at v3.15 15 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/rbtree.h> 10#include <linux/rwsem.h> 11#include <linux/completion.h> 12#include <linux/cpumask.h> 13#include <linux/page-debug-flags.h> 14#include <linux/uprobes.h> 15#include <linux/page-flags-layout.h> 16#include <asm/page.h> 17#include <asm/mmu.h> 18 19#ifndef AT_VECTOR_SIZE_ARCH 20#define AT_VECTOR_SIZE_ARCH 0 21#endif 22#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 23 24struct address_space; 25 26#define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27#define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \ 28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) 29#define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) 30 31/* 32 * Each physical page in the system has a struct page associated with 33 * it to keep track of whatever it is we are using the page for at the 34 * moment. Note that we have no way to track which tasks are using 35 * a page, though if it is a pagecache page, rmap structures can tell us 36 * who is mapping it. 37 * 38 * The objects in struct page are organized in double word blocks in 39 * order to allows us to use atomic double word operations on portions 40 * of struct page. That is currently only used by slub but the arrangement 41 * allows the use of atomic double word operations on the flags/mapping 42 * and lru list pointers also. 43 */ 44struct page { 45 /* First double word block */ 46 unsigned long flags; /* Atomic flags, some possibly 47 * updated asynchronously */ 48 union { 49 struct address_space *mapping; /* If low bit clear, points to 50 * inode address_space, or NULL. 51 * If page mapped as anonymous 52 * memory, low bit is set, and 53 * it points to anon_vma object: 54 * see PAGE_MAPPING_ANON below. 55 */ 56 void *s_mem; /* slab first object */ 57 }; 58 59 /* Second double word */ 60 struct { 61 union { 62 pgoff_t index; /* Our offset within mapping. */ 63 void *freelist; /* sl[aou]b first free object */ 64 bool pfmemalloc; /* If set by the page allocator, 65 * ALLOC_NO_WATERMARKS was set 66 * and the low watermark was not 67 * met implying that the system 68 * is under some pressure. The 69 * caller should try ensure 70 * this page is only used to 71 * free other pages. 72 */ 73 }; 74 75 union { 76#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 77 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 78 /* Used for cmpxchg_double in slub */ 79 unsigned long counters; 80#else 81 /* 82 * Keep _count separate from slub cmpxchg_double data. 83 * As the rest of the double word is protected by 84 * slab_lock but _count is not. 85 */ 86 unsigned counters; 87#endif 88 89 struct { 90 91 union { 92 /* 93 * Count of ptes mapped in 94 * mms, to show when page is 95 * mapped & limit reverse map 96 * searches. 97 * 98 * Used also for tail pages 99 * refcounting instead of 100 * _count. Tail pages cannot 101 * be mapped and keeping the 102 * tail page _count zero at 103 * all times guarantees 104 * get_page_unless_zero() will 105 * never succeed on tail 106 * pages. 107 */ 108 atomic_t _mapcount; 109 110 struct { /* SLUB */ 111 unsigned inuse:16; 112 unsigned objects:15; 113 unsigned frozen:1; 114 }; 115 int units; /* SLOB */ 116 }; 117 atomic_t _count; /* Usage count, see below. */ 118 }; 119 unsigned int active; /* SLAB */ 120 }; 121 }; 122 123 /* Third double word block */ 124 union { 125 struct list_head lru; /* Pageout list, eg. active_list 126 * protected by zone->lru_lock ! 127 * Can be used as a generic list 128 * by the page owner. 129 */ 130 struct { /* slub per cpu partial pages */ 131 struct page *next; /* Next partial slab */ 132#ifdef CONFIG_64BIT 133 int pages; /* Nr of partial slabs left */ 134 int pobjects; /* Approximate # of objects */ 135#else 136 short int pages; 137 short int pobjects; 138#endif 139 }; 140 141 struct slab *slab_page; /* slab fields */ 142 struct rcu_head rcu_head; /* Used by SLAB 143 * when destroying via RCU 144 */ 145#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147#endif 148 }; 149 150 /* Remainder is not double word aligned */ 151 union { 152 unsigned long private; /* Mapping-private opaque data: 153 * usually used for buffer_heads 154 * if PagePrivate set; used for 155 * swp_entry_t if PageSwapCache; 156 * indicates order in the buddy 157 * system if PG_buddy is set. 158 */ 159#if USE_SPLIT_PTE_PTLOCKS 160#if ALLOC_SPLIT_PTLOCKS 161 spinlock_t *ptl; 162#else 163 spinlock_t ptl; 164#endif 165#endif 166 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 167 struct page *first_page; /* Compound tail pages */ 168 }; 169 170 /* 171 * On machines where all RAM is mapped into kernel address space, 172 * we can simply calculate the virtual address. On machines with 173 * highmem some memory is mapped into kernel virtual memory 174 * dynamically, so we need a place to store that address. 175 * Note that this field could be 16 bits on x86 ... ;) 176 * 177 * Architectures with slow multiplication can define 178 * WANT_PAGE_VIRTUAL in asm/page.h 179 */ 180#if defined(WANT_PAGE_VIRTUAL) 181 void *virtual; /* Kernel virtual address (NULL if 182 not kmapped, ie. highmem) */ 183#endif /* WANT_PAGE_VIRTUAL */ 184#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS 185 unsigned long debug_flags; /* Use atomic bitops on this */ 186#endif 187 188#ifdef CONFIG_KMEMCHECK 189 /* 190 * kmemcheck wants to track the status of each byte in a page; this 191 * is a pointer to such a status block. NULL if not tracked. 192 */ 193 void *shadow; 194#endif 195 196#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 197 int _last_cpupid; 198#endif 199} 200/* 201 * The struct page can be forced to be double word aligned so that atomic ops 202 * on double words work. The SLUB allocator can make use of such a feature. 203 */ 204#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 205 __aligned(2 * sizeof(unsigned long)) 206#endif 207; 208 209struct page_frag { 210 struct page *page; 211#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 212 __u32 offset; 213 __u32 size; 214#else 215 __u16 offset; 216 __u16 size; 217#endif 218}; 219 220typedef unsigned long __nocast vm_flags_t; 221 222/* 223 * A region containing a mapping of a non-memory backed file under NOMMU 224 * conditions. These are held in a global tree and are pinned by the VMAs that 225 * map parts of them. 226 */ 227struct vm_region { 228 struct rb_node vm_rb; /* link in global region tree */ 229 vm_flags_t vm_flags; /* VMA vm_flags */ 230 unsigned long vm_start; /* start address of region */ 231 unsigned long vm_end; /* region initialised to here */ 232 unsigned long vm_top; /* region allocated to here */ 233 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 234 struct file *vm_file; /* the backing file or NULL */ 235 236 int vm_usage; /* region usage count (access under nommu_region_sem) */ 237 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 238 * this region */ 239}; 240 241/* 242 * This struct defines a memory VMM memory area. There is one of these 243 * per VM-area/task. A VM area is any part of the process virtual memory 244 * space that has a special rule for the page-fault handlers (ie a shared 245 * library, the executable area etc). 246 */ 247struct vm_area_struct { 248 /* The first cache line has the info for VMA tree walking. */ 249 250 unsigned long vm_start; /* Our start address within vm_mm. */ 251 unsigned long vm_end; /* The first byte after our end address 252 within vm_mm. */ 253 254 /* linked list of VM areas per task, sorted by address */ 255 struct vm_area_struct *vm_next, *vm_prev; 256 257 struct rb_node vm_rb; 258 259 /* 260 * Largest free memory gap in bytes to the left of this VMA. 261 * Either between this VMA and vma->vm_prev, or between one of the 262 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 263 * get_unmapped_area find a free area of the right size. 264 */ 265 unsigned long rb_subtree_gap; 266 267 /* Second cache line starts here. */ 268 269 struct mm_struct *vm_mm; /* The address space we belong to. */ 270 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 271 unsigned long vm_flags; /* Flags, see mm.h. */ 272 273 /* 274 * For areas with an address space and backing store, 275 * linkage into the address_space->i_mmap interval tree, or 276 * linkage of vma in the address_space->i_mmap_nonlinear list. 277 */ 278 union { 279 struct { 280 struct rb_node rb; 281 unsigned long rb_subtree_last; 282 } linear; 283 struct list_head nonlinear; 284 } shared; 285 286 /* 287 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 288 * list, after a COW of one of the file pages. A MAP_SHARED vma 289 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 290 * or brk vma (with NULL file) can only be in an anon_vma list. 291 */ 292 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 293 * page_table_lock */ 294 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 295 296 /* Function pointers to deal with this struct. */ 297 const struct vm_operations_struct *vm_ops; 298 299 /* Information about our backing store: */ 300 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 301 units, *not* PAGE_CACHE_SIZE */ 302 struct file * vm_file; /* File we map to (can be NULL). */ 303 void * vm_private_data; /* was vm_pte (shared mem) */ 304 305#ifndef CONFIG_MMU 306 struct vm_region *vm_region; /* NOMMU mapping region */ 307#endif 308#ifdef CONFIG_NUMA 309 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 310#endif 311}; 312 313struct core_thread { 314 struct task_struct *task; 315 struct core_thread *next; 316}; 317 318struct core_state { 319 atomic_t nr_threads; 320 struct core_thread dumper; 321 struct completion startup; 322}; 323 324enum { 325 MM_FILEPAGES, 326 MM_ANONPAGES, 327 MM_SWAPENTS, 328 NR_MM_COUNTERS 329}; 330 331#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU) 332#define SPLIT_RSS_COUNTING 333/* per-thread cached information, */ 334struct task_rss_stat { 335 int events; /* for synchronization threshold */ 336 int count[NR_MM_COUNTERS]; 337}; 338#endif /* USE_SPLIT_PTE_PTLOCKS */ 339 340struct mm_rss_stat { 341 atomic_long_t count[NR_MM_COUNTERS]; 342}; 343 344struct kioctx_table; 345struct mm_struct { 346 struct vm_area_struct *mmap; /* list of VMAs */ 347 struct rb_root mm_rb; 348 u32 vmacache_seqnum; /* per-thread vmacache */ 349#ifdef CONFIG_MMU 350 unsigned long (*get_unmapped_area) (struct file *filp, 351 unsigned long addr, unsigned long len, 352 unsigned long pgoff, unsigned long flags); 353#endif 354 unsigned long mmap_base; /* base of mmap area */ 355 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 356 unsigned long task_size; /* size of task vm space */ 357 unsigned long highest_vm_end; /* highest vma end address */ 358 pgd_t * pgd; 359 atomic_t mm_users; /* How many users with user space? */ 360 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 361 atomic_long_t nr_ptes; /* Page table pages */ 362 int map_count; /* number of VMAs */ 363 364 spinlock_t page_table_lock; /* Protects page tables and some counters */ 365 struct rw_semaphore mmap_sem; 366 367 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 368 * together off init_mm.mmlist, and are protected 369 * by mmlist_lock 370 */ 371 372 373 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 374 unsigned long hiwater_vm; /* High-water virtual memory usage */ 375 376 unsigned long total_vm; /* Total pages mapped */ 377 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 378 unsigned long pinned_vm; /* Refcount permanently increased */ 379 unsigned long shared_vm; /* Shared pages (files) */ 380 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */ 381 unsigned long stack_vm; /* VM_GROWSUP/DOWN */ 382 unsigned long def_flags; 383 unsigned long start_code, end_code, start_data, end_data; 384 unsigned long start_brk, brk, start_stack; 385 unsigned long arg_start, arg_end, env_start, env_end; 386 387 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 388 389 /* 390 * Special counters, in some configurations protected by the 391 * page_table_lock, in other configurations by being atomic. 392 */ 393 struct mm_rss_stat rss_stat; 394 395 struct linux_binfmt *binfmt; 396 397 cpumask_var_t cpu_vm_mask_var; 398 399 /* Architecture-specific MM context */ 400 mm_context_t context; 401 402 unsigned long flags; /* Must use atomic bitops to access the bits */ 403 404 struct core_state *core_state; /* coredumping support */ 405#ifdef CONFIG_AIO 406 spinlock_t ioctx_lock; 407 struct kioctx_table __rcu *ioctx_table; 408#endif 409#ifdef CONFIG_MM_OWNER 410 /* 411 * "owner" points to a task that is regarded as the canonical 412 * user/owner of this mm. All of the following must be true in 413 * order for it to be changed: 414 * 415 * current == mm->owner 416 * current->mm != mm 417 * new_owner->mm == mm 418 * new_owner->alloc_lock is held 419 */ 420 struct task_struct __rcu *owner; 421#endif 422 423 /* store ref to file /proc/<pid>/exe symlink points to */ 424 struct file *exe_file; 425#ifdef CONFIG_MMU_NOTIFIER 426 struct mmu_notifier_mm *mmu_notifier_mm; 427#endif 428#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 429 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 430#endif 431#ifdef CONFIG_CPUMASK_OFFSTACK 432 struct cpumask cpumask_allocation; 433#endif 434#ifdef CONFIG_NUMA_BALANCING 435 /* 436 * numa_next_scan is the next time that the PTEs will be marked 437 * pte_numa. NUMA hinting faults will gather statistics and migrate 438 * pages to new nodes if necessary. 439 */ 440 unsigned long numa_next_scan; 441 442 /* Restart point for scanning and setting pte_numa */ 443 unsigned long numa_scan_offset; 444 445 /* numa_scan_seq prevents two threads setting pte_numa */ 446 int numa_scan_seq; 447#endif 448#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 449 /* 450 * An operation with batched TLB flushing is going on. Anything that 451 * can move process memory needs to flush the TLB when moving a 452 * PROT_NONE or PROT_NUMA mapped page. 453 */ 454 bool tlb_flush_pending; 455#endif 456 struct uprobes_state uprobes_state; 457}; 458 459static inline void mm_init_cpumask(struct mm_struct *mm) 460{ 461#ifdef CONFIG_CPUMASK_OFFSTACK 462 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 463#endif 464} 465 466/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 467static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 468{ 469 return mm->cpu_vm_mask_var; 470} 471 472#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 473/* 474 * Memory barriers to keep this state in sync are graciously provided by 475 * the page table locks, outside of which no page table modifications happen. 476 * The barriers below prevent the compiler from re-ordering the instructions 477 * around the memory barriers that are already present in the code. 478 */ 479static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 480{ 481 barrier(); 482 return mm->tlb_flush_pending; 483} 484static inline void set_tlb_flush_pending(struct mm_struct *mm) 485{ 486 mm->tlb_flush_pending = true; 487 488 /* 489 * Guarantee that the tlb_flush_pending store does not leak into the 490 * critical section updating the page tables 491 */ 492 smp_mb__before_spinlock(); 493} 494/* Clearing is done after a TLB flush, which also provides a barrier. */ 495static inline void clear_tlb_flush_pending(struct mm_struct *mm) 496{ 497 barrier(); 498 mm->tlb_flush_pending = false; 499} 500#else 501static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 502{ 503 return false; 504} 505static inline void set_tlb_flush_pending(struct mm_struct *mm) 506{ 507} 508static inline void clear_tlb_flush_pending(struct mm_struct *mm) 509{ 510} 511#endif 512 513#endif /* _LINUX_MM_TYPES_H */