at v3.15 336 lines 10 kB view raw
1#ifndef _ASM_POWERPC_PGTABLE_H 2#define _ASM_POWERPC_PGTABLE_H 3#ifdef __KERNEL__ 4 5#ifndef __ASSEMBLY__ 6#include <linux/mmdebug.h> 7#include <asm/processor.h> /* For TASK_SIZE */ 8#include <asm/mmu.h> 9#include <asm/page.h> 10 11struct mm_struct; 12 13#endif /* !__ASSEMBLY__ */ 14 15#if defined(CONFIG_PPC64) 16# include <asm/pgtable-ppc64.h> 17#else 18# include <asm/pgtable-ppc32.h> 19#endif 20 21/* 22 * We save the slot number & secondary bit in the second half of the 23 * PTE page. We use the 8 bytes per each pte entry. 24 */ 25#define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8) 26 27#ifndef __ASSEMBLY__ 28 29#include <asm/tlbflush.h> 30 31/* Generic accessors to PTE bits */ 32static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 33static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 34static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 35static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 36static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } 37static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 38static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 39 40#ifdef CONFIG_NUMA_BALANCING 41 42static inline int pte_present(pte_t pte) 43{ 44 return pte_val(pte) & (_PAGE_PRESENT | _PAGE_NUMA); 45} 46 47#define pte_numa pte_numa 48static inline int pte_numa(pte_t pte) 49{ 50 return (pte_val(pte) & 51 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 52} 53 54#define pte_mknonnuma pte_mknonnuma 55static inline pte_t pte_mknonnuma(pte_t pte) 56{ 57 pte_val(pte) &= ~_PAGE_NUMA; 58 pte_val(pte) |= _PAGE_PRESENT | _PAGE_ACCESSED; 59 return pte; 60} 61 62#define pte_mknuma pte_mknuma 63static inline pte_t pte_mknuma(pte_t pte) 64{ 65 /* 66 * We should not set _PAGE_NUMA on non present ptes. Also clear the 67 * present bit so that hash_page will return 1 and we collect this 68 * as numa fault. 69 */ 70 if (pte_present(pte)) { 71 pte_val(pte) |= _PAGE_NUMA; 72 pte_val(pte) &= ~_PAGE_PRESENT; 73 } else 74 VM_BUG_ON(1); 75 return pte; 76} 77 78#define ptep_set_numa ptep_set_numa 79static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, 80 pte_t *ptep) 81{ 82 if ((pte_val(*ptep) & _PAGE_PRESENT) == 0) 83 VM_BUG_ON(1); 84 85 pte_update(mm, addr, ptep, _PAGE_PRESENT, _PAGE_NUMA, 0); 86 return; 87} 88 89#define pmd_numa pmd_numa 90static inline int pmd_numa(pmd_t pmd) 91{ 92 return pte_numa(pmd_pte(pmd)); 93} 94 95#define pmdp_set_numa pmdp_set_numa 96static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, 97 pmd_t *pmdp) 98{ 99 if ((pmd_val(*pmdp) & _PAGE_PRESENT) == 0) 100 VM_BUG_ON(1); 101 102 pmd_hugepage_update(mm, addr, pmdp, _PAGE_PRESENT, _PAGE_NUMA); 103 return; 104} 105 106#define pmd_mknonnuma pmd_mknonnuma 107static inline pmd_t pmd_mknonnuma(pmd_t pmd) 108{ 109 return pte_pmd(pte_mknonnuma(pmd_pte(pmd))); 110} 111 112#define pmd_mknuma pmd_mknuma 113static inline pmd_t pmd_mknuma(pmd_t pmd) 114{ 115 return pte_pmd(pte_mknuma(pmd_pte(pmd))); 116} 117 118# else 119 120static inline int pte_present(pte_t pte) 121{ 122 return pte_val(pte) & _PAGE_PRESENT; 123} 124#endif /* CONFIG_NUMA_BALANCING */ 125 126/* Conversion functions: convert a page and protection to a page entry, 127 * and a page entry and page directory to the page they refer to. 128 * 129 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 130 * long for now. 131 */ 132static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { 133 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 134 pgprot_val(pgprot)); } 135static inline unsigned long pte_pfn(pte_t pte) { 136 return pte_val(pte) >> PTE_RPN_SHIFT; } 137 138/* Keep these as a macros to avoid include dependency mess */ 139#define pte_page(x) pfn_to_page(pte_pfn(x)) 140#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 141 142/* Generic modifiers for PTE bits */ 143static inline pte_t pte_wrprotect(pte_t pte) { 144 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 145static inline pte_t pte_mkclean(pte_t pte) { 146 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 147static inline pte_t pte_mkold(pte_t pte) { 148 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 149static inline pte_t pte_mkwrite(pte_t pte) { 150 pte_val(pte) |= _PAGE_RW; return pte; } 151static inline pte_t pte_mkdirty(pte_t pte) { 152 pte_val(pte) |= _PAGE_DIRTY; return pte; } 153static inline pte_t pte_mkyoung(pte_t pte) { 154 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 155static inline pte_t pte_mkspecial(pte_t pte) { 156 pte_val(pte) |= _PAGE_SPECIAL; return pte; } 157static inline pte_t pte_mkhuge(pte_t pte) { 158 return pte; } 159static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 160{ 161 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 162 return pte; 163} 164 165 166/* Insert a PTE, top-level function is out of line. It uses an inline 167 * low level function in the respective pgtable-* files 168 */ 169extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 170 pte_t pte); 171 172/* This low level function performs the actual PTE insertion 173 * Setting the PTE depends on the MMU type and other factors. It's 174 * an horrible mess that I'm not going to try to clean up now but 175 * I'm keeping it in one place rather than spread around 176 */ 177static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 178 pte_t *ptep, pte_t pte, int percpu) 179{ 180#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 181 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 182 * helper pte_update() which does an atomic update. We need to do that 183 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 184 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 185 * the hash bits instead (ie, same as the non-SMP case) 186 */ 187 if (percpu) 188 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 189 | (pte_val(pte) & ~_PAGE_HASHPTE)); 190 else 191 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 192 193#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) 194 /* Second case is 32-bit with 64-bit PTE. In this case, we 195 * can just store as long as we do the two halves in the right order 196 * with a barrier in between. This is possible because we take care, 197 * in the hash code, to pre-invalidate if the PTE was already hashed, 198 * which synchronizes us with any concurrent invalidation. 199 * In the percpu case, we also fallback to the simple update preserving 200 * the hash bits 201 */ 202 if (percpu) { 203 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 204 | (pte_val(pte) & ~_PAGE_HASHPTE)); 205 return; 206 } 207#if _PAGE_HASHPTE != 0 208 if (pte_val(*ptep) & _PAGE_HASHPTE) 209 flush_hash_entry(mm, ptep, addr); 210#endif 211 __asm__ __volatile__("\ 212 stw%U0%X0 %2,%0\n\ 213 eieio\n\ 214 stw%U0%X0 %L2,%1" 215 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 216 : "r" (pte) : "memory"); 217 218#elif defined(CONFIG_PPC_STD_MMU_32) 219 /* Third case is 32-bit hash table in UP mode, we need to preserve 220 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 221 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 222 * and see we need to keep track that this PTE needs invalidating 223 */ 224 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 225 | (pte_val(pte) & ~_PAGE_HASHPTE)); 226 227#else 228 /* Anything else just stores the PTE normally. That covers all 64-bit 229 * cases, and 32-bit non-hash with 32-bit PTEs. 230 */ 231 *ptep = pte; 232#endif 233} 234 235 236#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 237extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 238 pte_t *ptep, pte_t entry, int dirty); 239 240/* 241 * Macro to mark a page protection value as "uncacheable". 242 */ 243 244#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 245 _PAGE_WRITETHRU) 246 247#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 248 _PAGE_NO_CACHE | _PAGE_GUARDED)) 249 250#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 251 _PAGE_NO_CACHE)) 252 253#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 254 _PAGE_COHERENT)) 255 256#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 257 _PAGE_COHERENT | _PAGE_WRITETHRU)) 258 259#define pgprot_cached_noncoherent(prot) \ 260 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) 261 262#define pgprot_writecombine pgprot_noncached_wc 263 264struct file; 265extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 266 unsigned long size, pgprot_t vma_prot); 267#define __HAVE_PHYS_MEM_ACCESS_PROT 268 269/* 270 * ZERO_PAGE is a global shared page that is always zero: used 271 * for zero-mapped memory areas etc.. 272 */ 273extern unsigned long empty_zero_page[]; 274#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 275 276extern pgd_t swapper_pg_dir[]; 277 278extern void paging_init(void); 279 280/* 281 * kern_addr_valid is intended to indicate whether an address is a valid 282 * kernel address. Most 32-bit archs define it as always true (like this) 283 * but most 64-bit archs actually perform a test. What should we do here? 284 */ 285#define kern_addr_valid(addr) (1) 286 287#include <asm-generic/pgtable.h> 288 289 290/* 291 * This gets called at the end of handling a page fault, when 292 * the kernel has put a new PTE into the page table for the process. 293 * We use it to ensure coherency between the i-cache and d-cache 294 * for the page which has just been mapped in. 295 * On machines which use an MMU hash table, we use this to put a 296 * corresponding HPTE into the hash table ahead of time, instead of 297 * waiting for the inevitable extra hash-table miss exception. 298 */ 299extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 300 301extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr, 302 unsigned long end, int write, struct page **pages, int *nr); 303 304extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 305 unsigned long end, int write, struct page **pages, int *nr); 306#ifndef CONFIG_TRANSPARENT_HUGEPAGE 307#define pmd_large(pmd) 0 308#define has_transparent_hugepage() 0 309#endif 310pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 311 unsigned *shift); 312 313static inline pte_t *lookup_linux_ptep(pgd_t *pgdir, unsigned long hva, 314 unsigned long *pte_sizep) 315{ 316 pte_t *ptep; 317 unsigned long ps = *pte_sizep; 318 unsigned int shift; 319 320 ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift); 321 if (!ptep) 322 return NULL; 323 if (shift) 324 *pte_sizep = 1ul << shift; 325 else 326 *pte_sizep = PAGE_SIZE; 327 328 if (ps > *pte_sizep) 329 return NULL; 330 331 return ptep; 332} 333#endif /* __ASSEMBLY__ */ 334 335#endif /* __KERNEL__ */ 336#endif /* _ASM_POWERPC_PGTABLE_H */