at v3.15 41 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66#ifdef CONFIG_CMA 67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68#else 69# define is_migrate_cma(migratetype) false 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78static inline int get_pageblock_migratetype(struct page *page) 79{ 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81} 82 83struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86}; 87 88struct pglist_data; 89 90/* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96#if defined(CONFIG_SMP) 97struct zone_padding { 98 char x[0]; 99} ____cacheline_internodealigned_in_smp; 100#define ZONE_PADDING(name) struct zone_padding name; 101#else 102#define ZONE_PADDING(name) 103#endif 104 105enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_ALLOC_BATCH, 109 NR_LRU_BASE, 110 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 111 NR_ACTIVE_ANON, /* " " " " " */ 112 NR_INACTIVE_FILE, /* " " " " " */ 113 NR_ACTIVE_FILE, /* " " " " " */ 114 NR_UNEVICTABLE, /* " " " " " */ 115 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 116 NR_ANON_PAGES, /* Mapped anonymous pages */ 117 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 118 only modified from process context */ 119 NR_FILE_PAGES, 120 NR_FILE_DIRTY, 121 NR_WRITEBACK, 122 NR_SLAB_RECLAIMABLE, 123 NR_SLAB_UNRECLAIMABLE, 124 NR_PAGETABLE, /* used for pagetables */ 125 NR_KERNEL_STACK, 126 /* Second 128 byte cacheline */ 127 NR_UNSTABLE_NFS, /* NFS unstable pages */ 128 NR_BOUNCE, 129 NR_VMSCAN_WRITE, 130 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 131 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 132 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 133 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 134 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 135 NR_DIRTIED, /* page dirtyings since bootup */ 136 NR_WRITTEN, /* page writings since bootup */ 137#ifdef CONFIG_NUMA 138 NUMA_HIT, /* allocated in intended node */ 139 NUMA_MISS, /* allocated in non intended node */ 140 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 141 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 142 NUMA_LOCAL, /* allocation from local node */ 143 NUMA_OTHER, /* allocation from other node */ 144#endif 145 WORKINGSET_REFAULT, 146 WORKINGSET_ACTIVATE, 147 WORKINGSET_NODERECLAIM, 148 NR_ANON_TRANSPARENT_HUGEPAGES, 149 NR_FREE_CMA_PAGES, 150 NR_VM_ZONE_STAT_ITEMS }; 151 152/* 153 * We do arithmetic on the LRU lists in various places in the code, 154 * so it is important to keep the active lists LRU_ACTIVE higher in 155 * the array than the corresponding inactive lists, and to keep 156 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 157 * 158 * This has to be kept in sync with the statistics in zone_stat_item 159 * above and the descriptions in vmstat_text in mm/vmstat.c 160 */ 161#define LRU_BASE 0 162#define LRU_ACTIVE 1 163#define LRU_FILE 2 164 165enum lru_list { 166 LRU_INACTIVE_ANON = LRU_BASE, 167 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 168 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 169 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 170 LRU_UNEVICTABLE, 171 NR_LRU_LISTS 172}; 173 174#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 175 176#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 177 178static inline int is_file_lru(enum lru_list lru) 179{ 180 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 181} 182 183static inline int is_active_lru(enum lru_list lru) 184{ 185 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 186} 187 188static inline int is_unevictable_lru(enum lru_list lru) 189{ 190 return (lru == LRU_UNEVICTABLE); 191} 192 193struct zone_reclaim_stat { 194 /* 195 * The pageout code in vmscan.c keeps track of how many of the 196 * mem/swap backed and file backed pages are referenced. 197 * The higher the rotated/scanned ratio, the more valuable 198 * that cache is. 199 * 200 * The anon LRU stats live in [0], file LRU stats in [1] 201 */ 202 unsigned long recent_rotated[2]; 203 unsigned long recent_scanned[2]; 204}; 205 206struct lruvec { 207 struct list_head lists[NR_LRU_LISTS]; 208 struct zone_reclaim_stat reclaim_stat; 209#ifdef CONFIG_MEMCG 210 struct zone *zone; 211#endif 212}; 213 214/* Mask used at gathering information at once (see memcontrol.c) */ 215#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 216#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 217#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 218 219/* Isolate clean file */ 220#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 221/* Isolate unmapped file */ 222#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 223/* Isolate for asynchronous migration */ 224#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 225/* Isolate unevictable pages */ 226#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 227 228/* LRU Isolation modes. */ 229typedef unsigned __bitwise__ isolate_mode_t; 230 231enum zone_watermarks { 232 WMARK_MIN, 233 WMARK_LOW, 234 WMARK_HIGH, 235 NR_WMARK 236}; 237 238#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 239#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 240#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 241 242struct per_cpu_pages { 243 int count; /* number of pages in the list */ 244 int high; /* high watermark, emptying needed */ 245 int batch; /* chunk size for buddy add/remove */ 246 247 /* Lists of pages, one per migrate type stored on the pcp-lists */ 248 struct list_head lists[MIGRATE_PCPTYPES]; 249}; 250 251struct per_cpu_pageset { 252 struct per_cpu_pages pcp; 253#ifdef CONFIG_NUMA 254 s8 expire; 255#endif 256#ifdef CONFIG_SMP 257 s8 stat_threshold; 258 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 259#endif 260}; 261 262#endif /* !__GENERATING_BOUNDS.H */ 263 264enum zone_type { 265#ifdef CONFIG_ZONE_DMA 266 /* 267 * ZONE_DMA is used when there are devices that are not able 268 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 269 * carve out the portion of memory that is needed for these devices. 270 * The range is arch specific. 271 * 272 * Some examples 273 * 274 * Architecture Limit 275 * --------------------------- 276 * parisc, ia64, sparc <4G 277 * s390 <2G 278 * arm Various 279 * alpha Unlimited or 0-16MB. 280 * 281 * i386, x86_64 and multiple other arches 282 * <16M. 283 */ 284 ZONE_DMA, 285#endif 286#ifdef CONFIG_ZONE_DMA32 287 /* 288 * x86_64 needs two ZONE_DMAs because it supports devices that are 289 * only able to do DMA to the lower 16M but also 32 bit devices that 290 * can only do DMA areas below 4G. 291 */ 292 ZONE_DMA32, 293#endif 294 /* 295 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 296 * performed on pages in ZONE_NORMAL if the DMA devices support 297 * transfers to all addressable memory. 298 */ 299 ZONE_NORMAL, 300#ifdef CONFIG_HIGHMEM 301 /* 302 * A memory area that is only addressable by the kernel through 303 * mapping portions into its own address space. This is for example 304 * used by i386 to allow the kernel to address the memory beyond 305 * 900MB. The kernel will set up special mappings (page 306 * table entries on i386) for each page that the kernel needs to 307 * access. 308 */ 309 ZONE_HIGHMEM, 310#endif 311 ZONE_MOVABLE, 312 __MAX_NR_ZONES 313}; 314 315#ifndef __GENERATING_BOUNDS_H 316 317struct zone { 318 /* Fields commonly accessed by the page allocator */ 319 320 /* zone watermarks, access with *_wmark_pages(zone) macros */ 321 unsigned long watermark[NR_WMARK]; 322 323 /* 324 * When free pages are below this point, additional steps are taken 325 * when reading the number of free pages to avoid per-cpu counter 326 * drift allowing watermarks to be breached 327 */ 328 unsigned long percpu_drift_mark; 329 330 /* 331 * We don't know if the memory that we're going to allocate will be freeable 332 * or/and it will be released eventually, so to avoid totally wasting several 333 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 334 * to run OOM on the lower zones despite there's tons of freeable ram 335 * on the higher zones). This array is recalculated at runtime if the 336 * sysctl_lowmem_reserve_ratio sysctl changes. 337 */ 338 unsigned long lowmem_reserve[MAX_NR_ZONES]; 339 340 /* 341 * This is a per-zone reserve of pages that should not be 342 * considered dirtyable memory. 343 */ 344 unsigned long dirty_balance_reserve; 345 346#ifdef CONFIG_NUMA 347 int node; 348 /* 349 * zone reclaim becomes active if more unmapped pages exist. 350 */ 351 unsigned long min_unmapped_pages; 352 unsigned long min_slab_pages; 353#endif 354 struct per_cpu_pageset __percpu *pageset; 355 /* 356 * free areas of different sizes 357 */ 358 spinlock_t lock; 359#if defined CONFIG_COMPACTION || defined CONFIG_CMA 360 /* Set to true when the PG_migrate_skip bits should be cleared */ 361 bool compact_blockskip_flush; 362 363 /* pfns where compaction scanners should start */ 364 unsigned long compact_cached_free_pfn; 365 unsigned long compact_cached_migrate_pfn; 366#endif 367#ifdef CONFIG_MEMORY_HOTPLUG 368 /* see spanned/present_pages for more description */ 369 seqlock_t span_seqlock; 370#endif 371 struct free_area free_area[MAX_ORDER]; 372 373#ifndef CONFIG_SPARSEMEM 374 /* 375 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 376 * In SPARSEMEM, this map is stored in struct mem_section 377 */ 378 unsigned long *pageblock_flags; 379#endif /* CONFIG_SPARSEMEM */ 380 381#ifdef CONFIG_COMPACTION 382 /* 383 * On compaction failure, 1<<compact_defer_shift compactions 384 * are skipped before trying again. The number attempted since 385 * last failure is tracked with compact_considered. 386 */ 387 unsigned int compact_considered; 388 unsigned int compact_defer_shift; 389 int compact_order_failed; 390#endif 391 392 ZONE_PADDING(_pad1_) 393 394 /* Fields commonly accessed by the page reclaim scanner */ 395 spinlock_t lru_lock; 396 struct lruvec lruvec; 397 398 /* Evictions & activations on the inactive file list */ 399 atomic_long_t inactive_age; 400 401 unsigned long pages_scanned; /* since last reclaim */ 402 unsigned long flags; /* zone flags, see below */ 403 404 /* Zone statistics */ 405 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 406 407 /* 408 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 409 * this zone's LRU. Maintained by the pageout code. 410 */ 411 unsigned int inactive_ratio; 412 413 414 ZONE_PADDING(_pad2_) 415 /* Rarely used or read-mostly fields */ 416 417 /* 418 * wait_table -- the array holding the hash table 419 * wait_table_hash_nr_entries -- the size of the hash table array 420 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 421 * 422 * The purpose of all these is to keep track of the people 423 * waiting for a page to become available and make them 424 * runnable again when possible. The trouble is that this 425 * consumes a lot of space, especially when so few things 426 * wait on pages at a given time. So instead of using 427 * per-page waitqueues, we use a waitqueue hash table. 428 * 429 * The bucket discipline is to sleep on the same queue when 430 * colliding and wake all in that wait queue when removing. 431 * When something wakes, it must check to be sure its page is 432 * truly available, a la thundering herd. The cost of a 433 * collision is great, but given the expected load of the 434 * table, they should be so rare as to be outweighed by the 435 * benefits from the saved space. 436 * 437 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 438 * primary users of these fields, and in mm/page_alloc.c 439 * free_area_init_core() performs the initialization of them. 440 */ 441 wait_queue_head_t * wait_table; 442 unsigned long wait_table_hash_nr_entries; 443 unsigned long wait_table_bits; 444 445 /* 446 * Discontig memory support fields. 447 */ 448 struct pglist_data *zone_pgdat; 449 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 450 unsigned long zone_start_pfn; 451 452 /* 453 * spanned_pages is the total pages spanned by the zone, including 454 * holes, which is calculated as: 455 * spanned_pages = zone_end_pfn - zone_start_pfn; 456 * 457 * present_pages is physical pages existing within the zone, which 458 * is calculated as: 459 * present_pages = spanned_pages - absent_pages(pages in holes); 460 * 461 * managed_pages is present pages managed by the buddy system, which 462 * is calculated as (reserved_pages includes pages allocated by the 463 * bootmem allocator): 464 * managed_pages = present_pages - reserved_pages; 465 * 466 * So present_pages may be used by memory hotplug or memory power 467 * management logic to figure out unmanaged pages by checking 468 * (present_pages - managed_pages). And managed_pages should be used 469 * by page allocator and vm scanner to calculate all kinds of watermarks 470 * and thresholds. 471 * 472 * Locking rules: 473 * 474 * zone_start_pfn and spanned_pages are protected by span_seqlock. 475 * It is a seqlock because it has to be read outside of zone->lock, 476 * and it is done in the main allocator path. But, it is written 477 * quite infrequently. 478 * 479 * The span_seq lock is declared along with zone->lock because it is 480 * frequently read in proximity to zone->lock. It's good to 481 * give them a chance of being in the same cacheline. 482 * 483 * Write access to present_pages at runtime should be protected by 484 * lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't 485 * tolerant drift of present_pages should hold memory hotplug lock to 486 * get a stable value. 487 * 488 * Read access to managed_pages should be safe because it's unsigned 489 * long. Write access to zone->managed_pages and totalram_pages are 490 * protected by managed_page_count_lock at runtime. Idealy only 491 * adjust_managed_page_count() should be used instead of directly 492 * touching zone->managed_pages and totalram_pages. 493 */ 494 unsigned long spanned_pages; 495 unsigned long present_pages; 496 unsigned long managed_pages; 497 498 /* 499 * Number of MIGRATE_RESEVE page block. To maintain for just 500 * optimization. Protected by zone->lock. 501 */ 502 int nr_migrate_reserve_block; 503 504 /* 505 * rarely used fields: 506 */ 507 const char *name; 508} ____cacheline_internodealigned_in_smp; 509 510typedef enum { 511 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 512 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 513 ZONE_CONGESTED, /* zone has many dirty pages backed by 514 * a congested BDI 515 */ 516 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found 517 * many dirty file pages at the tail 518 * of the LRU. 519 */ 520 ZONE_WRITEBACK, /* reclaim scanning has recently found 521 * many pages under writeback 522 */ 523} zone_flags_t; 524 525static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 526{ 527 set_bit(flag, &zone->flags); 528} 529 530static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 531{ 532 return test_and_set_bit(flag, &zone->flags); 533} 534 535static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 536{ 537 clear_bit(flag, &zone->flags); 538} 539 540static inline int zone_is_reclaim_congested(const struct zone *zone) 541{ 542 return test_bit(ZONE_CONGESTED, &zone->flags); 543} 544 545static inline int zone_is_reclaim_dirty(const struct zone *zone) 546{ 547 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags); 548} 549 550static inline int zone_is_reclaim_writeback(const struct zone *zone) 551{ 552 return test_bit(ZONE_WRITEBACK, &zone->flags); 553} 554 555static inline int zone_is_reclaim_locked(const struct zone *zone) 556{ 557 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 558} 559 560static inline int zone_is_oom_locked(const struct zone *zone) 561{ 562 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 563} 564 565static inline unsigned long zone_end_pfn(const struct zone *zone) 566{ 567 return zone->zone_start_pfn + zone->spanned_pages; 568} 569 570static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 571{ 572 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 573} 574 575static inline bool zone_is_initialized(struct zone *zone) 576{ 577 return !!zone->wait_table; 578} 579 580static inline bool zone_is_empty(struct zone *zone) 581{ 582 return zone->spanned_pages == 0; 583} 584 585/* 586 * The "priority" of VM scanning is how much of the queues we will scan in one 587 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 588 * queues ("queue_length >> 12") during an aging round. 589 */ 590#define DEF_PRIORITY 12 591 592/* Maximum number of zones on a zonelist */ 593#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 594 595#ifdef CONFIG_NUMA 596 597/* 598 * The NUMA zonelists are doubled because we need zonelists that restrict the 599 * allocations to a single node for __GFP_THISNODE. 600 * 601 * [0] : Zonelist with fallback 602 * [1] : No fallback (__GFP_THISNODE) 603 */ 604#define MAX_ZONELISTS 2 605 606 607/* 608 * We cache key information from each zonelist for smaller cache 609 * footprint when scanning for free pages in get_page_from_freelist(). 610 * 611 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 612 * up short of free memory since the last time (last_fullzone_zap) 613 * we zero'd fullzones. 614 * 2) The array z_to_n[] maps each zone in the zonelist to its node 615 * id, so that we can efficiently evaluate whether that node is 616 * set in the current tasks mems_allowed. 617 * 618 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 619 * indexed by a zones offset in the zonelist zones[] array. 620 * 621 * The get_page_from_freelist() routine does two scans. During the 622 * first scan, we skip zones whose corresponding bit in 'fullzones' 623 * is set or whose corresponding node in current->mems_allowed (which 624 * comes from cpusets) is not set. During the second scan, we bypass 625 * this zonelist_cache, to ensure we look methodically at each zone. 626 * 627 * Once per second, we zero out (zap) fullzones, forcing us to 628 * reconsider nodes that might have regained more free memory. 629 * The field last_full_zap is the time we last zapped fullzones. 630 * 631 * This mechanism reduces the amount of time we waste repeatedly 632 * reexaming zones for free memory when they just came up low on 633 * memory momentarilly ago. 634 * 635 * The zonelist_cache struct members logically belong in struct 636 * zonelist. However, the mempolicy zonelists constructed for 637 * MPOL_BIND are intentionally variable length (and usually much 638 * shorter). A general purpose mechanism for handling structs with 639 * multiple variable length members is more mechanism than we want 640 * here. We resort to some special case hackery instead. 641 * 642 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 643 * part because they are shorter), so we put the fixed length stuff 644 * at the front of the zonelist struct, ending in a variable length 645 * zones[], as is needed by MPOL_BIND. 646 * 647 * Then we put the optional zonelist cache on the end of the zonelist 648 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 649 * the fixed length portion at the front of the struct. This pointer 650 * both enables us to find the zonelist cache, and in the case of 651 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 652 * to know that the zonelist cache is not there. 653 * 654 * The end result is that struct zonelists come in two flavors: 655 * 1) The full, fixed length version, shown below, and 656 * 2) The custom zonelists for MPOL_BIND. 657 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 658 * 659 * Even though there may be multiple CPU cores on a node modifying 660 * fullzones or last_full_zap in the same zonelist_cache at the same 661 * time, we don't lock it. This is just hint data - if it is wrong now 662 * and then, the allocator will still function, perhaps a bit slower. 663 */ 664 665 666struct zonelist_cache { 667 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 668 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 669 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 670}; 671#else 672#define MAX_ZONELISTS 1 673struct zonelist_cache; 674#endif 675 676/* 677 * This struct contains information about a zone in a zonelist. It is stored 678 * here to avoid dereferences into large structures and lookups of tables 679 */ 680struct zoneref { 681 struct zone *zone; /* Pointer to actual zone */ 682 int zone_idx; /* zone_idx(zoneref->zone) */ 683}; 684 685/* 686 * One allocation request operates on a zonelist. A zonelist 687 * is a list of zones, the first one is the 'goal' of the 688 * allocation, the other zones are fallback zones, in decreasing 689 * priority. 690 * 691 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 692 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 693 * * 694 * To speed the reading of the zonelist, the zonerefs contain the zone index 695 * of the entry being read. Helper functions to access information given 696 * a struct zoneref are 697 * 698 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 699 * zonelist_zone_idx() - Return the index of the zone for an entry 700 * zonelist_node_idx() - Return the index of the node for an entry 701 */ 702struct zonelist { 703 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 704 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 705#ifdef CONFIG_NUMA 706 struct zonelist_cache zlcache; // optional ... 707#endif 708}; 709 710#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 711struct node_active_region { 712 unsigned long start_pfn; 713 unsigned long end_pfn; 714 int nid; 715}; 716#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 717 718#ifndef CONFIG_DISCONTIGMEM 719/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 720extern struct page *mem_map; 721#endif 722 723/* 724 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 725 * (mostly NUMA machines?) to denote a higher-level memory zone than the 726 * zone denotes. 727 * 728 * On NUMA machines, each NUMA node would have a pg_data_t to describe 729 * it's memory layout. 730 * 731 * Memory statistics and page replacement data structures are maintained on a 732 * per-zone basis. 733 */ 734struct bootmem_data; 735typedef struct pglist_data { 736 struct zone node_zones[MAX_NR_ZONES]; 737 struct zonelist node_zonelists[MAX_ZONELISTS]; 738 int nr_zones; 739#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 740 struct page *node_mem_map; 741#ifdef CONFIG_MEMCG 742 struct page_cgroup *node_page_cgroup; 743#endif 744#endif 745#ifndef CONFIG_NO_BOOTMEM 746 struct bootmem_data *bdata; 747#endif 748#ifdef CONFIG_MEMORY_HOTPLUG 749 /* 750 * Must be held any time you expect node_start_pfn, node_present_pages 751 * or node_spanned_pages stay constant. Holding this will also 752 * guarantee that any pfn_valid() stays that way. 753 * 754 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 755 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 756 * 757 * Nests above zone->lock and zone->span_seqlock 758 */ 759 spinlock_t node_size_lock; 760#endif 761 unsigned long node_start_pfn; 762 unsigned long node_present_pages; /* total number of physical pages */ 763 unsigned long node_spanned_pages; /* total size of physical page 764 range, including holes */ 765 int node_id; 766 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */ 767 wait_queue_head_t kswapd_wait; 768 wait_queue_head_t pfmemalloc_wait; 769 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */ 770 int kswapd_max_order; 771 enum zone_type classzone_idx; 772#ifdef CONFIG_NUMA_BALANCING 773 /* Lock serializing the migrate rate limiting window */ 774 spinlock_t numabalancing_migrate_lock; 775 776 /* Rate limiting time interval */ 777 unsigned long numabalancing_migrate_next_window; 778 779 /* Number of pages migrated during the rate limiting time interval */ 780 unsigned long numabalancing_migrate_nr_pages; 781#endif 782} pg_data_t; 783 784#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 785#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 786#ifdef CONFIG_FLAT_NODE_MEM_MAP 787#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 788#else 789#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 790#endif 791#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 792 793#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 794#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 795 796static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 797{ 798 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 799} 800 801static inline bool pgdat_is_empty(pg_data_t *pgdat) 802{ 803 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 804} 805 806#include <linux/memory_hotplug.h> 807 808extern struct mutex zonelists_mutex; 809void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 810void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 811bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 812 int classzone_idx, int alloc_flags); 813bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 814 int classzone_idx, int alloc_flags); 815enum memmap_context { 816 MEMMAP_EARLY, 817 MEMMAP_HOTPLUG, 818}; 819extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 820 unsigned long size, 821 enum memmap_context context); 822 823extern void lruvec_init(struct lruvec *lruvec); 824 825static inline struct zone *lruvec_zone(struct lruvec *lruvec) 826{ 827#ifdef CONFIG_MEMCG 828 return lruvec->zone; 829#else 830 return container_of(lruvec, struct zone, lruvec); 831#endif 832} 833 834#ifdef CONFIG_HAVE_MEMORY_PRESENT 835void memory_present(int nid, unsigned long start, unsigned long end); 836#else 837static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 838#endif 839 840#ifdef CONFIG_HAVE_MEMORYLESS_NODES 841int local_memory_node(int node_id); 842#else 843static inline int local_memory_node(int node_id) { return node_id; }; 844#endif 845 846#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 847unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 848#endif 849 850/* 851 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 852 */ 853#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 854 855static inline int populated_zone(struct zone *zone) 856{ 857 return (!!zone->present_pages); 858} 859 860extern int movable_zone; 861 862static inline int zone_movable_is_highmem(void) 863{ 864#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 865 return movable_zone == ZONE_HIGHMEM; 866#else 867 return 0; 868#endif 869} 870 871static inline int is_highmem_idx(enum zone_type idx) 872{ 873#ifdef CONFIG_HIGHMEM 874 return (idx == ZONE_HIGHMEM || 875 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 876#else 877 return 0; 878#endif 879} 880 881/** 882 * is_highmem - helper function to quickly check if a struct zone is a 883 * highmem zone or not. This is an attempt to keep references 884 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 885 * @zone - pointer to struct zone variable 886 */ 887static inline int is_highmem(struct zone *zone) 888{ 889#ifdef CONFIG_HIGHMEM 890 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 891 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 892 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 893 zone_movable_is_highmem()); 894#else 895 return 0; 896#endif 897} 898 899/* These two functions are used to setup the per zone pages min values */ 900struct ctl_table; 901int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 902 void __user *, size_t *, loff_t *); 903extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 904int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 905 void __user *, size_t *, loff_t *); 906int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 907 void __user *, size_t *, loff_t *); 908int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 909 void __user *, size_t *, loff_t *); 910int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 911 void __user *, size_t *, loff_t *); 912 913extern int numa_zonelist_order_handler(struct ctl_table *, int, 914 void __user *, size_t *, loff_t *); 915extern char numa_zonelist_order[]; 916#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 917 918#ifndef CONFIG_NEED_MULTIPLE_NODES 919 920extern struct pglist_data contig_page_data; 921#define NODE_DATA(nid) (&contig_page_data) 922#define NODE_MEM_MAP(nid) mem_map 923 924#else /* CONFIG_NEED_MULTIPLE_NODES */ 925 926#include <asm/mmzone.h> 927 928#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 929 930extern struct pglist_data *first_online_pgdat(void); 931extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 932extern struct zone *next_zone(struct zone *zone); 933 934/** 935 * for_each_online_pgdat - helper macro to iterate over all online nodes 936 * @pgdat - pointer to a pg_data_t variable 937 */ 938#define for_each_online_pgdat(pgdat) \ 939 for (pgdat = first_online_pgdat(); \ 940 pgdat; \ 941 pgdat = next_online_pgdat(pgdat)) 942/** 943 * for_each_zone - helper macro to iterate over all memory zones 944 * @zone - pointer to struct zone variable 945 * 946 * The user only needs to declare the zone variable, for_each_zone 947 * fills it in. 948 */ 949#define for_each_zone(zone) \ 950 for (zone = (first_online_pgdat())->node_zones; \ 951 zone; \ 952 zone = next_zone(zone)) 953 954#define for_each_populated_zone(zone) \ 955 for (zone = (first_online_pgdat())->node_zones; \ 956 zone; \ 957 zone = next_zone(zone)) \ 958 if (!populated_zone(zone)) \ 959 ; /* do nothing */ \ 960 else 961 962static inline struct zone *zonelist_zone(struct zoneref *zoneref) 963{ 964 return zoneref->zone; 965} 966 967static inline int zonelist_zone_idx(struct zoneref *zoneref) 968{ 969 return zoneref->zone_idx; 970} 971 972static inline int zonelist_node_idx(struct zoneref *zoneref) 973{ 974#ifdef CONFIG_NUMA 975 /* zone_to_nid not available in this context */ 976 return zoneref->zone->node; 977#else 978 return 0; 979#endif /* CONFIG_NUMA */ 980} 981 982/** 983 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 984 * @z - The cursor used as a starting point for the search 985 * @highest_zoneidx - The zone index of the highest zone to return 986 * @nodes - An optional nodemask to filter the zonelist with 987 * @zone - The first suitable zone found is returned via this parameter 988 * 989 * This function returns the next zone at or below a given zone index that is 990 * within the allowed nodemask using a cursor as the starting point for the 991 * search. The zoneref returned is a cursor that represents the current zone 992 * being examined. It should be advanced by one before calling 993 * next_zones_zonelist again. 994 */ 995struct zoneref *next_zones_zonelist(struct zoneref *z, 996 enum zone_type highest_zoneidx, 997 nodemask_t *nodes, 998 struct zone **zone); 999 1000/** 1001 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1002 * @zonelist - The zonelist to search for a suitable zone 1003 * @highest_zoneidx - The zone index of the highest zone to return 1004 * @nodes - An optional nodemask to filter the zonelist with 1005 * @zone - The first suitable zone found is returned via this parameter 1006 * 1007 * This function returns the first zone at or below a given zone index that is 1008 * within the allowed nodemask. The zoneref returned is a cursor that can be 1009 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1010 * one before calling. 1011 */ 1012static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1013 enum zone_type highest_zoneidx, 1014 nodemask_t *nodes, 1015 struct zone **zone) 1016{ 1017 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 1018 zone); 1019} 1020 1021/** 1022 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1023 * @zone - The current zone in the iterator 1024 * @z - The current pointer within zonelist->zones being iterated 1025 * @zlist - The zonelist being iterated 1026 * @highidx - The zone index of the highest zone to return 1027 * @nodemask - Nodemask allowed by the allocator 1028 * 1029 * This iterator iterates though all zones at or below a given zone index and 1030 * within a given nodemask 1031 */ 1032#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1033 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1034 zone; \ 1035 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1036 1037/** 1038 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1039 * @zone - The current zone in the iterator 1040 * @z - The current pointer within zonelist->zones being iterated 1041 * @zlist - The zonelist being iterated 1042 * @highidx - The zone index of the highest zone to return 1043 * 1044 * This iterator iterates though all zones at or below a given zone index. 1045 */ 1046#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1047 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1048 1049#ifdef CONFIG_SPARSEMEM 1050#include <asm/sparsemem.h> 1051#endif 1052 1053#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1054 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1055static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1056{ 1057 return 0; 1058} 1059#endif 1060 1061#ifdef CONFIG_FLATMEM 1062#define pfn_to_nid(pfn) (0) 1063#endif 1064 1065#ifdef CONFIG_SPARSEMEM 1066 1067/* 1068 * SECTION_SHIFT #bits space required to store a section # 1069 * 1070 * PA_SECTION_SHIFT physical address to/from section number 1071 * PFN_SECTION_SHIFT pfn to/from section number 1072 */ 1073#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1074#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1075 1076#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1077 1078#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1079#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1080 1081#define SECTION_BLOCKFLAGS_BITS \ 1082 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1083 1084#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1085#error Allocator MAX_ORDER exceeds SECTION_SIZE 1086#endif 1087 1088#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1089#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1090 1091#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1092#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1093 1094struct page; 1095struct page_cgroup; 1096struct mem_section { 1097 /* 1098 * This is, logically, a pointer to an array of struct 1099 * pages. However, it is stored with some other magic. 1100 * (see sparse.c::sparse_init_one_section()) 1101 * 1102 * Additionally during early boot we encode node id of 1103 * the location of the section here to guide allocation. 1104 * (see sparse.c::memory_present()) 1105 * 1106 * Making it a UL at least makes someone do a cast 1107 * before using it wrong. 1108 */ 1109 unsigned long section_mem_map; 1110 1111 /* See declaration of similar field in struct zone */ 1112 unsigned long *pageblock_flags; 1113#ifdef CONFIG_MEMCG 1114 /* 1115 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1116 * section. (see memcontrol.h/page_cgroup.h about this.) 1117 */ 1118 struct page_cgroup *page_cgroup; 1119 unsigned long pad; 1120#endif 1121 /* 1122 * WARNING: mem_section must be a power-of-2 in size for the 1123 * calculation and use of SECTION_ROOT_MASK to make sense. 1124 */ 1125}; 1126 1127#ifdef CONFIG_SPARSEMEM_EXTREME 1128#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1129#else 1130#define SECTIONS_PER_ROOT 1 1131#endif 1132 1133#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1134#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1135#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1136 1137#ifdef CONFIG_SPARSEMEM_EXTREME 1138extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1139#else 1140extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1141#endif 1142 1143static inline struct mem_section *__nr_to_section(unsigned long nr) 1144{ 1145 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1146 return NULL; 1147 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1148} 1149extern int __section_nr(struct mem_section* ms); 1150extern unsigned long usemap_size(void); 1151 1152/* 1153 * We use the lower bits of the mem_map pointer to store 1154 * a little bit of information. There should be at least 1155 * 3 bits here due to 32-bit alignment. 1156 */ 1157#define SECTION_MARKED_PRESENT (1UL<<0) 1158#define SECTION_HAS_MEM_MAP (1UL<<1) 1159#define SECTION_MAP_LAST_BIT (1UL<<2) 1160#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1161#define SECTION_NID_SHIFT 2 1162 1163static inline struct page *__section_mem_map_addr(struct mem_section *section) 1164{ 1165 unsigned long map = section->section_mem_map; 1166 map &= SECTION_MAP_MASK; 1167 return (struct page *)map; 1168} 1169 1170static inline int present_section(struct mem_section *section) 1171{ 1172 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1173} 1174 1175static inline int present_section_nr(unsigned long nr) 1176{ 1177 return present_section(__nr_to_section(nr)); 1178} 1179 1180static inline int valid_section(struct mem_section *section) 1181{ 1182 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1183} 1184 1185static inline int valid_section_nr(unsigned long nr) 1186{ 1187 return valid_section(__nr_to_section(nr)); 1188} 1189 1190static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1191{ 1192 return __nr_to_section(pfn_to_section_nr(pfn)); 1193} 1194 1195#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1196static inline int pfn_valid(unsigned long pfn) 1197{ 1198 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1199 return 0; 1200 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1201} 1202#endif 1203 1204static inline int pfn_present(unsigned long pfn) 1205{ 1206 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1207 return 0; 1208 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1209} 1210 1211/* 1212 * These are _only_ used during initialisation, therefore they 1213 * can use __initdata ... They could have names to indicate 1214 * this restriction. 1215 */ 1216#ifdef CONFIG_NUMA 1217#define pfn_to_nid(pfn) \ 1218({ \ 1219 unsigned long __pfn_to_nid_pfn = (pfn); \ 1220 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1221}) 1222#else 1223#define pfn_to_nid(pfn) (0) 1224#endif 1225 1226#define early_pfn_valid(pfn) pfn_valid(pfn) 1227void sparse_init(void); 1228#else 1229#define sparse_init() do {} while (0) 1230#define sparse_index_init(_sec, _nid) do {} while (0) 1231#endif /* CONFIG_SPARSEMEM */ 1232 1233#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1234bool early_pfn_in_nid(unsigned long pfn, int nid); 1235#else 1236#define early_pfn_in_nid(pfn, nid) (1) 1237#endif 1238 1239#ifndef early_pfn_valid 1240#define early_pfn_valid(pfn) (1) 1241#endif 1242 1243void memory_present(int nid, unsigned long start, unsigned long end); 1244unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1245 1246/* 1247 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1248 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1249 * pfn_valid_within() should be used in this case; we optimise this away 1250 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1251 */ 1252#ifdef CONFIG_HOLES_IN_ZONE 1253#define pfn_valid_within(pfn) pfn_valid(pfn) 1254#else 1255#define pfn_valid_within(pfn) (1) 1256#endif 1257 1258#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1259/* 1260 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1261 * associated with it or not. In FLATMEM, it is expected that holes always 1262 * have valid memmap as long as there is valid PFNs either side of the hole. 1263 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1264 * entire section. 1265 * 1266 * However, an ARM, and maybe other embedded architectures in the future 1267 * free memmap backing holes to save memory on the assumption the memmap is 1268 * never used. The page_zone linkages are then broken even though pfn_valid() 1269 * returns true. A walker of the full memmap must then do this additional 1270 * check to ensure the memmap they are looking at is sane by making sure 1271 * the zone and PFN linkages are still valid. This is expensive, but walkers 1272 * of the full memmap are extremely rare. 1273 */ 1274int memmap_valid_within(unsigned long pfn, 1275 struct page *page, struct zone *zone); 1276#else 1277static inline int memmap_valid_within(unsigned long pfn, 1278 struct page *page, struct zone *zone) 1279{ 1280 return 1; 1281} 1282#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1283 1284#endif /* !__GENERATING_BOUNDS.H */ 1285#endif /* !__ASSEMBLY__ */ 1286#endif /* _LINUX_MMZONE_H */