Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132#include <linux/hashtable.h>
133#include <linux/vmalloc.h>
134#include <linux/if_macvlan.h>
135
136#include "net-sysfs.h"
137
138/* Instead of increasing this, you should create a hash table. */
139#define MAX_GRO_SKBS 8
140
141/* This should be increased if a protocol with a bigger head is added. */
142#define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144static DEFINE_SPINLOCK(ptype_lock);
145static DEFINE_SPINLOCK(offload_lock);
146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147struct list_head ptype_all __read_mostly; /* Taps */
148static struct list_head offload_base __read_mostly;
149
150static int netif_rx_internal(struct sk_buff *skb);
151
152/*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171DEFINE_RWLOCK(dev_base_lock);
172EXPORT_SYMBOL(dev_base_lock);
173
174/* protects napi_hash addition/deletion and napi_gen_id */
175static DEFINE_SPINLOCK(napi_hash_lock);
176
177static unsigned int napi_gen_id;
178static DEFINE_HASHTABLE(napi_hash, 8);
179
180static seqcount_t devnet_rename_seq;
181
182static inline void dev_base_seq_inc(struct net *net)
183{
184 while (++net->dev_base_seq == 0);
185}
186
187static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188{
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192}
193
194static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195{
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197}
198
199static inline void rps_lock(struct softnet_data *sd)
200{
201#ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203#endif
204}
205
206static inline void rps_unlock(struct softnet_data *sd)
207{
208#ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210#endif
211}
212
213/* Device list insertion */
214static void list_netdevice(struct net_device *dev)
215{
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228}
229
230/* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233static void unlist_netdevice(struct net_device *dev)
234{
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245}
246
247/*
248 * Our notifier list
249 */
250
251static RAW_NOTIFIER_HEAD(netdev_chain);
252
253/*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261#ifdef CONFIG_LOCKDEP
262/*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304{
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312}
313
314static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316{
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322}
323
324static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325{
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332}
333#else
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336{
337}
338static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339{
340}
341#endif
342
343/*******************************************************************************
344
345 Protocol management and registration routines
346
347*******************************************************************************/
348
349/*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365static inline struct list_head *ptype_head(const struct packet_type *pt)
366{
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371}
372
373/**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386void dev_add_pack(struct packet_type *pt)
387{
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393}
394EXPORT_SYMBOL(dev_add_pack);
395
396/**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409void __dev_remove_pack(struct packet_type *pt)
410{
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424out:
425 spin_unlock(&ptype_lock);
426}
427EXPORT_SYMBOL(__dev_remove_pack);
428
429/**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441void dev_remove_pack(struct packet_type *pt)
442{
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446}
447EXPORT_SYMBOL(dev_remove_pack);
448
449
450/**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462void dev_add_offload(struct packet_offload *po)
463{
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469}
470EXPORT_SYMBOL(dev_add_offload);
471
472/**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485static void __dev_remove_offload(struct packet_offload *po)
486{
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500out:
501 spin_unlock(&offload_lock);
502}
503
504/**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516void dev_remove_offload(struct packet_offload *po)
517{
518 __dev_remove_offload(po);
519
520 synchronize_net();
521}
522EXPORT_SYMBOL(dev_remove_offload);
523
524/******************************************************************************
525
526 Device Boot-time Settings Routines
527
528*******************************************************************************/
529
530/* Boot time configuration table */
531static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533/**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542static int netdev_boot_setup_add(char *name, struct ifmap *map)
543{
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558}
559
560/**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569int netdev_boot_setup_check(struct net_device *dev)
570{
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585}
586EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589/**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599unsigned long netdev_boot_base(const char *prefix, int unit)
600{
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618}
619
620/*
621 * Saves at boot time configured settings for any netdevice.
622 */
623int __init netdev_boot_setup(char *str)
624{
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645}
646
647__setup("netdev=", netdev_boot_setup);
648
649/*******************************************************************************
650
651 Device Interface Subroutines
652
653*******************************************************************************/
654
655/**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667struct net_device *__dev_get_by_name(struct net *net, const char *name)
668{
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677}
678EXPORT_SYMBOL(__dev_get_by_name);
679
680/**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693{
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702}
703EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705/**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717struct net_device *dev_get_by_name(struct net *net, const char *name)
718{
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727}
728EXPORT_SYMBOL(dev_get_by_name);
729
730/**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743{
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752}
753EXPORT_SYMBOL(__dev_get_by_index);
754
755/**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767{
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776}
777EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780/**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791struct net_device *dev_get_by_index(struct net *net, int ifindex)
792{
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801}
802EXPORT_SYMBOL(dev_get_by_index);
803
804/**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814int netdev_get_name(struct net *net, char *name, int ifindex)
815{
816 struct net_device *dev;
817 unsigned int seq;
818
819retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836}
837
838/**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854{
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863}
864EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867{
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876}
877EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880{
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892}
893EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895/**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908{
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919}
920EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922/**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930bool dev_valid_name(const char *name)
931{
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945}
946EXPORT_SYMBOL(dev_valid_name);
947
948/**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964{
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012}
1013
1014/**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028int dev_alloc_name(struct net_device *dev, const char *name)
1029{
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040}
1041EXPORT_SYMBOL(dev_alloc_name);
1042
1043static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046{
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054}
1055
1056static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059{
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073}
1074
1075/**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083int dev_change_name(struct net_device *dev, const char *newname)
1084{
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152}
1153
1154/**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163{
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184}
1185
1186
1187/**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193void netdev_features_change(struct net_device *dev)
1194{
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196}
1197EXPORT_SYMBOL(netdev_features_change);
1198
1199/**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207void netdev_state_change(struct net_device *dev)
1208{
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213}
1214EXPORT_SYMBOL(netdev_state_change);
1215
1216/**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226void netdev_notify_peers(struct net_device *dev)
1227{
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231}
1232EXPORT_SYMBOL(netdev_notify_peers);
1233
1234static int __dev_open(struct net_device *dev)
1235{
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_poll_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_poll_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276}
1277
1278/**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290int dev_open(struct net_device *dev)
1291{
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305}
1306EXPORT_SYMBOL(dev_open);
1307
1308static int __dev_close_many(struct list_head *head)
1309{
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1318
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1325 *
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1328 */
1329 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1330 }
1331
1332 dev_deactivate_many(head);
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337 /*
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1340 *
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1343 */
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1346
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1350 }
1351
1352 return 0;
1353}
1354
1355static int __dev_close(struct net_device *dev)
1356{
1357 int retval;
1358 LIST_HEAD(single);
1359
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1363
1364 return retval;
1365}
1366
1367static int dev_close_many(struct list_head *head)
1368{
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385}
1386
1387/**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396int dev_close(struct net_device *dev)
1397{
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1404 }
1405 return 0;
1406}
1407EXPORT_SYMBOL(dev_close);
1408
1409
1410/**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418void dev_disable_lro(struct net_device *dev)
1419{
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436}
1437EXPORT_SYMBOL(dev_disable_lro);
1438
1439static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441{
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446}
1447
1448static int dev_boot_phase = 1;
1449
1450/**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464int register_netdevice_notifier(struct notifier_block *nb)
1465{
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514}
1515EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517/**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531int unregister_netdevice_notifier(struct notifier_block *nb)
1532{
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552unlock:
1553 rtnl_unlock();
1554 return err;
1555}
1556EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558/**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571{
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575}
1576
1577/**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587{
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591}
1592EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594static struct static_key netstamp_needed __read_mostly;
1595#ifdef HAVE_JUMP_LABEL
1596/* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600static atomic_t netstamp_needed_deferred;
1601#endif
1602
1603void net_enable_timestamp(void)
1604{
1605#ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613#endif
1614 static_key_slow_inc(&netstamp_needed);
1615}
1616EXPORT_SYMBOL(net_enable_timestamp);
1617
1618void net_disable_timestamp(void)
1619{
1620#ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625#endif
1626 static_key_slow_dec(&netstamp_needed);
1627}
1628EXPORT_SYMBOL(net_disable_timestamp);
1629
1630static inline void net_timestamp_set(struct sk_buff *skb)
1631{
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635}
1636
1637#define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644{
1645 unsigned int len;
1646
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1649
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1653
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1656 */
1657 if (skb_is_gso(skb))
1658 return true;
1659
1660 return false;
1661}
1662EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664/**
1665 * dev_forward_skb - loopback an skb to another netif
1666 *
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1669 *
1670 * return values:
1671 * NET_RX_SUCCESS (no congestion)
1672 * NET_RX_DROP (packet was dropped, but freed)
1673 *
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1677 *
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1681 */
1682int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return netif_rx_internal(skb);
1702}
1703EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708{
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713}
1714
1715static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716{
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726}
1727
1728/*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
1733static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734{
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1755
1756 net_timestamp_set(skb2);
1757
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
1762 skb_reset_mac_header(skb2);
1763
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1770 }
1771
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1775 }
1776 }
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1780}
1781
1782/**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796{
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818}
1819
1820#ifdef CONFIG_XPS
1821static DEFINE_MUTEX(xps_map_mutex);
1822#define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1827{
1828 struct xps_map *map = NULL;
1829 int pos;
1830
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
1843 break;
1844 }
1845 }
1846
1847 return map;
1848}
1849
1850static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851{
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
1868 active = true;
1869 }
1870
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
1880out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882}
1883
1884static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886{
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917}
1918
1919int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1921{
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968#ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973#endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041}
2042EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044#endif
2045/*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050{
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070#ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072#endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078}
2079EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081#ifdef CONFIG_SYSFS
2082/**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093{
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110}
2111EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112#endif
2113
2114/**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120int netif_get_num_default_rss_queues(void)
2121{
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123}
2124EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126static inline void __netif_reschedule(struct Qdisc *q)
2127{
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138}
2139
2140void __netif_schedule(struct Qdisc *q)
2141{
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144}
2145EXPORT_SYMBOL(__netif_schedule);
2146
2147struct dev_kfree_skb_cb {
2148 enum skb_free_reason reason;
2149};
2150
2151static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152{
2153 return (struct dev_kfree_skb_cb *)skb->cb;
2154}
2155
2156void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157{
2158 unsigned long flags;
2159
2160 if (likely(atomic_read(&skb->users) == 1)) {
2161 smp_rmb();
2162 atomic_set(&skb->users, 0);
2163 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 return;
2165 }
2166 get_kfree_skb_cb(skb)->reason = reason;
2167 local_irq_save(flags);
2168 skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 __this_cpu_write(softnet_data.completion_queue, skb);
2170 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 local_irq_restore(flags);
2172}
2173EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176{
2177 if (in_irq() || irqs_disabled())
2178 __dev_kfree_skb_irq(skb, reason);
2179 else
2180 dev_kfree_skb(skb);
2181}
2182EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185/**
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2188 *
2189 * Mark device as removed from system and therefore no longer available.
2190 */
2191void netif_device_detach(struct net_device *dev)
2192{
2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 netif_running(dev)) {
2195 netif_tx_stop_all_queues(dev);
2196 }
2197}
2198EXPORT_SYMBOL(netif_device_detach);
2199
2200/**
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2203 *
2204 * Mark device as attached from system and restart if needed.
2205 */
2206void netif_device_attach(struct net_device *dev)
2207{
2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 netif_running(dev)) {
2210 netif_tx_wake_all_queues(dev);
2211 __netdev_watchdog_up(dev);
2212 }
2213}
2214EXPORT_SYMBOL(netif_device_attach);
2215
2216static void skb_warn_bad_offload(const struct sk_buff *skb)
2217{
2218 static const netdev_features_t null_features = 0;
2219 struct net_device *dev = skb->dev;
2220 const char *driver = "";
2221
2222 if (!net_ratelimit())
2223 return;
2224
2225 if (dev && dev->dev.parent)
2226 driver = dev_driver_string(dev->dev.parent);
2227
2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 "gso_type=%d ip_summed=%d\n",
2230 driver, dev ? &dev->features : &null_features,
2231 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 skb_shinfo(skb)->gso_type, skb->ip_summed);
2234}
2235
2236/*
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2239 */
2240int skb_checksum_help(struct sk_buff *skb)
2241{
2242 __wsum csum;
2243 int ret = 0, offset;
2244
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 goto out_set_summed;
2247
2248 if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 skb_warn_bad_offload(skb);
2250 return -EINVAL;
2251 }
2252
2253 /* Before computing a checksum, we should make sure no frag could
2254 * be modified by an external entity : checksum could be wrong.
2255 */
2256 if (skb_has_shared_frag(skb)) {
2257 ret = __skb_linearize(skb);
2258 if (ret)
2259 goto out;
2260 }
2261
2262 offset = skb_checksum_start_offset(skb);
2263 BUG_ON(offset >= skb_headlen(skb));
2264 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266 offset += skb->csum_offset;
2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269 if (skb_cloned(skb) &&
2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 if (ret)
2273 goto out;
2274 }
2275
2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277out_set_summed:
2278 skb->ip_summed = CHECKSUM_NONE;
2279out:
2280 return ret;
2281}
2282EXPORT_SYMBOL(skb_checksum_help);
2283
2284__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285{
2286 __be16 type = skb->protocol;
2287 int vlan_depth = skb->mac_len;
2288
2289 /* Tunnel gso handlers can set protocol to ethernet. */
2290 if (type == htons(ETH_P_TEB)) {
2291 struct ethhdr *eth;
2292
2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 return 0;
2295
2296 eth = (struct ethhdr *)skb_mac_header(skb);
2297 type = eth->h_proto;
2298 }
2299
2300 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2301 struct vlan_hdr *vh;
2302
2303 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2304 return 0;
2305
2306 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2307 type = vh->h_vlan_encapsulated_proto;
2308 vlan_depth += VLAN_HLEN;
2309 }
2310
2311 *depth = vlan_depth;
2312
2313 return type;
2314}
2315
2316/**
2317 * skb_mac_gso_segment - mac layer segmentation handler.
2318 * @skb: buffer to segment
2319 * @features: features for the output path (see dev->features)
2320 */
2321struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2322 netdev_features_t features)
2323{
2324 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2325 struct packet_offload *ptype;
2326 int vlan_depth = skb->mac_len;
2327 __be16 type = skb_network_protocol(skb, &vlan_depth);
2328
2329 if (unlikely(!type))
2330 return ERR_PTR(-EINVAL);
2331
2332 __skb_pull(skb, vlan_depth);
2333
2334 rcu_read_lock();
2335 list_for_each_entry_rcu(ptype, &offload_base, list) {
2336 if (ptype->type == type && ptype->callbacks.gso_segment) {
2337 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2338 int err;
2339
2340 err = ptype->callbacks.gso_send_check(skb);
2341 segs = ERR_PTR(err);
2342 if (err || skb_gso_ok(skb, features))
2343 break;
2344 __skb_push(skb, (skb->data -
2345 skb_network_header(skb)));
2346 }
2347 segs = ptype->callbacks.gso_segment(skb, features);
2348 break;
2349 }
2350 }
2351 rcu_read_unlock();
2352
2353 __skb_push(skb, skb->data - skb_mac_header(skb));
2354
2355 return segs;
2356}
2357EXPORT_SYMBOL(skb_mac_gso_segment);
2358
2359
2360/* openvswitch calls this on rx path, so we need a different check.
2361 */
2362static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2363{
2364 if (tx_path)
2365 return skb->ip_summed != CHECKSUM_PARTIAL;
2366 else
2367 return skb->ip_summed == CHECKSUM_NONE;
2368}
2369
2370/**
2371 * __skb_gso_segment - Perform segmentation on skb.
2372 * @skb: buffer to segment
2373 * @features: features for the output path (see dev->features)
2374 * @tx_path: whether it is called in TX path
2375 *
2376 * This function segments the given skb and returns a list of segments.
2377 *
2378 * It may return NULL if the skb requires no segmentation. This is
2379 * only possible when GSO is used for verifying header integrity.
2380 */
2381struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2382 netdev_features_t features, bool tx_path)
2383{
2384 if (unlikely(skb_needs_check(skb, tx_path))) {
2385 int err;
2386
2387 skb_warn_bad_offload(skb);
2388
2389 if (skb_header_cloned(skb) &&
2390 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2391 return ERR_PTR(err);
2392 }
2393
2394 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2395 SKB_GSO_CB(skb)->encap_level = 0;
2396
2397 skb_reset_mac_header(skb);
2398 skb_reset_mac_len(skb);
2399
2400 return skb_mac_gso_segment(skb, features);
2401}
2402EXPORT_SYMBOL(__skb_gso_segment);
2403
2404/* Take action when hardware reception checksum errors are detected. */
2405#ifdef CONFIG_BUG
2406void netdev_rx_csum_fault(struct net_device *dev)
2407{
2408 if (net_ratelimit()) {
2409 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2410 dump_stack();
2411 }
2412}
2413EXPORT_SYMBOL(netdev_rx_csum_fault);
2414#endif
2415
2416/* Actually, we should eliminate this check as soon as we know, that:
2417 * 1. IOMMU is present and allows to map all the memory.
2418 * 2. No high memory really exists on this machine.
2419 */
2420
2421static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2422{
2423#ifdef CONFIG_HIGHMEM
2424 int i;
2425 if (!(dev->features & NETIF_F_HIGHDMA)) {
2426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2428 if (PageHighMem(skb_frag_page(frag)))
2429 return 1;
2430 }
2431 }
2432
2433 if (PCI_DMA_BUS_IS_PHYS) {
2434 struct device *pdev = dev->dev.parent;
2435
2436 if (!pdev)
2437 return 0;
2438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2440 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2441 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2442 return 1;
2443 }
2444 }
2445#endif
2446 return 0;
2447}
2448
2449struct dev_gso_cb {
2450 void (*destructor)(struct sk_buff *skb);
2451};
2452
2453#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2454
2455static void dev_gso_skb_destructor(struct sk_buff *skb)
2456{
2457 struct dev_gso_cb *cb;
2458
2459 kfree_skb_list(skb->next);
2460 skb->next = NULL;
2461
2462 cb = DEV_GSO_CB(skb);
2463 if (cb->destructor)
2464 cb->destructor(skb);
2465}
2466
2467/**
2468 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2469 * @skb: buffer to segment
2470 * @features: device features as applicable to this skb
2471 *
2472 * This function segments the given skb and stores the list of segments
2473 * in skb->next.
2474 */
2475static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2476{
2477 struct sk_buff *segs;
2478
2479 segs = skb_gso_segment(skb, features);
2480
2481 /* Verifying header integrity only. */
2482 if (!segs)
2483 return 0;
2484
2485 if (IS_ERR(segs))
2486 return PTR_ERR(segs);
2487
2488 skb->next = segs;
2489 DEV_GSO_CB(skb)->destructor = skb->destructor;
2490 skb->destructor = dev_gso_skb_destructor;
2491
2492 return 0;
2493}
2494
2495static netdev_features_t harmonize_features(struct sk_buff *skb,
2496 netdev_features_t features)
2497{
2498 int tmp;
2499
2500 if (skb->ip_summed != CHECKSUM_NONE &&
2501 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2502 features &= ~NETIF_F_ALL_CSUM;
2503 } else if (illegal_highdma(skb->dev, skb)) {
2504 features &= ~NETIF_F_SG;
2505 }
2506
2507 return features;
2508}
2509
2510netdev_features_t netif_skb_features(struct sk_buff *skb)
2511{
2512 __be16 protocol = skb->protocol;
2513 netdev_features_t features = skb->dev->features;
2514
2515 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2516 features &= ~NETIF_F_GSO_MASK;
2517
2518 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2519 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2520 protocol = veh->h_vlan_encapsulated_proto;
2521 } else if (!vlan_tx_tag_present(skb)) {
2522 return harmonize_features(skb, features);
2523 }
2524
2525 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2526 NETIF_F_HW_VLAN_STAG_TX);
2527
2528 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2529 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2530 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2531 NETIF_F_HW_VLAN_STAG_TX;
2532
2533 return harmonize_features(skb, features);
2534}
2535EXPORT_SYMBOL(netif_skb_features);
2536
2537int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2538 struct netdev_queue *txq)
2539{
2540 const struct net_device_ops *ops = dev->netdev_ops;
2541 int rc = NETDEV_TX_OK;
2542 unsigned int skb_len;
2543
2544 if (likely(!skb->next)) {
2545 netdev_features_t features;
2546
2547 /*
2548 * If device doesn't need skb->dst, release it right now while
2549 * its hot in this cpu cache
2550 */
2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 skb_dst_drop(skb);
2553
2554 features = netif_skb_features(skb);
2555
2556 if (vlan_tx_tag_present(skb) &&
2557 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2558 skb = __vlan_put_tag(skb, skb->vlan_proto,
2559 vlan_tx_tag_get(skb));
2560 if (unlikely(!skb))
2561 goto out;
2562
2563 skb->vlan_tci = 0;
2564 }
2565
2566 /* If encapsulation offload request, verify we are testing
2567 * hardware encapsulation features instead of standard
2568 * features for the netdev
2569 */
2570 if (skb->encapsulation)
2571 features &= dev->hw_enc_features;
2572
2573 if (netif_needs_gso(skb, features)) {
2574 if (unlikely(dev_gso_segment(skb, features)))
2575 goto out_kfree_skb;
2576 if (skb->next)
2577 goto gso;
2578 } else {
2579 if (skb_needs_linearize(skb, features) &&
2580 __skb_linearize(skb))
2581 goto out_kfree_skb;
2582
2583 /* If packet is not checksummed and device does not
2584 * support checksumming for this protocol, complete
2585 * checksumming here.
2586 */
2587 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2588 if (skb->encapsulation)
2589 skb_set_inner_transport_header(skb,
2590 skb_checksum_start_offset(skb));
2591 else
2592 skb_set_transport_header(skb,
2593 skb_checksum_start_offset(skb));
2594 if (!(features & NETIF_F_ALL_CSUM) &&
2595 skb_checksum_help(skb))
2596 goto out_kfree_skb;
2597 }
2598 }
2599
2600 if (!list_empty(&ptype_all))
2601 dev_queue_xmit_nit(skb, dev);
2602
2603 skb_len = skb->len;
2604 trace_net_dev_start_xmit(skb, dev);
2605 rc = ops->ndo_start_xmit(skb, dev);
2606 trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 if (rc == NETDEV_TX_OK)
2608 txq_trans_update(txq);
2609 return rc;
2610 }
2611
2612gso:
2613 do {
2614 struct sk_buff *nskb = skb->next;
2615
2616 skb->next = nskb->next;
2617 nskb->next = NULL;
2618
2619 if (!list_empty(&ptype_all))
2620 dev_queue_xmit_nit(nskb, dev);
2621
2622 skb_len = nskb->len;
2623 trace_net_dev_start_xmit(nskb, dev);
2624 rc = ops->ndo_start_xmit(nskb, dev);
2625 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 if (unlikely(rc != NETDEV_TX_OK)) {
2627 if (rc & ~NETDEV_TX_MASK)
2628 goto out_kfree_gso_skb;
2629 nskb->next = skb->next;
2630 skb->next = nskb;
2631 return rc;
2632 }
2633 txq_trans_update(txq);
2634 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 return NETDEV_TX_BUSY;
2636 } while (skb->next);
2637
2638out_kfree_gso_skb:
2639 if (likely(skb->next == NULL)) {
2640 skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 consume_skb(skb);
2642 return rc;
2643 }
2644out_kfree_skb:
2645 kfree_skb(skb);
2646out:
2647 return rc;
2648}
2649EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2650
2651static void qdisc_pkt_len_init(struct sk_buff *skb)
2652{
2653 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654
2655 qdisc_skb_cb(skb)->pkt_len = skb->len;
2656
2657 /* To get more precise estimation of bytes sent on wire,
2658 * we add to pkt_len the headers size of all segments
2659 */
2660 if (shinfo->gso_size) {
2661 unsigned int hdr_len;
2662 u16 gso_segs = shinfo->gso_segs;
2663
2664 /* mac layer + network layer */
2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666
2667 /* + transport layer */
2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 hdr_len += tcp_hdrlen(skb);
2670 else
2671 hdr_len += sizeof(struct udphdr);
2672
2673 if (shinfo->gso_type & SKB_GSO_DODGY)
2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 shinfo->gso_size);
2676
2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 }
2679}
2680
2681static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 struct net_device *dev,
2683 struct netdev_queue *txq)
2684{
2685 spinlock_t *root_lock = qdisc_lock(q);
2686 bool contended;
2687 int rc;
2688
2689 qdisc_pkt_len_init(skb);
2690 qdisc_calculate_pkt_len(skb, q);
2691 /*
2692 * Heuristic to force contended enqueues to serialize on a
2693 * separate lock before trying to get qdisc main lock.
2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 * and dequeue packets faster.
2696 */
2697 contended = qdisc_is_running(q);
2698 if (unlikely(contended))
2699 spin_lock(&q->busylock);
2700
2701 spin_lock(root_lock);
2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 kfree_skb(skb);
2704 rc = NET_XMIT_DROP;
2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 qdisc_run_begin(q)) {
2707 /*
2708 * This is a work-conserving queue; there are no old skbs
2709 * waiting to be sent out; and the qdisc is not running -
2710 * xmit the skb directly.
2711 */
2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 skb_dst_force(skb);
2714
2715 qdisc_bstats_update(q, skb);
2716
2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 if (unlikely(contended)) {
2719 spin_unlock(&q->busylock);
2720 contended = false;
2721 }
2722 __qdisc_run(q);
2723 } else
2724 qdisc_run_end(q);
2725
2726 rc = NET_XMIT_SUCCESS;
2727 } else {
2728 skb_dst_force(skb);
2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 if (qdisc_run_begin(q)) {
2731 if (unlikely(contended)) {
2732 spin_unlock(&q->busylock);
2733 contended = false;
2734 }
2735 __qdisc_run(q);
2736 }
2737 }
2738 spin_unlock(root_lock);
2739 if (unlikely(contended))
2740 spin_unlock(&q->busylock);
2741 return rc;
2742}
2743
2744#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2745static void skb_update_prio(struct sk_buff *skb)
2746{
2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748
2749 if (!skb->priority && skb->sk && map) {
2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751
2752 if (prioidx < map->priomap_len)
2753 skb->priority = map->priomap[prioidx];
2754 }
2755}
2756#else
2757#define skb_update_prio(skb)
2758#endif
2759
2760static DEFINE_PER_CPU(int, xmit_recursion);
2761#define RECURSION_LIMIT 10
2762
2763/**
2764 * dev_loopback_xmit - loop back @skb
2765 * @skb: buffer to transmit
2766 */
2767int dev_loopback_xmit(struct sk_buff *skb)
2768{
2769 skb_reset_mac_header(skb);
2770 __skb_pull(skb, skb_network_offset(skb));
2771 skb->pkt_type = PACKET_LOOPBACK;
2772 skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 WARN_ON(!skb_dst(skb));
2774 skb_dst_force(skb);
2775 netif_rx_ni(skb);
2776 return 0;
2777}
2778EXPORT_SYMBOL(dev_loopback_xmit);
2779
2780/**
2781 * __dev_queue_xmit - transmit a buffer
2782 * @skb: buffer to transmit
2783 * @accel_priv: private data used for L2 forwarding offload
2784 *
2785 * Queue a buffer for transmission to a network device. The caller must
2786 * have set the device and priority and built the buffer before calling
2787 * this function. The function can be called from an interrupt.
2788 *
2789 * A negative errno code is returned on a failure. A success does not
2790 * guarantee the frame will be transmitted as it may be dropped due
2791 * to congestion or traffic shaping.
2792 *
2793 * -----------------------------------------------------------------------------------
2794 * I notice this method can also return errors from the queue disciplines,
2795 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2796 * be positive.
2797 *
2798 * Regardless of the return value, the skb is consumed, so it is currently
2799 * difficult to retry a send to this method. (You can bump the ref count
2800 * before sending to hold a reference for retry if you are careful.)
2801 *
2802 * When calling this method, interrupts MUST be enabled. This is because
2803 * the BH enable code must have IRQs enabled so that it will not deadlock.
2804 * --BLG
2805 */
2806static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2807{
2808 struct net_device *dev = skb->dev;
2809 struct netdev_queue *txq;
2810 struct Qdisc *q;
2811 int rc = -ENOMEM;
2812
2813 skb_reset_mac_header(skb);
2814
2815 /* Disable soft irqs for various locks below. Also
2816 * stops preemption for RCU.
2817 */
2818 rcu_read_lock_bh();
2819
2820 skb_update_prio(skb);
2821
2822 txq = netdev_pick_tx(dev, skb, accel_priv);
2823 q = rcu_dereference_bh(txq->qdisc);
2824
2825#ifdef CONFIG_NET_CLS_ACT
2826 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2827#endif
2828 trace_net_dev_queue(skb);
2829 if (q->enqueue) {
2830 rc = __dev_xmit_skb(skb, q, dev, txq);
2831 goto out;
2832 }
2833
2834 /* The device has no queue. Common case for software devices:
2835 loopback, all the sorts of tunnels...
2836
2837 Really, it is unlikely that netif_tx_lock protection is necessary
2838 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2839 counters.)
2840 However, it is possible, that they rely on protection
2841 made by us here.
2842
2843 Check this and shot the lock. It is not prone from deadlocks.
2844 Either shot noqueue qdisc, it is even simpler 8)
2845 */
2846 if (dev->flags & IFF_UP) {
2847 int cpu = smp_processor_id(); /* ok because BHs are off */
2848
2849 if (txq->xmit_lock_owner != cpu) {
2850
2851 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2852 goto recursion_alert;
2853
2854 HARD_TX_LOCK(dev, txq, cpu);
2855
2856 if (!netif_xmit_stopped(txq)) {
2857 __this_cpu_inc(xmit_recursion);
2858 rc = dev_hard_start_xmit(skb, dev, txq);
2859 __this_cpu_dec(xmit_recursion);
2860 if (dev_xmit_complete(rc)) {
2861 HARD_TX_UNLOCK(dev, txq);
2862 goto out;
2863 }
2864 }
2865 HARD_TX_UNLOCK(dev, txq);
2866 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2867 dev->name);
2868 } else {
2869 /* Recursion is detected! It is possible,
2870 * unfortunately
2871 */
2872recursion_alert:
2873 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2874 dev->name);
2875 }
2876 }
2877
2878 rc = -ENETDOWN;
2879 rcu_read_unlock_bh();
2880
2881 atomic_long_inc(&dev->tx_dropped);
2882 kfree_skb(skb);
2883 return rc;
2884out:
2885 rcu_read_unlock_bh();
2886 return rc;
2887}
2888
2889int dev_queue_xmit(struct sk_buff *skb)
2890{
2891 return __dev_queue_xmit(skb, NULL);
2892}
2893EXPORT_SYMBOL(dev_queue_xmit);
2894
2895int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2896{
2897 return __dev_queue_xmit(skb, accel_priv);
2898}
2899EXPORT_SYMBOL(dev_queue_xmit_accel);
2900
2901
2902/*=======================================================================
2903 Receiver routines
2904 =======================================================================*/
2905
2906int netdev_max_backlog __read_mostly = 1000;
2907EXPORT_SYMBOL(netdev_max_backlog);
2908
2909int netdev_tstamp_prequeue __read_mostly = 1;
2910int netdev_budget __read_mostly = 300;
2911int weight_p __read_mostly = 64; /* old backlog weight */
2912
2913/* Called with irq disabled */
2914static inline void ____napi_schedule(struct softnet_data *sd,
2915 struct napi_struct *napi)
2916{
2917 list_add_tail(&napi->poll_list, &sd->poll_list);
2918 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2919}
2920
2921#ifdef CONFIG_RPS
2922
2923/* One global table that all flow-based protocols share. */
2924struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2925EXPORT_SYMBOL(rps_sock_flow_table);
2926
2927struct static_key rps_needed __read_mostly;
2928
2929static struct rps_dev_flow *
2930set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2931 struct rps_dev_flow *rflow, u16 next_cpu)
2932{
2933 if (next_cpu != RPS_NO_CPU) {
2934#ifdef CONFIG_RFS_ACCEL
2935 struct netdev_rx_queue *rxqueue;
2936 struct rps_dev_flow_table *flow_table;
2937 struct rps_dev_flow *old_rflow;
2938 u32 flow_id;
2939 u16 rxq_index;
2940 int rc;
2941
2942 /* Should we steer this flow to a different hardware queue? */
2943 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2944 !(dev->features & NETIF_F_NTUPLE))
2945 goto out;
2946 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2947 if (rxq_index == skb_get_rx_queue(skb))
2948 goto out;
2949
2950 rxqueue = dev->_rx + rxq_index;
2951 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2952 if (!flow_table)
2953 goto out;
2954 flow_id = skb_get_hash(skb) & flow_table->mask;
2955 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2956 rxq_index, flow_id);
2957 if (rc < 0)
2958 goto out;
2959 old_rflow = rflow;
2960 rflow = &flow_table->flows[flow_id];
2961 rflow->filter = rc;
2962 if (old_rflow->filter == rflow->filter)
2963 old_rflow->filter = RPS_NO_FILTER;
2964 out:
2965#endif
2966 rflow->last_qtail =
2967 per_cpu(softnet_data, next_cpu).input_queue_head;
2968 }
2969
2970 rflow->cpu = next_cpu;
2971 return rflow;
2972}
2973
2974/*
2975 * get_rps_cpu is called from netif_receive_skb and returns the target
2976 * CPU from the RPS map of the receiving queue for a given skb.
2977 * rcu_read_lock must be held on entry.
2978 */
2979static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2980 struct rps_dev_flow **rflowp)
2981{
2982 struct netdev_rx_queue *rxqueue;
2983 struct rps_map *map;
2984 struct rps_dev_flow_table *flow_table;
2985 struct rps_sock_flow_table *sock_flow_table;
2986 int cpu = -1;
2987 u16 tcpu;
2988 u32 hash;
2989
2990 if (skb_rx_queue_recorded(skb)) {
2991 u16 index = skb_get_rx_queue(skb);
2992 if (unlikely(index >= dev->real_num_rx_queues)) {
2993 WARN_ONCE(dev->real_num_rx_queues > 1,
2994 "%s received packet on queue %u, but number "
2995 "of RX queues is %u\n",
2996 dev->name, index, dev->real_num_rx_queues);
2997 goto done;
2998 }
2999 rxqueue = dev->_rx + index;
3000 } else
3001 rxqueue = dev->_rx;
3002
3003 map = rcu_dereference(rxqueue->rps_map);
3004 if (map) {
3005 if (map->len == 1 &&
3006 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3007 tcpu = map->cpus[0];
3008 if (cpu_online(tcpu))
3009 cpu = tcpu;
3010 goto done;
3011 }
3012 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3013 goto done;
3014 }
3015
3016 skb_reset_network_header(skb);
3017 hash = skb_get_hash(skb);
3018 if (!hash)
3019 goto done;
3020
3021 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3022 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3023 if (flow_table && sock_flow_table) {
3024 u16 next_cpu;
3025 struct rps_dev_flow *rflow;
3026
3027 rflow = &flow_table->flows[hash & flow_table->mask];
3028 tcpu = rflow->cpu;
3029
3030 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3031
3032 /*
3033 * If the desired CPU (where last recvmsg was done) is
3034 * different from current CPU (one in the rx-queue flow
3035 * table entry), switch if one of the following holds:
3036 * - Current CPU is unset (equal to RPS_NO_CPU).
3037 * - Current CPU is offline.
3038 * - The current CPU's queue tail has advanced beyond the
3039 * last packet that was enqueued using this table entry.
3040 * This guarantees that all previous packets for the flow
3041 * have been dequeued, thus preserving in order delivery.
3042 */
3043 if (unlikely(tcpu != next_cpu) &&
3044 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3045 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3046 rflow->last_qtail)) >= 0)) {
3047 tcpu = next_cpu;
3048 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3049 }
3050
3051 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3052 *rflowp = rflow;
3053 cpu = tcpu;
3054 goto done;
3055 }
3056 }
3057
3058 if (map) {
3059 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3060
3061 if (cpu_online(tcpu)) {
3062 cpu = tcpu;
3063 goto done;
3064 }
3065 }
3066
3067done:
3068 return cpu;
3069}
3070
3071#ifdef CONFIG_RFS_ACCEL
3072
3073/**
3074 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3075 * @dev: Device on which the filter was set
3076 * @rxq_index: RX queue index
3077 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3078 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3079 *
3080 * Drivers that implement ndo_rx_flow_steer() should periodically call
3081 * this function for each installed filter and remove the filters for
3082 * which it returns %true.
3083 */
3084bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3085 u32 flow_id, u16 filter_id)
3086{
3087 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3088 struct rps_dev_flow_table *flow_table;
3089 struct rps_dev_flow *rflow;
3090 bool expire = true;
3091 int cpu;
3092
3093 rcu_read_lock();
3094 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095 if (flow_table && flow_id <= flow_table->mask) {
3096 rflow = &flow_table->flows[flow_id];
3097 cpu = ACCESS_ONCE(rflow->cpu);
3098 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3099 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3100 rflow->last_qtail) <
3101 (int)(10 * flow_table->mask)))
3102 expire = false;
3103 }
3104 rcu_read_unlock();
3105 return expire;
3106}
3107EXPORT_SYMBOL(rps_may_expire_flow);
3108
3109#endif /* CONFIG_RFS_ACCEL */
3110
3111/* Called from hardirq (IPI) context */
3112static void rps_trigger_softirq(void *data)
3113{
3114 struct softnet_data *sd = data;
3115
3116 ____napi_schedule(sd, &sd->backlog);
3117 sd->received_rps++;
3118}
3119
3120#endif /* CONFIG_RPS */
3121
3122/*
3123 * Check if this softnet_data structure is another cpu one
3124 * If yes, queue it to our IPI list and return 1
3125 * If no, return 0
3126 */
3127static int rps_ipi_queued(struct softnet_data *sd)
3128{
3129#ifdef CONFIG_RPS
3130 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3131
3132 if (sd != mysd) {
3133 sd->rps_ipi_next = mysd->rps_ipi_list;
3134 mysd->rps_ipi_list = sd;
3135
3136 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3137 return 1;
3138 }
3139#endif /* CONFIG_RPS */
3140 return 0;
3141}
3142
3143#ifdef CONFIG_NET_FLOW_LIMIT
3144int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3145#endif
3146
3147static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3148{
3149#ifdef CONFIG_NET_FLOW_LIMIT
3150 struct sd_flow_limit *fl;
3151 struct softnet_data *sd;
3152 unsigned int old_flow, new_flow;
3153
3154 if (qlen < (netdev_max_backlog >> 1))
3155 return false;
3156
3157 sd = &__get_cpu_var(softnet_data);
3158
3159 rcu_read_lock();
3160 fl = rcu_dereference(sd->flow_limit);
3161 if (fl) {
3162 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3163 old_flow = fl->history[fl->history_head];
3164 fl->history[fl->history_head] = new_flow;
3165
3166 fl->history_head++;
3167 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3168
3169 if (likely(fl->buckets[old_flow]))
3170 fl->buckets[old_flow]--;
3171
3172 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3173 fl->count++;
3174 rcu_read_unlock();
3175 return true;
3176 }
3177 }
3178 rcu_read_unlock();
3179#endif
3180 return false;
3181}
3182
3183/*
3184 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3185 * queue (may be a remote CPU queue).
3186 */
3187static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3188 unsigned int *qtail)
3189{
3190 struct softnet_data *sd;
3191 unsigned long flags;
3192 unsigned int qlen;
3193
3194 sd = &per_cpu(softnet_data, cpu);
3195
3196 local_irq_save(flags);
3197
3198 rps_lock(sd);
3199 qlen = skb_queue_len(&sd->input_pkt_queue);
3200 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3201 if (skb_queue_len(&sd->input_pkt_queue)) {
3202enqueue:
3203 __skb_queue_tail(&sd->input_pkt_queue, skb);
3204 input_queue_tail_incr_save(sd, qtail);
3205 rps_unlock(sd);
3206 local_irq_restore(flags);
3207 return NET_RX_SUCCESS;
3208 }
3209
3210 /* Schedule NAPI for backlog device
3211 * We can use non atomic operation since we own the queue lock
3212 */
3213 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3214 if (!rps_ipi_queued(sd))
3215 ____napi_schedule(sd, &sd->backlog);
3216 }
3217 goto enqueue;
3218 }
3219
3220 sd->dropped++;
3221 rps_unlock(sd);
3222
3223 local_irq_restore(flags);
3224
3225 atomic_long_inc(&skb->dev->rx_dropped);
3226 kfree_skb(skb);
3227 return NET_RX_DROP;
3228}
3229
3230static int netif_rx_internal(struct sk_buff *skb)
3231{
3232 int ret;
3233
3234 net_timestamp_check(netdev_tstamp_prequeue, skb);
3235
3236 trace_netif_rx(skb);
3237#ifdef CONFIG_RPS
3238 if (static_key_false(&rps_needed)) {
3239 struct rps_dev_flow voidflow, *rflow = &voidflow;
3240 int cpu;
3241
3242 preempt_disable();
3243 rcu_read_lock();
3244
3245 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3246 if (cpu < 0)
3247 cpu = smp_processor_id();
3248
3249 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3250
3251 rcu_read_unlock();
3252 preempt_enable();
3253 } else
3254#endif
3255 {
3256 unsigned int qtail;
3257 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3258 put_cpu();
3259 }
3260 return ret;
3261}
3262
3263/**
3264 * netif_rx - post buffer to the network code
3265 * @skb: buffer to post
3266 *
3267 * This function receives a packet from a device driver and queues it for
3268 * the upper (protocol) levels to process. It always succeeds. The buffer
3269 * may be dropped during processing for congestion control or by the
3270 * protocol layers.
3271 *
3272 * return values:
3273 * NET_RX_SUCCESS (no congestion)
3274 * NET_RX_DROP (packet was dropped)
3275 *
3276 */
3277
3278int netif_rx(struct sk_buff *skb)
3279{
3280 trace_netif_rx_entry(skb);
3281
3282 return netif_rx_internal(skb);
3283}
3284EXPORT_SYMBOL(netif_rx);
3285
3286int netif_rx_ni(struct sk_buff *skb)
3287{
3288 int err;
3289
3290 trace_netif_rx_ni_entry(skb);
3291
3292 preempt_disable();
3293 err = netif_rx_internal(skb);
3294 if (local_softirq_pending())
3295 do_softirq();
3296 preempt_enable();
3297
3298 return err;
3299}
3300EXPORT_SYMBOL(netif_rx_ni);
3301
3302static void net_tx_action(struct softirq_action *h)
3303{
3304 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3305
3306 if (sd->completion_queue) {
3307 struct sk_buff *clist;
3308
3309 local_irq_disable();
3310 clist = sd->completion_queue;
3311 sd->completion_queue = NULL;
3312 local_irq_enable();
3313
3314 while (clist) {
3315 struct sk_buff *skb = clist;
3316 clist = clist->next;
3317
3318 WARN_ON(atomic_read(&skb->users));
3319 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3320 trace_consume_skb(skb);
3321 else
3322 trace_kfree_skb(skb, net_tx_action);
3323 __kfree_skb(skb);
3324 }
3325 }
3326
3327 if (sd->output_queue) {
3328 struct Qdisc *head;
3329
3330 local_irq_disable();
3331 head = sd->output_queue;
3332 sd->output_queue = NULL;
3333 sd->output_queue_tailp = &sd->output_queue;
3334 local_irq_enable();
3335
3336 while (head) {
3337 struct Qdisc *q = head;
3338 spinlock_t *root_lock;
3339
3340 head = head->next_sched;
3341
3342 root_lock = qdisc_lock(q);
3343 if (spin_trylock(root_lock)) {
3344 smp_mb__before_clear_bit();
3345 clear_bit(__QDISC_STATE_SCHED,
3346 &q->state);
3347 qdisc_run(q);
3348 spin_unlock(root_lock);
3349 } else {
3350 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3351 &q->state)) {
3352 __netif_reschedule(q);
3353 } else {
3354 smp_mb__before_clear_bit();
3355 clear_bit(__QDISC_STATE_SCHED,
3356 &q->state);
3357 }
3358 }
3359 }
3360 }
3361}
3362
3363#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3364 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3365/* This hook is defined here for ATM LANE */
3366int (*br_fdb_test_addr_hook)(struct net_device *dev,
3367 unsigned char *addr) __read_mostly;
3368EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3369#endif
3370
3371#ifdef CONFIG_NET_CLS_ACT
3372/* TODO: Maybe we should just force sch_ingress to be compiled in
3373 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3374 * a compare and 2 stores extra right now if we dont have it on
3375 * but have CONFIG_NET_CLS_ACT
3376 * NOTE: This doesn't stop any functionality; if you dont have
3377 * the ingress scheduler, you just can't add policies on ingress.
3378 *
3379 */
3380static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3381{
3382 struct net_device *dev = skb->dev;
3383 u32 ttl = G_TC_RTTL(skb->tc_verd);
3384 int result = TC_ACT_OK;
3385 struct Qdisc *q;
3386
3387 if (unlikely(MAX_RED_LOOP < ttl++)) {
3388 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3389 skb->skb_iif, dev->ifindex);
3390 return TC_ACT_SHOT;
3391 }
3392
3393 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3394 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3395
3396 q = rxq->qdisc;
3397 if (q != &noop_qdisc) {
3398 spin_lock(qdisc_lock(q));
3399 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3400 result = qdisc_enqueue_root(skb, q);
3401 spin_unlock(qdisc_lock(q));
3402 }
3403
3404 return result;
3405}
3406
3407static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3408 struct packet_type **pt_prev,
3409 int *ret, struct net_device *orig_dev)
3410{
3411 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3412
3413 if (!rxq || rxq->qdisc == &noop_qdisc)
3414 goto out;
3415
3416 if (*pt_prev) {
3417 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3418 *pt_prev = NULL;
3419 }
3420
3421 switch (ing_filter(skb, rxq)) {
3422 case TC_ACT_SHOT:
3423 case TC_ACT_STOLEN:
3424 kfree_skb(skb);
3425 return NULL;
3426 }
3427
3428out:
3429 skb->tc_verd = 0;
3430 return skb;
3431}
3432#endif
3433
3434/**
3435 * netdev_rx_handler_register - register receive handler
3436 * @dev: device to register a handler for
3437 * @rx_handler: receive handler to register
3438 * @rx_handler_data: data pointer that is used by rx handler
3439 *
3440 * Register a receive handler for a device. This handler will then be
3441 * called from __netif_receive_skb. A negative errno code is returned
3442 * on a failure.
3443 *
3444 * The caller must hold the rtnl_mutex.
3445 *
3446 * For a general description of rx_handler, see enum rx_handler_result.
3447 */
3448int netdev_rx_handler_register(struct net_device *dev,
3449 rx_handler_func_t *rx_handler,
3450 void *rx_handler_data)
3451{
3452 ASSERT_RTNL();
3453
3454 if (dev->rx_handler)
3455 return -EBUSY;
3456
3457 /* Note: rx_handler_data must be set before rx_handler */
3458 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3459 rcu_assign_pointer(dev->rx_handler, rx_handler);
3460
3461 return 0;
3462}
3463EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3464
3465/**
3466 * netdev_rx_handler_unregister - unregister receive handler
3467 * @dev: device to unregister a handler from
3468 *
3469 * Unregister a receive handler from a device.
3470 *
3471 * The caller must hold the rtnl_mutex.
3472 */
3473void netdev_rx_handler_unregister(struct net_device *dev)
3474{
3475
3476 ASSERT_RTNL();
3477 RCU_INIT_POINTER(dev->rx_handler, NULL);
3478 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3479 * section has a guarantee to see a non NULL rx_handler_data
3480 * as well.
3481 */
3482 synchronize_net();
3483 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3484}
3485EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3486
3487/*
3488 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3489 * the special handling of PFMEMALLOC skbs.
3490 */
3491static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3492{
3493 switch (skb->protocol) {
3494 case htons(ETH_P_ARP):
3495 case htons(ETH_P_IP):
3496 case htons(ETH_P_IPV6):
3497 case htons(ETH_P_8021Q):
3498 case htons(ETH_P_8021AD):
3499 return true;
3500 default:
3501 return false;
3502 }
3503}
3504
3505static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3506{
3507 struct packet_type *ptype, *pt_prev;
3508 rx_handler_func_t *rx_handler;
3509 struct net_device *orig_dev;
3510 struct net_device *null_or_dev;
3511 bool deliver_exact = false;
3512 int ret = NET_RX_DROP;
3513 __be16 type;
3514
3515 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3516
3517 trace_netif_receive_skb(skb);
3518
3519 orig_dev = skb->dev;
3520
3521 skb_reset_network_header(skb);
3522 if (!skb_transport_header_was_set(skb))
3523 skb_reset_transport_header(skb);
3524 skb_reset_mac_len(skb);
3525
3526 pt_prev = NULL;
3527
3528 rcu_read_lock();
3529
3530another_round:
3531 skb->skb_iif = skb->dev->ifindex;
3532
3533 __this_cpu_inc(softnet_data.processed);
3534
3535 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3536 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3537 skb = vlan_untag(skb);
3538 if (unlikely(!skb))
3539 goto unlock;
3540 }
3541
3542#ifdef CONFIG_NET_CLS_ACT
3543 if (skb->tc_verd & TC_NCLS) {
3544 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3545 goto ncls;
3546 }
3547#endif
3548
3549 if (pfmemalloc)
3550 goto skip_taps;
3551
3552 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3553 if (!ptype->dev || ptype->dev == skb->dev) {
3554 if (pt_prev)
3555 ret = deliver_skb(skb, pt_prev, orig_dev);
3556 pt_prev = ptype;
3557 }
3558 }
3559
3560skip_taps:
3561#ifdef CONFIG_NET_CLS_ACT
3562 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3563 if (!skb)
3564 goto unlock;
3565ncls:
3566#endif
3567
3568 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3569 goto drop;
3570
3571 if (vlan_tx_tag_present(skb)) {
3572 if (pt_prev) {
3573 ret = deliver_skb(skb, pt_prev, orig_dev);
3574 pt_prev = NULL;
3575 }
3576 if (vlan_do_receive(&skb))
3577 goto another_round;
3578 else if (unlikely(!skb))
3579 goto unlock;
3580 }
3581
3582 rx_handler = rcu_dereference(skb->dev->rx_handler);
3583 if (rx_handler) {
3584 if (pt_prev) {
3585 ret = deliver_skb(skb, pt_prev, orig_dev);
3586 pt_prev = NULL;
3587 }
3588 switch (rx_handler(&skb)) {
3589 case RX_HANDLER_CONSUMED:
3590 ret = NET_RX_SUCCESS;
3591 goto unlock;
3592 case RX_HANDLER_ANOTHER:
3593 goto another_round;
3594 case RX_HANDLER_EXACT:
3595 deliver_exact = true;
3596 case RX_HANDLER_PASS:
3597 break;
3598 default:
3599 BUG();
3600 }
3601 }
3602
3603 if (unlikely(vlan_tx_tag_present(skb))) {
3604 if (vlan_tx_tag_get_id(skb))
3605 skb->pkt_type = PACKET_OTHERHOST;
3606 /* Note: we might in the future use prio bits
3607 * and set skb->priority like in vlan_do_receive()
3608 * For the time being, just ignore Priority Code Point
3609 */
3610 skb->vlan_tci = 0;
3611 }
3612
3613 /* deliver only exact match when indicated */
3614 null_or_dev = deliver_exact ? skb->dev : NULL;
3615
3616 type = skb->protocol;
3617 list_for_each_entry_rcu(ptype,
3618 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3619 if (ptype->type == type &&
3620 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3621 ptype->dev == orig_dev)) {
3622 if (pt_prev)
3623 ret = deliver_skb(skb, pt_prev, orig_dev);
3624 pt_prev = ptype;
3625 }
3626 }
3627
3628 if (pt_prev) {
3629 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3630 goto drop;
3631 else
3632 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3633 } else {
3634drop:
3635 atomic_long_inc(&skb->dev->rx_dropped);
3636 kfree_skb(skb);
3637 /* Jamal, now you will not able to escape explaining
3638 * me how you were going to use this. :-)
3639 */
3640 ret = NET_RX_DROP;
3641 }
3642
3643unlock:
3644 rcu_read_unlock();
3645 return ret;
3646}
3647
3648static int __netif_receive_skb(struct sk_buff *skb)
3649{
3650 int ret;
3651
3652 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3653 unsigned long pflags = current->flags;
3654
3655 /*
3656 * PFMEMALLOC skbs are special, they should
3657 * - be delivered to SOCK_MEMALLOC sockets only
3658 * - stay away from userspace
3659 * - have bounded memory usage
3660 *
3661 * Use PF_MEMALLOC as this saves us from propagating the allocation
3662 * context down to all allocation sites.
3663 */
3664 current->flags |= PF_MEMALLOC;
3665 ret = __netif_receive_skb_core(skb, true);
3666 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3667 } else
3668 ret = __netif_receive_skb_core(skb, false);
3669
3670 return ret;
3671}
3672
3673static int netif_receive_skb_internal(struct sk_buff *skb)
3674{
3675 net_timestamp_check(netdev_tstamp_prequeue, skb);
3676
3677 if (skb_defer_rx_timestamp(skb))
3678 return NET_RX_SUCCESS;
3679
3680#ifdef CONFIG_RPS
3681 if (static_key_false(&rps_needed)) {
3682 struct rps_dev_flow voidflow, *rflow = &voidflow;
3683 int cpu, ret;
3684
3685 rcu_read_lock();
3686
3687 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3688
3689 if (cpu >= 0) {
3690 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3691 rcu_read_unlock();
3692 return ret;
3693 }
3694 rcu_read_unlock();
3695 }
3696#endif
3697 return __netif_receive_skb(skb);
3698}
3699
3700/**
3701 * netif_receive_skb - process receive buffer from network
3702 * @skb: buffer to process
3703 *
3704 * netif_receive_skb() is the main receive data processing function.
3705 * It always succeeds. The buffer may be dropped during processing
3706 * for congestion control or by the protocol layers.
3707 *
3708 * This function may only be called from softirq context and interrupts
3709 * should be enabled.
3710 *
3711 * Return values (usually ignored):
3712 * NET_RX_SUCCESS: no congestion
3713 * NET_RX_DROP: packet was dropped
3714 */
3715int netif_receive_skb(struct sk_buff *skb)
3716{
3717 trace_netif_receive_skb_entry(skb);
3718
3719 return netif_receive_skb_internal(skb);
3720}
3721EXPORT_SYMBOL(netif_receive_skb);
3722
3723/* Network device is going away, flush any packets still pending
3724 * Called with irqs disabled.
3725 */
3726static void flush_backlog(void *arg)
3727{
3728 struct net_device *dev = arg;
3729 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3730 struct sk_buff *skb, *tmp;
3731
3732 rps_lock(sd);
3733 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3734 if (skb->dev == dev) {
3735 __skb_unlink(skb, &sd->input_pkt_queue);
3736 kfree_skb(skb);
3737 input_queue_head_incr(sd);
3738 }
3739 }
3740 rps_unlock(sd);
3741
3742 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3743 if (skb->dev == dev) {
3744 __skb_unlink(skb, &sd->process_queue);
3745 kfree_skb(skb);
3746 input_queue_head_incr(sd);
3747 }
3748 }
3749}
3750
3751static int napi_gro_complete(struct sk_buff *skb)
3752{
3753 struct packet_offload *ptype;
3754 __be16 type = skb->protocol;
3755 struct list_head *head = &offload_base;
3756 int err = -ENOENT;
3757
3758 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3759
3760 if (NAPI_GRO_CB(skb)->count == 1) {
3761 skb_shinfo(skb)->gso_size = 0;
3762 goto out;
3763 }
3764
3765 rcu_read_lock();
3766 list_for_each_entry_rcu(ptype, head, list) {
3767 if (ptype->type != type || !ptype->callbacks.gro_complete)
3768 continue;
3769
3770 err = ptype->callbacks.gro_complete(skb, 0);
3771 break;
3772 }
3773 rcu_read_unlock();
3774
3775 if (err) {
3776 WARN_ON(&ptype->list == head);
3777 kfree_skb(skb);
3778 return NET_RX_SUCCESS;
3779 }
3780
3781out:
3782 return netif_receive_skb_internal(skb);
3783}
3784
3785/* napi->gro_list contains packets ordered by age.
3786 * youngest packets at the head of it.
3787 * Complete skbs in reverse order to reduce latencies.
3788 */
3789void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3790{
3791 struct sk_buff *skb, *prev = NULL;
3792
3793 /* scan list and build reverse chain */
3794 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3795 skb->prev = prev;
3796 prev = skb;
3797 }
3798
3799 for (skb = prev; skb; skb = prev) {
3800 skb->next = NULL;
3801
3802 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3803 return;
3804
3805 prev = skb->prev;
3806 napi_gro_complete(skb);
3807 napi->gro_count--;
3808 }
3809
3810 napi->gro_list = NULL;
3811}
3812EXPORT_SYMBOL(napi_gro_flush);
3813
3814static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3815{
3816 struct sk_buff *p;
3817 unsigned int maclen = skb->dev->hard_header_len;
3818 u32 hash = skb_get_hash_raw(skb);
3819
3820 for (p = napi->gro_list; p; p = p->next) {
3821 unsigned long diffs;
3822
3823 NAPI_GRO_CB(p)->flush = 0;
3824
3825 if (hash != skb_get_hash_raw(p)) {
3826 NAPI_GRO_CB(p)->same_flow = 0;
3827 continue;
3828 }
3829
3830 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3831 diffs |= p->vlan_tci ^ skb->vlan_tci;
3832 if (maclen == ETH_HLEN)
3833 diffs |= compare_ether_header(skb_mac_header(p),
3834 skb_mac_header(skb));
3835 else if (!diffs)
3836 diffs = memcmp(skb_mac_header(p),
3837 skb_mac_header(skb),
3838 maclen);
3839 NAPI_GRO_CB(p)->same_flow = !diffs;
3840 }
3841}
3842
3843static void skb_gro_reset_offset(struct sk_buff *skb)
3844{
3845 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3846 const skb_frag_t *frag0 = &pinfo->frags[0];
3847
3848 NAPI_GRO_CB(skb)->data_offset = 0;
3849 NAPI_GRO_CB(skb)->frag0 = NULL;
3850 NAPI_GRO_CB(skb)->frag0_len = 0;
3851
3852 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3853 pinfo->nr_frags &&
3854 !PageHighMem(skb_frag_page(frag0))) {
3855 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3856 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3857 }
3858}
3859
3860static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3861{
3862 struct skb_shared_info *pinfo = skb_shinfo(skb);
3863
3864 BUG_ON(skb->end - skb->tail < grow);
3865
3866 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3867
3868 skb->data_len -= grow;
3869 skb->tail += grow;
3870
3871 pinfo->frags[0].page_offset += grow;
3872 skb_frag_size_sub(&pinfo->frags[0], grow);
3873
3874 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3875 skb_frag_unref(skb, 0);
3876 memmove(pinfo->frags, pinfo->frags + 1,
3877 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3878 }
3879}
3880
3881static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3882{
3883 struct sk_buff **pp = NULL;
3884 struct packet_offload *ptype;
3885 __be16 type = skb->protocol;
3886 struct list_head *head = &offload_base;
3887 int same_flow;
3888 enum gro_result ret;
3889 int grow;
3890
3891 if (!(skb->dev->features & NETIF_F_GRO))
3892 goto normal;
3893
3894 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3895 goto normal;
3896
3897 gro_list_prepare(napi, skb);
3898 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3899
3900 rcu_read_lock();
3901 list_for_each_entry_rcu(ptype, head, list) {
3902 if (ptype->type != type || !ptype->callbacks.gro_receive)
3903 continue;
3904
3905 skb_set_network_header(skb, skb_gro_offset(skb));
3906 skb_reset_mac_len(skb);
3907 NAPI_GRO_CB(skb)->same_flow = 0;
3908 NAPI_GRO_CB(skb)->flush = 0;
3909 NAPI_GRO_CB(skb)->free = 0;
3910 NAPI_GRO_CB(skb)->udp_mark = 0;
3911
3912 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3913 break;
3914 }
3915 rcu_read_unlock();
3916
3917 if (&ptype->list == head)
3918 goto normal;
3919
3920 same_flow = NAPI_GRO_CB(skb)->same_flow;
3921 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3922
3923 if (pp) {
3924 struct sk_buff *nskb = *pp;
3925
3926 *pp = nskb->next;
3927 nskb->next = NULL;
3928 napi_gro_complete(nskb);
3929 napi->gro_count--;
3930 }
3931
3932 if (same_flow)
3933 goto ok;
3934
3935 if (NAPI_GRO_CB(skb)->flush)
3936 goto normal;
3937
3938 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3939 struct sk_buff *nskb = napi->gro_list;
3940
3941 /* locate the end of the list to select the 'oldest' flow */
3942 while (nskb->next) {
3943 pp = &nskb->next;
3944 nskb = *pp;
3945 }
3946 *pp = NULL;
3947 nskb->next = NULL;
3948 napi_gro_complete(nskb);
3949 } else {
3950 napi->gro_count++;
3951 }
3952 NAPI_GRO_CB(skb)->count = 1;
3953 NAPI_GRO_CB(skb)->age = jiffies;
3954 NAPI_GRO_CB(skb)->last = skb;
3955 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3956 skb->next = napi->gro_list;
3957 napi->gro_list = skb;
3958 ret = GRO_HELD;
3959
3960pull:
3961 grow = skb_gro_offset(skb) - skb_headlen(skb);
3962 if (grow > 0)
3963 gro_pull_from_frag0(skb, grow);
3964ok:
3965 return ret;
3966
3967normal:
3968 ret = GRO_NORMAL;
3969 goto pull;
3970}
3971
3972struct packet_offload *gro_find_receive_by_type(__be16 type)
3973{
3974 struct list_head *offload_head = &offload_base;
3975 struct packet_offload *ptype;
3976
3977 list_for_each_entry_rcu(ptype, offload_head, list) {
3978 if (ptype->type != type || !ptype->callbacks.gro_receive)
3979 continue;
3980 return ptype;
3981 }
3982 return NULL;
3983}
3984EXPORT_SYMBOL(gro_find_receive_by_type);
3985
3986struct packet_offload *gro_find_complete_by_type(__be16 type)
3987{
3988 struct list_head *offload_head = &offload_base;
3989 struct packet_offload *ptype;
3990
3991 list_for_each_entry_rcu(ptype, offload_head, list) {
3992 if (ptype->type != type || !ptype->callbacks.gro_complete)
3993 continue;
3994 return ptype;
3995 }
3996 return NULL;
3997}
3998EXPORT_SYMBOL(gro_find_complete_by_type);
3999
4000static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4001{
4002 switch (ret) {
4003 case GRO_NORMAL:
4004 if (netif_receive_skb_internal(skb))
4005 ret = GRO_DROP;
4006 break;
4007
4008 case GRO_DROP:
4009 kfree_skb(skb);
4010 break;
4011
4012 case GRO_MERGED_FREE:
4013 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4014 kmem_cache_free(skbuff_head_cache, skb);
4015 else
4016 __kfree_skb(skb);
4017 break;
4018
4019 case GRO_HELD:
4020 case GRO_MERGED:
4021 break;
4022 }
4023
4024 return ret;
4025}
4026
4027gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4028{
4029 trace_napi_gro_receive_entry(skb);
4030
4031 skb_gro_reset_offset(skb);
4032
4033 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4034}
4035EXPORT_SYMBOL(napi_gro_receive);
4036
4037static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4038{
4039 __skb_pull(skb, skb_headlen(skb));
4040 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4041 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4042 skb->vlan_tci = 0;
4043 skb->dev = napi->dev;
4044 skb->skb_iif = 0;
4045 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4046
4047 napi->skb = skb;
4048}
4049
4050struct sk_buff *napi_get_frags(struct napi_struct *napi)
4051{
4052 struct sk_buff *skb = napi->skb;
4053
4054 if (!skb) {
4055 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4056 napi->skb = skb;
4057 }
4058 return skb;
4059}
4060EXPORT_SYMBOL(napi_get_frags);
4061
4062static gro_result_t napi_frags_finish(struct napi_struct *napi,
4063 struct sk_buff *skb,
4064 gro_result_t ret)
4065{
4066 switch (ret) {
4067 case GRO_NORMAL:
4068 case GRO_HELD:
4069 __skb_push(skb, ETH_HLEN);
4070 skb->protocol = eth_type_trans(skb, skb->dev);
4071 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4072 ret = GRO_DROP;
4073 break;
4074
4075 case GRO_DROP:
4076 case GRO_MERGED_FREE:
4077 napi_reuse_skb(napi, skb);
4078 break;
4079
4080 case GRO_MERGED:
4081 break;
4082 }
4083
4084 return ret;
4085}
4086
4087/* Upper GRO stack assumes network header starts at gro_offset=0
4088 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4089 * We copy ethernet header into skb->data to have a common layout.
4090 */
4091static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4092{
4093 struct sk_buff *skb = napi->skb;
4094 const struct ethhdr *eth;
4095 unsigned int hlen = sizeof(*eth);
4096
4097 napi->skb = NULL;
4098
4099 skb_reset_mac_header(skb);
4100 skb_gro_reset_offset(skb);
4101
4102 eth = skb_gro_header_fast(skb, 0);
4103 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4104 eth = skb_gro_header_slow(skb, hlen, 0);
4105 if (unlikely(!eth)) {
4106 napi_reuse_skb(napi, skb);
4107 return NULL;
4108 }
4109 } else {
4110 gro_pull_from_frag0(skb, hlen);
4111 NAPI_GRO_CB(skb)->frag0 += hlen;
4112 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4113 }
4114 __skb_pull(skb, hlen);
4115
4116 /*
4117 * This works because the only protocols we care about don't require
4118 * special handling.
4119 * We'll fix it up properly in napi_frags_finish()
4120 */
4121 skb->protocol = eth->h_proto;
4122
4123 return skb;
4124}
4125
4126gro_result_t napi_gro_frags(struct napi_struct *napi)
4127{
4128 struct sk_buff *skb = napi_frags_skb(napi);
4129
4130 if (!skb)
4131 return GRO_DROP;
4132
4133 trace_napi_gro_frags_entry(skb);
4134
4135 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4136}
4137EXPORT_SYMBOL(napi_gro_frags);
4138
4139/*
4140 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4141 * Note: called with local irq disabled, but exits with local irq enabled.
4142 */
4143static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4144{
4145#ifdef CONFIG_RPS
4146 struct softnet_data *remsd = sd->rps_ipi_list;
4147
4148 if (remsd) {
4149 sd->rps_ipi_list = NULL;
4150
4151 local_irq_enable();
4152
4153 /* Send pending IPI's to kick RPS processing on remote cpus. */
4154 while (remsd) {
4155 struct softnet_data *next = remsd->rps_ipi_next;
4156
4157 if (cpu_online(remsd->cpu))
4158 smp_call_function_single_async(remsd->cpu,
4159 &remsd->csd);
4160 remsd = next;
4161 }
4162 } else
4163#endif
4164 local_irq_enable();
4165}
4166
4167static int process_backlog(struct napi_struct *napi, int quota)
4168{
4169 int work = 0;
4170 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4171
4172#ifdef CONFIG_RPS
4173 /* Check if we have pending ipi, its better to send them now,
4174 * not waiting net_rx_action() end.
4175 */
4176 if (sd->rps_ipi_list) {
4177 local_irq_disable();
4178 net_rps_action_and_irq_enable(sd);
4179 }
4180#endif
4181 napi->weight = weight_p;
4182 local_irq_disable();
4183 while (work < quota) {
4184 struct sk_buff *skb;
4185 unsigned int qlen;
4186
4187 while ((skb = __skb_dequeue(&sd->process_queue))) {
4188 local_irq_enable();
4189 __netif_receive_skb(skb);
4190 local_irq_disable();
4191 input_queue_head_incr(sd);
4192 if (++work >= quota) {
4193 local_irq_enable();
4194 return work;
4195 }
4196 }
4197
4198 rps_lock(sd);
4199 qlen = skb_queue_len(&sd->input_pkt_queue);
4200 if (qlen)
4201 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4202 &sd->process_queue);
4203
4204 if (qlen < quota - work) {
4205 /*
4206 * Inline a custom version of __napi_complete().
4207 * only current cpu owns and manipulates this napi,
4208 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4209 * we can use a plain write instead of clear_bit(),
4210 * and we dont need an smp_mb() memory barrier.
4211 */
4212 list_del(&napi->poll_list);
4213 napi->state = 0;
4214
4215 quota = work + qlen;
4216 }
4217 rps_unlock(sd);
4218 }
4219 local_irq_enable();
4220
4221 return work;
4222}
4223
4224/**
4225 * __napi_schedule - schedule for receive
4226 * @n: entry to schedule
4227 *
4228 * The entry's receive function will be scheduled to run
4229 */
4230void __napi_schedule(struct napi_struct *n)
4231{
4232 unsigned long flags;
4233
4234 local_irq_save(flags);
4235 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4236 local_irq_restore(flags);
4237}
4238EXPORT_SYMBOL(__napi_schedule);
4239
4240void __napi_complete(struct napi_struct *n)
4241{
4242 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4243 BUG_ON(n->gro_list);
4244
4245 list_del(&n->poll_list);
4246 smp_mb__before_clear_bit();
4247 clear_bit(NAPI_STATE_SCHED, &n->state);
4248}
4249EXPORT_SYMBOL(__napi_complete);
4250
4251void napi_complete(struct napi_struct *n)
4252{
4253 unsigned long flags;
4254
4255 /*
4256 * don't let napi dequeue from the cpu poll list
4257 * just in case its running on a different cpu
4258 */
4259 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4260 return;
4261
4262 napi_gro_flush(n, false);
4263 local_irq_save(flags);
4264 __napi_complete(n);
4265 local_irq_restore(flags);
4266}
4267EXPORT_SYMBOL(napi_complete);
4268
4269/* must be called under rcu_read_lock(), as we dont take a reference */
4270struct napi_struct *napi_by_id(unsigned int napi_id)
4271{
4272 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4273 struct napi_struct *napi;
4274
4275 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4276 if (napi->napi_id == napi_id)
4277 return napi;
4278
4279 return NULL;
4280}
4281EXPORT_SYMBOL_GPL(napi_by_id);
4282
4283void napi_hash_add(struct napi_struct *napi)
4284{
4285 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4286
4287 spin_lock(&napi_hash_lock);
4288
4289 /* 0 is not a valid id, we also skip an id that is taken
4290 * we expect both events to be extremely rare
4291 */
4292 napi->napi_id = 0;
4293 while (!napi->napi_id) {
4294 napi->napi_id = ++napi_gen_id;
4295 if (napi_by_id(napi->napi_id))
4296 napi->napi_id = 0;
4297 }
4298
4299 hlist_add_head_rcu(&napi->napi_hash_node,
4300 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4301
4302 spin_unlock(&napi_hash_lock);
4303 }
4304}
4305EXPORT_SYMBOL_GPL(napi_hash_add);
4306
4307/* Warning : caller is responsible to make sure rcu grace period
4308 * is respected before freeing memory containing @napi
4309 */
4310void napi_hash_del(struct napi_struct *napi)
4311{
4312 spin_lock(&napi_hash_lock);
4313
4314 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4315 hlist_del_rcu(&napi->napi_hash_node);
4316
4317 spin_unlock(&napi_hash_lock);
4318}
4319EXPORT_SYMBOL_GPL(napi_hash_del);
4320
4321void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4322 int (*poll)(struct napi_struct *, int), int weight)
4323{
4324 INIT_LIST_HEAD(&napi->poll_list);
4325 napi->gro_count = 0;
4326 napi->gro_list = NULL;
4327 napi->skb = NULL;
4328 napi->poll = poll;
4329 if (weight > NAPI_POLL_WEIGHT)
4330 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4331 weight, dev->name);
4332 napi->weight = weight;
4333 list_add(&napi->dev_list, &dev->napi_list);
4334 napi->dev = dev;
4335#ifdef CONFIG_NETPOLL
4336 spin_lock_init(&napi->poll_lock);
4337 napi->poll_owner = -1;
4338#endif
4339 set_bit(NAPI_STATE_SCHED, &napi->state);
4340}
4341EXPORT_SYMBOL(netif_napi_add);
4342
4343void netif_napi_del(struct napi_struct *napi)
4344{
4345 list_del_init(&napi->dev_list);
4346 napi_free_frags(napi);
4347
4348 kfree_skb_list(napi->gro_list);
4349 napi->gro_list = NULL;
4350 napi->gro_count = 0;
4351}
4352EXPORT_SYMBOL(netif_napi_del);
4353
4354static void net_rx_action(struct softirq_action *h)
4355{
4356 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4357 unsigned long time_limit = jiffies + 2;
4358 int budget = netdev_budget;
4359 void *have;
4360
4361 local_irq_disable();
4362
4363 while (!list_empty(&sd->poll_list)) {
4364 struct napi_struct *n;
4365 int work, weight;
4366
4367 /* If softirq window is exhuasted then punt.
4368 * Allow this to run for 2 jiffies since which will allow
4369 * an average latency of 1.5/HZ.
4370 */
4371 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4372 goto softnet_break;
4373
4374 local_irq_enable();
4375
4376 /* Even though interrupts have been re-enabled, this
4377 * access is safe because interrupts can only add new
4378 * entries to the tail of this list, and only ->poll()
4379 * calls can remove this head entry from the list.
4380 */
4381 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4382
4383 have = netpoll_poll_lock(n);
4384
4385 weight = n->weight;
4386
4387 /* This NAPI_STATE_SCHED test is for avoiding a race
4388 * with netpoll's poll_napi(). Only the entity which
4389 * obtains the lock and sees NAPI_STATE_SCHED set will
4390 * actually make the ->poll() call. Therefore we avoid
4391 * accidentally calling ->poll() when NAPI is not scheduled.
4392 */
4393 work = 0;
4394 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4395 work = n->poll(n, weight);
4396 trace_napi_poll(n);
4397 }
4398
4399 WARN_ON_ONCE(work > weight);
4400
4401 budget -= work;
4402
4403 local_irq_disable();
4404
4405 /* Drivers must not modify the NAPI state if they
4406 * consume the entire weight. In such cases this code
4407 * still "owns" the NAPI instance and therefore can
4408 * move the instance around on the list at-will.
4409 */
4410 if (unlikely(work == weight)) {
4411 if (unlikely(napi_disable_pending(n))) {
4412 local_irq_enable();
4413 napi_complete(n);
4414 local_irq_disable();
4415 } else {
4416 if (n->gro_list) {
4417 /* flush too old packets
4418 * If HZ < 1000, flush all packets.
4419 */
4420 local_irq_enable();
4421 napi_gro_flush(n, HZ >= 1000);
4422 local_irq_disable();
4423 }
4424 list_move_tail(&n->poll_list, &sd->poll_list);
4425 }
4426 }
4427
4428 netpoll_poll_unlock(have);
4429 }
4430out:
4431 net_rps_action_and_irq_enable(sd);
4432
4433#ifdef CONFIG_NET_DMA
4434 /*
4435 * There may not be any more sk_buffs coming right now, so push
4436 * any pending DMA copies to hardware
4437 */
4438 dma_issue_pending_all();
4439#endif
4440
4441 return;
4442
4443softnet_break:
4444 sd->time_squeeze++;
4445 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4446 goto out;
4447}
4448
4449struct netdev_adjacent {
4450 struct net_device *dev;
4451
4452 /* upper master flag, there can only be one master device per list */
4453 bool master;
4454
4455 /* counter for the number of times this device was added to us */
4456 u16 ref_nr;
4457
4458 /* private field for the users */
4459 void *private;
4460
4461 struct list_head list;
4462 struct rcu_head rcu;
4463};
4464
4465static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4466 struct net_device *adj_dev,
4467 struct list_head *adj_list)
4468{
4469 struct netdev_adjacent *adj;
4470
4471 list_for_each_entry(adj, adj_list, list) {
4472 if (adj->dev == adj_dev)
4473 return adj;
4474 }
4475 return NULL;
4476}
4477
4478/**
4479 * netdev_has_upper_dev - Check if device is linked to an upper device
4480 * @dev: device
4481 * @upper_dev: upper device to check
4482 *
4483 * Find out if a device is linked to specified upper device and return true
4484 * in case it is. Note that this checks only immediate upper device,
4485 * not through a complete stack of devices. The caller must hold the RTNL lock.
4486 */
4487bool netdev_has_upper_dev(struct net_device *dev,
4488 struct net_device *upper_dev)
4489{
4490 ASSERT_RTNL();
4491
4492 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4493}
4494EXPORT_SYMBOL(netdev_has_upper_dev);
4495
4496/**
4497 * netdev_has_any_upper_dev - Check if device is linked to some device
4498 * @dev: device
4499 *
4500 * Find out if a device is linked to an upper device and return true in case
4501 * it is. The caller must hold the RTNL lock.
4502 */
4503static bool netdev_has_any_upper_dev(struct net_device *dev)
4504{
4505 ASSERT_RTNL();
4506
4507 return !list_empty(&dev->all_adj_list.upper);
4508}
4509
4510/**
4511 * netdev_master_upper_dev_get - Get master upper device
4512 * @dev: device
4513 *
4514 * Find a master upper device and return pointer to it or NULL in case
4515 * it's not there. The caller must hold the RTNL lock.
4516 */
4517struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4518{
4519 struct netdev_adjacent *upper;
4520
4521 ASSERT_RTNL();
4522
4523 if (list_empty(&dev->adj_list.upper))
4524 return NULL;
4525
4526 upper = list_first_entry(&dev->adj_list.upper,
4527 struct netdev_adjacent, list);
4528 if (likely(upper->master))
4529 return upper->dev;
4530 return NULL;
4531}
4532EXPORT_SYMBOL(netdev_master_upper_dev_get);
4533
4534void *netdev_adjacent_get_private(struct list_head *adj_list)
4535{
4536 struct netdev_adjacent *adj;
4537
4538 adj = list_entry(adj_list, struct netdev_adjacent, list);
4539
4540 return adj->private;
4541}
4542EXPORT_SYMBOL(netdev_adjacent_get_private);
4543
4544/**
4545 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4546 * @dev: device
4547 * @iter: list_head ** of the current position
4548 *
4549 * Gets the next device from the dev's upper list, starting from iter
4550 * position. The caller must hold RCU read lock.
4551 */
4552struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4553 struct list_head **iter)
4554{
4555 struct netdev_adjacent *upper;
4556
4557 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4558
4559 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4560
4561 if (&upper->list == &dev->adj_list.upper)
4562 return NULL;
4563
4564 *iter = &upper->list;
4565
4566 return upper->dev;
4567}
4568EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4569
4570/**
4571 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4572 * @dev: device
4573 * @iter: list_head ** of the current position
4574 *
4575 * Gets the next device from the dev's upper list, starting from iter
4576 * position. The caller must hold RCU read lock.
4577 */
4578struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4579 struct list_head **iter)
4580{
4581 struct netdev_adjacent *upper;
4582
4583 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4584
4585 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4586
4587 if (&upper->list == &dev->all_adj_list.upper)
4588 return NULL;
4589
4590 *iter = &upper->list;
4591
4592 return upper->dev;
4593}
4594EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4595
4596/**
4597 * netdev_lower_get_next_private - Get the next ->private from the
4598 * lower neighbour list
4599 * @dev: device
4600 * @iter: list_head ** of the current position
4601 *
4602 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4603 * list, starting from iter position. The caller must hold either hold the
4604 * RTNL lock or its own locking that guarantees that the neighbour lower
4605 * list will remain unchainged.
4606 */
4607void *netdev_lower_get_next_private(struct net_device *dev,
4608 struct list_head **iter)
4609{
4610 struct netdev_adjacent *lower;
4611
4612 lower = list_entry(*iter, struct netdev_adjacent, list);
4613
4614 if (&lower->list == &dev->adj_list.lower)
4615 return NULL;
4616
4617 *iter = lower->list.next;
4618
4619 return lower->private;
4620}
4621EXPORT_SYMBOL(netdev_lower_get_next_private);
4622
4623/**
4624 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4625 * lower neighbour list, RCU
4626 * variant
4627 * @dev: device
4628 * @iter: list_head ** of the current position
4629 *
4630 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4631 * list, starting from iter position. The caller must hold RCU read lock.
4632 */
4633void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4634 struct list_head **iter)
4635{
4636 struct netdev_adjacent *lower;
4637
4638 WARN_ON_ONCE(!rcu_read_lock_held());
4639
4640 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4641
4642 if (&lower->list == &dev->adj_list.lower)
4643 return NULL;
4644
4645 *iter = &lower->list;
4646
4647 return lower->private;
4648}
4649EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4650
4651/**
4652 * netdev_lower_get_next - Get the next device from the lower neighbour
4653 * list
4654 * @dev: device
4655 * @iter: list_head ** of the current position
4656 *
4657 * Gets the next netdev_adjacent from the dev's lower neighbour
4658 * list, starting from iter position. The caller must hold RTNL lock or
4659 * its own locking that guarantees that the neighbour lower
4660 * list will remain unchainged.
4661 */
4662void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4663{
4664 struct netdev_adjacent *lower;
4665
4666 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4667
4668 if (&lower->list == &dev->adj_list.lower)
4669 return NULL;
4670
4671 *iter = &lower->list;
4672
4673 return lower->dev;
4674}
4675EXPORT_SYMBOL(netdev_lower_get_next);
4676
4677/**
4678 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4679 * lower neighbour list, RCU
4680 * variant
4681 * @dev: device
4682 *
4683 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4684 * list. The caller must hold RCU read lock.
4685 */
4686void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4687{
4688 struct netdev_adjacent *lower;
4689
4690 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4691 struct netdev_adjacent, list);
4692 if (lower)
4693 return lower->private;
4694 return NULL;
4695}
4696EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4697
4698/**
4699 * netdev_master_upper_dev_get_rcu - Get master upper device
4700 * @dev: device
4701 *
4702 * Find a master upper device and return pointer to it or NULL in case
4703 * it's not there. The caller must hold the RCU read lock.
4704 */
4705struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4706{
4707 struct netdev_adjacent *upper;
4708
4709 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4710 struct netdev_adjacent, list);
4711 if (upper && likely(upper->master))
4712 return upper->dev;
4713 return NULL;
4714}
4715EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4716
4717static int netdev_adjacent_sysfs_add(struct net_device *dev,
4718 struct net_device *adj_dev,
4719 struct list_head *dev_list)
4720{
4721 char linkname[IFNAMSIZ+7];
4722 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4723 "upper_%s" : "lower_%s", adj_dev->name);
4724 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4725 linkname);
4726}
4727static void netdev_adjacent_sysfs_del(struct net_device *dev,
4728 char *name,
4729 struct list_head *dev_list)
4730{
4731 char linkname[IFNAMSIZ+7];
4732 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4733 "upper_%s" : "lower_%s", name);
4734 sysfs_remove_link(&(dev->dev.kobj), linkname);
4735}
4736
4737#define netdev_adjacent_is_neigh_list(dev, dev_list) \
4738 (dev_list == &dev->adj_list.upper || \
4739 dev_list == &dev->adj_list.lower)
4740
4741static int __netdev_adjacent_dev_insert(struct net_device *dev,
4742 struct net_device *adj_dev,
4743 struct list_head *dev_list,
4744 void *private, bool master)
4745{
4746 struct netdev_adjacent *adj;
4747 int ret;
4748
4749 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4750
4751 if (adj) {
4752 adj->ref_nr++;
4753 return 0;
4754 }
4755
4756 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4757 if (!adj)
4758 return -ENOMEM;
4759
4760 adj->dev = adj_dev;
4761 adj->master = master;
4762 adj->ref_nr = 1;
4763 adj->private = private;
4764 dev_hold(adj_dev);
4765
4766 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4767 adj_dev->name, dev->name, adj_dev->name);
4768
4769 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4770 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4771 if (ret)
4772 goto free_adj;
4773 }
4774
4775 /* Ensure that master link is always the first item in list. */
4776 if (master) {
4777 ret = sysfs_create_link(&(dev->dev.kobj),
4778 &(adj_dev->dev.kobj), "master");
4779 if (ret)
4780 goto remove_symlinks;
4781
4782 list_add_rcu(&adj->list, dev_list);
4783 } else {
4784 list_add_tail_rcu(&adj->list, dev_list);
4785 }
4786
4787 return 0;
4788
4789remove_symlinks:
4790 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4791 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4792free_adj:
4793 kfree(adj);
4794 dev_put(adj_dev);
4795
4796 return ret;
4797}
4798
4799static void __netdev_adjacent_dev_remove(struct net_device *dev,
4800 struct net_device *adj_dev,
4801 struct list_head *dev_list)
4802{
4803 struct netdev_adjacent *adj;
4804
4805 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4806
4807 if (!adj) {
4808 pr_err("tried to remove device %s from %s\n",
4809 dev->name, adj_dev->name);
4810 BUG();
4811 }
4812
4813 if (adj->ref_nr > 1) {
4814 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4815 adj->ref_nr-1);
4816 adj->ref_nr--;
4817 return;
4818 }
4819
4820 if (adj->master)
4821 sysfs_remove_link(&(dev->dev.kobj), "master");
4822
4823 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4824 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4825
4826 list_del_rcu(&adj->list);
4827 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4828 adj_dev->name, dev->name, adj_dev->name);
4829 dev_put(adj_dev);
4830 kfree_rcu(adj, rcu);
4831}
4832
4833static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4834 struct net_device *upper_dev,
4835 struct list_head *up_list,
4836 struct list_head *down_list,
4837 void *private, bool master)
4838{
4839 int ret;
4840
4841 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4842 master);
4843 if (ret)
4844 return ret;
4845
4846 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4847 false);
4848 if (ret) {
4849 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4850 return ret;
4851 }
4852
4853 return 0;
4854}
4855
4856static int __netdev_adjacent_dev_link(struct net_device *dev,
4857 struct net_device *upper_dev)
4858{
4859 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4860 &dev->all_adj_list.upper,
4861 &upper_dev->all_adj_list.lower,
4862 NULL, false);
4863}
4864
4865static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4866 struct net_device *upper_dev,
4867 struct list_head *up_list,
4868 struct list_head *down_list)
4869{
4870 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4871 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4872}
4873
4874static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4875 struct net_device *upper_dev)
4876{
4877 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4878 &dev->all_adj_list.upper,
4879 &upper_dev->all_adj_list.lower);
4880}
4881
4882static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4883 struct net_device *upper_dev,
4884 void *private, bool master)
4885{
4886 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4887
4888 if (ret)
4889 return ret;
4890
4891 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4892 &dev->adj_list.upper,
4893 &upper_dev->adj_list.lower,
4894 private, master);
4895 if (ret) {
4896 __netdev_adjacent_dev_unlink(dev, upper_dev);
4897 return ret;
4898 }
4899
4900 return 0;
4901}
4902
4903static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4904 struct net_device *upper_dev)
4905{
4906 __netdev_adjacent_dev_unlink(dev, upper_dev);
4907 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4908 &dev->adj_list.upper,
4909 &upper_dev->adj_list.lower);
4910}
4911
4912static int __netdev_upper_dev_link(struct net_device *dev,
4913 struct net_device *upper_dev, bool master,
4914 void *private)
4915{
4916 struct netdev_adjacent *i, *j, *to_i, *to_j;
4917 int ret = 0;
4918
4919 ASSERT_RTNL();
4920
4921 if (dev == upper_dev)
4922 return -EBUSY;
4923
4924 /* To prevent loops, check if dev is not upper device to upper_dev. */
4925 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4926 return -EBUSY;
4927
4928 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4929 return -EEXIST;
4930
4931 if (master && netdev_master_upper_dev_get(dev))
4932 return -EBUSY;
4933
4934 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4935 master);
4936 if (ret)
4937 return ret;
4938
4939 /* Now that we linked these devs, make all the upper_dev's
4940 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4941 * versa, and don't forget the devices itself. All of these
4942 * links are non-neighbours.
4943 */
4944 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4945 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4946 pr_debug("Interlinking %s with %s, non-neighbour\n",
4947 i->dev->name, j->dev->name);
4948 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4949 if (ret)
4950 goto rollback_mesh;
4951 }
4952 }
4953
4954 /* add dev to every upper_dev's upper device */
4955 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4956 pr_debug("linking %s's upper device %s with %s\n",
4957 upper_dev->name, i->dev->name, dev->name);
4958 ret = __netdev_adjacent_dev_link(dev, i->dev);
4959 if (ret)
4960 goto rollback_upper_mesh;
4961 }
4962
4963 /* add upper_dev to every dev's lower device */
4964 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4965 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4966 i->dev->name, upper_dev->name);
4967 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4968 if (ret)
4969 goto rollback_lower_mesh;
4970 }
4971
4972 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4973 return 0;
4974
4975rollback_lower_mesh:
4976 to_i = i;
4977 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4978 if (i == to_i)
4979 break;
4980 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4981 }
4982
4983 i = NULL;
4984
4985rollback_upper_mesh:
4986 to_i = i;
4987 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4988 if (i == to_i)
4989 break;
4990 __netdev_adjacent_dev_unlink(dev, i->dev);
4991 }
4992
4993 i = j = NULL;
4994
4995rollback_mesh:
4996 to_i = i;
4997 to_j = j;
4998 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4999 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5000 if (i == to_i && j == to_j)
5001 break;
5002 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5003 }
5004 if (i == to_i)
5005 break;
5006 }
5007
5008 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5009
5010 return ret;
5011}
5012
5013/**
5014 * netdev_upper_dev_link - Add a link to the upper device
5015 * @dev: device
5016 * @upper_dev: new upper device
5017 *
5018 * Adds a link to device which is upper to this one. The caller must hold
5019 * the RTNL lock. On a failure a negative errno code is returned.
5020 * On success the reference counts are adjusted and the function
5021 * returns zero.
5022 */
5023int netdev_upper_dev_link(struct net_device *dev,
5024 struct net_device *upper_dev)
5025{
5026 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5027}
5028EXPORT_SYMBOL(netdev_upper_dev_link);
5029
5030/**
5031 * netdev_master_upper_dev_link - Add a master link to the upper device
5032 * @dev: device
5033 * @upper_dev: new upper device
5034 *
5035 * Adds a link to device which is upper to this one. In this case, only
5036 * one master upper device can be linked, although other non-master devices
5037 * might be linked as well. The caller must hold the RTNL lock.
5038 * On a failure a negative errno code is returned. On success the reference
5039 * counts are adjusted and the function returns zero.
5040 */
5041int netdev_master_upper_dev_link(struct net_device *dev,
5042 struct net_device *upper_dev)
5043{
5044 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5045}
5046EXPORT_SYMBOL(netdev_master_upper_dev_link);
5047
5048int netdev_master_upper_dev_link_private(struct net_device *dev,
5049 struct net_device *upper_dev,
5050 void *private)
5051{
5052 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5053}
5054EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5055
5056/**
5057 * netdev_upper_dev_unlink - Removes a link to upper device
5058 * @dev: device
5059 * @upper_dev: new upper device
5060 *
5061 * Removes a link to device which is upper to this one. The caller must hold
5062 * the RTNL lock.
5063 */
5064void netdev_upper_dev_unlink(struct net_device *dev,
5065 struct net_device *upper_dev)
5066{
5067 struct netdev_adjacent *i, *j;
5068 ASSERT_RTNL();
5069
5070 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5071
5072 /* Here is the tricky part. We must remove all dev's lower
5073 * devices from all upper_dev's upper devices and vice
5074 * versa, to maintain the graph relationship.
5075 */
5076 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5077 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5078 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5079
5080 /* remove also the devices itself from lower/upper device
5081 * list
5082 */
5083 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5084 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5085
5086 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5087 __netdev_adjacent_dev_unlink(dev, i->dev);
5088
5089 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5090}
5091EXPORT_SYMBOL(netdev_upper_dev_unlink);
5092
5093void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5094{
5095 struct netdev_adjacent *iter;
5096
5097 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5098 netdev_adjacent_sysfs_del(iter->dev, oldname,
5099 &iter->dev->adj_list.lower);
5100 netdev_adjacent_sysfs_add(iter->dev, dev,
5101 &iter->dev->adj_list.lower);
5102 }
5103
5104 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5105 netdev_adjacent_sysfs_del(iter->dev, oldname,
5106 &iter->dev->adj_list.upper);
5107 netdev_adjacent_sysfs_add(iter->dev, dev,
5108 &iter->dev->adj_list.upper);
5109 }
5110}
5111
5112void *netdev_lower_dev_get_private(struct net_device *dev,
5113 struct net_device *lower_dev)
5114{
5115 struct netdev_adjacent *lower;
5116
5117 if (!lower_dev)
5118 return NULL;
5119 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5120 if (!lower)
5121 return NULL;
5122
5123 return lower->private;
5124}
5125EXPORT_SYMBOL(netdev_lower_dev_get_private);
5126
5127
5128int dev_get_nest_level(struct net_device *dev,
5129 bool (*type_check)(struct net_device *dev))
5130{
5131 struct net_device *lower = NULL;
5132 struct list_head *iter;
5133 int max_nest = -1;
5134 int nest;
5135
5136 ASSERT_RTNL();
5137
5138 netdev_for_each_lower_dev(dev, lower, iter) {
5139 nest = dev_get_nest_level(lower, type_check);
5140 if (max_nest < nest)
5141 max_nest = nest;
5142 }
5143
5144 if (type_check(dev))
5145 max_nest++;
5146
5147 return max_nest;
5148}
5149EXPORT_SYMBOL(dev_get_nest_level);
5150
5151static void dev_change_rx_flags(struct net_device *dev, int flags)
5152{
5153 const struct net_device_ops *ops = dev->netdev_ops;
5154
5155 if (ops->ndo_change_rx_flags)
5156 ops->ndo_change_rx_flags(dev, flags);
5157}
5158
5159static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5160{
5161 unsigned int old_flags = dev->flags;
5162 kuid_t uid;
5163 kgid_t gid;
5164
5165 ASSERT_RTNL();
5166
5167 dev->flags |= IFF_PROMISC;
5168 dev->promiscuity += inc;
5169 if (dev->promiscuity == 0) {
5170 /*
5171 * Avoid overflow.
5172 * If inc causes overflow, untouch promisc and return error.
5173 */
5174 if (inc < 0)
5175 dev->flags &= ~IFF_PROMISC;
5176 else {
5177 dev->promiscuity -= inc;
5178 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5179 dev->name);
5180 return -EOVERFLOW;
5181 }
5182 }
5183 if (dev->flags != old_flags) {
5184 pr_info("device %s %s promiscuous mode\n",
5185 dev->name,
5186 dev->flags & IFF_PROMISC ? "entered" : "left");
5187 if (audit_enabled) {
5188 current_uid_gid(&uid, &gid);
5189 audit_log(current->audit_context, GFP_ATOMIC,
5190 AUDIT_ANOM_PROMISCUOUS,
5191 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5192 dev->name, (dev->flags & IFF_PROMISC),
5193 (old_flags & IFF_PROMISC),
5194 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5195 from_kuid(&init_user_ns, uid),
5196 from_kgid(&init_user_ns, gid),
5197 audit_get_sessionid(current));
5198 }
5199
5200 dev_change_rx_flags(dev, IFF_PROMISC);
5201 }
5202 if (notify)
5203 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5204 return 0;
5205}
5206
5207/**
5208 * dev_set_promiscuity - update promiscuity count on a device
5209 * @dev: device
5210 * @inc: modifier
5211 *
5212 * Add or remove promiscuity from a device. While the count in the device
5213 * remains above zero the interface remains promiscuous. Once it hits zero
5214 * the device reverts back to normal filtering operation. A negative inc
5215 * value is used to drop promiscuity on the device.
5216 * Return 0 if successful or a negative errno code on error.
5217 */
5218int dev_set_promiscuity(struct net_device *dev, int inc)
5219{
5220 unsigned int old_flags = dev->flags;
5221 int err;
5222
5223 err = __dev_set_promiscuity(dev, inc, true);
5224 if (err < 0)
5225 return err;
5226 if (dev->flags != old_flags)
5227 dev_set_rx_mode(dev);
5228 return err;
5229}
5230EXPORT_SYMBOL(dev_set_promiscuity);
5231
5232static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5233{
5234 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5235
5236 ASSERT_RTNL();
5237
5238 dev->flags |= IFF_ALLMULTI;
5239 dev->allmulti += inc;
5240 if (dev->allmulti == 0) {
5241 /*
5242 * Avoid overflow.
5243 * If inc causes overflow, untouch allmulti and return error.
5244 */
5245 if (inc < 0)
5246 dev->flags &= ~IFF_ALLMULTI;
5247 else {
5248 dev->allmulti -= inc;
5249 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5250 dev->name);
5251 return -EOVERFLOW;
5252 }
5253 }
5254 if (dev->flags ^ old_flags) {
5255 dev_change_rx_flags(dev, IFF_ALLMULTI);
5256 dev_set_rx_mode(dev);
5257 if (notify)
5258 __dev_notify_flags(dev, old_flags,
5259 dev->gflags ^ old_gflags);
5260 }
5261 return 0;
5262}
5263
5264/**
5265 * dev_set_allmulti - update allmulti count on a device
5266 * @dev: device
5267 * @inc: modifier
5268 *
5269 * Add or remove reception of all multicast frames to a device. While the
5270 * count in the device remains above zero the interface remains listening
5271 * to all interfaces. Once it hits zero the device reverts back to normal
5272 * filtering operation. A negative @inc value is used to drop the counter
5273 * when releasing a resource needing all multicasts.
5274 * Return 0 if successful or a negative errno code on error.
5275 */
5276
5277int dev_set_allmulti(struct net_device *dev, int inc)
5278{
5279 return __dev_set_allmulti(dev, inc, true);
5280}
5281EXPORT_SYMBOL(dev_set_allmulti);
5282
5283/*
5284 * Upload unicast and multicast address lists to device and
5285 * configure RX filtering. When the device doesn't support unicast
5286 * filtering it is put in promiscuous mode while unicast addresses
5287 * are present.
5288 */
5289void __dev_set_rx_mode(struct net_device *dev)
5290{
5291 const struct net_device_ops *ops = dev->netdev_ops;
5292
5293 /* dev_open will call this function so the list will stay sane. */
5294 if (!(dev->flags&IFF_UP))
5295 return;
5296
5297 if (!netif_device_present(dev))
5298 return;
5299
5300 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5301 /* Unicast addresses changes may only happen under the rtnl,
5302 * therefore calling __dev_set_promiscuity here is safe.
5303 */
5304 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5305 __dev_set_promiscuity(dev, 1, false);
5306 dev->uc_promisc = true;
5307 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5308 __dev_set_promiscuity(dev, -1, false);
5309 dev->uc_promisc = false;
5310 }
5311 }
5312
5313 if (ops->ndo_set_rx_mode)
5314 ops->ndo_set_rx_mode(dev);
5315}
5316
5317void dev_set_rx_mode(struct net_device *dev)
5318{
5319 netif_addr_lock_bh(dev);
5320 __dev_set_rx_mode(dev);
5321 netif_addr_unlock_bh(dev);
5322}
5323
5324/**
5325 * dev_get_flags - get flags reported to userspace
5326 * @dev: device
5327 *
5328 * Get the combination of flag bits exported through APIs to userspace.
5329 */
5330unsigned int dev_get_flags(const struct net_device *dev)
5331{
5332 unsigned int flags;
5333
5334 flags = (dev->flags & ~(IFF_PROMISC |
5335 IFF_ALLMULTI |
5336 IFF_RUNNING |
5337 IFF_LOWER_UP |
5338 IFF_DORMANT)) |
5339 (dev->gflags & (IFF_PROMISC |
5340 IFF_ALLMULTI));
5341
5342 if (netif_running(dev)) {
5343 if (netif_oper_up(dev))
5344 flags |= IFF_RUNNING;
5345 if (netif_carrier_ok(dev))
5346 flags |= IFF_LOWER_UP;
5347 if (netif_dormant(dev))
5348 flags |= IFF_DORMANT;
5349 }
5350
5351 return flags;
5352}
5353EXPORT_SYMBOL(dev_get_flags);
5354
5355int __dev_change_flags(struct net_device *dev, unsigned int flags)
5356{
5357 unsigned int old_flags = dev->flags;
5358 int ret;
5359
5360 ASSERT_RTNL();
5361
5362 /*
5363 * Set the flags on our device.
5364 */
5365
5366 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5367 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5368 IFF_AUTOMEDIA)) |
5369 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5370 IFF_ALLMULTI));
5371
5372 /*
5373 * Load in the correct multicast list now the flags have changed.
5374 */
5375
5376 if ((old_flags ^ flags) & IFF_MULTICAST)
5377 dev_change_rx_flags(dev, IFF_MULTICAST);
5378
5379 dev_set_rx_mode(dev);
5380
5381 /*
5382 * Have we downed the interface. We handle IFF_UP ourselves
5383 * according to user attempts to set it, rather than blindly
5384 * setting it.
5385 */
5386
5387 ret = 0;
5388 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5389 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5390
5391 if (!ret)
5392 dev_set_rx_mode(dev);
5393 }
5394
5395 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5396 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5397 unsigned int old_flags = dev->flags;
5398
5399 dev->gflags ^= IFF_PROMISC;
5400
5401 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5402 if (dev->flags != old_flags)
5403 dev_set_rx_mode(dev);
5404 }
5405
5406 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5407 is important. Some (broken) drivers set IFF_PROMISC, when
5408 IFF_ALLMULTI is requested not asking us and not reporting.
5409 */
5410 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5411 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5412
5413 dev->gflags ^= IFF_ALLMULTI;
5414 __dev_set_allmulti(dev, inc, false);
5415 }
5416
5417 return ret;
5418}
5419
5420void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5421 unsigned int gchanges)
5422{
5423 unsigned int changes = dev->flags ^ old_flags;
5424
5425 if (gchanges)
5426 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5427
5428 if (changes & IFF_UP) {
5429 if (dev->flags & IFF_UP)
5430 call_netdevice_notifiers(NETDEV_UP, dev);
5431 else
5432 call_netdevice_notifiers(NETDEV_DOWN, dev);
5433 }
5434
5435 if (dev->flags & IFF_UP &&
5436 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5437 struct netdev_notifier_change_info change_info;
5438
5439 change_info.flags_changed = changes;
5440 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5441 &change_info.info);
5442 }
5443}
5444
5445/**
5446 * dev_change_flags - change device settings
5447 * @dev: device
5448 * @flags: device state flags
5449 *
5450 * Change settings on device based state flags. The flags are
5451 * in the userspace exported format.
5452 */
5453int dev_change_flags(struct net_device *dev, unsigned int flags)
5454{
5455 int ret;
5456 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5457
5458 ret = __dev_change_flags(dev, flags);
5459 if (ret < 0)
5460 return ret;
5461
5462 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5463 __dev_notify_flags(dev, old_flags, changes);
5464 return ret;
5465}
5466EXPORT_SYMBOL(dev_change_flags);
5467
5468static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5469{
5470 const struct net_device_ops *ops = dev->netdev_ops;
5471
5472 if (ops->ndo_change_mtu)
5473 return ops->ndo_change_mtu(dev, new_mtu);
5474
5475 dev->mtu = new_mtu;
5476 return 0;
5477}
5478
5479/**
5480 * dev_set_mtu - Change maximum transfer unit
5481 * @dev: device
5482 * @new_mtu: new transfer unit
5483 *
5484 * Change the maximum transfer size of the network device.
5485 */
5486int dev_set_mtu(struct net_device *dev, int new_mtu)
5487{
5488 int err, orig_mtu;
5489
5490 if (new_mtu == dev->mtu)
5491 return 0;
5492
5493 /* MTU must be positive. */
5494 if (new_mtu < 0)
5495 return -EINVAL;
5496
5497 if (!netif_device_present(dev))
5498 return -ENODEV;
5499
5500 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5501 err = notifier_to_errno(err);
5502 if (err)
5503 return err;
5504
5505 orig_mtu = dev->mtu;
5506 err = __dev_set_mtu(dev, new_mtu);
5507
5508 if (!err) {
5509 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5510 err = notifier_to_errno(err);
5511 if (err) {
5512 /* setting mtu back and notifying everyone again,
5513 * so that they have a chance to revert changes.
5514 */
5515 __dev_set_mtu(dev, orig_mtu);
5516 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5517 }
5518 }
5519 return err;
5520}
5521EXPORT_SYMBOL(dev_set_mtu);
5522
5523/**
5524 * dev_set_group - Change group this device belongs to
5525 * @dev: device
5526 * @new_group: group this device should belong to
5527 */
5528void dev_set_group(struct net_device *dev, int new_group)
5529{
5530 dev->group = new_group;
5531}
5532EXPORT_SYMBOL(dev_set_group);
5533
5534/**
5535 * dev_set_mac_address - Change Media Access Control Address
5536 * @dev: device
5537 * @sa: new address
5538 *
5539 * Change the hardware (MAC) address of the device
5540 */
5541int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5542{
5543 const struct net_device_ops *ops = dev->netdev_ops;
5544 int err;
5545
5546 if (!ops->ndo_set_mac_address)
5547 return -EOPNOTSUPP;
5548 if (sa->sa_family != dev->type)
5549 return -EINVAL;
5550 if (!netif_device_present(dev))
5551 return -ENODEV;
5552 err = ops->ndo_set_mac_address(dev, sa);
5553 if (err)
5554 return err;
5555 dev->addr_assign_type = NET_ADDR_SET;
5556 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5557 add_device_randomness(dev->dev_addr, dev->addr_len);
5558 return 0;
5559}
5560EXPORT_SYMBOL(dev_set_mac_address);
5561
5562/**
5563 * dev_change_carrier - Change device carrier
5564 * @dev: device
5565 * @new_carrier: new value
5566 *
5567 * Change device carrier
5568 */
5569int dev_change_carrier(struct net_device *dev, bool new_carrier)
5570{
5571 const struct net_device_ops *ops = dev->netdev_ops;
5572
5573 if (!ops->ndo_change_carrier)
5574 return -EOPNOTSUPP;
5575 if (!netif_device_present(dev))
5576 return -ENODEV;
5577 return ops->ndo_change_carrier(dev, new_carrier);
5578}
5579EXPORT_SYMBOL(dev_change_carrier);
5580
5581/**
5582 * dev_get_phys_port_id - Get device physical port ID
5583 * @dev: device
5584 * @ppid: port ID
5585 *
5586 * Get device physical port ID
5587 */
5588int dev_get_phys_port_id(struct net_device *dev,
5589 struct netdev_phys_port_id *ppid)
5590{
5591 const struct net_device_ops *ops = dev->netdev_ops;
5592
5593 if (!ops->ndo_get_phys_port_id)
5594 return -EOPNOTSUPP;
5595 return ops->ndo_get_phys_port_id(dev, ppid);
5596}
5597EXPORT_SYMBOL(dev_get_phys_port_id);
5598
5599/**
5600 * dev_new_index - allocate an ifindex
5601 * @net: the applicable net namespace
5602 *
5603 * Returns a suitable unique value for a new device interface
5604 * number. The caller must hold the rtnl semaphore or the
5605 * dev_base_lock to be sure it remains unique.
5606 */
5607static int dev_new_index(struct net *net)
5608{
5609 int ifindex = net->ifindex;
5610 for (;;) {
5611 if (++ifindex <= 0)
5612 ifindex = 1;
5613 if (!__dev_get_by_index(net, ifindex))
5614 return net->ifindex = ifindex;
5615 }
5616}
5617
5618/* Delayed registration/unregisteration */
5619static LIST_HEAD(net_todo_list);
5620DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5621
5622static void net_set_todo(struct net_device *dev)
5623{
5624 list_add_tail(&dev->todo_list, &net_todo_list);
5625 dev_net(dev)->dev_unreg_count++;
5626}
5627
5628static void rollback_registered_many(struct list_head *head)
5629{
5630 struct net_device *dev, *tmp;
5631 LIST_HEAD(close_head);
5632
5633 BUG_ON(dev_boot_phase);
5634 ASSERT_RTNL();
5635
5636 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5637 /* Some devices call without registering
5638 * for initialization unwind. Remove those
5639 * devices and proceed with the remaining.
5640 */
5641 if (dev->reg_state == NETREG_UNINITIALIZED) {
5642 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5643 dev->name, dev);
5644
5645 WARN_ON(1);
5646 list_del(&dev->unreg_list);
5647 continue;
5648 }
5649 dev->dismantle = true;
5650 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5651 }
5652
5653 /* If device is running, close it first. */
5654 list_for_each_entry(dev, head, unreg_list)
5655 list_add_tail(&dev->close_list, &close_head);
5656 dev_close_many(&close_head);
5657
5658 list_for_each_entry(dev, head, unreg_list) {
5659 /* And unlink it from device chain. */
5660 unlist_netdevice(dev);
5661
5662 dev->reg_state = NETREG_UNREGISTERING;
5663 }
5664
5665 synchronize_net();
5666
5667 list_for_each_entry(dev, head, unreg_list) {
5668 /* Shutdown queueing discipline. */
5669 dev_shutdown(dev);
5670
5671
5672 /* Notify protocols, that we are about to destroy
5673 this device. They should clean all the things.
5674 */
5675 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5676
5677 if (!dev->rtnl_link_ops ||
5678 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5679 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5680
5681 /*
5682 * Flush the unicast and multicast chains
5683 */
5684 dev_uc_flush(dev);
5685 dev_mc_flush(dev);
5686
5687 if (dev->netdev_ops->ndo_uninit)
5688 dev->netdev_ops->ndo_uninit(dev);
5689
5690 /* Notifier chain MUST detach us all upper devices. */
5691 WARN_ON(netdev_has_any_upper_dev(dev));
5692
5693 /* Remove entries from kobject tree */
5694 netdev_unregister_kobject(dev);
5695#ifdef CONFIG_XPS
5696 /* Remove XPS queueing entries */
5697 netif_reset_xps_queues_gt(dev, 0);
5698#endif
5699 }
5700
5701 synchronize_net();
5702
5703 list_for_each_entry(dev, head, unreg_list)
5704 dev_put(dev);
5705}
5706
5707static void rollback_registered(struct net_device *dev)
5708{
5709 LIST_HEAD(single);
5710
5711 list_add(&dev->unreg_list, &single);
5712 rollback_registered_many(&single);
5713 list_del(&single);
5714}
5715
5716static netdev_features_t netdev_fix_features(struct net_device *dev,
5717 netdev_features_t features)
5718{
5719 /* Fix illegal checksum combinations */
5720 if ((features & NETIF_F_HW_CSUM) &&
5721 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5722 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5723 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5724 }
5725
5726 /* TSO requires that SG is present as well. */
5727 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5728 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5729 features &= ~NETIF_F_ALL_TSO;
5730 }
5731
5732 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5733 !(features & NETIF_F_IP_CSUM)) {
5734 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5735 features &= ~NETIF_F_TSO;
5736 features &= ~NETIF_F_TSO_ECN;
5737 }
5738
5739 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5740 !(features & NETIF_F_IPV6_CSUM)) {
5741 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5742 features &= ~NETIF_F_TSO6;
5743 }
5744
5745 /* TSO ECN requires that TSO is present as well. */
5746 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5747 features &= ~NETIF_F_TSO_ECN;
5748
5749 /* Software GSO depends on SG. */
5750 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5751 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5752 features &= ~NETIF_F_GSO;
5753 }
5754
5755 /* UFO needs SG and checksumming */
5756 if (features & NETIF_F_UFO) {
5757 /* maybe split UFO into V4 and V6? */
5758 if (!((features & NETIF_F_GEN_CSUM) ||
5759 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5760 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5761 netdev_dbg(dev,
5762 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5763 features &= ~NETIF_F_UFO;
5764 }
5765
5766 if (!(features & NETIF_F_SG)) {
5767 netdev_dbg(dev,
5768 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5769 features &= ~NETIF_F_UFO;
5770 }
5771 }
5772
5773#ifdef CONFIG_NET_RX_BUSY_POLL
5774 if (dev->netdev_ops->ndo_busy_poll)
5775 features |= NETIF_F_BUSY_POLL;
5776 else
5777#endif
5778 features &= ~NETIF_F_BUSY_POLL;
5779
5780 return features;
5781}
5782
5783int __netdev_update_features(struct net_device *dev)
5784{
5785 netdev_features_t features;
5786 int err = 0;
5787
5788 ASSERT_RTNL();
5789
5790 features = netdev_get_wanted_features(dev);
5791
5792 if (dev->netdev_ops->ndo_fix_features)
5793 features = dev->netdev_ops->ndo_fix_features(dev, features);
5794
5795 /* driver might be less strict about feature dependencies */
5796 features = netdev_fix_features(dev, features);
5797
5798 if (dev->features == features)
5799 return 0;
5800
5801 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5802 &dev->features, &features);
5803
5804 if (dev->netdev_ops->ndo_set_features)
5805 err = dev->netdev_ops->ndo_set_features(dev, features);
5806
5807 if (unlikely(err < 0)) {
5808 netdev_err(dev,
5809 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5810 err, &features, &dev->features);
5811 return -1;
5812 }
5813
5814 if (!err)
5815 dev->features = features;
5816
5817 return 1;
5818}
5819
5820/**
5821 * netdev_update_features - recalculate device features
5822 * @dev: the device to check
5823 *
5824 * Recalculate dev->features set and send notifications if it
5825 * has changed. Should be called after driver or hardware dependent
5826 * conditions might have changed that influence the features.
5827 */
5828void netdev_update_features(struct net_device *dev)
5829{
5830 if (__netdev_update_features(dev))
5831 netdev_features_change(dev);
5832}
5833EXPORT_SYMBOL(netdev_update_features);
5834
5835/**
5836 * netdev_change_features - recalculate device features
5837 * @dev: the device to check
5838 *
5839 * Recalculate dev->features set and send notifications even
5840 * if they have not changed. Should be called instead of
5841 * netdev_update_features() if also dev->vlan_features might
5842 * have changed to allow the changes to be propagated to stacked
5843 * VLAN devices.
5844 */
5845void netdev_change_features(struct net_device *dev)
5846{
5847 __netdev_update_features(dev);
5848 netdev_features_change(dev);
5849}
5850EXPORT_SYMBOL(netdev_change_features);
5851
5852/**
5853 * netif_stacked_transfer_operstate - transfer operstate
5854 * @rootdev: the root or lower level device to transfer state from
5855 * @dev: the device to transfer operstate to
5856 *
5857 * Transfer operational state from root to device. This is normally
5858 * called when a stacking relationship exists between the root
5859 * device and the device(a leaf device).
5860 */
5861void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5862 struct net_device *dev)
5863{
5864 if (rootdev->operstate == IF_OPER_DORMANT)
5865 netif_dormant_on(dev);
5866 else
5867 netif_dormant_off(dev);
5868
5869 if (netif_carrier_ok(rootdev)) {
5870 if (!netif_carrier_ok(dev))
5871 netif_carrier_on(dev);
5872 } else {
5873 if (netif_carrier_ok(dev))
5874 netif_carrier_off(dev);
5875 }
5876}
5877EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5878
5879#ifdef CONFIG_SYSFS
5880static int netif_alloc_rx_queues(struct net_device *dev)
5881{
5882 unsigned int i, count = dev->num_rx_queues;
5883 struct netdev_rx_queue *rx;
5884
5885 BUG_ON(count < 1);
5886
5887 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5888 if (!rx)
5889 return -ENOMEM;
5890
5891 dev->_rx = rx;
5892
5893 for (i = 0; i < count; i++)
5894 rx[i].dev = dev;
5895 return 0;
5896}
5897#endif
5898
5899static void netdev_init_one_queue(struct net_device *dev,
5900 struct netdev_queue *queue, void *_unused)
5901{
5902 /* Initialize queue lock */
5903 spin_lock_init(&queue->_xmit_lock);
5904 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5905 queue->xmit_lock_owner = -1;
5906 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5907 queue->dev = dev;
5908#ifdef CONFIG_BQL
5909 dql_init(&queue->dql, HZ);
5910#endif
5911}
5912
5913static void netif_free_tx_queues(struct net_device *dev)
5914{
5915 if (is_vmalloc_addr(dev->_tx))
5916 vfree(dev->_tx);
5917 else
5918 kfree(dev->_tx);
5919}
5920
5921static int netif_alloc_netdev_queues(struct net_device *dev)
5922{
5923 unsigned int count = dev->num_tx_queues;
5924 struct netdev_queue *tx;
5925 size_t sz = count * sizeof(*tx);
5926
5927 BUG_ON(count < 1 || count > 0xffff);
5928
5929 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5930 if (!tx) {
5931 tx = vzalloc(sz);
5932 if (!tx)
5933 return -ENOMEM;
5934 }
5935 dev->_tx = tx;
5936
5937 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5938 spin_lock_init(&dev->tx_global_lock);
5939
5940 return 0;
5941}
5942
5943/**
5944 * register_netdevice - register a network device
5945 * @dev: device to register
5946 *
5947 * Take a completed network device structure and add it to the kernel
5948 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5949 * chain. 0 is returned on success. A negative errno code is returned
5950 * on a failure to set up the device, or if the name is a duplicate.
5951 *
5952 * Callers must hold the rtnl semaphore. You may want
5953 * register_netdev() instead of this.
5954 *
5955 * BUGS:
5956 * The locking appears insufficient to guarantee two parallel registers
5957 * will not get the same name.
5958 */
5959
5960int register_netdevice(struct net_device *dev)
5961{
5962 int ret;
5963 struct net *net = dev_net(dev);
5964
5965 BUG_ON(dev_boot_phase);
5966 ASSERT_RTNL();
5967
5968 might_sleep();
5969
5970 /* When net_device's are persistent, this will be fatal. */
5971 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5972 BUG_ON(!net);
5973
5974 spin_lock_init(&dev->addr_list_lock);
5975 netdev_set_addr_lockdep_class(dev);
5976
5977 dev->iflink = -1;
5978
5979 ret = dev_get_valid_name(net, dev, dev->name);
5980 if (ret < 0)
5981 goto out;
5982
5983 /* Init, if this function is available */
5984 if (dev->netdev_ops->ndo_init) {
5985 ret = dev->netdev_ops->ndo_init(dev);
5986 if (ret) {
5987 if (ret > 0)
5988 ret = -EIO;
5989 goto out;
5990 }
5991 }
5992
5993 if (((dev->hw_features | dev->features) &
5994 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5995 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5996 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5997 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5998 ret = -EINVAL;
5999 goto err_uninit;
6000 }
6001
6002 ret = -EBUSY;
6003 if (!dev->ifindex)
6004 dev->ifindex = dev_new_index(net);
6005 else if (__dev_get_by_index(net, dev->ifindex))
6006 goto err_uninit;
6007
6008 if (dev->iflink == -1)
6009 dev->iflink = dev->ifindex;
6010
6011 /* Transfer changeable features to wanted_features and enable
6012 * software offloads (GSO and GRO).
6013 */
6014 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6015 dev->features |= NETIF_F_SOFT_FEATURES;
6016 dev->wanted_features = dev->features & dev->hw_features;
6017
6018 if (!(dev->flags & IFF_LOOPBACK)) {
6019 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6020 }
6021
6022 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6023 */
6024 dev->vlan_features |= NETIF_F_HIGHDMA;
6025
6026 /* Make NETIF_F_SG inheritable to tunnel devices.
6027 */
6028 dev->hw_enc_features |= NETIF_F_SG;
6029
6030 /* Make NETIF_F_SG inheritable to MPLS.
6031 */
6032 dev->mpls_features |= NETIF_F_SG;
6033
6034 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6035 ret = notifier_to_errno(ret);
6036 if (ret)
6037 goto err_uninit;
6038
6039 ret = netdev_register_kobject(dev);
6040 if (ret)
6041 goto err_uninit;
6042 dev->reg_state = NETREG_REGISTERED;
6043
6044 __netdev_update_features(dev);
6045
6046 /*
6047 * Default initial state at registry is that the
6048 * device is present.
6049 */
6050
6051 set_bit(__LINK_STATE_PRESENT, &dev->state);
6052
6053 linkwatch_init_dev(dev);
6054
6055 dev_init_scheduler(dev);
6056 dev_hold(dev);
6057 list_netdevice(dev);
6058 add_device_randomness(dev->dev_addr, dev->addr_len);
6059
6060 /* If the device has permanent device address, driver should
6061 * set dev_addr and also addr_assign_type should be set to
6062 * NET_ADDR_PERM (default value).
6063 */
6064 if (dev->addr_assign_type == NET_ADDR_PERM)
6065 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6066
6067 /* Notify protocols, that a new device appeared. */
6068 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6069 ret = notifier_to_errno(ret);
6070 if (ret) {
6071 rollback_registered(dev);
6072 dev->reg_state = NETREG_UNREGISTERED;
6073 }
6074 /*
6075 * Prevent userspace races by waiting until the network
6076 * device is fully setup before sending notifications.
6077 */
6078 if (!dev->rtnl_link_ops ||
6079 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6080 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6081
6082out:
6083 return ret;
6084
6085err_uninit:
6086 if (dev->netdev_ops->ndo_uninit)
6087 dev->netdev_ops->ndo_uninit(dev);
6088 goto out;
6089}
6090EXPORT_SYMBOL(register_netdevice);
6091
6092/**
6093 * init_dummy_netdev - init a dummy network device for NAPI
6094 * @dev: device to init
6095 *
6096 * This takes a network device structure and initialize the minimum
6097 * amount of fields so it can be used to schedule NAPI polls without
6098 * registering a full blown interface. This is to be used by drivers
6099 * that need to tie several hardware interfaces to a single NAPI
6100 * poll scheduler due to HW limitations.
6101 */
6102int init_dummy_netdev(struct net_device *dev)
6103{
6104 /* Clear everything. Note we don't initialize spinlocks
6105 * are they aren't supposed to be taken by any of the
6106 * NAPI code and this dummy netdev is supposed to be
6107 * only ever used for NAPI polls
6108 */
6109 memset(dev, 0, sizeof(struct net_device));
6110
6111 /* make sure we BUG if trying to hit standard
6112 * register/unregister code path
6113 */
6114 dev->reg_state = NETREG_DUMMY;
6115
6116 /* NAPI wants this */
6117 INIT_LIST_HEAD(&dev->napi_list);
6118
6119 /* a dummy interface is started by default */
6120 set_bit(__LINK_STATE_PRESENT, &dev->state);
6121 set_bit(__LINK_STATE_START, &dev->state);
6122
6123 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6124 * because users of this 'device' dont need to change
6125 * its refcount.
6126 */
6127
6128 return 0;
6129}
6130EXPORT_SYMBOL_GPL(init_dummy_netdev);
6131
6132
6133/**
6134 * register_netdev - register a network device
6135 * @dev: device to register
6136 *
6137 * Take a completed network device structure and add it to the kernel
6138 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6139 * chain. 0 is returned on success. A negative errno code is returned
6140 * on a failure to set up the device, or if the name is a duplicate.
6141 *
6142 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6143 * and expands the device name if you passed a format string to
6144 * alloc_netdev.
6145 */
6146int register_netdev(struct net_device *dev)
6147{
6148 int err;
6149
6150 rtnl_lock();
6151 err = register_netdevice(dev);
6152 rtnl_unlock();
6153 return err;
6154}
6155EXPORT_SYMBOL(register_netdev);
6156
6157int netdev_refcnt_read(const struct net_device *dev)
6158{
6159 int i, refcnt = 0;
6160
6161 for_each_possible_cpu(i)
6162 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6163 return refcnt;
6164}
6165EXPORT_SYMBOL(netdev_refcnt_read);
6166
6167/**
6168 * netdev_wait_allrefs - wait until all references are gone.
6169 * @dev: target net_device
6170 *
6171 * This is called when unregistering network devices.
6172 *
6173 * Any protocol or device that holds a reference should register
6174 * for netdevice notification, and cleanup and put back the
6175 * reference if they receive an UNREGISTER event.
6176 * We can get stuck here if buggy protocols don't correctly
6177 * call dev_put.
6178 */
6179static void netdev_wait_allrefs(struct net_device *dev)
6180{
6181 unsigned long rebroadcast_time, warning_time;
6182 int refcnt;
6183
6184 linkwatch_forget_dev(dev);
6185
6186 rebroadcast_time = warning_time = jiffies;
6187 refcnt = netdev_refcnt_read(dev);
6188
6189 while (refcnt != 0) {
6190 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6191 rtnl_lock();
6192
6193 /* Rebroadcast unregister notification */
6194 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6195
6196 __rtnl_unlock();
6197 rcu_barrier();
6198 rtnl_lock();
6199
6200 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6201 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6202 &dev->state)) {
6203 /* We must not have linkwatch events
6204 * pending on unregister. If this
6205 * happens, we simply run the queue
6206 * unscheduled, resulting in a noop
6207 * for this device.
6208 */
6209 linkwatch_run_queue();
6210 }
6211
6212 __rtnl_unlock();
6213
6214 rebroadcast_time = jiffies;
6215 }
6216
6217 msleep(250);
6218
6219 refcnt = netdev_refcnt_read(dev);
6220
6221 if (time_after(jiffies, warning_time + 10 * HZ)) {
6222 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6223 dev->name, refcnt);
6224 warning_time = jiffies;
6225 }
6226 }
6227}
6228
6229/* The sequence is:
6230 *
6231 * rtnl_lock();
6232 * ...
6233 * register_netdevice(x1);
6234 * register_netdevice(x2);
6235 * ...
6236 * unregister_netdevice(y1);
6237 * unregister_netdevice(y2);
6238 * ...
6239 * rtnl_unlock();
6240 * free_netdev(y1);
6241 * free_netdev(y2);
6242 *
6243 * We are invoked by rtnl_unlock().
6244 * This allows us to deal with problems:
6245 * 1) We can delete sysfs objects which invoke hotplug
6246 * without deadlocking with linkwatch via keventd.
6247 * 2) Since we run with the RTNL semaphore not held, we can sleep
6248 * safely in order to wait for the netdev refcnt to drop to zero.
6249 *
6250 * We must not return until all unregister events added during
6251 * the interval the lock was held have been completed.
6252 */
6253void netdev_run_todo(void)
6254{
6255 struct list_head list;
6256
6257 /* Snapshot list, allow later requests */
6258 list_replace_init(&net_todo_list, &list);
6259
6260 __rtnl_unlock();
6261
6262
6263 /* Wait for rcu callbacks to finish before next phase */
6264 if (!list_empty(&list))
6265 rcu_barrier();
6266
6267 while (!list_empty(&list)) {
6268 struct net_device *dev
6269 = list_first_entry(&list, struct net_device, todo_list);
6270 list_del(&dev->todo_list);
6271
6272 rtnl_lock();
6273 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6274 __rtnl_unlock();
6275
6276 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6277 pr_err("network todo '%s' but state %d\n",
6278 dev->name, dev->reg_state);
6279 dump_stack();
6280 continue;
6281 }
6282
6283 dev->reg_state = NETREG_UNREGISTERED;
6284
6285 on_each_cpu(flush_backlog, dev, 1);
6286
6287 netdev_wait_allrefs(dev);
6288
6289 /* paranoia */
6290 BUG_ON(netdev_refcnt_read(dev));
6291 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6292 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6293 WARN_ON(dev->dn_ptr);
6294
6295 if (dev->destructor)
6296 dev->destructor(dev);
6297
6298 /* Report a network device has been unregistered */
6299 rtnl_lock();
6300 dev_net(dev)->dev_unreg_count--;
6301 __rtnl_unlock();
6302 wake_up(&netdev_unregistering_wq);
6303
6304 /* Free network device */
6305 kobject_put(&dev->dev.kobj);
6306 }
6307}
6308
6309/* Convert net_device_stats to rtnl_link_stats64. They have the same
6310 * fields in the same order, with only the type differing.
6311 */
6312void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6313 const struct net_device_stats *netdev_stats)
6314{
6315#if BITS_PER_LONG == 64
6316 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6317 memcpy(stats64, netdev_stats, sizeof(*stats64));
6318#else
6319 size_t i, n = sizeof(*stats64) / sizeof(u64);
6320 const unsigned long *src = (const unsigned long *)netdev_stats;
6321 u64 *dst = (u64 *)stats64;
6322
6323 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6324 sizeof(*stats64) / sizeof(u64));
6325 for (i = 0; i < n; i++)
6326 dst[i] = src[i];
6327#endif
6328}
6329EXPORT_SYMBOL(netdev_stats_to_stats64);
6330
6331/**
6332 * dev_get_stats - get network device statistics
6333 * @dev: device to get statistics from
6334 * @storage: place to store stats
6335 *
6336 * Get network statistics from device. Return @storage.
6337 * The device driver may provide its own method by setting
6338 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6339 * otherwise the internal statistics structure is used.
6340 */
6341struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6342 struct rtnl_link_stats64 *storage)
6343{
6344 const struct net_device_ops *ops = dev->netdev_ops;
6345
6346 if (ops->ndo_get_stats64) {
6347 memset(storage, 0, sizeof(*storage));
6348 ops->ndo_get_stats64(dev, storage);
6349 } else if (ops->ndo_get_stats) {
6350 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6351 } else {
6352 netdev_stats_to_stats64(storage, &dev->stats);
6353 }
6354 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6355 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6356 return storage;
6357}
6358EXPORT_SYMBOL(dev_get_stats);
6359
6360struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6361{
6362 struct netdev_queue *queue = dev_ingress_queue(dev);
6363
6364#ifdef CONFIG_NET_CLS_ACT
6365 if (queue)
6366 return queue;
6367 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6368 if (!queue)
6369 return NULL;
6370 netdev_init_one_queue(dev, queue, NULL);
6371 queue->qdisc = &noop_qdisc;
6372 queue->qdisc_sleeping = &noop_qdisc;
6373 rcu_assign_pointer(dev->ingress_queue, queue);
6374#endif
6375 return queue;
6376}
6377
6378static const struct ethtool_ops default_ethtool_ops;
6379
6380void netdev_set_default_ethtool_ops(struct net_device *dev,
6381 const struct ethtool_ops *ops)
6382{
6383 if (dev->ethtool_ops == &default_ethtool_ops)
6384 dev->ethtool_ops = ops;
6385}
6386EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6387
6388void netdev_freemem(struct net_device *dev)
6389{
6390 char *addr = (char *)dev - dev->padded;
6391
6392 if (is_vmalloc_addr(addr))
6393 vfree(addr);
6394 else
6395 kfree(addr);
6396}
6397
6398/**
6399 * alloc_netdev_mqs - allocate network device
6400 * @sizeof_priv: size of private data to allocate space for
6401 * @name: device name format string
6402 * @setup: callback to initialize device
6403 * @txqs: the number of TX subqueues to allocate
6404 * @rxqs: the number of RX subqueues to allocate
6405 *
6406 * Allocates a struct net_device with private data area for driver use
6407 * and performs basic initialization. Also allocates subqueue structs
6408 * for each queue on the device.
6409 */
6410struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6411 void (*setup)(struct net_device *),
6412 unsigned int txqs, unsigned int rxqs)
6413{
6414 struct net_device *dev;
6415 size_t alloc_size;
6416 struct net_device *p;
6417
6418 BUG_ON(strlen(name) >= sizeof(dev->name));
6419
6420 if (txqs < 1) {
6421 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6422 return NULL;
6423 }
6424
6425#ifdef CONFIG_SYSFS
6426 if (rxqs < 1) {
6427 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6428 return NULL;
6429 }
6430#endif
6431
6432 alloc_size = sizeof(struct net_device);
6433 if (sizeof_priv) {
6434 /* ensure 32-byte alignment of private area */
6435 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6436 alloc_size += sizeof_priv;
6437 }
6438 /* ensure 32-byte alignment of whole construct */
6439 alloc_size += NETDEV_ALIGN - 1;
6440
6441 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6442 if (!p)
6443 p = vzalloc(alloc_size);
6444 if (!p)
6445 return NULL;
6446
6447 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6448 dev->padded = (char *)dev - (char *)p;
6449
6450 dev->pcpu_refcnt = alloc_percpu(int);
6451 if (!dev->pcpu_refcnt)
6452 goto free_dev;
6453
6454 if (dev_addr_init(dev))
6455 goto free_pcpu;
6456
6457 dev_mc_init(dev);
6458 dev_uc_init(dev);
6459
6460 dev_net_set(dev, &init_net);
6461
6462 dev->gso_max_size = GSO_MAX_SIZE;
6463 dev->gso_max_segs = GSO_MAX_SEGS;
6464
6465 INIT_LIST_HEAD(&dev->napi_list);
6466 INIT_LIST_HEAD(&dev->unreg_list);
6467 INIT_LIST_HEAD(&dev->close_list);
6468 INIT_LIST_HEAD(&dev->link_watch_list);
6469 INIT_LIST_HEAD(&dev->adj_list.upper);
6470 INIT_LIST_HEAD(&dev->adj_list.lower);
6471 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6472 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6473 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6474 setup(dev);
6475
6476 dev->num_tx_queues = txqs;
6477 dev->real_num_tx_queues = txqs;
6478 if (netif_alloc_netdev_queues(dev))
6479 goto free_all;
6480
6481#ifdef CONFIG_SYSFS
6482 dev->num_rx_queues = rxqs;
6483 dev->real_num_rx_queues = rxqs;
6484 if (netif_alloc_rx_queues(dev))
6485 goto free_all;
6486#endif
6487
6488 strcpy(dev->name, name);
6489 dev->group = INIT_NETDEV_GROUP;
6490 if (!dev->ethtool_ops)
6491 dev->ethtool_ops = &default_ethtool_ops;
6492 return dev;
6493
6494free_all:
6495 free_netdev(dev);
6496 return NULL;
6497
6498free_pcpu:
6499 free_percpu(dev->pcpu_refcnt);
6500 netif_free_tx_queues(dev);
6501#ifdef CONFIG_SYSFS
6502 kfree(dev->_rx);
6503#endif
6504
6505free_dev:
6506 netdev_freemem(dev);
6507 return NULL;
6508}
6509EXPORT_SYMBOL(alloc_netdev_mqs);
6510
6511/**
6512 * free_netdev - free network device
6513 * @dev: device
6514 *
6515 * This function does the last stage of destroying an allocated device
6516 * interface. The reference to the device object is released.
6517 * If this is the last reference then it will be freed.
6518 */
6519void free_netdev(struct net_device *dev)
6520{
6521 struct napi_struct *p, *n;
6522
6523 release_net(dev_net(dev));
6524
6525 netif_free_tx_queues(dev);
6526#ifdef CONFIG_SYSFS
6527 kfree(dev->_rx);
6528#endif
6529
6530 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6531
6532 /* Flush device addresses */
6533 dev_addr_flush(dev);
6534
6535 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6536 netif_napi_del(p);
6537
6538 free_percpu(dev->pcpu_refcnt);
6539 dev->pcpu_refcnt = NULL;
6540
6541 /* Compatibility with error handling in drivers */
6542 if (dev->reg_state == NETREG_UNINITIALIZED) {
6543 netdev_freemem(dev);
6544 return;
6545 }
6546
6547 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6548 dev->reg_state = NETREG_RELEASED;
6549
6550 /* will free via device release */
6551 put_device(&dev->dev);
6552}
6553EXPORT_SYMBOL(free_netdev);
6554
6555/**
6556 * synchronize_net - Synchronize with packet receive processing
6557 *
6558 * Wait for packets currently being received to be done.
6559 * Does not block later packets from starting.
6560 */
6561void synchronize_net(void)
6562{
6563 might_sleep();
6564 if (rtnl_is_locked())
6565 synchronize_rcu_expedited();
6566 else
6567 synchronize_rcu();
6568}
6569EXPORT_SYMBOL(synchronize_net);
6570
6571/**
6572 * unregister_netdevice_queue - remove device from the kernel
6573 * @dev: device
6574 * @head: list
6575 *
6576 * This function shuts down a device interface and removes it
6577 * from the kernel tables.
6578 * If head not NULL, device is queued to be unregistered later.
6579 *
6580 * Callers must hold the rtnl semaphore. You may want
6581 * unregister_netdev() instead of this.
6582 */
6583
6584void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6585{
6586 ASSERT_RTNL();
6587
6588 if (head) {
6589 list_move_tail(&dev->unreg_list, head);
6590 } else {
6591 rollback_registered(dev);
6592 /* Finish processing unregister after unlock */
6593 net_set_todo(dev);
6594 }
6595}
6596EXPORT_SYMBOL(unregister_netdevice_queue);
6597
6598/**
6599 * unregister_netdevice_many - unregister many devices
6600 * @head: list of devices
6601 */
6602void unregister_netdevice_many(struct list_head *head)
6603{
6604 struct net_device *dev;
6605
6606 if (!list_empty(head)) {
6607 rollback_registered_many(head);
6608 list_for_each_entry(dev, head, unreg_list)
6609 net_set_todo(dev);
6610 }
6611}
6612EXPORT_SYMBOL(unregister_netdevice_many);
6613
6614/**
6615 * unregister_netdev - remove device from the kernel
6616 * @dev: device
6617 *
6618 * This function shuts down a device interface and removes it
6619 * from the kernel tables.
6620 *
6621 * This is just a wrapper for unregister_netdevice that takes
6622 * the rtnl semaphore. In general you want to use this and not
6623 * unregister_netdevice.
6624 */
6625void unregister_netdev(struct net_device *dev)
6626{
6627 rtnl_lock();
6628 unregister_netdevice(dev);
6629 rtnl_unlock();
6630}
6631EXPORT_SYMBOL(unregister_netdev);
6632
6633/**
6634 * dev_change_net_namespace - move device to different nethost namespace
6635 * @dev: device
6636 * @net: network namespace
6637 * @pat: If not NULL name pattern to try if the current device name
6638 * is already taken in the destination network namespace.
6639 *
6640 * This function shuts down a device interface and moves it
6641 * to a new network namespace. On success 0 is returned, on
6642 * a failure a netagive errno code is returned.
6643 *
6644 * Callers must hold the rtnl semaphore.
6645 */
6646
6647int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6648{
6649 int err;
6650
6651 ASSERT_RTNL();
6652
6653 /* Don't allow namespace local devices to be moved. */
6654 err = -EINVAL;
6655 if (dev->features & NETIF_F_NETNS_LOCAL)
6656 goto out;
6657
6658 /* Ensure the device has been registrered */
6659 if (dev->reg_state != NETREG_REGISTERED)
6660 goto out;
6661
6662 /* Get out if there is nothing todo */
6663 err = 0;
6664 if (net_eq(dev_net(dev), net))
6665 goto out;
6666
6667 /* Pick the destination device name, and ensure
6668 * we can use it in the destination network namespace.
6669 */
6670 err = -EEXIST;
6671 if (__dev_get_by_name(net, dev->name)) {
6672 /* We get here if we can't use the current device name */
6673 if (!pat)
6674 goto out;
6675 if (dev_get_valid_name(net, dev, pat) < 0)
6676 goto out;
6677 }
6678
6679 /*
6680 * And now a mini version of register_netdevice unregister_netdevice.
6681 */
6682
6683 /* If device is running close it first. */
6684 dev_close(dev);
6685
6686 /* And unlink it from device chain */
6687 err = -ENODEV;
6688 unlist_netdevice(dev);
6689
6690 synchronize_net();
6691
6692 /* Shutdown queueing discipline. */
6693 dev_shutdown(dev);
6694
6695 /* Notify protocols, that we are about to destroy
6696 this device. They should clean all the things.
6697
6698 Note that dev->reg_state stays at NETREG_REGISTERED.
6699 This is wanted because this way 8021q and macvlan know
6700 the device is just moving and can keep their slaves up.
6701 */
6702 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6703 rcu_barrier();
6704 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6705 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6706
6707 /*
6708 * Flush the unicast and multicast chains
6709 */
6710 dev_uc_flush(dev);
6711 dev_mc_flush(dev);
6712
6713 /* Send a netdev-removed uevent to the old namespace */
6714 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6715
6716 /* Actually switch the network namespace */
6717 dev_net_set(dev, net);
6718
6719 /* If there is an ifindex conflict assign a new one */
6720 if (__dev_get_by_index(net, dev->ifindex)) {
6721 int iflink = (dev->iflink == dev->ifindex);
6722 dev->ifindex = dev_new_index(net);
6723 if (iflink)
6724 dev->iflink = dev->ifindex;
6725 }
6726
6727 /* Send a netdev-add uevent to the new namespace */
6728 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6729
6730 /* Fixup kobjects */
6731 err = device_rename(&dev->dev, dev->name);
6732 WARN_ON(err);
6733
6734 /* Add the device back in the hashes */
6735 list_netdevice(dev);
6736
6737 /* Notify protocols, that a new device appeared. */
6738 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6739
6740 /*
6741 * Prevent userspace races by waiting until the network
6742 * device is fully setup before sending notifications.
6743 */
6744 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6745
6746 synchronize_net();
6747 err = 0;
6748out:
6749 return err;
6750}
6751EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6752
6753static int dev_cpu_callback(struct notifier_block *nfb,
6754 unsigned long action,
6755 void *ocpu)
6756{
6757 struct sk_buff **list_skb;
6758 struct sk_buff *skb;
6759 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6760 struct softnet_data *sd, *oldsd;
6761
6762 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6763 return NOTIFY_OK;
6764
6765 local_irq_disable();
6766 cpu = smp_processor_id();
6767 sd = &per_cpu(softnet_data, cpu);
6768 oldsd = &per_cpu(softnet_data, oldcpu);
6769
6770 /* Find end of our completion_queue. */
6771 list_skb = &sd->completion_queue;
6772 while (*list_skb)
6773 list_skb = &(*list_skb)->next;
6774 /* Append completion queue from offline CPU. */
6775 *list_skb = oldsd->completion_queue;
6776 oldsd->completion_queue = NULL;
6777
6778 /* Append output queue from offline CPU. */
6779 if (oldsd->output_queue) {
6780 *sd->output_queue_tailp = oldsd->output_queue;
6781 sd->output_queue_tailp = oldsd->output_queue_tailp;
6782 oldsd->output_queue = NULL;
6783 oldsd->output_queue_tailp = &oldsd->output_queue;
6784 }
6785 /* Append NAPI poll list from offline CPU. */
6786 if (!list_empty(&oldsd->poll_list)) {
6787 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6788 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6789 }
6790
6791 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6792 local_irq_enable();
6793
6794 /* Process offline CPU's input_pkt_queue */
6795 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6796 netif_rx_internal(skb);
6797 input_queue_head_incr(oldsd);
6798 }
6799 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6800 netif_rx_internal(skb);
6801 input_queue_head_incr(oldsd);
6802 }
6803
6804 return NOTIFY_OK;
6805}
6806
6807
6808/**
6809 * netdev_increment_features - increment feature set by one
6810 * @all: current feature set
6811 * @one: new feature set
6812 * @mask: mask feature set
6813 *
6814 * Computes a new feature set after adding a device with feature set
6815 * @one to the master device with current feature set @all. Will not
6816 * enable anything that is off in @mask. Returns the new feature set.
6817 */
6818netdev_features_t netdev_increment_features(netdev_features_t all,
6819 netdev_features_t one, netdev_features_t mask)
6820{
6821 if (mask & NETIF_F_GEN_CSUM)
6822 mask |= NETIF_F_ALL_CSUM;
6823 mask |= NETIF_F_VLAN_CHALLENGED;
6824
6825 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6826 all &= one | ~NETIF_F_ALL_FOR_ALL;
6827
6828 /* If one device supports hw checksumming, set for all. */
6829 if (all & NETIF_F_GEN_CSUM)
6830 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6831
6832 return all;
6833}
6834EXPORT_SYMBOL(netdev_increment_features);
6835
6836static struct hlist_head * __net_init netdev_create_hash(void)
6837{
6838 int i;
6839 struct hlist_head *hash;
6840
6841 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6842 if (hash != NULL)
6843 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6844 INIT_HLIST_HEAD(&hash[i]);
6845
6846 return hash;
6847}
6848
6849/* Initialize per network namespace state */
6850static int __net_init netdev_init(struct net *net)
6851{
6852 if (net != &init_net)
6853 INIT_LIST_HEAD(&net->dev_base_head);
6854
6855 net->dev_name_head = netdev_create_hash();
6856 if (net->dev_name_head == NULL)
6857 goto err_name;
6858
6859 net->dev_index_head = netdev_create_hash();
6860 if (net->dev_index_head == NULL)
6861 goto err_idx;
6862
6863 return 0;
6864
6865err_idx:
6866 kfree(net->dev_name_head);
6867err_name:
6868 return -ENOMEM;
6869}
6870
6871/**
6872 * netdev_drivername - network driver for the device
6873 * @dev: network device
6874 *
6875 * Determine network driver for device.
6876 */
6877const char *netdev_drivername(const struct net_device *dev)
6878{
6879 const struct device_driver *driver;
6880 const struct device *parent;
6881 const char *empty = "";
6882
6883 parent = dev->dev.parent;
6884 if (!parent)
6885 return empty;
6886
6887 driver = parent->driver;
6888 if (driver && driver->name)
6889 return driver->name;
6890 return empty;
6891}
6892
6893static int __netdev_printk(const char *level, const struct net_device *dev,
6894 struct va_format *vaf)
6895{
6896 int r;
6897
6898 if (dev && dev->dev.parent) {
6899 r = dev_printk_emit(level[1] - '0',
6900 dev->dev.parent,
6901 "%s %s %s: %pV",
6902 dev_driver_string(dev->dev.parent),
6903 dev_name(dev->dev.parent),
6904 netdev_name(dev), vaf);
6905 } else if (dev) {
6906 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6907 } else {
6908 r = printk("%s(NULL net_device): %pV", level, vaf);
6909 }
6910
6911 return r;
6912}
6913
6914int netdev_printk(const char *level, const struct net_device *dev,
6915 const char *format, ...)
6916{
6917 struct va_format vaf;
6918 va_list args;
6919 int r;
6920
6921 va_start(args, format);
6922
6923 vaf.fmt = format;
6924 vaf.va = &args;
6925
6926 r = __netdev_printk(level, dev, &vaf);
6927
6928 va_end(args);
6929
6930 return r;
6931}
6932EXPORT_SYMBOL(netdev_printk);
6933
6934#define define_netdev_printk_level(func, level) \
6935int func(const struct net_device *dev, const char *fmt, ...) \
6936{ \
6937 int r; \
6938 struct va_format vaf; \
6939 va_list args; \
6940 \
6941 va_start(args, fmt); \
6942 \
6943 vaf.fmt = fmt; \
6944 vaf.va = &args; \
6945 \
6946 r = __netdev_printk(level, dev, &vaf); \
6947 \
6948 va_end(args); \
6949 \
6950 return r; \
6951} \
6952EXPORT_SYMBOL(func);
6953
6954define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6955define_netdev_printk_level(netdev_alert, KERN_ALERT);
6956define_netdev_printk_level(netdev_crit, KERN_CRIT);
6957define_netdev_printk_level(netdev_err, KERN_ERR);
6958define_netdev_printk_level(netdev_warn, KERN_WARNING);
6959define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6960define_netdev_printk_level(netdev_info, KERN_INFO);
6961
6962static void __net_exit netdev_exit(struct net *net)
6963{
6964 kfree(net->dev_name_head);
6965 kfree(net->dev_index_head);
6966}
6967
6968static struct pernet_operations __net_initdata netdev_net_ops = {
6969 .init = netdev_init,
6970 .exit = netdev_exit,
6971};
6972
6973static void __net_exit default_device_exit(struct net *net)
6974{
6975 struct net_device *dev, *aux;
6976 /*
6977 * Push all migratable network devices back to the
6978 * initial network namespace
6979 */
6980 rtnl_lock();
6981 for_each_netdev_safe(net, dev, aux) {
6982 int err;
6983 char fb_name[IFNAMSIZ];
6984
6985 /* Ignore unmoveable devices (i.e. loopback) */
6986 if (dev->features & NETIF_F_NETNS_LOCAL)
6987 continue;
6988
6989 /* Leave virtual devices for the generic cleanup */
6990 if (dev->rtnl_link_ops)
6991 continue;
6992
6993 /* Push remaining network devices to init_net */
6994 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6995 err = dev_change_net_namespace(dev, &init_net, fb_name);
6996 if (err) {
6997 pr_emerg("%s: failed to move %s to init_net: %d\n",
6998 __func__, dev->name, err);
6999 BUG();
7000 }
7001 }
7002 rtnl_unlock();
7003}
7004
7005static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7006{
7007 /* Return with the rtnl_lock held when there are no network
7008 * devices unregistering in any network namespace in net_list.
7009 */
7010 struct net *net;
7011 bool unregistering;
7012 DEFINE_WAIT(wait);
7013
7014 for (;;) {
7015 prepare_to_wait(&netdev_unregistering_wq, &wait,
7016 TASK_UNINTERRUPTIBLE);
7017 unregistering = false;
7018 rtnl_lock();
7019 list_for_each_entry(net, net_list, exit_list) {
7020 if (net->dev_unreg_count > 0) {
7021 unregistering = true;
7022 break;
7023 }
7024 }
7025 if (!unregistering)
7026 break;
7027 __rtnl_unlock();
7028 schedule();
7029 }
7030 finish_wait(&netdev_unregistering_wq, &wait);
7031}
7032
7033static void __net_exit default_device_exit_batch(struct list_head *net_list)
7034{
7035 /* At exit all network devices most be removed from a network
7036 * namespace. Do this in the reverse order of registration.
7037 * Do this across as many network namespaces as possible to
7038 * improve batching efficiency.
7039 */
7040 struct net_device *dev;
7041 struct net *net;
7042 LIST_HEAD(dev_kill_list);
7043
7044 /* To prevent network device cleanup code from dereferencing
7045 * loopback devices or network devices that have been freed
7046 * wait here for all pending unregistrations to complete,
7047 * before unregistring the loopback device and allowing the
7048 * network namespace be freed.
7049 *
7050 * The netdev todo list containing all network devices
7051 * unregistrations that happen in default_device_exit_batch
7052 * will run in the rtnl_unlock() at the end of
7053 * default_device_exit_batch.
7054 */
7055 rtnl_lock_unregistering(net_list);
7056 list_for_each_entry(net, net_list, exit_list) {
7057 for_each_netdev_reverse(net, dev) {
7058 if (dev->rtnl_link_ops)
7059 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7060 else
7061 unregister_netdevice_queue(dev, &dev_kill_list);
7062 }
7063 }
7064 unregister_netdevice_many(&dev_kill_list);
7065 list_del(&dev_kill_list);
7066 rtnl_unlock();
7067}
7068
7069static struct pernet_operations __net_initdata default_device_ops = {
7070 .exit = default_device_exit,
7071 .exit_batch = default_device_exit_batch,
7072};
7073
7074/*
7075 * Initialize the DEV module. At boot time this walks the device list and
7076 * unhooks any devices that fail to initialise (normally hardware not
7077 * present) and leaves us with a valid list of present and active devices.
7078 *
7079 */
7080
7081/*
7082 * This is called single threaded during boot, so no need
7083 * to take the rtnl semaphore.
7084 */
7085static int __init net_dev_init(void)
7086{
7087 int i, rc = -ENOMEM;
7088
7089 BUG_ON(!dev_boot_phase);
7090
7091 if (dev_proc_init())
7092 goto out;
7093
7094 if (netdev_kobject_init())
7095 goto out;
7096
7097 INIT_LIST_HEAD(&ptype_all);
7098 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7099 INIT_LIST_HEAD(&ptype_base[i]);
7100
7101 INIT_LIST_HEAD(&offload_base);
7102
7103 if (register_pernet_subsys(&netdev_net_ops))
7104 goto out;
7105
7106 /*
7107 * Initialise the packet receive queues.
7108 */
7109
7110 for_each_possible_cpu(i) {
7111 struct softnet_data *sd = &per_cpu(softnet_data, i);
7112
7113 skb_queue_head_init(&sd->input_pkt_queue);
7114 skb_queue_head_init(&sd->process_queue);
7115 INIT_LIST_HEAD(&sd->poll_list);
7116 sd->output_queue_tailp = &sd->output_queue;
7117#ifdef CONFIG_RPS
7118 sd->csd.func = rps_trigger_softirq;
7119 sd->csd.info = sd;
7120 sd->cpu = i;
7121#endif
7122
7123 sd->backlog.poll = process_backlog;
7124 sd->backlog.weight = weight_p;
7125 }
7126
7127 dev_boot_phase = 0;
7128
7129 /* The loopback device is special if any other network devices
7130 * is present in a network namespace the loopback device must
7131 * be present. Since we now dynamically allocate and free the
7132 * loopback device ensure this invariant is maintained by
7133 * keeping the loopback device as the first device on the
7134 * list of network devices. Ensuring the loopback devices
7135 * is the first device that appears and the last network device
7136 * that disappears.
7137 */
7138 if (register_pernet_device(&loopback_net_ops))
7139 goto out;
7140
7141 if (register_pernet_device(&default_device_ops))
7142 goto out;
7143
7144 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7145 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7146
7147 hotcpu_notifier(dev_cpu_callback, 0);
7148 dst_init();
7149 rc = 0;
7150out:
7151 return rc;
7152}
7153
7154subsys_initcall(net_dev_init);