at v3.15 717 lines 20 kB view raw
1/* 2 * Copyright (C) 2011 3 * Boaz Harrosh <bharrosh@panasas.com> 4 * 5 * This file is part of the objects raid engine (ore). 6 * 7 * It is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with "ore". If not, write to the Free Software Foundation, Inc: 13 * "Free Software Foundation <info@fsf.org>" 14 */ 15 16#include <linux/gfp.h> 17#include <linux/async_tx.h> 18 19#include "ore_raid.h" 20 21#undef ORE_DBGMSG2 22#define ORE_DBGMSG2 ORE_DBGMSG 23 24static struct page *_raid_page_alloc(void) 25{ 26 return alloc_page(GFP_KERNEL); 27} 28 29static void _raid_page_free(struct page *p) 30{ 31 __free_page(p); 32} 33 34/* This struct is forward declare in ore_io_state, but is private to here. 35 * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit. 36 * 37 * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn. 38 * Ascending page index access is sp2d(p-minor, c-major). But storage is 39 * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor 40 * API. 41 */ 42struct __stripe_pages_2d { 43 /* Cache some hot path repeated calculations */ 44 unsigned parity; 45 unsigned data_devs; 46 unsigned pages_in_unit; 47 48 bool needed ; 49 50 /* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */ 51 struct __1_page_stripe { 52 bool alloc; 53 unsigned write_count; 54 struct async_submit_ctl submit; 55 struct dma_async_tx_descriptor *tx; 56 57 /* The size of this array is data_devs + parity */ 58 struct page **pages; 59 struct page **scribble; 60 /* bool array, size of this array is data_devs */ 61 char *page_is_read; 62 } _1p_stripes[]; 63}; 64 65/* This can get bigger then a page. So support multiple page allocations 66 * _sp2d_free should be called even if _sp2d_alloc fails (by returning 67 * none-zero). 68 */ 69static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width, 70 unsigned parity, struct __stripe_pages_2d **psp2d) 71{ 72 struct __stripe_pages_2d *sp2d; 73 unsigned data_devs = group_width - parity; 74 struct _alloc_all_bytes { 75 struct __alloc_stripe_pages_2d { 76 struct __stripe_pages_2d sp2d; 77 struct __1_page_stripe _1p_stripes[pages_in_unit]; 78 } __asp2d; 79 struct __alloc_1p_arrays { 80 struct page *pages[group_width]; 81 struct page *scribble[group_width]; 82 char page_is_read[data_devs]; 83 } __a1pa[pages_in_unit]; 84 } *_aab; 85 struct __alloc_1p_arrays *__a1pa; 86 struct __alloc_1p_arrays *__a1pa_end; 87 const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]); 88 unsigned num_a1pa, alloc_size, i; 89 90 /* FIXME: check these numbers in ore_verify_layout */ 91 BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE); 92 BUG_ON(sizeof__a1pa > PAGE_SIZE); 93 94 if (sizeof(*_aab) > PAGE_SIZE) { 95 num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa; 96 alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa; 97 } else { 98 num_a1pa = pages_in_unit; 99 alloc_size = sizeof(*_aab); 100 } 101 102 _aab = kzalloc(alloc_size, GFP_KERNEL); 103 if (unlikely(!_aab)) { 104 ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size); 105 return -ENOMEM; 106 } 107 108 sp2d = &_aab->__asp2d.sp2d; 109 *psp2d = sp2d; /* From here Just call _sp2d_free */ 110 111 __a1pa = _aab->__a1pa; 112 __a1pa_end = __a1pa + num_a1pa; 113 114 for (i = 0; i < pages_in_unit; ++i) { 115 if (unlikely(__a1pa >= __a1pa_end)) { 116 num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa, 117 pages_in_unit - i); 118 119 __a1pa = kzalloc(num_a1pa * sizeof__a1pa, GFP_KERNEL); 120 if (unlikely(!__a1pa)) { 121 ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n", 122 num_a1pa); 123 return -ENOMEM; 124 } 125 __a1pa_end = __a1pa + num_a1pa; 126 /* First *pages is marked for kfree of the buffer */ 127 sp2d->_1p_stripes[i].alloc = true; 128 } 129 130 sp2d->_1p_stripes[i].pages = __a1pa->pages; 131 sp2d->_1p_stripes[i].scribble = __a1pa->scribble ; 132 sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read; 133 ++__a1pa; 134 } 135 136 sp2d->parity = parity; 137 sp2d->data_devs = data_devs; 138 sp2d->pages_in_unit = pages_in_unit; 139 return 0; 140} 141 142static void _sp2d_reset(struct __stripe_pages_2d *sp2d, 143 const struct _ore_r4w_op *r4w, void *priv) 144{ 145 unsigned data_devs = sp2d->data_devs; 146 unsigned group_width = data_devs + sp2d->parity; 147 int p, c; 148 149 if (!sp2d->needed) 150 return; 151 152 for (c = data_devs - 1; c >= 0; --c) 153 for (p = sp2d->pages_in_unit - 1; p >= 0; --p) { 154 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 155 156 if (_1ps->page_is_read[c]) { 157 struct page *page = _1ps->pages[c]; 158 159 r4w->put_page(priv, page); 160 _1ps->page_is_read[c] = false; 161 } 162 } 163 164 for (p = 0; p < sp2d->pages_in_unit; p++) { 165 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 166 167 memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages)); 168 _1ps->write_count = 0; 169 _1ps->tx = NULL; 170 } 171 172 sp2d->needed = false; 173} 174 175static void _sp2d_free(struct __stripe_pages_2d *sp2d) 176{ 177 unsigned i; 178 179 if (!sp2d) 180 return; 181 182 for (i = 0; i < sp2d->pages_in_unit; ++i) { 183 if (sp2d->_1p_stripes[i].alloc) 184 kfree(sp2d->_1p_stripes[i].pages); 185 } 186 187 kfree(sp2d); 188} 189 190static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d) 191{ 192 unsigned p; 193 194 for (p = 0; p < sp2d->pages_in_unit; p++) { 195 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 196 197 if (_1ps->write_count) 198 return p; 199 } 200 201 return ~0; 202} 203 204static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d) 205{ 206 int p; 207 208 for (p = sp2d->pages_in_unit - 1; p >= 0; --p) { 209 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 210 211 if (_1ps->write_count) 212 return p; 213 } 214 215 return ~0; 216} 217 218static void _gen_xor_unit(struct __stripe_pages_2d *sp2d) 219{ 220 unsigned p; 221 for (p = 0; p < sp2d->pages_in_unit; p++) { 222 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 223 224 if (!_1ps->write_count) 225 continue; 226 227 init_async_submit(&_1ps->submit, 228 ASYNC_TX_XOR_ZERO_DST | ASYNC_TX_ACK, 229 NULL, 230 NULL, NULL, 231 (addr_conv_t *)_1ps->scribble); 232 233 /* TODO: raid6 */ 234 _1ps->tx = async_xor(_1ps->pages[sp2d->data_devs], _1ps->pages, 235 0, sp2d->data_devs, PAGE_SIZE, 236 &_1ps->submit); 237 } 238 239 for (p = 0; p < sp2d->pages_in_unit; p++) { 240 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 241 /* NOTE: We wait for HW synchronously (I don't have such HW 242 * to test with.) Is parallelism needed with today's multi 243 * cores? 244 */ 245 async_tx_issue_pending(_1ps->tx); 246 } 247} 248 249void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d, 250 struct ore_striping_info *si, struct page *page) 251{ 252 struct __1_page_stripe *_1ps; 253 254 sp2d->needed = true; 255 256 _1ps = &sp2d->_1p_stripes[si->cur_pg]; 257 _1ps->pages[si->cur_comp] = page; 258 ++_1ps->write_count; 259 260 si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit; 261 /* si->cur_comp is advanced outside at main loop */ 262} 263 264void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len, 265 bool not_last) 266{ 267 struct osd_sg_entry *sge; 268 269 ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d " 270 "offset=0x%llx length=0x%x last_sgs_total=0x%x\n", 271 per_dev->dev, cur_len, not_last, per_dev->cur_sg, 272 _LLU(per_dev->offset), per_dev->length, 273 per_dev->last_sgs_total); 274 275 if (!per_dev->cur_sg) { 276 sge = per_dev->sglist; 277 278 /* First time we prepare two entries */ 279 if (per_dev->length) { 280 ++per_dev->cur_sg; 281 sge->offset = per_dev->offset; 282 sge->len = per_dev->length; 283 } else { 284 /* Here the parity is the first unit of this object. 285 * This happens every time we reach a parity device on 286 * the same stripe as the per_dev->offset. We need to 287 * just skip this unit. 288 */ 289 per_dev->offset += cur_len; 290 return; 291 } 292 } else { 293 /* finalize the last one */ 294 sge = &per_dev->sglist[per_dev->cur_sg - 1]; 295 sge->len = per_dev->length - per_dev->last_sgs_total; 296 } 297 298 if (not_last) { 299 /* Partly prepare the next one */ 300 struct osd_sg_entry *next_sge = sge + 1; 301 302 ++per_dev->cur_sg; 303 next_sge->offset = sge->offset + sge->len + cur_len; 304 /* Save cur len so we know how mutch was added next time */ 305 per_dev->last_sgs_total = per_dev->length; 306 next_sge->len = 0; 307 } else if (!sge->len) { 308 /* Optimize for when the last unit is a parity */ 309 --per_dev->cur_sg; 310 } 311} 312 313static int _alloc_read_4_write(struct ore_io_state *ios) 314{ 315 struct ore_layout *layout = ios->layout; 316 int ret; 317 /* We want to only read those pages not in cache so worst case 318 * is a stripe populated with every other page 319 */ 320 unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2; 321 322 ret = _ore_get_io_state(layout, ios->oc, 323 layout->group_width * layout->mirrors_p1, 324 sgs_per_dev, 0, &ios->ios_read_4_write); 325 return ret; 326} 327 328/* @si contains info of the to-be-inserted page. Update of @si should be 329 * maintained by caller. Specificaly si->dev, si->obj_offset, ... 330 */ 331static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si, 332 struct page *page, unsigned pg_len) 333{ 334 struct request_queue *q; 335 struct ore_per_dev_state *per_dev; 336 struct ore_io_state *read_ios; 337 unsigned first_dev = si->dev - (si->dev % 338 (ios->layout->group_width * ios->layout->mirrors_p1)); 339 unsigned comp = si->dev - first_dev; 340 unsigned added_len; 341 342 if (!ios->ios_read_4_write) { 343 int ret = _alloc_read_4_write(ios); 344 345 if (unlikely(ret)) 346 return ret; 347 } 348 349 read_ios = ios->ios_read_4_write; 350 read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1; 351 352 per_dev = &read_ios->per_dev[comp]; 353 if (!per_dev->length) { 354 per_dev->bio = bio_kmalloc(GFP_KERNEL, 355 ios->sp2d->pages_in_unit); 356 if (unlikely(!per_dev->bio)) { 357 ORE_DBGMSG("Failed to allocate BIO size=%u\n", 358 ios->sp2d->pages_in_unit); 359 return -ENOMEM; 360 } 361 per_dev->offset = si->obj_offset; 362 per_dev->dev = si->dev; 363 } else if (si->obj_offset != (per_dev->offset + per_dev->length)) { 364 u64 gap = si->obj_offset - (per_dev->offset + per_dev->length); 365 366 _ore_add_sg_seg(per_dev, gap, true); 367 } 368 q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev)); 369 added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len, 370 si->obj_offset % PAGE_SIZE); 371 if (unlikely(added_len != pg_len)) { 372 ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n", 373 per_dev->bio->bi_vcnt); 374 return -ENOMEM; 375 } 376 377 per_dev->length += pg_len; 378 return 0; 379} 380 381/* read the beginning of an unaligned first page */ 382static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page) 383{ 384 struct ore_striping_info si; 385 unsigned pg_len; 386 387 ore_calc_stripe_info(ios->layout, ios->offset, 0, &si); 388 389 pg_len = si.obj_offset % PAGE_SIZE; 390 si.obj_offset -= pg_len; 391 392 ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n", 393 _LLU(si.obj_offset), pg_len, page->index, si.dev); 394 395 return _add_to_r4w(ios, &si, page, pg_len); 396} 397 398/* read the end of an incomplete last page */ 399static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset) 400{ 401 struct ore_striping_info si; 402 struct page *page; 403 unsigned pg_len, p, c; 404 405 ore_calc_stripe_info(ios->layout, *offset, 0, &si); 406 407 p = si.unit_off / PAGE_SIZE; 408 c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1, 409 ios->layout->mirrors_p1, si.par_dev, si.dev); 410 page = ios->sp2d->_1p_stripes[p].pages[c]; 411 412 pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE); 413 *offset += pg_len; 414 415 ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n", 416 p, c, _LLU(*offset), pg_len, si.dev, si.par_dev); 417 418 BUG_ON(!page); 419 420 return _add_to_r4w(ios, &si, page, pg_len); 421} 422 423static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret) 424{ 425 struct bio_vec *bv; 426 unsigned i, d; 427 428 /* loop on all devices all pages */ 429 for (d = 0; d < ios->numdevs; d++) { 430 struct bio *bio = ios->per_dev[d].bio; 431 432 if (!bio) 433 continue; 434 435 bio_for_each_segment_all(bv, bio, i) { 436 struct page *page = bv->bv_page; 437 438 SetPageUptodate(page); 439 if (PageError(page)) 440 ClearPageError(page); 441 } 442 } 443} 444 445/* read_4_write is hacked to read the start of the first stripe and/or 446 * the end of the last stripe. If needed, with an sg-gap at each device/page. 447 * It is assumed to be called after the to_be_written pages of the first stripe 448 * are populating ios->sp2d[][] 449 * 450 * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations 451 * These pages are held at sp2d[p].pages[c] but with 452 * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are 453 * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is 454 * @uptodate=true, so we don't need to read it, only unlock, after IO. 455 * 456 * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then 457 * to-be-written count, we should consider the xor-in-place mode. 458 * need_to_read_pages_count is the actual number of pages not present in cache. 459 * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough 460 * approximation? In this mode the read pages are put in the empty places of 461 * ios->sp2d[p][*], xor is calculated the same way. These pages are 462 * allocated/freed and don't go through cache 463 */ 464static int _read_4_write_first_stripe(struct ore_io_state *ios) 465{ 466 struct ore_striping_info read_si; 467 struct __stripe_pages_2d *sp2d = ios->sp2d; 468 u64 offset = ios->si.first_stripe_start; 469 unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1; 470 471 if (offset == ios->offset) /* Go to start collect $200 */ 472 goto read_last_stripe; 473 474 min_p = _sp2d_min_pg(sp2d); 475 max_p = _sp2d_max_pg(sp2d); 476 477 ORE_DBGMSG("stripe_start=0x%llx ios->offset=0x%llx min_p=%d max_p=%d\n", 478 offset, ios->offset, min_p, max_p); 479 480 for (c = 0; ; c++) { 481 ore_calc_stripe_info(ios->layout, offset, 0, &read_si); 482 read_si.obj_offset += min_p * PAGE_SIZE; 483 offset += min_p * PAGE_SIZE; 484 for (p = min_p; p <= max_p; p++) { 485 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 486 struct page **pp = &_1ps->pages[c]; 487 bool uptodate; 488 489 if (*pp) { 490 if (ios->offset % PAGE_SIZE) 491 /* Read the remainder of the page */ 492 _add_to_r4w_first_page(ios, *pp); 493 /* to-be-written pages start here */ 494 goto read_last_stripe; 495 } 496 497 *pp = ios->r4w->get_page(ios->private, offset, 498 &uptodate); 499 if (unlikely(!*pp)) 500 return -ENOMEM; 501 502 if (!uptodate) 503 _add_to_r4w(ios, &read_si, *pp, PAGE_SIZE); 504 505 /* Mark read-pages to be cache_released */ 506 _1ps->page_is_read[c] = true; 507 read_si.obj_offset += PAGE_SIZE; 508 offset += PAGE_SIZE; 509 } 510 offset += (sp2d->pages_in_unit - p) * PAGE_SIZE; 511 } 512 513read_last_stripe: 514 return 0; 515} 516 517static int _read_4_write_last_stripe(struct ore_io_state *ios) 518{ 519 struct ore_striping_info read_si; 520 struct __stripe_pages_2d *sp2d = ios->sp2d; 521 u64 offset; 522 u64 last_stripe_end; 523 unsigned bytes_in_stripe = ios->si.bytes_in_stripe; 524 unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1; 525 526 offset = ios->offset + ios->length; 527 if (offset % PAGE_SIZE) 528 _add_to_r4w_last_page(ios, &offset); 529 /* offset will be aligned to next page */ 530 531 last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe) 532 * bytes_in_stripe; 533 if (offset == last_stripe_end) /* Optimize for the aligned case */ 534 goto read_it; 535 536 ore_calc_stripe_info(ios->layout, offset, 0, &read_si); 537 p = read_si.unit_off / PAGE_SIZE; 538 c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1, 539 ios->layout->mirrors_p1, read_si.par_dev, read_si.dev); 540 541 if (min_p == sp2d->pages_in_unit) { 542 /* Didn't do it yet */ 543 min_p = _sp2d_min_pg(sp2d); 544 max_p = _sp2d_max_pg(sp2d); 545 } 546 547 ORE_DBGMSG("offset=0x%llx stripe_end=0x%llx min_p=%d max_p=%d\n", 548 offset, last_stripe_end, min_p, max_p); 549 550 while (offset < last_stripe_end) { 551 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p]; 552 553 if ((min_p <= p) && (p <= max_p)) { 554 struct page *page; 555 bool uptodate; 556 557 BUG_ON(_1ps->pages[c]); 558 page = ios->r4w->get_page(ios->private, offset, 559 &uptodate); 560 if (unlikely(!page)) 561 return -ENOMEM; 562 563 _1ps->pages[c] = page; 564 /* Mark read-pages to be cache_released */ 565 _1ps->page_is_read[c] = true; 566 if (!uptodate) 567 _add_to_r4w(ios, &read_si, page, PAGE_SIZE); 568 } 569 570 offset += PAGE_SIZE; 571 if (p == (sp2d->pages_in_unit - 1)) { 572 ++c; 573 p = 0; 574 ore_calc_stripe_info(ios->layout, offset, 0, &read_si); 575 } else { 576 read_si.obj_offset += PAGE_SIZE; 577 ++p; 578 } 579 } 580 581read_it: 582 return 0; 583} 584 585static int _read_4_write_execute(struct ore_io_state *ios) 586{ 587 struct ore_io_state *ios_read; 588 unsigned i; 589 int ret; 590 591 ios_read = ios->ios_read_4_write; 592 if (!ios_read) 593 return 0; 594 595 /* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change 596 * to check for per_dev->bio 597 */ 598 ios_read->pages = ios->pages; 599 600 /* Now read these devices */ 601 for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) { 602 ret = _ore_read_mirror(ios_read, i); 603 if (unlikely(ret)) 604 return ret; 605 } 606 607 ret = ore_io_execute(ios_read); /* Synchronus execution */ 608 if (unlikely(ret)) { 609 ORE_DBGMSG("!! ore_io_execute => %d\n", ret); 610 return ret; 611 } 612 613 _mark_read4write_pages_uptodate(ios_read, ret); 614 ore_put_io_state(ios_read); 615 ios->ios_read_4_write = NULL; /* Might need a reuse at last stripe */ 616 return 0; 617} 618 619/* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */ 620int _ore_add_parity_unit(struct ore_io_state *ios, 621 struct ore_striping_info *si, 622 struct ore_per_dev_state *per_dev, 623 unsigned cur_len) 624{ 625 if (ios->reading) { 626 if (per_dev->cur_sg >= ios->sgs_per_dev) { 627 ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" , 628 per_dev->cur_sg, ios->sgs_per_dev); 629 return -ENOMEM; 630 } 631 _ore_add_sg_seg(per_dev, cur_len, true); 632 } else { 633 struct __stripe_pages_2d *sp2d = ios->sp2d; 634 struct page **pages = ios->parity_pages + ios->cur_par_page; 635 unsigned num_pages; 636 unsigned array_start = 0; 637 unsigned i; 638 int ret; 639 640 si->cur_pg = _sp2d_min_pg(sp2d); 641 num_pages = _sp2d_max_pg(sp2d) + 1 - si->cur_pg; 642 643 if (!cur_len) /* If last stripe operate on parity comp */ 644 si->cur_comp = sp2d->data_devs; 645 646 if (!per_dev->length) { 647 per_dev->offset += si->cur_pg * PAGE_SIZE; 648 /* If first stripe, Read in all read4write pages 649 * (if needed) before we calculate the first parity. 650 */ 651 _read_4_write_first_stripe(ios); 652 } 653 if (!cur_len) /* If last stripe r4w pages of last stripe */ 654 _read_4_write_last_stripe(ios); 655 _read_4_write_execute(ios); 656 657 for (i = 0; i < num_pages; i++) { 658 pages[i] = _raid_page_alloc(); 659 if (unlikely(!pages[i])) 660 return -ENOMEM; 661 662 ++(ios->cur_par_page); 663 } 664 665 BUG_ON(si->cur_comp != sp2d->data_devs); 666 BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit); 667 668 ret = _ore_add_stripe_unit(ios, &array_start, 0, pages, 669 per_dev, num_pages * PAGE_SIZE); 670 if (unlikely(ret)) 671 return ret; 672 673 /* TODO: raid6 if (last_parity_dev) */ 674 _gen_xor_unit(sp2d); 675 _sp2d_reset(sp2d, ios->r4w, ios->private); 676 } 677 return 0; 678} 679 680int _ore_post_alloc_raid_stuff(struct ore_io_state *ios) 681{ 682 if (ios->parity_pages) { 683 struct ore_layout *layout = ios->layout; 684 unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE; 685 686 if (_sp2d_alloc(pages_in_unit, layout->group_width, 687 layout->parity, &ios->sp2d)) { 688 return -ENOMEM; 689 } 690 } 691 return 0; 692} 693 694void _ore_free_raid_stuff(struct ore_io_state *ios) 695{ 696 if (ios->sp2d) { /* writing and raid */ 697 unsigned i; 698 699 for (i = 0; i < ios->cur_par_page; i++) { 700 struct page *page = ios->parity_pages[i]; 701 702 if (page) 703 _raid_page_free(page); 704 } 705 if (ios->extra_part_alloc) 706 kfree(ios->parity_pages); 707 /* If IO returned an error pages might need unlocking */ 708 _sp2d_reset(ios->sp2d, ios->r4w, ios->private); 709 _sp2d_free(ios->sp2d); 710 } else { 711 /* Will only be set if raid reading && sglist is big */ 712 if (ios->extra_part_alloc) 713 kfree(ios->per_dev[0].sglist); 714 } 715 if (ios->ios_read_4_write) 716 ore_put_io_state(ios->ios_read_4_write); 717}