at v3.15 826 lines 22 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9 10/* 11 * On almost all architectures and configurations, 0 can be used as the 12 * upper ceiling to free_pgtables(): on many architectures it has the same 13 * effect as using TASK_SIZE. However, there is one configuration which 14 * must impose a more careful limit, to avoid freeing kernel pgtables. 15 */ 16#ifndef USER_PGTABLES_CEILING 17#define USER_PGTABLES_CEILING 0UL 18#endif 19 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 21extern int ptep_set_access_flags(struct vm_area_struct *vma, 22 unsigned long address, pte_t *ptep, 23 pte_t entry, int dirty); 24#endif 25 26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 27extern int pmdp_set_access_flags(struct vm_area_struct *vma, 28 unsigned long address, pmd_t *pmdp, 29 pmd_t entry, int dirty); 30#endif 31 32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 34 unsigned long address, 35 pte_t *ptep) 36{ 37 pte_t pte = *ptep; 38 int r = 1; 39 if (!pte_young(pte)) 40 r = 0; 41 else 42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 43 return r; 44} 45#endif 46 47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 48#ifdef CONFIG_TRANSPARENT_HUGEPAGE 49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 50 unsigned long address, 51 pmd_t *pmdp) 52{ 53 pmd_t pmd = *pmdp; 54 int r = 1; 55 if (!pmd_young(pmd)) 56 r = 0; 57 else 58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 59 return r; 60} 61#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pmd_t *pmdp) 65{ 66 BUG(); 67 return 0; 68} 69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 70#endif 71 72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 73int ptep_clear_flush_young(struct vm_area_struct *vma, 74 unsigned long address, pte_t *ptep); 75#endif 76 77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 78int pmdp_clear_flush_young(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmdp); 80#endif 81 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 83static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 84 unsigned long address, 85 pte_t *ptep) 86{ 87 pte_t pte = *ptep; 88 pte_clear(mm, address, ptep); 89 return pte; 90} 91#endif 92 93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE 95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 96 unsigned long address, 97 pmd_t *pmdp) 98{ 99 pmd_t pmd = *pmdp; 100 pmd_clear(pmdp); 101 return pmd; 102} 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 104#endif 105 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 108 unsigned long address, pte_t *ptep, 109 int full) 110{ 111 pte_t pte; 112 pte = ptep_get_and_clear(mm, address, ptep); 113 return pte; 114} 115#endif 116 117/* 118 * Some architectures may be able to avoid expensive synchronization 119 * primitives when modifications are made to PTE's which are already 120 * not present, or in the process of an address space destruction. 121 */ 122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 123static inline void pte_clear_not_present_full(struct mm_struct *mm, 124 unsigned long address, 125 pte_t *ptep, 126 int full) 127{ 128 pte_clear(mm, address, ptep); 129} 130#endif 131 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 133extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 134 unsigned long address, 135 pte_t *ptep); 136#endif 137 138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH 139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 140 unsigned long address, 141 pmd_t *pmdp); 142#endif 143 144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 145struct mm_struct; 146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 147{ 148 pte_t old_pte = *ptep; 149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 150} 151#endif 152 153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 154#ifdef CONFIG_TRANSPARENT_HUGEPAGE 155static inline void pmdp_set_wrprotect(struct mm_struct *mm, 156 unsigned long address, pmd_t *pmdp) 157{ 158 pmd_t old_pmd = *pmdp; 159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 160} 161#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 162static inline void pmdp_set_wrprotect(struct mm_struct *mm, 163 unsigned long address, pmd_t *pmdp) 164{ 165 BUG(); 166} 167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 168#endif 169 170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 171extern void pmdp_splitting_flush(struct vm_area_struct *vma, 172 unsigned long address, pmd_t *pmdp); 173#endif 174 175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 177 pgtable_t pgtable); 178#endif 179 180#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 181extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 182#endif 183 184#ifndef __HAVE_ARCH_PMDP_INVALIDATE 185extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 186 pmd_t *pmdp); 187#endif 188 189#ifndef __HAVE_ARCH_PTE_SAME 190static inline int pte_same(pte_t pte_a, pte_t pte_b) 191{ 192 return pte_val(pte_a) == pte_val(pte_b); 193} 194#endif 195 196#ifndef __HAVE_ARCH_PTE_UNUSED 197/* 198 * Some architectures provide facilities to virtualization guests 199 * so that they can flag allocated pages as unused. This allows the 200 * host to transparently reclaim unused pages. This function returns 201 * whether the pte's page is unused. 202 */ 203static inline int pte_unused(pte_t pte) 204{ 205 return 0; 206} 207#endif 208 209#ifndef __HAVE_ARCH_PMD_SAME 210#ifdef CONFIG_TRANSPARENT_HUGEPAGE 211static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 212{ 213 return pmd_val(pmd_a) == pmd_val(pmd_b); 214} 215#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 216static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 217{ 218 BUG(); 219 return 0; 220} 221#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 222#endif 223 224#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 225#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 226#endif 227 228#ifndef __HAVE_ARCH_MOVE_PTE 229#define move_pte(pte, prot, old_addr, new_addr) (pte) 230#endif 231 232#ifndef pte_accessible 233# define pte_accessible(mm, pte) ((void)(pte), 1) 234#endif 235 236#ifndef flush_tlb_fix_spurious_fault 237#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 238#endif 239 240#ifndef pgprot_noncached 241#define pgprot_noncached(prot) (prot) 242#endif 243 244#ifndef pgprot_writecombine 245#define pgprot_writecombine pgprot_noncached 246#endif 247 248/* 249 * When walking page tables, get the address of the next boundary, 250 * or the end address of the range if that comes earlier. Although no 251 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 252 */ 253 254#define pgd_addr_end(addr, end) \ 255({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 256 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 257}) 258 259#ifndef pud_addr_end 260#define pud_addr_end(addr, end) \ 261({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 262 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 263}) 264#endif 265 266#ifndef pmd_addr_end 267#define pmd_addr_end(addr, end) \ 268({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 269 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 270}) 271#endif 272 273/* 274 * When walking page tables, we usually want to skip any p?d_none entries; 275 * and any p?d_bad entries - reporting the error before resetting to none. 276 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 277 */ 278void pgd_clear_bad(pgd_t *); 279void pud_clear_bad(pud_t *); 280void pmd_clear_bad(pmd_t *); 281 282static inline int pgd_none_or_clear_bad(pgd_t *pgd) 283{ 284 if (pgd_none(*pgd)) 285 return 1; 286 if (unlikely(pgd_bad(*pgd))) { 287 pgd_clear_bad(pgd); 288 return 1; 289 } 290 return 0; 291} 292 293static inline int pud_none_or_clear_bad(pud_t *pud) 294{ 295 if (pud_none(*pud)) 296 return 1; 297 if (unlikely(pud_bad(*pud))) { 298 pud_clear_bad(pud); 299 return 1; 300 } 301 return 0; 302} 303 304static inline int pmd_none_or_clear_bad(pmd_t *pmd) 305{ 306 if (pmd_none(*pmd)) 307 return 1; 308 if (unlikely(pmd_bad(*pmd))) { 309 pmd_clear_bad(pmd); 310 return 1; 311 } 312 return 0; 313} 314 315static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 316 unsigned long addr, 317 pte_t *ptep) 318{ 319 /* 320 * Get the current pte state, but zero it out to make it 321 * non-present, preventing the hardware from asynchronously 322 * updating it. 323 */ 324 return ptep_get_and_clear(mm, addr, ptep); 325} 326 327static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 328 unsigned long addr, 329 pte_t *ptep, pte_t pte) 330{ 331 /* 332 * The pte is non-present, so there's no hardware state to 333 * preserve. 334 */ 335 set_pte_at(mm, addr, ptep, pte); 336} 337 338#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 339/* 340 * Start a pte protection read-modify-write transaction, which 341 * protects against asynchronous hardware modifications to the pte. 342 * The intention is not to prevent the hardware from making pte 343 * updates, but to prevent any updates it may make from being lost. 344 * 345 * This does not protect against other software modifications of the 346 * pte; the appropriate pte lock must be held over the transation. 347 * 348 * Note that this interface is intended to be batchable, meaning that 349 * ptep_modify_prot_commit may not actually update the pte, but merely 350 * queue the update to be done at some later time. The update must be 351 * actually committed before the pte lock is released, however. 352 */ 353static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 354 unsigned long addr, 355 pte_t *ptep) 356{ 357 return __ptep_modify_prot_start(mm, addr, ptep); 358} 359 360/* 361 * Commit an update to a pte, leaving any hardware-controlled bits in 362 * the PTE unmodified. 363 */ 364static inline void ptep_modify_prot_commit(struct mm_struct *mm, 365 unsigned long addr, 366 pte_t *ptep, pte_t pte) 367{ 368 __ptep_modify_prot_commit(mm, addr, ptep, pte); 369} 370#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 371#endif /* CONFIG_MMU */ 372 373/* 374 * A facility to provide lazy MMU batching. This allows PTE updates and 375 * page invalidations to be delayed until a call to leave lazy MMU mode 376 * is issued. Some architectures may benefit from doing this, and it is 377 * beneficial for both shadow and direct mode hypervisors, which may batch 378 * the PTE updates which happen during this window. Note that using this 379 * interface requires that read hazards be removed from the code. A read 380 * hazard could result in the direct mode hypervisor case, since the actual 381 * write to the page tables may not yet have taken place, so reads though 382 * a raw PTE pointer after it has been modified are not guaranteed to be 383 * up to date. This mode can only be entered and left under the protection of 384 * the page table locks for all page tables which may be modified. In the UP 385 * case, this is required so that preemption is disabled, and in the SMP case, 386 * it must synchronize the delayed page table writes properly on other CPUs. 387 */ 388#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 389#define arch_enter_lazy_mmu_mode() do {} while (0) 390#define arch_leave_lazy_mmu_mode() do {} while (0) 391#define arch_flush_lazy_mmu_mode() do {} while (0) 392#endif 393 394/* 395 * A facility to provide batching of the reload of page tables and 396 * other process state with the actual context switch code for 397 * paravirtualized guests. By convention, only one of the batched 398 * update (lazy) modes (CPU, MMU) should be active at any given time, 399 * entry should never be nested, and entry and exits should always be 400 * paired. This is for sanity of maintaining and reasoning about the 401 * kernel code. In this case, the exit (end of the context switch) is 402 * in architecture-specific code, and so doesn't need a generic 403 * definition. 404 */ 405#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 406#define arch_start_context_switch(prev) do {} while (0) 407#endif 408 409#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY 410static inline int pte_soft_dirty(pte_t pte) 411{ 412 return 0; 413} 414 415static inline int pmd_soft_dirty(pmd_t pmd) 416{ 417 return 0; 418} 419 420static inline pte_t pte_mksoft_dirty(pte_t pte) 421{ 422 return pte; 423} 424 425static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 426{ 427 return pmd; 428} 429 430static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 431{ 432 return pte; 433} 434 435static inline int pte_swp_soft_dirty(pte_t pte) 436{ 437 return 0; 438} 439 440static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 441{ 442 return pte; 443} 444 445static inline pte_t pte_file_clear_soft_dirty(pte_t pte) 446{ 447 return pte; 448} 449 450static inline pte_t pte_file_mksoft_dirty(pte_t pte) 451{ 452 return pte; 453} 454 455static inline int pte_file_soft_dirty(pte_t pte) 456{ 457 return 0; 458} 459#endif 460 461#ifndef __HAVE_PFNMAP_TRACKING 462/* 463 * Interfaces that can be used by architecture code to keep track of 464 * memory type of pfn mappings specified by the remap_pfn_range, 465 * vm_insert_pfn. 466 */ 467 468/* 469 * track_pfn_remap is called when a _new_ pfn mapping is being established 470 * by remap_pfn_range() for physical range indicated by pfn and size. 471 */ 472static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 473 unsigned long pfn, unsigned long addr, 474 unsigned long size) 475{ 476 return 0; 477} 478 479/* 480 * track_pfn_insert is called when a _new_ single pfn is established 481 * by vm_insert_pfn(). 482 */ 483static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 484 unsigned long pfn) 485{ 486 return 0; 487} 488 489/* 490 * track_pfn_copy is called when vma that is covering the pfnmap gets 491 * copied through copy_page_range(). 492 */ 493static inline int track_pfn_copy(struct vm_area_struct *vma) 494{ 495 return 0; 496} 497 498/* 499 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 500 * untrack can be called for a specific region indicated by pfn and size or 501 * can be for the entire vma (in which case pfn, size are zero). 502 */ 503static inline void untrack_pfn(struct vm_area_struct *vma, 504 unsigned long pfn, unsigned long size) 505{ 506} 507#else 508extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 509 unsigned long pfn, unsigned long addr, 510 unsigned long size); 511extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 512 unsigned long pfn); 513extern int track_pfn_copy(struct vm_area_struct *vma); 514extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 515 unsigned long size); 516#endif 517 518#ifdef __HAVE_COLOR_ZERO_PAGE 519static inline int is_zero_pfn(unsigned long pfn) 520{ 521 extern unsigned long zero_pfn; 522 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 523 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 524} 525 526#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 527 528#else 529static inline int is_zero_pfn(unsigned long pfn) 530{ 531 extern unsigned long zero_pfn; 532 return pfn == zero_pfn; 533} 534 535static inline unsigned long my_zero_pfn(unsigned long addr) 536{ 537 extern unsigned long zero_pfn; 538 return zero_pfn; 539} 540#endif 541 542#ifdef CONFIG_MMU 543 544#ifndef CONFIG_TRANSPARENT_HUGEPAGE 545static inline int pmd_trans_huge(pmd_t pmd) 546{ 547 return 0; 548} 549static inline int pmd_trans_splitting(pmd_t pmd) 550{ 551 return 0; 552} 553#ifndef __HAVE_ARCH_PMD_WRITE 554static inline int pmd_write(pmd_t pmd) 555{ 556 BUG(); 557 return 0; 558} 559#endif /* __HAVE_ARCH_PMD_WRITE */ 560#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 561 562#ifndef pmd_read_atomic 563static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 564{ 565 /* 566 * Depend on compiler for an atomic pmd read. NOTE: this is 567 * only going to work, if the pmdval_t isn't larger than 568 * an unsigned long. 569 */ 570 return *pmdp; 571} 572#endif 573 574#ifndef pmd_move_must_withdraw 575static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 576 spinlock_t *old_pmd_ptl) 577{ 578 /* 579 * With split pmd lock we also need to move preallocated 580 * PTE page table if new_pmd is on different PMD page table. 581 */ 582 return new_pmd_ptl != old_pmd_ptl; 583} 584#endif 585 586/* 587 * This function is meant to be used by sites walking pagetables with 588 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 589 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 590 * into a null pmd and the transhuge page fault can convert a null pmd 591 * into an hugepmd or into a regular pmd (if the hugepage allocation 592 * fails). While holding the mmap_sem in read mode the pmd becomes 593 * stable and stops changing under us only if it's not null and not a 594 * transhuge pmd. When those races occurs and this function makes a 595 * difference vs the standard pmd_none_or_clear_bad, the result is 596 * undefined so behaving like if the pmd was none is safe (because it 597 * can return none anyway). The compiler level barrier() is critically 598 * important to compute the two checks atomically on the same pmdval. 599 * 600 * For 32bit kernels with a 64bit large pmd_t this automatically takes 601 * care of reading the pmd atomically to avoid SMP race conditions 602 * against pmd_populate() when the mmap_sem is hold for reading by the 603 * caller (a special atomic read not done by "gcc" as in the generic 604 * version above, is also needed when THP is disabled because the page 605 * fault can populate the pmd from under us). 606 */ 607static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 608{ 609 pmd_t pmdval = pmd_read_atomic(pmd); 610 /* 611 * The barrier will stabilize the pmdval in a register or on 612 * the stack so that it will stop changing under the code. 613 * 614 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 615 * pmd_read_atomic is allowed to return a not atomic pmdval 616 * (for example pointing to an hugepage that has never been 617 * mapped in the pmd). The below checks will only care about 618 * the low part of the pmd with 32bit PAE x86 anyway, with the 619 * exception of pmd_none(). So the important thing is that if 620 * the low part of the pmd is found null, the high part will 621 * be also null or the pmd_none() check below would be 622 * confused. 623 */ 624#ifdef CONFIG_TRANSPARENT_HUGEPAGE 625 barrier(); 626#endif 627 if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) 628 return 1; 629 if (unlikely(pmd_bad(pmdval))) { 630 pmd_clear_bad(pmd); 631 return 1; 632 } 633 return 0; 634} 635 636/* 637 * This is a noop if Transparent Hugepage Support is not built into 638 * the kernel. Otherwise it is equivalent to 639 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 640 * places that already verified the pmd is not none and they want to 641 * walk ptes while holding the mmap sem in read mode (write mode don't 642 * need this). If THP is not enabled, the pmd can't go away under the 643 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 644 * run a pmd_trans_unstable before walking the ptes after 645 * split_huge_page_pmd returns (because it may have run when the pmd 646 * become null, but then a page fault can map in a THP and not a 647 * regular page). 648 */ 649static inline int pmd_trans_unstable(pmd_t *pmd) 650{ 651#ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 return pmd_none_or_trans_huge_or_clear_bad(pmd); 653#else 654 return 0; 655#endif 656} 657 658#ifdef CONFIG_NUMA_BALANCING 659#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 660/* 661 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the 662 * same bit too). It's set only when _PAGE_PRESET is not set and it's 663 * never set if _PAGE_PRESENT is set. 664 * 665 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page 666 * fault triggers on those regions if pte/pmd_numa returns true 667 * (because _PAGE_PRESENT is not set). 668 */ 669#ifndef pte_numa 670static inline int pte_numa(pte_t pte) 671{ 672 return (pte_flags(pte) & 673 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 674} 675#endif 676 677#ifndef pmd_numa 678static inline int pmd_numa(pmd_t pmd) 679{ 680 return (pmd_flags(pmd) & 681 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 682} 683#endif 684 685/* 686 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically 687 * because they're called by the NUMA hinting minor page fault. If we 688 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler 689 * would be forced to set it later while filling the TLB after we 690 * return to userland. That would trigger a second write to memory 691 * that we optimize away by setting _PAGE_ACCESSED here. 692 */ 693#ifndef pte_mknonnuma 694static inline pte_t pte_mknonnuma(pte_t pte) 695{ 696 pteval_t val = pte_val(pte); 697 698 val &= ~_PAGE_NUMA; 699 val |= (_PAGE_PRESENT|_PAGE_ACCESSED); 700 return __pte(val); 701} 702#endif 703 704#ifndef pmd_mknonnuma 705static inline pmd_t pmd_mknonnuma(pmd_t pmd) 706{ 707 pmdval_t val = pmd_val(pmd); 708 709 val &= ~_PAGE_NUMA; 710 val |= (_PAGE_PRESENT|_PAGE_ACCESSED); 711 712 return __pmd(val); 713} 714#endif 715 716#ifndef pte_mknuma 717static inline pte_t pte_mknuma(pte_t pte) 718{ 719 pteval_t val = pte_val(pte); 720 721 val &= ~_PAGE_PRESENT; 722 val |= _PAGE_NUMA; 723 724 return __pte(val); 725} 726#endif 727 728#ifndef ptep_set_numa 729static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, 730 pte_t *ptep) 731{ 732 pte_t ptent = *ptep; 733 734 ptent = pte_mknuma(ptent); 735 set_pte_at(mm, addr, ptep, ptent); 736 return; 737} 738#endif 739 740#ifndef pmd_mknuma 741static inline pmd_t pmd_mknuma(pmd_t pmd) 742{ 743 pmdval_t val = pmd_val(pmd); 744 745 val &= ~_PAGE_PRESENT; 746 val |= _PAGE_NUMA; 747 748 return __pmd(val); 749} 750#endif 751 752#ifndef pmdp_set_numa 753static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, 754 pmd_t *pmdp) 755{ 756 pmd_t pmd = *pmdp; 757 758 pmd = pmd_mknuma(pmd); 759 set_pmd_at(mm, addr, pmdp, pmd); 760 return; 761} 762#endif 763#else 764extern int pte_numa(pte_t pte); 765extern int pmd_numa(pmd_t pmd); 766extern pte_t pte_mknonnuma(pte_t pte); 767extern pmd_t pmd_mknonnuma(pmd_t pmd); 768extern pte_t pte_mknuma(pte_t pte); 769extern pmd_t pmd_mknuma(pmd_t pmd); 770extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 771extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); 772#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ 773#else 774static inline int pmd_numa(pmd_t pmd) 775{ 776 return 0; 777} 778 779static inline int pte_numa(pte_t pte) 780{ 781 return 0; 782} 783 784static inline pte_t pte_mknonnuma(pte_t pte) 785{ 786 return pte; 787} 788 789static inline pmd_t pmd_mknonnuma(pmd_t pmd) 790{ 791 return pmd; 792} 793 794static inline pte_t pte_mknuma(pte_t pte) 795{ 796 return pte; 797} 798 799static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, 800 pte_t *ptep) 801{ 802 return; 803} 804 805 806static inline pmd_t pmd_mknuma(pmd_t pmd) 807{ 808 return pmd; 809} 810 811static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, 812 pmd_t *pmdp) 813{ 814 return ; 815} 816#endif /* CONFIG_NUMA_BALANCING */ 817 818#endif /* CONFIG_MMU */ 819 820#endif /* !__ASSEMBLY__ */ 821 822#ifndef io_remap_pfn_range 823#define io_remap_pfn_range remap_pfn_range 824#endif 825 826#endif /* _ASM_GENERIC_PGTABLE_H */