at v3.15 572 lines 18 kB view raw
1/* 2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2008-2009 PetaLogix 4 * Copyright (C) 2006 Atmark Techno, Inc. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 */ 10 11#ifndef _ASM_MICROBLAZE_PGTABLE_H 12#define _ASM_MICROBLAZE_PGTABLE_H 13 14#include <asm/setup.h> 15 16#ifndef __ASSEMBLY__ 17extern int mem_init_done; 18#endif 19 20#ifndef CONFIG_MMU 21 22#define pgd_present(pgd) (1) /* pages are always present on non MMU */ 23#define pgd_none(pgd) (0) 24#define pgd_bad(pgd) (0) 25#define pgd_clear(pgdp) 26#define kern_addr_valid(addr) (1) 27#define pmd_offset(a, b) ((void *) 0) 28 29#define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */ 30#define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */ 31#define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */ 32#define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */ 33#define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */ 34 35#define pgprot_noncached(x) (x) 36 37#define __swp_type(x) (0) 38#define __swp_offset(x) (0) 39#define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 40#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 41#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 42 43#ifndef __ASSEMBLY__ 44static inline int pte_file(pte_t pte) { return 0; } 45#endif /* __ASSEMBLY__ */ 46 47#define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 48 49#define swapper_pg_dir ((pgd_t *) NULL) 50 51#define pgtable_cache_init() do {} while (0) 52 53#define arch_enter_lazy_cpu_mode() do {} while (0) 54 55#define pgprot_noncached_wc(prot) prot 56 57/* 58 * All 32bit addresses are effectively valid for vmalloc... 59 * Sort of meaningless for non-VM targets. 60 */ 61#define VMALLOC_START 0 62#define VMALLOC_END 0xffffffff 63 64#else /* CONFIG_MMU */ 65 66#include <asm-generic/4level-fixup.h> 67 68#ifdef __KERNEL__ 69#ifndef __ASSEMBLY__ 70 71#include <linux/sched.h> 72#include <linux/threads.h> 73#include <asm/processor.h> /* For TASK_SIZE */ 74#include <asm/mmu.h> 75#include <asm/page.h> 76 77#define FIRST_USER_ADDRESS 0 78 79extern unsigned long va_to_phys(unsigned long address); 80extern pte_t *va_to_pte(unsigned long address); 81 82/* 83 * The following only work if pte_present() is true. 84 * Undefined behaviour if not.. 85 */ 86 87static inline int pte_special(pte_t pte) { return 0; } 88 89static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 90 91/* Start and end of the vmalloc area. */ 92/* Make sure to map the vmalloc area above the pinned kernel memory area 93 of 32Mb. */ 94#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) 95#define VMALLOC_END ioremap_bot 96 97#endif /* __ASSEMBLY__ */ 98 99/* 100 * Macro to mark a page protection value as "uncacheable". 101 */ 102 103#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ 104 _PAGE_WRITETHRU) 105 106#define pgprot_noncached(prot) \ 107 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 108 _PAGE_NO_CACHE | _PAGE_GUARDED)) 109 110#define pgprot_noncached_wc(prot) \ 111 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 112 _PAGE_NO_CACHE)) 113 114/* 115 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 116 * table containing PTEs, together with a set of 16 segment registers, to 117 * define the virtual to physical address mapping. 118 * 119 * We use the hash table as an extended TLB, i.e. a cache of currently 120 * active mappings. We maintain a two-level page table tree, much 121 * like that used by the i386, for the sake of the Linux memory 122 * management code. Low-level assembler code in hashtable.S 123 * (procedure hash_page) is responsible for extracting ptes from the 124 * tree and putting them into the hash table when necessary, and 125 * updating the accessed and modified bits in the page table tree. 126 */ 127 128/* 129 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 130 * instruction and data sides share a unified, 64-entry, semi-associative 131 * TLB which is maintained totally under software control. In addition, the 132 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 133 * TLB which serves as a first level to the shared TLB. These two TLBs are 134 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 135 */ 136 137/* 138 * The normal case is that PTEs are 32-bits and we have a 1-page 139 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 140 * 141 */ 142 143/* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 144#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 145#define PMD_SIZE (1UL << PMD_SHIFT) 146#define PMD_MASK (~(PMD_SIZE-1)) 147 148/* PGDIR_SHIFT determines what a top-level page table entry can map */ 149#define PGDIR_SHIFT PMD_SHIFT 150#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 151#define PGDIR_MASK (~(PGDIR_SIZE-1)) 152 153/* 154 * entries per page directory level: our page-table tree is two-level, so 155 * we don't really have any PMD directory. 156 */ 157#define PTRS_PER_PTE (1 << PTE_SHIFT) 158#define PTRS_PER_PMD 1 159#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 160 161#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 162#define FIRST_USER_PGD_NR 0 163 164#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 165#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 166 167#define pte_ERROR(e) \ 168 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 169 __FILE__, __LINE__, pte_val(e)) 170#define pmd_ERROR(e) \ 171 printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \ 172 __FILE__, __LINE__, pmd_val(e)) 173#define pgd_ERROR(e) \ 174 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 175 __FILE__, __LINE__, pgd_val(e)) 176 177/* 178 * Bits in a linux-style PTE. These match the bits in the 179 * (hardware-defined) PTE as closely as possible. 180 */ 181 182/* There are several potential gotchas here. The hardware TLBLO 183 * field looks like this: 184 * 185 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 186 * RPN..................... 0 0 EX WR ZSEL....... W I M G 187 * 188 * Where possible we make the Linux PTE bits match up with this 189 * 190 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 191 * support down to 1k pages), this is done in the TLBMiss exception 192 * handler. 193 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 194 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 195 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 196 * zone. 197 * - PRESENT *must* be in the bottom two bits because swap cache 198 * entries use the top 30 bits. Because 4xx doesn't support SMP 199 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 200 * is cleared in the TLB miss handler before the TLB entry is loaded. 201 * - All other bits of the PTE are loaded into TLBLO without 202 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 203 * software PTE bits. We actually use use bits 21, 24, 25, and 204 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 205 * PRESENT. 206 */ 207 208/* Definitions for MicroBlaze. */ 209#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 210#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ 211#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 212#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 213#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 214#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 215#define _PAGE_RW 0x040 /* software: Writes permitted */ 216#define _PAGE_DIRTY 0x080 /* software: dirty page */ 217#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 218#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 219#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 220#define _PMD_PRESENT PAGE_MASK 221 222/* 223 * Some bits are unused... 224 */ 225#ifndef _PAGE_HASHPTE 226#define _PAGE_HASHPTE 0 227#endif 228#ifndef _PTE_NONE_MASK 229#define _PTE_NONE_MASK 0 230#endif 231#ifndef _PAGE_SHARED 232#define _PAGE_SHARED 0 233#endif 234#ifndef _PAGE_EXEC 235#define _PAGE_EXEC 0 236#endif 237 238#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 239 240/* 241 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 242 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 243 * to have it in the Linux PTE, and in fact the bit could be reused for 244 * another purpose. -- paulus. 245 */ 246#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 247#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 248 249#define _PAGE_KERNEL \ 250 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 251 252#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 253 254#define PAGE_NONE __pgprot(_PAGE_BASE) 255#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 256#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 257#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 258#define PAGE_SHARED_X \ 259 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 260#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 261#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 262 263#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 264#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 265#define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 266 267/* 268 * We consider execute permission the same as read. 269 * Also, write permissions imply read permissions. 270 */ 271#define __P000 PAGE_NONE 272#define __P001 PAGE_READONLY_X 273#define __P010 PAGE_COPY 274#define __P011 PAGE_COPY_X 275#define __P100 PAGE_READONLY 276#define __P101 PAGE_READONLY_X 277#define __P110 PAGE_COPY 278#define __P111 PAGE_COPY_X 279 280#define __S000 PAGE_NONE 281#define __S001 PAGE_READONLY_X 282#define __S010 PAGE_SHARED 283#define __S011 PAGE_SHARED_X 284#define __S100 PAGE_READONLY 285#define __S101 PAGE_READONLY_X 286#define __S110 PAGE_SHARED 287#define __S111 PAGE_SHARED_X 288 289#ifndef __ASSEMBLY__ 290/* 291 * ZERO_PAGE is a global shared page that is always zero: used 292 * for zero-mapped memory areas etc.. 293 */ 294extern unsigned long empty_zero_page[1024]; 295#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 296 297#endif /* __ASSEMBLY__ */ 298 299#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 300#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 301#define pte_clear(mm, addr, ptep) \ 302 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 303 304#define pmd_none(pmd) (!pmd_val(pmd)) 305#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 306#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 307#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 308 309#define pte_page(x) (mem_map + (unsigned long) \ 310 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 311#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 312 313#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 314 315#define pfn_pte(pfn, prot) \ 316 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 317 318#ifndef __ASSEMBLY__ 319/* 320 * The "pgd_xxx()" functions here are trivial for a folded two-level 321 * setup: the pgd is never bad, and a pmd always exists (as it's folded 322 * into the pgd entry) 323 */ 324static inline int pgd_none(pgd_t pgd) { return 0; } 325static inline int pgd_bad(pgd_t pgd) { return 0; } 326static inline int pgd_present(pgd_t pgd) { return 1; } 327#define pgd_clear(xp) do { } while (0) 328#define pgd_page(pgd) \ 329 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 330 331/* 332 * The following only work if pte_present() is true. 333 * Undefined behaviour if not.. 334 */ 335static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 336static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 337static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 338static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 339static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 340static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 341 342static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 343static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 344 345static inline pte_t pte_rdprotect(pte_t pte) \ 346 { pte_val(pte) &= ~_PAGE_USER; return pte; } 347static inline pte_t pte_wrprotect(pte_t pte) \ 348 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 349static inline pte_t pte_exprotect(pte_t pte) \ 350 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 351static inline pte_t pte_mkclean(pte_t pte) \ 352 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 353static inline pte_t pte_mkold(pte_t pte) \ 354 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 355 356static inline pte_t pte_mkread(pte_t pte) \ 357 { pte_val(pte) |= _PAGE_USER; return pte; } 358static inline pte_t pte_mkexec(pte_t pte) \ 359 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 360static inline pte_t pte_mkwrite(pte_t pte) \ 361 { pte_val(pte) |= _PAGE_RW; return pte; } 362static inline pte_t pte_mkdirty(pte_t pte) \ 363 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 364static inline pte_t pte_mkyoung(pte_t pte) \ 365 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 366 367/* 368 * Conversion functions: convert a page and protection to a page entry, 369 * and a page entry and page directory to the page they refer to. 370 */ 371 372static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 373{ 374 pte_t pte; 375 pte_val(pte) = physpage | pgprot_val(pgprot); 376 return pte; 377} 378 379#define mk_pte(page, pgprot) \ 380({ \ 381 pte_t pte; \ 382 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 383 pgprot_val(pgprot); \ 384 pte; \ 385}) 386 387static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 388{ 389 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 390 return pte; 391} 392 393/* 394 * Atomic PTE updates. 395 * 396 * pte_update clears and sets bit atomically, and returns 397 * the old pte value. 398 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 399 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 400 */ 401static inline unsigned long pte_update(pte_t *p, unsigned long clr, 402 unsigned long set) 403{ 404 unsigned long flags, old, tmp; 405 406 raw_local_irq_save(flags); 407 408 __asm__ __volatile__( "lw %0, %2, r0 \n" 409 "andn %1, %0, %3 \n" 410 "or %1, %1, %4 \n" 411 "sw %1, %2, r0 \n" 412 : "=&r" (old), "=&r" (tmp) 413 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) 414 : "cc"); 415 416 raw_local_irq_restore(flags); 417 418 return old; 419} 420 421/* 422 * set_pte stores a linux PTE into the linux page table. 423 */ 424static inline void set_pte(struct mm_struct *mm, unsigned long addr, 425 pte_t *ptep, pte_t pte) 426{ 427 *ptep = pte; 428} 429 430static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 431 pte_t *ptep, pte_t pte) 432{ 433 *ptep = pte; 434} 435 436#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 437static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 438 unsigned long address, pte_t *ptep) 439{ 440 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 441} 442 443static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 444 unsigned long addr, pte_t *ptep) 445{ 446 return (pte_update(ptep, \ 447 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 448} 449 450#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 451static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 452 unsigned long addr, pte_t *ptep) 453{ 454 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 455} 456 457/*static inline void ptep_set_wrprotect(struct mm_struct *mm, 458 unsigned long addr, pte_t *ptep) 459{ 460 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 461}*/ 462 463static inline void ptep_mkdirty(struct mm_struct *mm, 464 unsigned long addr, pte_t *ptep) 465{ 466 pte_update(ptep, 0, _PAGE_DIRTY); 467} 468 469/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 470 471/* Convert pmd entry to page */ 472/* our pmd entry is an effective address of pte table*/ 473/* returns effective address of the pmd entry*/ 474#define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 475 476/* returns struct *page of the pmd entry*/ 477#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 478 479/* to find an entry in a kernel page-table-directory */ 480#define pgd_offset_k(address) pgd_offset(&init_mm, address) 481 482/* to find an entry in a page-table-directory */ 483#define pgd_index(address) ((address) >> PGDIR_SHIFT) 484#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 485 486/* Find an entry in the second-level page table.. */ 487static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address) 488{ 489 return (pmd_t *) dir; 490} 491 492/* Find an entry in the third-level page table.. */ 493#define pte_index(address) \ 494 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 495#define pte_offset_kernel(dir, addr) \ 496 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 497#define pte_offset_map(dir, addr) \ 498 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) 499 500#define pte_unmap(pte) kunmap_atomic(pte) 501 502/* Encode and decode a nonlinear file mapping entry */ 503#define PTE_FILE_MAX_BITS 29 504#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 505#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 506 507extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 508 509/* 510 * Encode and decode a swap entry. 511 * Note that the bits we use in a PTE for representing a swap entry 512 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 513 * (if used). -- paulus 514 */ 515#define __swp_type(entry) ((entry).val & 0x3f) 516#define __swp_offset(entry) ((entry).val >> 6) 517#define __swp_entry(type, offset) \ 518 ((swp_entry_t) { (type) | ((offset) << 6) }) 519#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 520#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 521 522extern unsigned long iopa(unsigned long addr); 523 524/* Values for nocacheflag and cmode */ 525/* These are not used by the APUS kernel_map, but prevents 526 * compilation errors. 527 */ 528#define IOMAP_FULL_CACHING 0 529#define IOMAP_NOCACHE_SER 1 530#define IOMAP_NOCACHE_NONSER 2 531#define IOMAP_NO_COPYBACK 3 532 533/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 534#define kern_addr_valid(addr) (1) 535 536/* 537 * No page table caches to initialise 538 */ 539#define pgtable_cache_init() do { } while (0) 540 541void do_page_fault(struct pt_regs *regs, unsigned long address, 542 unsigned long error_code); 543 544void mapin_ram(void); 545int map_page(unsigned long va, phys_addr_t pa, int flags); 546 547extern int mem_init_done; 548 549asmlinkage void __init mmu_init(void); 550 551void __init *early_get_page(void); 552 553#endif /* __ASSEMBLY__ */ 554#endif /* __KERNEL__ */ 555 556#endif /* CONFIG_MMU */ 557 558#ifndef __ASSEMBLY__ 559#include <asm-generic/pgtable.h> 560 561extern unsigned long ioremap_bot, ioremap_base; 562 563void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle); 564void consistent_free(size_t size, void *vaddr); 565void consistent_sync(void *vaddr, size_t size, int direction); 566void consistent_sync_page(struct page *page, unsigned long offset, 567 size_t size, int direction); 568 569void setup_memory(void); 570#endif /* __ASSEMBLY__ */ 571 572#endif /* _ASM_MICROBLAZE_PGTABLE_H */