent's children list */ 1291 struct task_struct *group_leader; /* threadgroup leader */ 1292 1293 /* 1294 * ptraced is the list of tasks this task is using ptrace on. 1295 * This includes both natural children and PTRACE_ATTACH targets. 1296 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1297 */ 1298 struct list_head ptraced; 1299 struct list_head ptrace_entry; 1300 1301 /* PID/PID hash table linkage. */ 1302 struct pid_link pids[PIDTYPE_MAX]; 1303 struct list_head thread_group; 1304 struct list_head thread_node; 1305 1306 struct completion *vfork_done; /* for vfork() */ 1307 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1308 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1309 1310 cputime_t utime, stime, utimescaled, stimescaled; 1311 cputime_t gtime; 1312#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1313 struct cputime prev_cputime; 1314#endif 1315#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1316 seqlock_t vtime_seqlock; 1317 unsigned long long vtime_snap; 1318 enum { 1319 VTIME_SLEEPING = 0, 1320 VTIME_USER, 1321 VTIME_SYS, 1322 } vtime_snap_whence; 1323#endif 1324 unsigned long nvcsw, nivcsw; /* context switch counts */ 1325 struct timespec start_time; /* monotonic time */ 1326 struct timespec real_start_time; /* boot based time */ 1327/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1328 unsigned long min_flt, maj_flt; 1329 1330 struct task_cputime cputime_expires; 1331 struct list_head cpu_timers[3]; 1332 1333/* process credentials */ 1334 const struct cred __rcu *real_cred; /* objective and real subjective task 1335 * credentials (COW) */ 1336 const struct cred __rcu *cred; /* effective (overridable) subjective task 1337 * credentials (COW) */ 1338 char comm[TASK_COMM_LEN]; /* executable name excluding path 1339 - access with [gs]et_task_comm (which lock 1340 it with task_lock()) 1341 - initialized normally by setup_new_exec */ 1342/* file system info */ 1343 int link_count, total_link_count; 1344#ifdef CONFIG_SYSVIPC 1345/* ipc stuff */ 1346 struct sysv_sem sysvsem; 1347#endif 1348#ifdef CONFIG_DETECT_HUNG_TASK 1349/* hung task detection */ 1350 unsigned long last_switch_count; 1351#endif 1352/* CPU-specific state of this task */ 1353 struct thread_struct thread; 1354/* filesystem information */ 1355 struct fs_struct *fs; 1356/* open file information */ 1357 struct files_struct *files; 1358/* namespaces */ 1359 struct nsproxy *nsproxy; 1360/* signal handlers */ 1361 struct signal_struct *signal; 1362 struct sighand_struct *sighand; 1363 1364 sigset_t blocked, real_blocked; 1365 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1366 struct sigpending pending; 1367 1368 unsigned long sas_ss_sp; 1369 size_t sas_ss_size; 1370 int (*notifier)(void *priv); 1371 void *notifier_data; 1372 sigset_t *notifier_mask; 1373 struct callback_head *task_works; 1374 1375 struct audit_context *audit_context; 1376#ifdef CONFIG_AUDITSYSCALL 1377 kuid_t loginuid; 1378 unsigned int sessionid; 1379#endif 1380 struct seccomp seccomp; 1381 1382/* Thread group tracking */ 1383 u32 parent_exec_id; 1384 u32 self_exec_id; 1385/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1386 * mempolicy */ 1387 spinlock_t alloc_lock; 1388 1389 /* Protection of the PI data structures: */ 1390 raw_spinlock_t pi_lock; 1391 1392#ifdef CONFIG_RT_MUTEXES 1393 /* PI waiters blocked on a rt_mutex held by this task */ 1394 struct rb_root pi_waiters; 1395 struct rb_node *pi_waiters_leftmost; 1396 /* Deadlock detection and priority inheritance handling */ 1397 struct rt_mutex_waiter *pi_blocked_on; 1398 /* Top pi_waiters task */ 1399 struct task_struct *pi_top_task; 1400#endif 1401 1402#ifdef CONFIG_DEBUG_MUTEXES 1403 /* mutex deadlock detection */ 1404 struct mutex_waiter *blocked_on; 1405#endif 1406#ifdef CONFIG_TRACE_IRQFLAGS 1407 unsigned int irq_events; 1408 unsigned long hardirq_enable_ip; 1409 unsigned long hardirq_disable_ip; 1410 unsigned int hardirq_enable_event; 1411 unsigned int hardirq_disable_event; 1412 int hardirqs_enabled; 1413 int hardirq_context; 1414 unsigned long softirq_disable_ip; 1415 unsigned long softirq_enable_ip; 1416 unsigned int softirq_disable_event; 1417 unsigned int softirq_enable_event; 1418 int softirqs_enabled; 1419 int softirq_context; 1420#endif 1421#ifdef CONFIG_LOCKDEP 1422# define MAX_LOCK_DEPTH 48UL 1423 u64 curr_chain_key; 1424 int lockdep_depth; 1425 unsigned int lockdep_recursion; 1426 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1427 gfp_t lockdep_reclaim_gfp; 1428#endif 1429 1430/* journalling filesystem info */ 1431 void *journal_info; 1432 1433/* stacked block device info */ 1434 struct bio_list *bio_list; 1435 1436#ifdef CONFIG_BLOCK 1437/* stack plugging */ 1438 struct blk_plug *plug; 1439#endif 1440 1441/* VM state */ 1442 struct reclaim_state *reclaim_state; 1443 1444 struct backing_dev_info *backing_dev_info; 1445 1446 struct io_context *io_context; 1447 1448 unsigned long ptrace_message; 1449 siginfo_t *last_siginfo; /* For ptrace use. */ 1450 struct task_io_accounting ioac; 1451#if defined(CONFIG_TASK_XACCT) 1452 u64 acct_rss_mem1; /* accumulated rss usage */ 1453 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1454 cputime_t acct_timexpd; /* stime + utime since last update */ 1455#endif 1456#ifdef CONFIG_CPUSETS 1457 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1458 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1459 int cpuset_mem_spread_rotor; 1460 int cpuset_slab_spread_rotor; 1461#endif 1462#ifdef CONFIG_CGROUPS 1463 /* Control Group info protected by css_set_lock */ 1464 struct css_set __rcu *cgroups; 1465 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1466 struct list_head cg_list; 1467#endif 1468#ifdef CONFIG_FUTEX 1469 struct robust_list_head __user *robust_list; 1470#ifdef CONFIG_COMPAT 1471 struct compat_robust_list_head __user *compat_robust_list; 1472#endif 1473 struct list_head pi_state_list; 1474 struct futex_pi_state *pi_state_cache; 1475#endif 1476#ifdef CONFIG_PERF_EVENTS 1477 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1478 struct mutex perf_event_mutex; 1479 struct list_head perf_event_list; 1480#endif 1481#ifdef CONFIG_DEBUG_PREEMPT 1482 unsigned long preempt_disable_ip; 1483#endif 1484#ifdef CONFIG_NUMA 1485 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1486 short il_next; 1487 short pref_node_fork; 1488#endif 1489#ifdef CONFIG_NUMA_BALANCING 1490 int numa_scan_seq; 1491 unsigned int numa_scan_period; 1492 unsigned int numa_scan_period_max; 1493 int numa_preferred_nid; 1494 unsigned long numa_migrate_retry; 1495 u64 node_stamp; /* migration stamp */ 1496 u64 last_task_numa_placement; 1497 u64 last_sum_exec_runtime; 1498 struct callback_head numa_work; 1499 1500 struct list_head numa_entry; 1501 struct numa_group *numa_group; 1502 1503 /* 1504 * Exponential decaying average of faults on a per-node basis. 1505 * Scheduling placement decisions are made based on the these counts. 1506 * The values remain static for the duration of a PTE scan 1507 */ 1508 unsigned long *numa_faults_memory; 1509 unsigned long total_numa_faults; 1510 1511 /* 1512 * numa_faults_buffer records faults per node during the current 1513 * scan window. When the scan completes, the counts in 1514 * numa_faults_memory decay and these values are copied. 1515 */ 1516 unsigned long *numa_faults_buffer_memory; 1517 1518 /* 1519 * Track the nodes the process was running on when a NUMA hinting 1520 * fault was incurred. 1521 */ 1522 unsigned long *numa_faults_cpu; 1523 unsigned long *numa_faults_buffer_cpu; 1524 1525 /* 1526 * numa_faults_locality tracks if faults recorded during the last 1527 * scan window were remote/local. The task scan period is adapted 1528 * based on the locality of the faults with different weights 1529 * depending on whether they were shared or private faults 1530 */ 1531 unsigned long numa_faults_locality[2]; 1532 1533 unsigned long numa_pages_migrated; 1534#endif /* CONFIG_NUMA_BALANCING */ 1535 1536 struct rcu_head rcu; 1537 1538 /* 1539 * cache last used pipe for splice 1540 */ 1541 struct pipe_inode_info *splice_pipe; 1542 1543 struct page_frag task_frag; 1544 1545#ifdef CONFIG_TASK_DELAY_ACCT 1546 struct task_delay_info *delays; 1547#endif 1548#ifdef CONFIG_FAULT_INJECTION 1549 int make_it_fail; 1550#endif 1551 /* 1552 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1553 * balance_dirty_pages() for some dirty throttling pause 1554 */ 1555 int nr_dirtied; 1556 int nr_dirtied_pause; 1557 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1558 1559#ifdef CONFIG_LATENCYTOP 1560 int latency_record_count; 1561 struct latency_record latency_record[LT_SAVECOUNT]; 1562#endif 1563 /* 1564 * time slack values; these are used to round up poll() and 1565 * select() etc timeout values. These are in nanoseconds. 1566 */ 1567 unsigned long timer_slack_ns; 1568 unsigned long default_timer_slack_ns; 1569 1570#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1571 /* Index of current stored address in ret_stack */ 1572 int curr_ret_stack; 1573 /* Stack of return addresses for return function tracing */ 1574 struct ftrace_ret_stack *ret_stack; 1575 /* time stamp for last schedule */ 1576 unsigned long long ftrace_timestamp; 1577 /* 1578 * Number of functions that haven't been traced 1579 * because of depth overrun. 1580 */ 1581 atomic_t trace_overrun; 1582 /* Pause for the tracing */ 1583 atomic_t tracing_graph_pause; 1584#endif 1585#ifdef CONFIG_TRACING 1586 /* state flags for use by tracers */ 1587 unsigned long trace; 1588 /* bitmask and counter of trace recursion */ 1589 unsigned long trace_recursion; 1590#endif /* CONFIG_TRACING */ 1591#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1592 struct memcg_batch_info { 1593 int do_batch; /* incremented when batch uncharge started */ 1594 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1595 unsigned long nr_pages; /* uncharged usage */ 1596 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1597 } memcg_batch; 1598 unsigned int memcg_kmem_skip_account; 1599 struct memcg_oom_info { 1600 struct mem_cgroup *memcg; 1601 gfp_t gfp_mask; 1602 int order; 1603 unsigned int may_oom:1; 1604 } memcg_oom; 1605#endif 1606#ifdef CONFIG_UPROBES 1607 struct uprobe_task *utask; 1608#endif 1609#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1610 unsigned int sequential_io; 1611 unsigned int sequential_io_avg; 1612#endif 1613}; 1614 1615/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1616#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1617 1618#define TNF_MIGRATED 0x01 1619#define TNF_NO_GROUP 0x02 1620#define TNF_SHARED 0x04 1621#define TNF_FAULT_LOCAL 0x08 1622 1623#ifdef CONFIG_NUMA_BALANCING 1624extern void task_numa_fault(int last_node, int node, int pages, int flags); 1625extern pid_t task_numa_group_id(struct task_struct *p); 1626extern void set_numabalancing_state(bool enabled); 1627extern void task_numa_free(struct task_struct *p); 1628extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1629 int src_nid, int dst_cpu); 1630#else 1631static inline void task_numa_fault(int last_node, int node, int pages, 1632 int flags) 1633{ 1634} 1635static inline pid_t task_numa_group_id(struct task_struct *p) 1636{ 1637 return 0; 1638} 1639static inline void set_numabalancing_state(bool enabled) 1640{ 1641} 1642static inline void task_numa_free(struct task_struct *p) 1643{ 1644} 1645static inline bool should_numa_migrate_memory(struct task_struct *p, 1646 struct page *page, int src_nid, int dst_cpu) 1647{ 1648 return true; 1649} 1650#endif 1651 1652static inline struct pid *task_pid(struct task_struct *task) 1653{ 1654 return task->pids[PIDTYPE_PID].pid; 1655} 1656 1657static inline struct pid *task_tgid(struct task_struct *task) 1658{ 1659 return task->group_leader->pids[PIDTYPE_PID].pid; 1660} 1661 1662/* 1663 * Without tasklist or rcu lock it is not safe to dereference 1664 * the result of task_pgrp/task_session even if task == current, 1665 * we can race with another thread doing sys_setsid/sys_setpgid. 1666 */ 1667static inline struct pid *task_pgrp(struct task_struct *task) 1668{ 1669 return task->group_leader->pids[PIDTYPE_PGID].pid; 1670} 1671 1672static inline struct pid *task_session(struct task_struct *task) 1673{ 1674 return task->group_leader->pids[PIDTYPE_SID].pid; 1675} 1676 1677struct pid_namespace; 1678 1679/* 1680 * the helpers to get the task's different pids as they are seen 1681 * from various namespaces 1682 * 1683 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1684 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1685 * current. 1686 * task_xid_nr_ns() : id seen from the ns specified; 1687 * 1688 * set_task_vxid() : assigns a virtual id to a task; 1689 * 1690 * see also pid_nr() etc in include/linux/pid.h 1691 */ 1692pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1693 struct pid_namespace *ns); 1694 1695static inline pid_t task_pid_nr(struct task_struct *tsk) 1696{ 1697 return tsk->pid; 1698} 1699 1700static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1701 struct pid_namespace *ns) 1702{ 1703 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1704} 1705 1706static inline pid_t task_pid_vnr(struct task_struct *tsk) 1707{ 1708 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1709} 1710 1711 1712static inline pid_t task_tgid_nr(struct task_struct *tsk) 1713{ 1714 return tsk->tgid; 1715} 1716 1717pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1718 1719static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1720{ 1721 return pid_vnr(task_tgid(tsk)); 1722} 1723 1724 1725static inline int pid_alive(const struct task_struct *p); 1726static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1727{ 1728 pid_t pid = 0; 1729 1730 rcu_read_lock(); 1731 if (pid_alive(tsk)) 1732 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1733 rcu_read_unlock(); 1734 1735 return pid; 1736} 1737 1738static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1739{ 1740 return task_ppid_nr_ns(tsk, &init_pid_ns); 1741} 1742 1743static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1744 struct pid_namespace *ns) 1745{ 1746 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1747} 1748 1749static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1750{ 1751 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1752} 1753 1754 1755static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1756 struct pid_namespace *ns) 1757{ 1758 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1759} 1760 1761static inline pid_t task_session_vnr(struct task_struct *tsk) 1762{ 1763 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1764} 1765 1766/* obsolete, do not use */ 1767static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1768{ 1769 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1770} 1771 1772/** 1773 * pid_alive - check that a task structure is not stale 1774 * @p: Task structure to be checked. 1775 * 1776 * Test if a process is not yet dead (at most zombie state) 1777 * If pid_alive fails, then pointers within the task structure 1778 * can be stale and must not be dereferenced. 1779 * 1780 * Return: 1 if the process is alive. 0 otherwise. 1781 */ 1782static inline int pid_alive(const struct task_struct *p) 1783{ 1784 return p->pids[PIDTYPE_PID].pid != NULL; 1785} 1786 1787/** 1788 * is_global_init - check if a task structure is init 1789 * @tsk: Task structure to be checked. 1790 * 1791 * Check if a task structure is the first user space task the kernel created. 1792 * 1793 * Return: 1 if the task structure is init. 0 otherwise. 1794 */ 1795static inline int is_global_init(struct task_struct *tsk) 1796{ 1797 return tsk->pid == 1; 1798} 1799 1800extern struct pid *cad_pid; 1801 1802extern void free_task(struct task_struct *tsk); 1803#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1804 1805extern void __put_task_struct(struct task_struct *t); 1806 1807static inline void put_task_struct(struct task_struct *t) 1808{ 1809 if (atomic_dec_and_test(&t->usage)) 1810 __put_task_struct(t); 1811} 1812 1813#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1814extern void task_cputime(struct task_struct *t, 1815 cputime_t *utime, cputime_t *stime); 1816extern void task_cputime_scaled(struct task_struct *t, 1817 cputime_t *utimescaled, cputime_t *stimescaled); 1818extern cputime_t task_gtime(struct task_struct *t); 1819#else 1820static inline void task_cputime(struct task_struct *t, 1821 cputime_t *utime, cputime_t *stime) 1822{ 1823 if (utime) 1824 *utime = t->utime; 1825 if (stime) 1826 *stime = t->stime; 1827} 1828 1829static inline void task_cputime_scaled(struct task_struct *t, 1830 cputime_t *utimescaled, 1831 cputime_t *stimescaled) 1832{ 1833 if (utimescaled) 1834 *utimescaled = t->utimescaled; 1835 if (stimescaled) 1836 *stimescaled = t->stimescaled; 1837} 1838 1839static inline cputime_t task_gtime(struct task_struct *t) 1840{ 1841 return t->gtime; 1842} 1843#endif 1844extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1845extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1846 1847/* 1848 * Per process flags 1849 */ 1850#define PF_EXITING 0x00000004 /* getting shut down */ 1851#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1852#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1853#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1854#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1855#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1856#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1857#define PF_DUMPCORE 0x00000200 /* dumped core */ 1858#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1859#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1860#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1861#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1862#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1863#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1864#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1865#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1866#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1867#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1868#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1869#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1870#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1871#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1872#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1873#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1874#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1875#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1876#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1877#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1878#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1879 1880/* 1881 * Only the _current_ task can read/write to tsk->flags, but other 1882 * tasks can access tsk->flags in readonly mode for example 1883 * with tsk_used_math (like during threaded core dumping). 1884 * There is however an exception to this rule during ptrace 1885 * or during fork: the ptracer task is allowed to write to the 1886 * child->flags of its traced child (same goes for fork, the parent 1887 * can write to the child->flags), because we're guaranteed the 1888 * child is not running and in turn not changing child->flags 1889 * at the same time the parent does it. 1890 */ 1891#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1892#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1893#define clear_used_math() clear_stopped_child_used_math(current) 1894#define set_used_math() set_stopped_child_used_math(current) 1895#define conditional_stopped_child_used_math(condition, child) \ 1896 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1897#define conditional_used_math(condition) \ 1898 conditional_stopped_child_used_math(condition, current) 1899#define copy_to_stopped_child_used_math(child) \ 1900 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1901/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1902#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1903#define used_math() tsk_used_math(current) 1904 1905/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1906static inline gfp_t memalloc_noio_flags(gfp_t flags) 1907{ 1908 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1909 flags &= ~__GFP_IO; 1910 return flags; 1911} 1912 1913static inline unsigned int memalloc_noio_save(void) 1914{ 1915 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1916 current->flags |= PF_MEMALLOC_NOIO; 1917 return flags; 1918} 1919 1920static inline void memalloc_noio_restore(unsigned int flags) 1921{ 1922 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1923} 1924 1925/* 1926 * task->jobctl flags 1927 */ 1928#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1929 1930#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1931#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1932#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1933#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1934#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1935#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1936#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1937 1938#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1939#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1940#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1941#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1942#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1943#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1944#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1945 1946#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1947#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1948 1949extern bool task_set_jobctl_pending(struct task_struct *task, 1950 unsigned int mask); 1951extern void task_clear_jobctl_trapping(struct task_struct *task); 1952extern void task_clear_jobctl_pending(struct task_struct *task, 1953 unsigned int mask); 1954 1955#ifdef CONFIG_PREEMPT_RCU 1956 1957#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1958#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1959 1960static inline void rcu_copy_process(struct task_struct *p) 1961{ 1962 p->rcu_read_lock_nesting = 0; 1963 p->rcu_read_unlock_special = 0; 1964#ifdef CONFIG_TREE_PREEMPT_RCU 1965 p->rcu_blocked_node = NULL; 1966#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1967#ifdef CONFIG_RCU_BOOST 1968 p->rcu_boost_mutex = NULL; 1969#endif /* #ifdef CONFIG_RCU_BOOST */ 1970 INIT_LIST_HEAD(&p->rcu_node_entry); 1971} 1972 1973#else 1974 1975static inline void rcu_copy_process(struct task_struct *p) 1976{ 1977} 1978 1979#endif 1980 1981static inline void tsk_restore_flags(struct task_struct *task, 1982 unsigned long orig_flags, unsigned long flags) 1983{ 1984 task->flags &= ~flags; 1985 task->flags |= orig_flags & flags; 1986} 1987 1988#ifdef CONFIG_SMP 1989extern void do_set_cpus_allowed(struct task_struct *p, 1990 const struct cpumask *new_mask); 1991 1992extern int set_cpus_allowed_ptr(struct task_struct *p, 1993 const struct cpumask *new_mask); 1994#else 1995static inline void do_set_cpus_allowed(struct task_struct *p, 1996 const struct cpumask *new_mask) 1997{ 1998} 1999static inline int set_cpus_allowed_ptr(struct task_struct *p, 2000 const struct cpumask *new_mask) 2001{ 2002 if (!cpumask_test_cpu(0, new_mask)) 2003 return -EINVAL; 2004 return 0; 2005} 2006#endif 2007 2008#ifdef CONFIG_NO_HZ_COMMON 2009void calc_load_enter_idle(void); 2010void calc_load_exit_idle(void); 2011#else 2012static inline void calc_load_enter_idle(void) { } 2013static inline void calc_load_exit_idle(void) { } 2014#endif /* CONFIG_NO_HZ_COMMON */ 2015 2016#ifndef CONFIG_CPUMASK_OFFSTACK 2017static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2018{ 2019 return set_cpus_allowed_ptr(p, &new_mask); 2020} 2021#endif 2022 2023/* 2024 * Do not use outside of architecture code which knows its limitations. 2025 * 2026 * sched_clock() has no promise of monotonicity or bounded drift between 2027 * CPUs, use (which you should not) requires disabling IRQs. 2028 * 2029 * Please use one of the three interfaces below. 2030 */ 2031extern unsigned long long notrace sched_clock(void); 2032/* 2033 * See the comment in kernel/sched/clock.c 2034 */ 2035extern u64 cpu_clock(int cpu); 2036extern u64 local_clock(void); 2037extern u64 sched_clock_cpu(int cpu); 2038 2039 2040extern void sched_clock_init(void); 2041 2042#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2043static inline void sched_clock_tick(void) 2044{ 2045} 2046 2047static inline void sched_clock_idle_sleep_event(void) 2048{ 2049} 2050 2051static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2052{ 2053} 2054#else 2055/* 2056 * Architectures can set this to 1 if they have specified 2057 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2058 * but then during bootup it turns out that sched_clock() 2059 * is reliable after all: 2060 */ 2061extern int sched_clock_stable(void); 2062extern void set_sched_clock_stable(void); 2063extern void clear_sched_clock_stable(void); 2064 2065extern void sched_clock_tick(void); 2066extern void sched_clock_idle_sleep_event(void); 2067extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2068#endif 2069 2070#ifdef CONFIG_IRQ_TIME_ACCOUNTING 2071/* 2072 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2073 * The reason for this explicit opt-in is not to have perf penalty with 2074 * slow sched_clocks. 2075 */ 2076extern void enable_sched_clock_irqtime(void); 2077extern void disable_sched_clock_irqtime(void); 2078#else 2079static inline void enable_sched_clock_irqtime(void) {} 2080static inline void disable_sched_clock_irqtime(void) {} 2081#endif 2082 2083extern unsigned long long 2084task_sched_runtime(struct task_struct *task); 2085 2086/* sched_exec is called by processes performing an exec */ 2087#ifdef CONFIG_SMP 2088extern void sched_exec(void); 2089#else 2090#define sched_exec() {} 2091#endif 2092 2093extern void sched_clock_idle_sleep_event(void); 2094extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2095 2096#ifdef CONFIG_HOTPLUG_CPU 2097extern void idle_task_exit(void); 2098#else 2099static inline void idle_task_exit(void) {} 2100#endif 2101 2102#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2103extern void wake_up_nohz_cpu(int cpu); 2104#else 2105static inline void wake_up_nohz_cpu(int cpu) { } 2106#endif 2107 2108#ifdef CONFIG_NO_HZ_FULL 2109extern bool sched_can_stop_tick(void); 2110extern u64 scheduler_tick_max_deferment(void); 2111#else 2112static inline bool sched_can_stop_tick(void) { return false; } 2113#endif 2114 2115#ifdef CONFIG_SCHED_AUTOGROUP 2116extern void sched_autogroup_create_attach(struct task_struct *p); 2117extern void sched_autogroup_detach(struct task_struct *p); 2118extern void sched_autogroup_fork(struct signal_struct *sig); 2119extern void sched_autogroup_exit(struct signal_struct *sig); 2120#ifdef CONFIG_PROC_FS 2121extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2122extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2123#endif 2124#else 2125static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2126static inline void sched_autogroup_detach(struct task_struct *p) { } 2127static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2128static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2129#endif 2130 2131extern bool yield_to(struct task_struct *p, bool preempt); 2132extern void set_user_nice(struct task_struct *p, long nice); 2133extern int task_prio(const struct task_struct *p); 2134/** 2135 * task_nice - return the nice value of a given task. 2136 * @p: the task in question. 2137 * 2138 * Return: The nice value [ -20 ... 0 ... 19 ]. 2139 */ 2140static inline int task_nice(const struct task_struct *p) 2141{ 2142 return PRIO_TO_NICE((p)->static_prio); 2143} 2144extern int can_nice(const struct task_struct *p, const int nice); 2145extern int task_curr(const struct task_struct *p); 2146extern int idle_cpu(int cpu); 2147extern int sched_setscheduler(struct task_struct *, int, 2148 const struct sched_param *); 2149extern int sched_setscheduler_nocheck(struct task_struct *, int, 2150 const struct sched_param *); 2151extern int sched_setattr(struct task_struct *, 2152 const struct sched_attr *); 2153extern struct task_struct *idle_task(int cpu); 2154/** 2155 * is_idle_task - is the specified task an idle task? 2156 * @p: the task in question. 2157 * 2158 * Return: 1 if @p is an idle task. 0 otherwise. 2159 */ 2160static inline bool is_idle_task(const struct task_struct *p) 2161{ 2162 return p->pid == 0; 2163} 2164extern struct task_struct *curr_task(int cpu); 2165extern void set_curr_task(int cpu, struct task_struct *p); 2166 2167void yield(void); 2168 2169/* 2170 * The default (Linux) execution domain. 2171 */ 2172extern struct exec_domain default_exec_domain; 2173 2174union thread_union { 2175 struct thread_info thread_info; 2176 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2177}; 2178 2179#ifndef __HAVE_ARCH_KSTACK_END 2180static inline int kstack_end(void *addr) 2181{ 2182 /* Reliable end of stack detection: 2183 * Some APM bios versions misalign the stack 2184 */ 2185 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2186} 2187#endif 2188 2189extern union thread_union init_thread_union; 2190extern struct task_struct init_task; 2191 2192extern struct mm_struct init_mm; 2193 2194extern struct pid_namespace init_pid_ns; 2195 2196/* 2197 * find a task by one of its numerical ids 2198 * 2199 * find_task_by_pid_ns(): 2200 * finds a task by its pid in the specified namespace 2201 * find_task_by_vpid(): 2202 * finds a task by its virtual pid 2203 * 2204 * see also find_vpid() etc in include/linux/pid.h 2205 */ 2206 2207extern struct task_struct *find_task_by_vpid(pid_t nr); 2208extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2209 struct pid_namespace *ns); 2210 2211/* per-UID process charging. */ 2212extern struct user_struct * alloc_uid(kuid_t); 2213static inline struct user_struct *get_uid(struct user_struct *u) 2214{ 2215 atomic_inc(&u->__count); 2216 return u; 2217} 2218extern void free_uid(struct user_struct *); 2219 2220#include <asm/current.h> 2221 2222extern void xtime_update(unsigned long ticks); 2223 2224extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2225extern int wake_up_process(struct task_struct *tsk); 2226extern void wake_up_new_task(struct task_struct *tsk); 2227#ifdef CONFIG_SMP 2228 extern void kick_process(struct task_struct *tsk); 2229#else 2230 static inline void kick_process(struct task_struct *tsk) { } 2231#endif 2232extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2233extern void sched_dead(struct task_struct *p); 2234 2235extern void proc_caches_init(void); 2236extern void flush_signals(struct task_struct *); 2237extern void __flush_signals(struct task_struct *); 2238extern void ignore_signals(struct task_struct *); 2239extern void flush_signal_handlers(struct task_struct *, int force_default); 2240extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2241 2242static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2243{ 2244 unsigned long flags; 2245 int ret; 2246 2247 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2248 ret = dequeue_signal(tsk, mask, info); 2249 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2250 2251 return ret; 2252} 2253 2254extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2255 sigset_t *mask); 2256extern void unblock_all_signals(void); 2257extern void release_task(struct task_struct * p); 2258extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2259extern int force_sigsegv(int, struct task_struct *); 2260extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2261extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2262extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2263extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2264 const struct cred *, u32); 2265extern int kill_pgrp(struct pid *pid, int sig, int priv); 2266extern int kill_pid(struct pid *pid, int sig, int priv); 2267extern int kill_proc_info(int, struct siginfo *, pid_t); 2268extern __must_check bool do_notify_parent(struct task_struct *, int); 2269extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2270extern void force_sig(int, struct task_struct *); 2271extern int send_sig(int, struct task_struct *, int); 2272extern int zap_other_threads(struct task_struct *p); 2273extern struct sigqueue *sigqueue_alloc(void); 2274extern void sigqueue_free(struct sigqueue *); 2275extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2276extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2277 2278static inline void restore_saved_sigmask(void) 2279{ 2280 if (test_and_clear_restore_sigmask()) 2281 __set_current_blocked(&current->saved_sigmask); 2282} 2283 2284static inline sigset_t *sigmask_to_save(void) 2285{ 2286 sigset_t *res = &current->blocked; 2287 if (unlikely(test_restore_sigmask())) 2288 res = &current->saved_sigmask; 2289 return res; 2290} 2291 2292static inline int kill_cad_pid(int sig, int priv) 2293{ 2294 return kill_pid(cad_pid, sig, priv); 2295} 2296 2297/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2298#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2299#define SEND_SIG_PRIV ((struct siginfo *) 1) 2300#define SEND_SIG_FORCED ((struct siginfo *) 2) 2301 2302/* 2303 * True if we are on the alternate signal stack. 2304 */ 2305static inline int on_sig_stack(unsigned long sp) 2306{ 2307#ifdef CONFIG_STACK_GROWSUP 2308 return sp >= current->sas_ss_sp && 2309 sp - current->sas_ss_sp < current->sas_ss_size; 2310#else 2311 return sp > current->sas_ss_sp && 2312 sp - current->sas_ss_sp <= current->sas_ss_size; 2313#endif 2314} 2315 2316static inline int sas_ss_flags(unsigned long sp) 2317{ 2318 return (current->sas_ss_size == 0 ? SS_DISABLE 2319 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2320} 2321 2322static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2323{ 2324 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2325#ifdef CONFIG_STACK_GROWSUP 2326 return current->sas_ss_sp; 2327#else 2328 return current->sas_ss_sp + current->sas_ss_size; 2329#endif 2330 return sp; 2331} 2332 2333/* 2334 * Routines for handling mm_structs 2335 */ 2336extern struct mm_struct * mm_alloc(void); 2337 2338/* mmdrop drops the mm and the page tables */ 2339extern void __mmdrop(struct mm_struct *); 2340static inline void mmdrop(struct mm_struct * mm) 2341{ 2342 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2343 __mmdrop(mm); 2344} 2345 2346/* mmput gets rid of the mappings and all user-space */ 2347extern void mmput(struct mm_struct *); 2348/* Grab a reference to a task's mm, if it is not already going away */ 2349extern struct mm_struct *get_task_mm(struct task_struct *task); 2350/* 2351 * Grab a reference to a task's mm, if it is not already going away 2352 * and ptrace_may_access with the mode parameter passed to it 2353 * succeeds. 2354 */ 2355extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2356/* Remove the current tasks stale references to the old mm_struct */ 2357extern void mm_release(struct task_struct *, struct mm_struct *); 2358 2359extern int copy_thread(unsigned long, unsigned long, unsigned long, 2360 struct task_struct *); 2361extern void flush_thread(void); 2362extern void exit_thread(void); 2363 2364extern void exit_files(struct task_struct *); 2365extern void __cleanup_sighand(struct sighand_struct *); 2366 2367extern void exit_itimers(struct signal_struct *); 2368extern void flush_itimer_signals(void); 2369 2370extern void do_group_exit(int); 2371 2372extern int allow_signal(int); 2373extern int disallow_signal(int); 2374 2375extern int do_execve(struct filename *, 2376 const char __user * const __user *, 2377 const char __user * const __user *); 2378extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2379struct task_struct *fork_idle(int); 2380extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2381 2382extern void set_task_comm(struct task_struct *tsk, const char *from); 2383extern char *get_task_comm(char *to, struct task_struct *tsk); 2384 2385#ifdef CONFIG_SMP 2386void scheduler_ipi(void); 2387extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2388#else 2389static inline void scheduler_ipi(void) { } 2390static inline unsigned long wait_task_inactive(struct task_struct *p, 2391 long match_state) 2392{ 2393 return 1; 2394} 2395#endif 2396 2397#define next_task(p) \ 2398 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2399 2400#define for_each_process(p) \ 2401 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2402 2403extern bool current_is_single_threaded(void); 2404 2405/* 2406 * Careful: do_each_thread/while_each_thread is a double loop so 2407 * 'break' will not work as expected - use goto instead. 2408 */ 2409#define do_each_thread(g, t) \ 2410 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2411 2412#define while_each_thread(g, t) \ 2413 while ((t = next_thread(t)) != g) 2414 2415#define __for_each_thread(signal, t) \ 2416 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2417 2418#define for_each_thread(p, t) \ 2419 __for_each_thread((p)->signal, t) 2420 2421/* Careful: this is a double loop, 'break' won't work as expected. */ 2422#define for_each_process_thread(p, t) \ 2423 for_each_process(p) for_each_thread(p, t) 2424 2425static inline int get_nr_threads(struct task_struct *tsk) 2426{ 2427 return tsk->signal->nr_threads; 2428} 2429 2430static inline bool thread_group_leader(struct task_struct *p) 2431{ 2432 return p->exit_signal >= 0; 2433} 2434 2435/* Do to the insanities of de_thread it is possible for a process 2436 * to have the pid of the thread group leader without actually being 2437 * the thread group leader. For iteration through the pids in proc 2438 * all we care about is that we have a task with the appropriate 2439 * pid, we don't actually care if we have the right task. 2440 */ 2441static inline bool has_group_leader_pid(struct task_struct *p) 2442{ 2443 return task_pid(p) == p->signal->leader_pid; 2444} 2445 2446static inline 2447bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2448{ 2449 return p1->signal == p2->signal; 2450} 2451 2452static inline struct task_struct *next_thread(const struct task_struct *p) 2453{ 2454 return list_entry_rcu(p->thread_group.next, 2455 struct task_struct, thread_group); 2456} 2457 2458static inline int thread_group_empty(struct task_struct *p) 2459{ 2460 return list_empty(&p->thread_group); 2461} 2462 2463#define delay_group_leader(p) \ 2464 (thread_group_leader(p) && !thread_group_empty(p)) 2465 2466/* 2467 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2468 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2469 * pins the final release of task.io_context. Also protects ->cpuset and 2470 * ->cgroup.subsys[]. And ->vfork_done. 2471 * 2472 * Nests both inside and outside of read_lock(&tasklist_lock). 2473 * It must not be nested with write_lock_irq(&tasklist_lock), 2474 * neither inside nor outside. 2475 */ 2476static inline void task_lock(struct task_struct *p) 2477{ 2478 spin_lock(&p->alloc_lock); 2479} 2480 2481static inline void task_unlock(struct task_struct *p) 2482{ 2483 spin_unlock(&p->alloc_lock); 2484} 2485 2486extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2487 unsigned long *flags); 2488 2489static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2490 unsigned long *flags) 2491{ 2492 struct sighand_struct *ret; 2493 2494 ret = __lock_task_sighand(tsk, flags); 2495 (void)__cond_lock(&tsk->sighand->siglock, ret); 2496 return ret; 2497} 2498 2499static inline void unlock_task_sighand(struct task_struct *tsk, 2500 unsigned long *flags) 2501{ 2502 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2503} 2504 2505#ifdef CONFIG_CGROUPS 2506static inline void threadgroup_change_begin(struct task_struct *tsk) 2507{ 2508 down_read(&tsk->signal->group_rwsem); 2509} 2510static inline void threadgroup_change_end(struct task_struct *tsk) 2511{ 2512 up_read(&tsk->signal->group_rwsem); 2513} 2514 2515/** 2516 * threadgroup_lock - lock threadgroup 2517 * @tsk: member task of the threadgroup to lock 2518 * 2519 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2520 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2521 * change ->group_leader/pid. This is useful for cases where the threadgroup 2522 * needs to stay stable across blockable operations. 2523 * 2524 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2525 * synchronization. While held, no new task will be added to threadgroup 2526 * and no existing live task will have its PF_EXITING set. 2527 * 2528 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2529 * sub-thread becomes a new leader. 2530 */ 2531static inline void threadgroup_lock(struct task_struct *tsk) 2532{ 2533 down_write(&tsk->signal->group_rwsem); 2534} 2535 2536/** 2537 * threadgroup_unlock - unlock threadgroup 2538 * @tsk: member task of the threadgroup to unlock 2539 * 2540 * Reverse threadgroup_lock(). 2541 */ 2542static inline void threadgroup_unlock(struct task_struct *tsk) 2543{ 2544 up_write(&tsk->signal->group_rwsem); 2545} 2546#else 2547static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2548static inline void threadgroup_change_end(struct task_struct *tsk) {} 2549static inline void threadgroup_lock(struct task_struct *tsk) {} 2550static inline void threadgroup_unlock(struct task_struct *tsk) {} 2551#endif 2552 2553#ifndef __HAVE_THREAD_FUNCTIONS 2554 2555#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2556#define task_stack_page(task) ((task)->stack) 2557 2558static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2559{ 2560 *task_thread_info(p) = *task_thread_info(org); 2561 task_thread_info(p)->task = p; 2562} 2563 2564static inline unsigned long *end_of_stack(struct task_struct *p) 2565{ 2566 return (unsigned long *)(task_thread_info(p) + 1); 2567} 2568 2569#endif 2570 2571static inline int object_is_on_stack(void *obj) 2572{ 2573 void *stack = task_stack_page(current); 2574 2575 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2576} 2577 2578extern void thread_info_cache_init(void); 2579 2580#ifdef CONFIG_DEBUG_STACK_USAGE 2581static inline unsigned long stack_not_used(struct task_struct *p) 2582{ 2583 unsigned long *n = end_of_stack(p); 2584 2585 do { /* Skip over canary */ 2586 n++; 2587 } while (!*n); 2588 2589 return (unsigned long)n - (unsigned long)end_of_stack(p); 2590} 2591#endif 2592 2593/* set thread flags in other task's structures 2594 * - see asm/thread_info.h for TIF_xxxx flags available 2595 */ 2596static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2597{ 2598 set_ti_thread_flag(task_thread_info(tsk), flag); 2599} 2600 2601static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2602{ 2603 clear_ti_thread_flag(task_thread_info(tsk), flag); 2604} 2605 2606static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2607{ 2608 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2609} 2610 2611static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2612{ 2613 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2614} 2615 2616static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2617{ 2618 return test_ti_thread_flag(task_thread_info(tsk), flag); 2619} 2620 2621static inline void set_tsk_need_resched(struct task_struct *tsk) 2622{ 2623 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2624} 2625 2626static inline void clear_tsk_need_resched(struct task_struct *tsk) 2627{ 2628 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2629} 2630 2631static inline int test_tsk_need_resched(struct task_struct *tsk) 2632{ 2633 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2634} 2635 2636static inline int restart_syscall(void) 2637{ 2638 set_tsk_thread_flag(current, TIF_SIGPENDING); 2639 return -ERESTARTNOINTR; 2640} 2641 2642static inline int signal_pending(struct task_struct *p) 2643{ 2644 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2645} 2646 2647static inline int __fatal_signal_pending(struct task_struct *p) 2648{ 2649 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2650} 2651 2652static inline int fatal_signal_pending(struct task_struct *p) 2653{ 2654 return signal_pending(p) && __fatal_signal_pending(p); 2655} 2656 2657static inline int signal_pending_state(long state, struct task_struct *p) 2658{ 2659 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2660 return 0; 2661 if (!signal_pending(p)) 2662 return 0; 2663 2664 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2665} 2666 2667/* 2668 * cond_resched() and cond_resched_lock(): latency reduction via 2669 * explicit rescheduling in places that are safe. The return 2670 * value indicates whether a reschedule was done in fact. 2671 * cond_resched_lock() will drop the spinlock before scheduling, 2672 * cond_resched_softirq() will enable bhs before scheduling. 2673 */ 2674extern int _cond_resched(void); 2675 2676#define cond_resched() ({ \ 2677 __might_sleep(__FILE__, __LINE__, 0); \ 2678 _cond_resched(); \ 2679}) 2680 2681extern int __cond_resched_lock(spinlock_t *lock); 2682 2683#ifdef CONFIG_PREEMPT_COUNT 2684#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2685#else 2686#define PREEMPT_LOCK_OFFSET 0 2687#endif 2688 2689#define cond_resched_lock(lock) ({ \ 2690 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2691 __cond_resched_lock(lock); \ 2692}) 2693 2694extern int __cond_resched_softirq(void); 2695 2696#define cond_resched_softirq() ({ \ 2697 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2698 __cond_resched_softirq(); \ 2699}) 2700 2701static inline void cond_resched_rcu(void) 2702{ 2703#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2704 rcu_read_unlock(); 2705 cond_resched(); 2706 rcu_read_lock(); 2707#endif 2708} 2709 2710/* 2711 * Does a critical section need to be broken due to another 2712 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2713 * but a general need for low latency) 2714 */ 2715static inline int spin_needbreak(spinlock_t *lock) 2716{ 2717#ifdef CONFIG_PREEMPT 2718 return spin_is_contended(lock); 2719#else 2720 return 0; 2721#endif 2722} 2723 2724/* 2725 * Idle thread specific functions to determine the need_resched 2726 * polling state. We have two versions, one based on TS_POLLING in 2727 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2728 * thread_info.flags 2729 */ 2730#ifdef TS_POLLING 2731static inline int tsk_is_polling(struct task_struct *p) 2732{ 2733 return task_thread_info(p)->status & TS_POLLING; 2734} 2735static inline void __current_set_polling(void) 2736{ 2737 current_thread_info()->status |= TS_POLLING; 2738} 2739 2740static inline bool __must_check current_set_polling_and_test(void) 2741{ 2742 __current_set_polling(); 2743 2744 /* 2745 * Polling state must be visible before we test NEED_RESCHED, 2746 * paired by resched_task() 2747 */ 2748 smp_mb(); 2749 2750 return unlikely(tif_need_resched()); 2751} 2752 2753static inline void __current_clr_polling(void) 2754{ 2755 current_thread_info()->status &= ~TS_POLLING; 2756} 2757 2758static inline bool __must_check current_clr_polling_and_test(void) 2759{ 2760 __current_clr_polling(); 2761 2762 /* 2763 * Polling state must be visible before we test NEED_RESCHED, 2764 * paired by resched_task() 2765 */ 2766 smp_mb(); 2767 2768 return unlikely(tif_need_resched()); 2769} 2770#elif defined(TIF_POLLING_NRFLAG) 2771static inline int tsk_is_polling(struct task_struct *p) 2772{ 2773 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2774} 2775 2776static inline void __current_set_polling(void) 2777{ 2778 set_thread_flag(TIF_POLLING_NRFLAG); 2779} 2780 2781static inline bool __must_check current_set_polling_and_test(void) 2782{ 2783 __current_set_polling(); 2784 2785 /* 2786 * Polling state must be visible before we test NEED_RESCHED, 2787 * paired by resched_task() 2788 * 2789 * XXX: assumes set/clear bit are identical barrier wise. 2790 */ 2791 smp_mb__after_clear_bit(); 2792 2793 return unlikely(tif_need_resched()); 2794} 2795 2796static inline void __current_clr_polling(void) 2797{ 2798 clear_thread_flag(TIF_POLLING_NRFLAG); 2799} 2800 2801static inline bool __must_check current_clr_polling_and_test(void) 2802{ 2803 __current_clr_polling(); 2804 2805 /* 2806 * Polling state must be visible before we test NEED_RESCHED, 2807 * paired by resched_task() 2808 */ 2809 smp_mb__after_clear_bit(); 2810 2811 return unlikely(tif_need_resched()); 2812} 2813 2814#else 2815static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2816static inline void __current_set_polling(void) { } 2817static inline void __current_clr_polling(void) { } 2818 2819static inline bool __must_check current_set_polling_and_test(void) 2820{ 2821 return unlikely(tif_need_resched()); 2822} 2823static inline bool __must_check current_clr_polling_and_test(void) 2824{ 2825 return unlikely(tif_need_resched()); 2826} 2827#endif 2828 2829static inline void current_clr_polling(void) 2830{ 2831 __current_clr_polling(); 2832 2833 /* 2834 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2835 * Once the bit is cleared, we'll get IPIs with every new 2836 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2837 * fold. 2838 */ 2839 smp_mb(); /* paired with resched_task() */ 2840 2841 preempt_fold_need_resched(); 2842} 2843 2844static __always_inline bool need_resched(void) 2845{ 2846 return unlikely(tif_need_resched()); 2847} 2848 2849/* 2850 * Thread group CPU time accounting. 2851 */ 2852void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2853void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2854 2855static inline void thread_group_cputime_init(struct signal_struct *sig) 2856{ 2857 raw_spin_lock_init(&sig->cputimer.lock); 2858} 2859 2860/* 2861 * Reevaluate whether the task has signals pending delivery. 2862 * Wake the task if so. 2863 * This is required every time the blocked sigset_t changes. 2864 * callers must hold sighand->siglock. 2865 */ 2866extern void recalc_sigpending_and_wake(struct task_struct *t); 2867extern void recalc_sigpending(void); 2868 2869extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2870 2871static inline void signal_wake_up(struct task_struct *t, bool resume) 2872{ 2873 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2874} 2875static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2876{ 2877 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2878} 2879 2880/* 2881 * Wrappers for p->thread_info->cpu access. No-op on UP. 2882 */ 2883#ifdef CONFIG_SMP 2884 2885static inline unsigned int task_cpu(const struct task_struct *p) 2886{ 2887 return task_thread_info(p)->cpu; 2888} 2889 2890static inline int task_node(const struct task_struct *p) 2891{ 2892 return cpu_to_node(task_cpu(p)); 2893} 2894 2895extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2896 2897#else 2898 2899static inline unsigned int task_cpu(const struct task_struct *p) 2900{ 2901 return 0; 2902} 2903 2904static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2905{ 2906} 2907 2908#endif /* CONFIG_SMP */ 2909 2910extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2911extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2912 2913#ifdef CONFIG_CGROUP_SCHED 2914extern struct task_group root_task_group; 2915#endif /* CONFIG_CGROUP_SCHED */ 2916 2917extern int task_can_switch_user(struct user_struct *up, 2918 struct task_struct *tsk); 2919 2920#ifdef CONFIG_TASK_XACCT 2921static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2922{ 2923 tsk->ioac.rchar += amt; 2924} 2925 2926static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2927{ 2928 tsk->ioac.wchar += amt; 2929} 2930 2931static inline void inc_syscr(struct task_struct *tsk) 2932{ 2933 tsk->ioac.syscr++; 2934} 2935 2936static inline void inc_syscw(struct task_struct *tsk) 2937{ 2938 tsk->ioac.syscw++; 2939} 2940#else 2941static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2942{ 2943} 2944 2945static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2946{ 2947} 2948 2949static inline void inc_syscr(struct task_struct *tsk) 2950{ 2951} 2952 2953static inline void inc_syscw(struct task_struct *tsk) 2954{ 2955} 2956#endif 2957 2958#ifndef TASK_SIZE_OF 2959#define TASK_SIZE_OF(tsk) TASK_SIZE 2960#endif 2961 2962#ifdef CONFIG_MM_OWNER 2963extern void mm_update_next_owner(struct mm_struct *mm); 2964extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2965#else 2966static inline void mm_update_next_owner(struct mm_struct *mm) 2967{ 2968} 2969 2970static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2971{ 2972} 2973#endif /* CONFIG_MM_OWNER */ 2974 2975static inline unsigned long task_rlimit(const struct task_struct *tsk, 2976 unsigned int limit) 2977{ 2978 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2979} 2980 2981static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2982 unsigned int limit) 2983{ 2984 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2985} 2986 2987static inline unsigned long rlimit(unsigned int limit) 2988{ 2989 return task_rlimit(current, limit); 2990} 2991 2992static inline unsigned long rlimit_max(unsigned int limit) 2993{ 2994 return task_rlimit_max(current, limit); 2995} 2996 2997#endif