at v3.15 39 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47#include <asm/barrier.h> 48 49extern int rcu_expedited; /* for sysctl */ 50#ifdef CONFIG_RCU_TORTURE_TEST 51extern int rcutorture_runnable; /* for sysctl */ 52#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 53 54#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 55void rcutorture_record_test_transition(void); 56void rcutorture_record_progress(unsigned long vernum); 57void do_trace_rcu_torture_read(const char *rcutorturename, 58 struct rcu_head *rhp, 59 unsigned long secs, 60 unsigned long c_old, 61 unsigned long c); 62#else 63static inline void rcutorture_record_test_transition(void) 64{ 65} 66static inline void rcutorture_record_progress(unsigned long vernum) 67{ 68} 69#ifdef CONFIG_RCU_TRACE 70void do_trace_rcu_torture_read(const char *rcutorturename, 71 struct rcu_head *rhp, 72 unsigned long secs, 73 unsigned long c_old, 74 unsigned long c); 75#else 76#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 77 do { } while (0) 78#endif 79#endif 80 81#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 82#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 83#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 84#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 85#define ulong2long(a) (*(long *)(&(a))) 86 87/* Exported common interfaces */ 88 89#ifdef CONFIG_PREEMPT_RCU 90 91/** 92 * call_rcu() - Queue an RCU callback for invocation after a grace period. 93 * @head: structure to be used for queueing the RCU updates. 94 * @func: actual callback function to be invoked after the grace period 95 * 96 * The callback function will be invoked some time after a full grace 97 * period elapses, in other words after all pre-existing RCU read-side 98 * critical sections have completed. However, the callback function 99 * might well execute concurrently with RCU read-side critical sections 100 * that started after call_rcu() was invoked. RCU read-side critical 101 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 102 * and may be nested. 103 * 104 * Note that all CPUs must agree that the grace period extended beyond 105 * all pre-existing RCU read-side critical section. On systems with more 106 * than one CPU, this means that when "func()" is invoked, each CPU is 107 * guaranteed to have executed a full memory barrier since the end of its 108 * last RCU read-side critical section whose beginning preceded the call 109 * to call_rcu(). It also means that each CPU executing an RCU read-side 110 * critical section that continues beyond the start of "func()" must have 111 * executed a memory barrier after the call_rcu() but before the beginning 112 * of that RCU read-side critical section. Note that these guarantees 113 * include CPUs that are offline, idle, or executing in user mode, as 114 * well as CPUs that are executing in the kernel. 115 * 116 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 117 * resulting RCU callback function "func()", then both CPU A and CPU B are 118 * guaranteed to execute a full memory barrier during the time interval 119 * between the call to call_rcu() and the invocation of "func()" -- even 120 * if CPU A and CPU B are the same CPU (but again only if the system has 121 * more than one CPU). 122 */ 123void call_rcu(struct rcu_head *head, 124 void (*func)(struct rcu_head *head)); 125 126#else /* #ifdef CONFIG_PREEMPT_RCU */ 127 128/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 129#define call_rcu call_rcu_sched 130 131#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 132 133/** 134 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 135 * @head: structure to be used for queueing the RCU updates. 136 * @func: actual callback function to be invoked after the grace period 137 * 138 * The callback function will be invoked some time after a full grace 139 * period elapses, in other words after all currently executing RCU 140 * read-side critical sections have completed. call_rcu_bh() assumes 141 * that the read-side critical sections end on completion of a softirq 142 * handler. This means that read-side critical sections in process 143 * context must not be interrupted by softirqs. This interface is to be 144 * used when most of the read-side critical sections are in softirq context. 145 * RCU read-side critical sections are delimited by : 146 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 147 * OR 148 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 149 * These may be nested. 150 * 151 * See the description of call_rcu() for more detailed information on 152 * memory ordering guarantees. 153 */ 154void call_rcu_bh(struct rcu_head *head, 155 void (*func)(struct rcu_head *head)); 156 157/** 158 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 159 * @head: structure to be used for queueing the RCU updates. 160 * @func: actual callback function to be invoked after the grace period 161 * 162 * The callback function will be invoked some time after a full grace 163 * period elapses, in other words after all currently executing RCU 164 * read-side critical sections have completed. call_rcu_sched() assumes 165 * that the read-side critical sections end on enabling of preemption 166 * or on voluntary preemption. 167 * RCU read-side critical sections are delimited by : 168 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 169 * OR 170 * anything that disables preemption. 171 * These may be nested. 172 * 173 * See the description of call_rcu() for more detailed information on 174 * memory ordering guarantees. 175 */ 176void call_rcu_sched(struct rcu_head *head, 177 void (*func)(struct rcu_head *rcu)); 178 179void synchronize_sched(void); 180 181#ifdef CONFIG_PREEMPT_RCU 182 183void __rcu_read_lock(void); 184void __rcu_read_unlock(void); 185void rcu_read_unlock_special(struct task_struct *t); 186void synchronize_rcu(void); 187 188/* 189 * Defined as a macro as it is a very low level header included from 190 * areas that don't even know about current. This gives the rcu_read_lock() 191 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 192 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 193 */ 194#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 195 196#else /* #ifdef CONFIG_PREEMPT_RCU */ 197 198static inline void __rcu_read_lock(void) 199{ 200 preempt_disable(); 201} 202 203static inline void __rcu_read_unlock(void) 204{ 205 preempt_enable(); 206} 207 208static inline void synchronize_rcu(void) 209{ 210 synchronize_sched(); 211} 212 213static inline int rcu_preempt_depth(void) 214{ 215 return 0; 216} 217 218#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 219 220/* Internal to kernel */ 221void rcu_init(void); 222void rcu_sched_qs(int cpu); 223void rcu_bh_qs(int cpu); 224void rcu_check_callbacks(int cpu, int user); 225struct notifier_block; 226void rcu_idle_enter(void); 227void rcu_idle_exit(void); 228void rcu_irq_enter(void); 229void rcu_irq_exit(void); 230 231#ifdef CONFIG_RCU_USER_QS 232void rcu_user_enter(void); 233void rcu_user_exit(void); 234#else 235static inline void rcu_user_enter(void) { } 236static inline void rcu_user_exit(void) { } 237static inline void rcu_user_hooks_switch(struct task_struct *prev, 238 struct task_struct *next) { } 239#endif /* CONFIG_RCU_USER_QS */ 240 241/** 242 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 243 * @a: Code that RCU needs to pay attention to. 244 * 245 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 246 * in the inner idle loop, that is, between the rcu_idle_enter() and 247 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 248 * critical sections. However, things like powertop need tracepoints 249 * in the inner idle loop. 250 * 251 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 252 * will tell RCU that it needs to pay attending, invoke its argument 253 * (in this example, a call to the do_something_with_RCU() function), 254 * and then tell RCU to go back to ignoring this CPU. It is permissible 255 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 256 * quite limited. If deeper nesting is required, it will be necessary 257 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 258 */ 259#define RCU_NONIDLE(a) \ 260 do { \ 261 rcu_irq_enter(); \ 262 do { a; } while (0); \ 263 rcu_irq_exit(); \ 264 } while (0) 265 266#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 267bool __rcu_is_watching(void); 268#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 269 270/* 271 * Infrastructure to implement the synchronize_() primitives in 272 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 273 */ 274 275typedef void call_rcu_func_t(struct rcu_head *head, 276 void (*func)(struct rcu_head *head)); 277void wait_rcu_gp(call_rcu_func_t crf); 278 279#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 280#include <linux/rcutree.h> 281#elif defined(CONFIG_TINY_RCU) 282#include <linux/rcutiny.h> 283#else 284#error "Unknown RCU implementation specified to kernel configuration" 285#endif 286 287/* 288 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 289 * initialization and destruction of rcu_head on the stack. rcu_head structures 290 * allocated dynamically in the heap or defined statically don't need any 291 * initialization. 292 */ 293#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 294void init_rcu_head_on_stack(struct rcu_head *head); 295void destroy_rcu_head_on_stack(struct rcu_head *head); 296#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 297static inline void init_rcu_head_on_stack(struct rcu_head *head) 298{ 299} 300 301static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 302{ 303} 304#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 305 306#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 307bool rcu_lockdep_current_cpu_online(void); 308#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 309static inline bool rcu_lockdep_current_cpu_online(void) 310{ 311 return 1; 312} 313#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 314 315#ifdef CONFIG_DEBUG_LOCK_ALLOC 316 317static inline void rcu_lock_acquire(struct lockdep_map *map) 318{ 319 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 320} 321 322static inline void rcu_lock_release(struct lockdep_map *map) 323{ 324 lock_release(map, 1, _THIS_IP_); 325} 326 327extern struct lockdep_map rcu_lock_map; 328extern struct lockdep_map rcu_bh_lock_map; 329extern struct lockdep_map rcu_sched_lock_map; 330extern struct lockdep_map rcu_callback_map; 331extern int debug_lockdep_rcu_enabled(void); 332 333/** 334 * rcu_read_lock_held() - might we be in RCU read-side critical section? 335 * 336 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 337 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 338 * this assumes we are in an RCU read-side critical section unless it can 339 * prove otherwise. This is useful for debug checks in functions that 340 * require that they be called within an RCU read-side critical section. 341 * 342 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 343 * and while lockdep is disabled. 344 * 345 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 346 * occur in the same context, for example, it is illegal to invoke 347 * rcu_read_unlock() in process context if the matching rcu_read_lock() 348 * was invoked from within an irq handler. 349 * 350 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 351 * offline from an RCU perspective, so check for those as well. 352 */ 353static inline int rcu_read_lock_held(void) 354{ 355 if (!debug_lockdep_rcu_enabled()) 356 return 1; 357 if (!rcu_is_watching()) 358 return 0; 359 if (!rcu_lockdep_current_cpu_online()) 360 return 0; 361 return lock_is_held(&rcu_lock_map); 362} 363 364/* 365 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 366 * hell. 367 */ 368int rcu_read_lock_bh_held(void); 369 370/** 371 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 372 * 373 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 374 * RCU-sched read-side critical section. In absence of 375 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 376 * critical section unless it can prove otherwise. Note that disabling 377 * of preemption (including disabling irqs) counts as an RCU-sched 378 * read-side critical section. This is useful for debug checks in functions 379 * that required that they be called within an RCU-sched read-side 380 * critical section. 381 * 382 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 383 * and while lockdep is disabled. 384 * 385 * Note that if the CPU is in the idle loop from an RCU point of 386 * view (ie: that we are in the section between rcu_idle_enter() and 387 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 388 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 389 * that are in such a section, considering these as in extended quiescent 390 * state, so such a CPU is effectively never in an RCU read-side critical 391 * section regardless of what RCU primitives it invokes. This state of 392 * affairs is required --- we need to keep an RCU-free window in idle 393 * where the CPU may possibly enter into low power mode. This way we can 394 * notice an extended quiescent state to other CPUs that started a grace 395 * period. Otherwise we would delay any grace period as long as we run in 396 * the idle task. 397 * 398 * Similarly, we avoid claiming an SRCU read lock held if the current 399 * CPU is offline. 400 */ 401#ifdef CONFIG_PREEMPT_COUNT 402static inline int rcu_read_lock_sched_held(void) 403{ 404 int lockdep_opinion = 0; 405 406 if (!debug_lockdep_rcu_enabled()) 407 return 1; 408 if (!rcu_is_watching()) 409 return 0; 410 if (!rcu_lockdep_current_cpu_online()) 411 return 0; 412 if (debug_locks) 413 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 414 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 415} 416#else /* #ifdef CONFIG_PREEMPT_COUNT */ 417static inline int rcu_read_lock_sched_held(void) 418{ 419 return 1; 420} 421#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 422 423#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 424 425# define rcu_lock_acquire(a) do { } while (0) 426# define rcu_lock_release(a) do { } while (0) 427 428static inline int rcu_read_lock_held(void) 429{ 430 return 1; 431} 432 433static inline int rcu_read_lock_bh_held(void) 434{ 435 return 1; 436} 437 438#ifdef CONFIG_PREEMPT_COUNT 439static inline int rcu_read_lock_sched_held(void) 440{ 441 return preempt_count() != 0 || irqs_disabled(); 442} 443#else /* #ifdef CONFIG_PREEMPT_COUNT */ 444static inline int rcu_read_lock_sched_held(void) 445{ 446 return 1; 447} 448#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 449 450#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 451 452#ifdef CONFIG_PROVE_RCU 453 454/** 455 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 456 * @c: condition to check 457 * @s: informative message 458 */ 459#define rcu_lockdep_assert(c, s) \ 460 do { \ 461 static bool __section(.data.unlikely) __warned; \ 462 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 463 __warned = true; \ 464 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 465 } \ 466 } while (0) 467 468#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 469static inline void rcu_preempt_sleep_check(void) 470{ 471 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 472 "Illegal context switch in RCU read-side critical section"); 473} 474#else /* #ifdef CONFIG_PROVE_RCU */ 475static inline void rcu_preempt_sleep_check(void) 476{ 477} 478#endif /* #else #ifdef CONFIG_PROVE_RCU */ 479 480#define rcu_sleep_check() \ 481 do { \ 482 rcu_preempt_sleep_check(); \ 483 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 484 "Illegal context switch in RCU-bh read-side critical section"); \ 485 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 486 "Illegal context switch in RCU-sched read-side critical section"); \ 487 } while (0) 488 489#else /* #ifdef CONFIG_PROVE_RCU */ 490 491#define rcu_lockdep_assert(c, s) do { } while (0) 492#define rcu_sleep_check() do { } while (0) 493 494#endif /* #else #ifdef CONFIG_PROVE_RCU */ 495 496/* 497 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 498 * and rcu_assign_pointer(). Some of these could be folded into their 499 * callers, but they are left separate in order to ease introduction of 500 * multiple flavors of pointers to match the multiple flavors of RCU 501 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 502 * the future. 503 */ 504 505#ifdef __CHECKER__ 506#define rcu_dereference_sparse(p, space) \ 507 ((void)(((typeof(*p) space *)p) == p)) 508#else /* #ifdef __CHECKER__ */ 509#define rcu_dereference_sparse(p, space) 510#endif /* #else #ifdef __CHECKER__ */ 511 512#define __rcu_access_pointer(p, space) \ 513({ \ 514 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \ 515 rcu_dereference_sparse(p, space); \ 516 ((typeof(*p) __force __kernel *)(_________p1)); \ 517}) 518#define __rcu_dereference_check(p, c, space) \ 519({ \ 520 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \ 521 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \ 522 rcu_dereference_sparse(p, space); \ 523 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 524 ((typeof(*p) __force __kernel *)(_________p1)); \ 525}) 526#define __rcu_dereference_protected(p, c, space) \ 527({ \ 528 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \ 529 rcu_dereference_sparse(p, space); \ 530 ((typeof(*p) __force __kernel *)(p)); \ 531}) 532 533#define __rcu_access_index(p, space) \ 534({ \ 535 typeof(p) _________p1 = ACCESS_ONCE(p); \ 536 rcu_dereference_sparse(p, space); \ 537 (_________p1); \ 538}) 539#define __rcu_dereference_index_check(p, c) \ 540({ \ 541 typeof(p) _________p1 = ACCESS_ONCE(p); \ 542 rcu_lockdep_assert(c, \ 543 "suspicious rcu_dereference_index_check() usage"); \ 544 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 545 (_________p1); \ 546}) 547 548/** 549 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 550 * @v: The value to statically initialize with. 551 */ 552#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 553 554/** 555 * rcu_assign_pointer() - assign to RCU-protected pointer 556 * @p: pointer to assign to 557 * @v: value to assign (publish) 558 * 559 * Assigns the specified value to the specified RCU-protected 560 * pointer, ensuring that any concurrent RCU readers will see 561 * any prior initialization. 562 * 563 * Inserts memory barriers on architectures that require them 564 * (which is most of them), and also prevents the compiler from 565 * reordering the code that initializes the structure after the pointer 566 * assignment. More importantly, this call documents which pointers 567 * will be dereferenced by RCU read-side code. 568 * 569 * In some special cases, you may use RCU_INIT_POINTER() instead 570 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 571 * to the fact that it does not constrain either the CPU or the compiler. 572 * That said, using RCU_INIT_POINTER() when you should have used 573 * rcu_assign_pointer() is a very bad thing that results in 574 * impossible-to-diagnose memory corruption. So please be careful. 575 * See the RCU_INIT_POINTER() comment header for details. 576 * 577 * Note that rcu_assign_pointer() evaluates each of its arguments only 578 * once, appearances notwithstanding. One of the "extra" evaluations 579 * is in typeof() and the other visible only to sparse (__CHECKER__), 580 * neither of which actually execute the argument. As with most cpp 581 * macros, this execute-arguments-only-once property is important, so 582 * please be careful when making changes to rcu_assign_pointer() and the 583 * other macros that it invokes. 584 */ 585#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) 586 587/** 588 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 589 * @p: The pointer to read 590 * 591 * Return the value of the specified RCU-protected pointer, but omit the 592 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 593 * when the value of this pointer is accessed, but the pointer is not 594 * dereferenced, for example, when testing an RCU-protected pointer against 595 * NULL. Although rcu_access_pointer() may also be used in cases where 596 * update-side locks prevent the value of the pointer from changing, you 597 * should instead use rcu_dereference_protected() for this use case. 598 * 599 * It is also permissible to use rcu_access_pointer() when read-side 600 * access to the pointer was removed at least one grace period ago, as 601 * is the case in the context of the RCU callback that is freeing up 602 * the data, or after a synchronize_rcu() returns. This can be useful 603 * when tearing down multi-linked structures after a grace period 604 * has elapsed. 605 */ 606#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 607 608/** 609 * rcu_dereference_check() - rcu_dereference with debug checking 610 * @p: The pointer to read, prior to dereferencing 611 * @c: The conditions under which the dereference will take place 612 * 613 * Do an rcu_dereference(), but check that the conditions under which the 614 * dereference will take place are correct. Typically the conditions 615 * indicate the various locking conditions that should be held at that 616 * point. The check should return true if the conditions are satisfied. 617 * An implicit check for being in an RCU read-side critical section 618 * (rcu_read_lock()) is included. 619 * 620 * For example: 621 * 622 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 623 * 624 * could be used to indicate to lockdep that foo->bar may only be dereferenced 625 * if either rcu_read_lock() is held, or that the lock required to replace 626 * the bar struct at foo->bar is held. 627 * 628 * Note that the list of conditions may also include indications of when a lock 629 * need not be held, for example during initialisation or destruction of the 630 * target struct: 631 * 632 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 633 * atomic_read(&foo->usage) == 0); 634 * 635 * Inserts memory barriers on architectures that require them 636 * (currently only the Alpha), prevents the compiler from refetching 637 * (and from merging fetches), and, more importantly, documents exactly 638 * which pointers are protected by RCU and checks that the pointer is 639 * annotated as __rcu. 640 */ 641#define rcu_dereference_check(p, c) \ 642 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 643 644/** 645 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 646 * @p: The pointer to read, prior to dereferencing 647 * @c: The conditions under which the dereference will take place 648 * 649 * This is the RCU-bh counterpart to rcu_dereference_check(). 650 */ 651#define rcu_dereference_bh_check(p, c) \ 652 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 653 654/** 655 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 656 * @p: The pointer to read, prior to dereferencing 657 * @c: The conditions under which the dereference will take place 658 * 659 * This is the RCU-sched counterpart to rcu_dereference_check(). 660 */ 661#define rcu_dereference_sched_check(p, c) \ 662 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 663 __rcu) 664 665#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 666 667/* 668 * The tracing infrastructure traces RCU (we want that), but unfortunately 669 * some of the RCU checks causes tracing to lock up the system. 670 * 671 * The tracing version of rcu_dereference_raw() must not call 672 * rcu_read_lock_held(). 673 */ 674#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 675 676/** 677 * rcu_access_index() - fetch RCU index with no dereferencing 678 * @p: The index to read 679 * 680 * Return the value of the specified RCU-protected index, but omit the 681 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 682 * when the value of this index is accessed, but the index is not 683 * dereferenced, for example, when testing an RCU-protected index against 684 * -1. Although rcu_access_index() may also be used in cases where 685 * update-side locks prevent the value of the index from changing, you 686 * should instead use rcu_dereference_index_protected() for this use case. 687 */ 688#define rcu_access_index(p) __rcu_access_index((p), __rcu) 689 690/** 691 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 692 * @p: The pointer to read, prior to dereferencing 693 * @c: The conditions under which the dereference will take place 694 * 695 * Similar to rcu_dereference_check(), but omits the sparse checking. 696 * This allows rcu_dereference_index_check() to be used on integers, 697 * which can then be used as array indices. Attempting to use 698 * rcu_dereference_check() on an integer will give compiler warnings 699 * because the sparse address-space mechanism relies on dereferencing 700 * the RCU-protected pointer. Dereferencing integers is not something 701 * that even gcc will put up with. 702 * 703 * Note that this function does not implicitly check for RCU read-side 704 * critical sections. If this function gains lots of uses, it might 705 * make sense to provide versions for each flavor of RCU, but it does 706 * not make sense as of early 2010. 707 */ 708#define rcu_dereference_index_check(p, c) \ 709 __rcu_dereference_index_check((p), (c)) 710 711/** 712 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 713 * @p: The pointer to read, prior to dereferencing 714 * @c: The conditions under which the dereference will take place 715 * 716 * Return the value of the specified RCU-protected pointer, but omit 717 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 718 * is useful in cases where update-side locks prevent the value of the 719 * pointer from changing. Please note that this primitive does -not- 720 * prevent the compiler from repeating this reference or combining it 721 * with other references, so it should not be used without protection 722 * of appropriate locks. 723 * 724 * This function is only for update-side use. Using this function 725 * when protected only by rcu_read_lock() will result in infrequent 726 * but very ugly failures. 727 */ 728#define rcu_dereference_protected(p, c) \ 729 __rcu_dereference_protected((p), (c), __rcu) 730 731 732/** 733 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 734 * @p: The pointer to read, prior to dereferencing 735 * 736 * This is a simple wrapper around rcu_dereference_check(). 737 */ 738#define rcu_dereference(p) rcu_dereference_check(p, 0) 739 740/** 741 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 742 * @p: The pointer to read, prior to dereferencing 743 * 744 * Makes rcu_dereference_check() do the dirty work. 745 */ 746#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 747 748/** 749 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 750 * @p: The pointer to read, prior to dereferencing 751 * 752 * Makes rcu_dereference_check() do the dirty work. 753 */ 754#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 755 756/** 757 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 758 * 759 * When synchronize_rcu() is invoked on one CPU while other CPUs 760 * are within RCU read-side critical sections, then the 761 * synchronize_rcu() is guaranteed to block until after all the other 762 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 763 * on one CPU while other CPUs are within RCU read-side critical 764 * sections, invocation of the corresponding RCU callback is deferred 765 * until after the all the other CPUs exit their critical sections. 766 * 767 * Note, however, that RCU callbacks are permitted to run concurrently 768 * with new RCU read-side critical sections. One way that this can happen 769 * is via the following sequence of events: (1) CPU 0 enters an RCU 770 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 771 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 772 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 773 * callback is invoked. This is legal, because the RCU read-side critical 774 * section that was running concurrently with the call_rcu() (and which 775 * therefore might be referencing something that the corresponding RCU 776 * callback would free up) has completed before the corresponding 777 * RCU callback is invoked. 778 * 779 * RCU read-side critical sections may be nested. Any deferred actions 780 * will be deferred until the outermost RCU read-side critical section 781 * completes. 782 * 783 * You can avoid reading and understanding the next paragraph by 784 * following this rule: don't put anything in an rcu_read_lock() RCU 785 * read-side critical section that would block in a !PREEMPT kernel. 786 * But if you want the full story, read on! 787 * 788 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 789 * is illegal to block while in an RCU read-side critical section. In 790 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 791 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 792 * be preempted, but explicit blocking is illegal. Finally, in preemptible 793 * RCU implementations in real-time (with -rt patchset) kernel builds, 794 * RCU read-side critical sections may be preempted and they may also 795 * block, but only when acquiring spinlocks that are subject to priority 796 * inheritance. 797 */ 798static inline void rcu_read_lock(void) 799{ 800 __rcu_read_lock(); 801 __acquire(RCU); 802 rcu_lock_acquire(&rcu_lock_map); 803 rcu_lockdep_assert(rcu_is_watching(), 804 "rcu_read_lock() used illegally while idle"); 805} 806 807/* 808 * So where is rcu_write_lock()? It does not exist, as there is no 809 * way for writers to lock out RCU readers. This is a feature, not 810 * a bug -- this property is what provides RCU's performance benefits. 811 * Of course, writers must coordinate with each other. The normal 812 * spinlock primitives work well for this, but any other technique may be 813 * used as well. RCU does not care how the writers keep out of each 814 * others' way, as long as they do so. 815 */ 816 817/** 818 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 819 * 820 * See rcu_read_lock() for more information. 821 */ 822static inline void rcu_read_unlock(void) 823{ 824 rcu_lockdep_assert(rcu_is_watching(), 825 "rcu_read_unlock() used illegally while idle"); 826 rcu_lock_release(&rcu_lock_map); 827 __release(RCU); 828 __rcu_read_unlock(); 829} 830 831/** 832 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 833 * 834 * This is equivalent of rcu_read_lock(), but to be used when updates 835 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 836 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 837 * softirq handler to be a quiescent state, a process in RCU read-side 838 * critical section must be protected by disabling softirqs. Read-side 839 * critical sections in interrupt context can use just rcu_read_lock(), 840 * though this should at least be commented to avoid confusing people 841 * reading the code. 842 * 843 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 844 * must occur in the same context, for example, it is illegal to invoke 845 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 846 * was invoked from some other task. 847 */ 848static inline void rcu_read_lock_bh(void) 849{ 850 local_bh_disable(); 851 __acquire(RCU_BH); 852 rcu_lock_acquire(&rcu_bh_lock_map); 853 rcu_lockdep_assert(rcu_is_watching(), 854 "rcu_read_lock_bh() used illegally while idle"); 855} 856 857/* 858 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 859 * 860 * See rcu_read_lock_bh() for more information. 861 */ 862static inline void rcu_read_unlock_bh(void) 863{ 864 rcu_lockdep_assert(rcu_is_watching(), 865 "rcu_read_unlock_bh() used illegally while idle"); 866 rcu_lock_release(&rcu_bh_lock_map); 867 __release(RCU_BH); 868 local_bh_enable(); 869} 870 871/** 872 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 873 * 874 * This is equivalent of rcu_read_lock(), but to be used when updates 875 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 876 * Read-side critical sections can also be introduced by anything that 877 * disables preemption, including local_irq_disable() and friends. 878 * 879 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 880 * must occur in the same context, for example, it is illegal to invoke 881 * rcu_read_unlock_sched() from process context if the matching 882 * rcu_read_lock_sched() was invoked from an NMI handler. 883 */ 884static inline void rcu_read_lock_sched(void) 885{ 886 preempt_disable(); 887 __acquire(RCU_SCHED); 888 rcu_lock_acquire(&rcu_sched_lock_map); 889 rcu_lockdep_assert(rcu_is_watching(), 890 "rcu_read_lock_sched() used illegally while idle"); 891} 892 893/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 894static inline notrace void rcu_read_lock_sched_notrace(void) 895{ 896 preempt_disable_notrace(); 897 __acquire(RCU_SCHED); 898} 899 900/* 901 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 902 * 903 * See rcu_read_lock_sched for more information. 904 */ 905static inline void rcu_read_unlock_sched(void) 906{ 907 rcu_lockdep_assert(rcu_is_watching(), 908 "rcu_read_unlock_sched() used illegally while idle"); 909 rcu_lock_release(&rcu_sched_lock_map); 910 __release(RCU_SCHED); 911 preempt_enable(); 912} 913 914/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 915static inline notrace void rcu_read_unlock_sched_notrace(void) 916{ 917 __release(RCU_SCHED); 918 preempt_enable_notrace(); 919} 920 921/** 922 * RCU_INIT_POINTER() - initialize an RCU protected pointer 923 * 924 * Initialize an RCU-protected pointer in special cases where readers 925 * do not need ordering constraints on the CPU or the compiler. These 926 * special cases are: 927 * 928 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 929 * 2. The caller has taken whatever steps are required to prevent 930 * RCU readers from concurrently accessing this pointer -or- 931 * 3. The referenced data structure has already been exposed to 932 * readers either at compile time or via rcu_assign_pointer() -and- 933 * a. You have not made -any- reader-visible changes to 934 * this structure since then -or- 935 * b. It is OK for readers accessing this structure from its 936 * new location to see the old state of the structure. (For 937 * example, the changes were to statistical counters or to 938 * other state where exact synchronization is not required.) 939 * 940 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 941 * result in impossible-to-diagnose memory corruption. As in the structures 942 * will look OK in crash dumps, but any concurrent RCU readers might 943 * see pre-initialized values of the referenced data structure. So 944 * please be very careful how you use RCU_INIT_POINTER()!!! 945 * 946 * If you are creating an RCU-protected linked structure that is accessed 947 * by a single external-to-structure RCU-protected pointer, then you may 948 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 949 * pointers, but you must use rcu_assign_pointer() to initialize the 950 * external-to-structure pointer -after- you have completely initialized 951 * the reader-accessible portions of the linked structure. 952 */ 953#define RCU_INIT_POINTER(p, v) \ 954 do { \ 955 p = RCU_INITIALIZER(v); \ 956 } while (0) 957 958/** 959 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 960 * 961 * GCC-style initialization for an RCU-protected pointer in a structure field. 962 */ 963#define RCU_POINTER_INITIALIZER(p, v) \ 964 .p = RCU_INITIALIZER(v) 965 966/* 967 * Does the specified offset indicate that the corresponding rcu_head 968 * structure can be handled by kfree_rcu()? 969 */ 970#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 971 972/* 973 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 974 */ 975#define __kfree_rcu(head, offset) \ 976 do { \ 977 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 978 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 979 } while (0) 980 981/** 982 * kfree_rcu() - kfree an object after a grace period. 983 * @ptr: pointer to kfree 984 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 985 * 986 * Many rcu callbacks functions just call kfree() on the base structure. 987 * These functions are trivial, but their size adds up, and furthermore 988 * when they are used in a kernel module, that module must invoke the 989 * high-latency rcu_barrier() function at module-unload time. 990 * 991 * The kfree_rcu() function handles this issue. Rather than encoding a 992 * function address in the embedded rcu_head structure, kfree_rcu() instead 993 * encodes the offset of the rcu_head structure within the base structure. 994 * Because the functions are not allowed in the low-order 4096 bytes of 995 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 996 * If the offset is larger than 4095 bytes, a compile-time error will 997 * be generated in __kfree_rcu(). If this error is triggered, you can 998 * either fall back to use of call_rcu() or rearrange the structure to 999 * position the rcu_head structure into the first 4096 bytes. 1000 * 1001 * Note that the allowable offset might decrease in the future, for example, 1002 * to allow something like kmem_cache_free_rcu(). 1003 * 1004 * The BUILD_BUG_ON check must not involve any function calls, hence the 1005 * checks are done in macros here. 1006 */ 1007#define kfree_rcu(ptr, rcu_head) \ 1008 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1009 1010#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) 1011static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies) 1012{ 1013 *delta_jiffies = ULONG_MAX; 1014 return 0; 1015} 1016#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */ 1017 1018#if defined(CONFIG_RCU_NOCB_CPU_ALL) 1019static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1020#elif defined(CONFIG_RCU_NOCB_CPU) 1021bool rcu_is_nocb_cpu(int cpu); 1022#else 1023static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1024#endif 1025 1026 1027/* Only for use by adaptive-ticks code. */ 1028#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1029bool rcu_sys_is_idle(void); 1030void rcu_sysidle_force_exit(void); 1031#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1032 1033static inline bool rcu_sys_is_idle(void) 1034{ 1035 return false; 1036} 1037 1038static inline void rcu_sysidle_force_exit(void) 1039{ 1040} 1041 1042#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1043 1044 1045#endif /* __LINUX_RCUPDATE_H */