at v3.15-rc7 7208 lines 195 kB view raw
1/* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28#include <linux/res_counter.h> 29#include <linux/memcontrol.h> 30#include <linux/cgroup.h> 31#include <linux/mm.h> 32#include <linux/hugetlb.h> 33#include <linux/pagemap.h> 34#include <linux/smp.h> 35#include <linux/page-flags.h> 36#include <linux/backing-dev.h> 37#include <linux/bit_spinlock.h> 38#include <linux/rcupdate.h> 39#include <linux/limits.h> 40#include <linux/export.h> 41#include <linux/mutex.h> 42#include <linux/rbtree.h> 43#include <linux/slab.h> 44#include <linux/swap.h> 45#include <linux/swapops.h> 46#include <linux/spinlock.h> 47#include <linux/eventfd.h> 48#include <linux/poll.h> 49#include <linux/sort.h> 50#include <linux/fs.h> 51#include <linux/seq_file.h> 52#include <linux/vmpressure.h> 53#include <linux/mm_inline.h> 54#include <linux/page_cgroup.h> 55#include <linux/cpu.h> 56#include <linux/oom.h> 57#include <linux/lockdep.h> 58#include <linux/file.h> 59#include "internal.h" 60#include <net/sock.h> 61#include <net/ip.h> 62#include <net/tcp_memcontrol.h> 63#include "slab.h" 64 65#include <asm/uaccess.h> 66 67#include <trace/events/vmscan.h> 68 69struct cgroup_subsys memory_cgrp_subsys __read_mostly; 70EXPORT_SYMBOL(memory_cgrp_subsys); 71 72#define MEM_CGROUP_RECLAIM_RETRIES 5 73static struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75#ifdef CONFIG_MEMCG_SWAP 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 77int do_swap_account __read_mostly; 78 79/* for remember boot option*/ 80#ifdef CONFIG_MEMCG_SWAP_ENABLED 81static int really_do_swap_account __initdata = 1; 82#else 83static int really_do_swap_account __initdata = 0; 84#endif 85 86#else 87#define do_swap_account 0 88#endif 89 90 91static const char * const mem_cgroup_stat_names[] = { 92 "cache", 93 "rss", 94 "rss_huge", 95 "mapped_file", 96 "writeback", 97 "swap", 98}; 99 100enum mem_cgroup_events_index { 101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 105 MEM_CGROUP_EVENTS_NSTATS, 106}; 107 108static const char * const mem_cgroup_events_names[] = { 109 "pgpgin", 110 "pgpgout", 111 "pgfault", 112 "pgmajfault", 113}; 114 115static const char * const mem_cgroup_lru_names[] = { 116 "inactive_anon", 117 "active_anon", 118 "inactive_file", 119 "active_file", 120 "unevictable", 121}; 122 123/* 124 * Per memcg event counter is incremented at every pagein/pageout. With THP, 125 * it will be incremated by the number of pages. This counter is used for 126 * for trigger some periodic events. This is straightforward and better 127 * than using jiffies etc. to handle periodic memcg event. 128 */ 129enum mem_cgroup_events_target { 130 MEM_CGROUP_TARGET_THRESH, 131 MEM_CGROUP_TARGET_SOFTLIMIT, 132 MEM_CGROUP_TARGET_NUMAINFO, 133 MEM_CGROUP_NTARGETS, 134}; 135#define THRESHOLDS_EVENTS_TARGET 128 136#define SOFTLIMIT_EVENTS_TARGET 1024 137#define NUMAINFO_EVENTS_TARGET 1024 138 139struct mem_cgroup_stat_cpu { 140 long count[MEM_CGROUP_STAT_NSTATS]; 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 142 unsigned long nr_page_events; 143 unsigned long targets[MEM_CGROUP_NTARGETS]; 144}; 145 146struct mem_cgroup_reclaim_iter { 147 /* 148 * last scanned hierarchy member. Valid only if last_dead_count 149 * matches memcg->dead_count of the hierarchy root group. 150 */ 151 struct mem_cgroup *last_visited; 152 int last_dead_count; 153 154 /* scan generation, increased every round-trip */ 155 unsigned int generation; 156}; 157 158/* 159 * per-zone information in memory controller. 160 */ 161struct mem_cgroup_per_zone { 162 struct lruvec lruvec; 163 unsigned long lru_size[NR_LRU_LISTS]; 164 165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 166 167 struct rb_node tree_node; /* RB tree node */ 168 unsigned long long usage_in_excess;/* Set to the value by which */ 169 /* the soft limit is exceeded*/ 170 bool on_tree; 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 172 /* use container_of */ 173}; 174 175struct mem_cgroup_per_node { 176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 177}; 178 179/* 180 * Cgroups above their limits are maintained in a RB-Tree, independent of 181 * their hierarchy representation 182 */ 183 184struct mem_cgroup_tree_per_zone { 185 struct rb_root rb_root; 186 spinlock_t lock; 187}; 188 189struct mem_cgroup_tree_per_node { 190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 191}; 192 193struct mem_cgroup_tree { 194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 195}; 196 197static struct mem_cgroup_tree soft_limit_tree __read_mostly; 198 199struct mem_cgroup_threshold { 200 struct eventfd_ctx *eventfd; 201 u64 threshold; 202}; 203 204/* For threshold */ 205struct mem_cgroup_threshold_ary { 206 /* An array index points to threshold just below or equal to usage. */ 207 int current_threshold; 208 /* Size of entries[] */ 209 unsigned int size; 210 /* Array of thresholds */ 211 struct mem_cgroup_threshold entries[0]; 212}; 213 214struct mem_cgroup_thresholds { 215 /* Primary thresholds array */ 216 struct mem_cgroup_threshold_ary *primary; 217 /* 218 * Spare threshold array. 219 * This is needed to make mem_cgroup_unregister_event() "never fail". 220 * It must be able to store at least primary->size - 1 entries. 221 */ 222 struct mem_cgroup_threshold_ary *spare; 223}; 224 225/* for OOM */ 226struct mem_cgroup_eventfd_list { 227 struct list_head list; 228 struct eventfd_ctx *eventfd; 229}; 230 231/* 232 * cgroup_event represents events which userspace want to receive. 233 */ 234struct mem_cgroup_event { 235 /* 236 * memcg which the event belongs to. 237 */ 238 struct mem_cgroup *memcg; 239 /* 240 * eventfd to signal userspace about the event. 241 */ 242 struct eventfd_ctx *eventfd; 243 /* 244 * Each of these stored in a list by the cgroup. 245 */ 246 struct list_head list; 247 /* 248 * register_event() callback will be used to add new userspace 249 * waiter for changes related to this event. Use eventfd_signal() 250 * on eventfd to send notification to userspace. 251 */ 252 int (*register_event)(struct mem_cgroup *memcg, 253 struct eventfd_ctx *eventfd, const char *args); 254 /* 255 * unregister_event() callback will be called when userspace closes 256 * the eventfd or on cgroup removing. This callback must be set, 257 * if you want provide notification functionality. 258 */ 259 void (*unregister_event)(struct mem_cgroup *memcg, 260 struct eventfd_ctx *eventfd); 261 /* 262 * All fields below needed to unregister event when 263 * userspace closes eventfd. 264 */ 265 poll_table pt; 266 wait_queue_head_t *wqh; 267 wait_queue_t wait; 268 struct work_struct remove; 269}; 270 271static void mem_cgroup_threshold(struct mem_cgroup *memcg); 272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 273 274/* 275 * The memory controller data structure. The memory controller controls both 276 * page cache and RSS per cgroup. We would eventually like to provide 277 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 278 * to help the administrator determine what knobs to tune. 279 * 280 * TODO: Add a water mark for the memory controller. Reclaim will begin when 281 * we hit the water mark. May be even add a low water mark, such that 282 * no reclaim occurs from a cgroup at it's low water mark, this is 283 * a feature that will be implemented much later in the future. 284 */ 285struct mem_cgroup { 286 struct cgroup_subsys_state css; 287 /* 288 * the counter to account for memory usage 289 */ 290 struct res_counter res; 291 292 /* vmpressure notifications */ 293 struct vmpressure vmpressure; 294 295 /* 296 * the counter to account for mem+swap usage. 297 */ 298 struct res_counter memsw; 299 300 /* 301 * the counter to account for kernel memory usage. 302 */ 303 struct res_counter kmem; 304 /* 305 * Should the accounting and control be hierarchical, per subtree? 306 */ 307 bool use_hierarchy; 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 309 310 bool oom_lock; 311 atomic_t under_oom; 312 atomic_t oom_wakeups; 313 314 int swappiness; 315 /* OOM-Killer disable */ 316 int oom_kill_disable; 317 318 /* set when res.limit == memsw.limit */ 319 bool memsw_is_minimum; 320 321 /* protect arrays of thresholds */ 322 struct mutex thresholds_lock; 323 324 /* thresholds for memory usage. RCU-protected */ 325 struct mem_cgroup_thresholds thresholds; 326 327 /* thresholds for mem+swap usage. RCU-protected */ 328 struct mem_cgroup_thresholds memsw_thresholds; 329 330 /* For oom notifier event fd */ 331 struct list_head oom_notify; 332 333 /* 334 * Should we move charges of a task when a task is moved into this 335 * mem_cgroup ? And what type of charges should we move ? 336 */ 337 unsigned long move_charge_at_immigrate; 338 /* 339 * set > 0 if pages under this cgroup are moving to other cgroup. 340 */ 341 atomic_t moving_account; 342 /* taken only while moving_account > 0 */ 343 spinlock_t move_lock; 344 /* 345 * percpu counter. 346 */ 347 struct mem_cgroup_stat_cpu __percpu *stat; 348 /* 349 * used when a cpu is offlined or other synchronizations 350 * See mem_cgroup_read_stat(). 351 */ 352 struct mem_cgroup_stat_cpu nocpu_base; 353 spinlock_t pcp_counter_lock; 354 355 atomic_t dead_count; 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 357 struct cg_proto tcp_mem; 358#endif 359#if defined(CONFIG_MEMCG_KMEM) 360 /* analogous to slab_common's slab_caches list. per-memcg */ 361 struct list_head memcg_slab_caches; 362 /* Not a spinlock, we can take a lot of time walking the list */ 363 struct mutex slab_caches_mutex; 364 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 365 int kmemcg_id; 366#endif 367 368 int last_scanned_node; 369#if MAX_NUMNODES > 1 370 nodemask_t scan_nodes; 371 atomic_t numainfo_events; 372 atomic_t numainfo_updating; 373#endif 374 375 /* List of events which userspace want to receive */ 376 struct list_head event_list; 377 spinlock_t event_list_lock; 378 379 struct mem_cgroup_per_node *nodeinfo[0]; 380 /* WARNING: nodeinfo must be the last member here */ 381}; 382 383/* internal only representation about the status of kmem accounting. */ 384enum { 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 387}; 388 389#ifdef CONFIG_MEMCG_KMEM 390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 391{ 392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 393} 394 395static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 396{ 397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 398} 399 400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 401{ 402 /* 403 * Our caller must use css_get() first, because memcg_uncharge_kmem() 404 * will call css_put() if it sees the memcg is dead. 405 */ 406 smp_wmb(); 407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 409} 410 411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 412{ 413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 414 &memcg->kmem_account_flags); 415} 416#endif 417 418/* Stuffs for move charges at task migration. */ 419/* 420 * Types of charges to be moved. "move_charge_at_immitgrate" and 421 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 422 */ 423enum move_type { 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 426 NR_MOVE_TYPE, 427}; 428 429/* "mc" and its members are protected by cgroup_mutex */ 430static struct move_charge_struct { 431 spinlock_t lock; /* for from, to */ 432 struct mem_cgroup *from; 433 struct mem_cgroup *to; 434 unsigned long immigrate_flags; 435 unsigned long precharge; 436 unsigned long moved_charge; 437 unsigned long moved_swap; 438 struct task_struct *moving_task; /* a task moving charges */ 439 wait_queue_head_t waitq; /* a waitq for other context */ 440} mc = { 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 443}; 444 445static bool move_anon(void) 446{ 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 448} 449 450static bool move_file(void) 451{ 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 453} 454 455/* 456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 457 * limit reclaim to prevent infinite loops, if they ever occur. 458 */ 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 461 462enum charge_type { 463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 464 MEM_CGROUP_CHARGE_TYPE_ANON, 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 467 NR_CHARGE_TYPE, 468}; 469 470/* for encoding cft->private value on file */ 471enum res_type { 472 _MEM, 473 _MEMSWAP, 474 _OOM_TYPE, 475 _KMEM, 476}; 477 478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 480#define MEMFILE_ATTR(val) ((val) & 0xffff) 481/* Used for OOM nofiier */ 482#define OOM_CONTROL (0) 483 484/* 485 * Reclaim flags for mem_cgroup_hierarchical_reclaim 486 */ 487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 491 492/* 493 * The memcg_create_mutex will be held whenever a new cgroup is created. 494 * As a consequence, any change that needs to protect against new child cgroups 495 * appearing has to hold it as well. 496 */ 497static DEFINE_MUTEX(memcg_create_mutex); 498 499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 500{ 501 return s ? container_of(s, struct mem_cgroup, css) : NULL; 502} 503 504/* Some nice accessors for the vmpressure. */ 505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 506{ 507 if (!memcg) 508 memcg = root_mem_cgroup; 509 return &memcg->vmpressure; 510} 511 512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 513{ 514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 515} 516 517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 518{ 519 return (memcg == root_mem_cgroup); 520} 521 522/* 523 * We restrict the id in the range of [1, 65535], so it can fit into 524 * an unsigned short. 525 */ 526#define MEM_CGROUP_ID_MAX USHRT_MAX 527 528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 529{ 530 /* 531 * The ID of the root cgroup is 0, but memcg treat 0 as an 532 * invalid ID, so we return (cgroup_id + 1). 533 */ 534 return memcg->css.cgroup->id + 1; 535} 536 537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 538{ 539 struct cgroup_subsys_state *css; 540 541 css = css_from_id(id - 1, &memory_cgrp_subsys); 542 return mem_cgroup_from_css(css); 543} 544 545/* Writing them here to avoid exposing memcg's inner layout */ 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 547 548void sock_update_memcg(struct sock *sk) 549{ 550 if (mem_cgroup_sockets_enabled) { 551 struct mem_cgroup *memcg; 552 struct cg_proto *cg_proto; 553 554 BUG_ON(!sk->sk_prot->proto_cgroup); 555 556 /* Socket cloning can throw us here with sk_cgrp already 557 * filled. It won't however, necessarily happen from 558 * process context. So the test for root memcg given 559 * the current task's memcg won't help us in this case. 560 * 561 * Respecting the original socket's memcg is a better 562 * decision in this case. 563 */ 564 if (sk->sk_cgrp) { 565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 566 css_get(&sk->sk_cgrp->memcg->css); 567 return; 568 } 569 570 rcu_read_lock(); 571 memcg = mem_cgroup_from_task(current); 572 cg_proto = sk->sk_prot->proto_cgroup(memcg); 573 if (!mem_cgroup_is_root(memcg) && 574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 575 sk->sk_cgrp = cg_proto; 576 } 577 rcu_read_unlock(); 578 } 579} 580EXPORT_SYMBOL(sock_update_memcg); 581 582void sock_release_memcg(struct sock *sk) 583{ 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 585 struct mem_cgroup *memcg; 586 WARN_ON(!sk->sk_cgrp->memcg); 587 memcg = sk->sk_cgrp->memcg; 588 css_put(&sk->sk_cgrp->memcg->css); 589 } 590} 591 592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 593{ 594 if (!memcg || mem_cgroup_is_root(memcg)) 595 return NULL; 596 597 return &memcg->tcp_mem; 598} 599EXPORT_SYMBOL(tcp_proto_cgroup); 600 601static void disarm_sock_keys(struct mem_cgroup *memcg) 602{ 603 if (!memcg_proto_activated(&memcg->tcp_mem)) 604 return; 605 static_key_slow_dec(&memcg_socket_limit_enabled); 606} 607#else 608static void disarm_sock_keys(struct mem_cgroup *memcg) 609{ 610} 611#endif 612 613#ifdef CONFIG_MEMCG_KMEM 614/* 615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 616 * The main reason for not using cgroup id for this: 617 * this works better in sparse environments, where we have a lot of memcgs, 618 * but only a few kmem-limited. Or also, if we have, for instance, 200 619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 620 * 200 entry array for that. 621 * 622 * The current size of the caches array is stored in 623 * memcg_limited_groups_array_size. It will double each time we have to 624 * increase it. 625 */ 626static DEFINE_IDA(kmem_limited_groups); 627int memcg_limited_groups_array_size; 628 629/* 630 * MIN_SIZE is different than 1, because we would like to avoid going through 631 * the alloc/free process all the time. In a small machine, 4 kmem-limited 632 * cgroups is a reasonable guess. In the future, it could be a parameter or 633 * tunable, but that is strictly not necessary. 634 * 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 636 * this constant directly from cgroup, but it is understandable that this is 637 * better kept as an internal representation in cgroup.c. In any case, the 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily 639 * increase ours as well if it increases. 640 */ 641#define MEMCG_CACHES_MIN_SIZE 4 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 643 644/* 645 * A lot of the calls to the cache allocation functions are expected to be 646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 647 * conditional to this static branch, we'll have to allow modules that does 648 * kmem_cache_alloc and the such to see this symbol as well 649 */ 650struct static_key memcg_kmem_enabled_key; 651EXPORT_SYMBOL(memcg_kmem_enabled_key); 652 653static void disarm_kmem_keys(struct mem_cgroup *memcg) 654{ 655 if (memcg_kmem_is_active(memcg)) { 656 static_key_slow_dec(&memcg_kmem_enabled_key); 657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 658 } 659 /* 660 * This check can't live in kmem destruction function, 661 * since the charges will outlive the cgroup 662 */ 663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 664} 665#else 666static void disarm_kmem_keys(struct mem_cgroup *memcg) 667{ 668} 669#endif /* CONFIG_MEMCG_KMEM */ 670 671static void disarm_static_keys(struct mem_cgroup *memcg) 672{ 673 disarm_sock_keys(memcg); 674 disarm_kmem_keys(memcg); 675} 676 677static void drain_all_stock_async(struct mem_cgroup *memcg); 678 679static struct mem_cgroup_per_zone * 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 681{ 682 VM_BUG_ON((unsigned)nid >= nr_node_ids); 683 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 684} 685 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 687{ 688 return &memcg->css; 689} 690 691static struct mem_cgroup_per_zone * 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 693{ 694 int nid = page_to_nid(page); 695 int zid = page_zonenum(page); 696 697 return mem_cgroup_zoneinfo(memcg, nid, zid); 698} 699 700static struct mem_cgroup_tree_per_zone * 701soft_limit_tree_node_zone(int nid, int zid) 702{ 703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 704} 705 706static struct mem_cgroup_tree_per_zone * 707soft_limit_tree_from_page(struct page *page) 708{ 709 int nid = page_to_nid(page); 710 int zid = page_zonenum(page); 711 712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 713} 714 715static void 716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 717 struct mem_cgroup_per_zone *mz, 718 struct mem_cgroup_tree_per_zone *mctz, 719 unsigned long long new_usage_in_excess) 720{ 721 struct rb_node **p = &mctz->rb_root.rb_node; 722 struct rb_node *parent = NULL; 723 struct mem_cgroup_per_zone *mz_node; 724 725 if (mz->on_tree) 726 return; 727 728 mz->usage_in_excess = new_usage_in_excess; 729 if (!mz->usage_in_excess) 730 return; 731 while (*p) { 732 parent = *p; 733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 734 tree_node); 735 if (mz->usage_in_excess < mz_node->usage_in_excess) 736 p = &(*p)->rb_left; 737 /* 738 * We can't avoid mem cgroups that are over their soft 739 * limit by the same amount 740 */ 741 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 742 p = &(*p)->rb_right; 743 } 744 rb_link_node(&mz->tree_node, parent, p); 745 rb_insert_color(&mz->tree_node, &mctz->rb_root); 746 mz->on_tree = true; 747} 748 749static void 750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 751 struct mem_cgroup_per_zone *mz, 752 struct mem_cgroup_tree_per_zone *mctz) 753{ 754 if (!mz->on_tree) 755 return; 756 rb_erase(&mz->tree_node, &mctz->rb_root); 757 mz->on_tree = false; 758} 759 760static void 761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 762 struct mem_cgroup_per_zone *mz, 763 struct mem_cgroup_tree_per_zone *mctz) 764{ 765 spin_lock(&mctz->lock); 766 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 767 spin_unlock(&mctz->lock); 768} 769 770 771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 772{ 773 unsigned long long excess; 774 struct mem_cgroup_per_zone *mz; 775 struct mem_cgroup_tree_per_zone *mctz; 776 int nid = page_to_nid(page); 777 int zid = page_zonenum(page); 778 mctz = soft_limit_tree_from_page(page); 779 780 /* 781 * Necessary to update all ancestors when hierarchy is used. 782 * because their event counter is not touched. 783 */ 784 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 785 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 786 excess = res_counter_soft_limit_excess(&memcg->res); 787 /* 788 * We have to update the tree if mz is on RB-tree or 789 * mem is over its softlimit. 790 */ 791 if (excess || mz->on_tree) { 792 spin_lock(&mctz->lock); 793 /* if on-tree, remove it */ 794 if (mz->on_tree) 795 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 796 /* 797 * Insert again. mz->usage_in_excess will be updated. 798 * If excess is 0, no tree ops. 799 */ 800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 801 spin_unlock(&mctz->lock); 802 } 803 } 804} 805 806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 807{ 808 int node, zone; 809 struct mem_cgroup_per_zone *mz; 810 struct mem_cgroup_tree_per_zone *mctz; 811 812 for_each_node(node) { 813 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 814 mz = mem_cgroup_zoneinfo(memcg, node, zone); 815 mctz = soft_limit_tree_node_zone(node, zone); 816 mem_cgroup_remove_exceeded(memcg, mz, mctz); 817 } 818 } 819} 820 821static struct mem_cgroup_per_zone * 822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 823{ 824 struct rb_node *rightmost = NULL; 825 struct mem_cgroup_per_zone *mz; 826 827retry: 828 mz = NULL; 829 rightmost = rb_last(&mctz->rb_root); 830 if (!rightmost) 831 goto done; /* Nothing to reclaim from */ 832 833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 834 /* 835 * Remove the node now but someone else can add it back, 836 * we will to add it back at the end of reclaim to its correct 837 * position in the tree. 838 */ 839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 840 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 841 !css_tryget(&mz->memcg->css)) 842 goto retry; 843done: 844 return mz; 845} 846 847static struct mem_cgroup_per_zone * 848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 849{ 850 struct mem_cgroup_per_zone *mz; 851 852 spin_lock(&mctz->lock); 853 mz = __mem_cgroup_largest_soft_limit_node(mctz); 854 spin_unlock(&mctz->lock); 855 return mz; 856} 857 858/* 859 * Implementation Note: reading percpu statistics for memcg. 860 * 861 * Both of vmstat[] and percpu_counter has threshold and do periodic 862 * synchronization to implement "quick" read. There are trade-off between 863 * reading cost and precision of value. Then, we may have a chance to implement 864 * a periodic synchronizion of counter in memcg's counter. 865 * 866 * But this _read() function is used for user interface now. The user accounts 867 * memory usage by memory cgroup and he _always_ requires exact value because 868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 869 * have to visit all online cpus and make sum. So, for now, unnecessary 870 * synchronization is not implemented. (just implemented for cpu hotplug) 871 * 872 * If there are kernel internal actions which can make use of some not-exact 873 * value, and reading all cpu value can be performance bottleneck in some 874 * common workload, threashold and synchonization as vmstat[] should be 875 * implemented. 876 */ 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 878 enum mem_cgroup_stat_index idx) 879{ 880 long val = 0; 881 int cpu; 882 883 get_online_cpus(); 884 for_each_online_cpu(cpu) 885 val += per_cpu(memcg->stat->count[idx], cpu); 886#ifdef CONFIG_HOTPLUG_CPU 887 spin_lock(&memcg->pcp_counter_lock); 888 val += memcg->nocpu_base.count[idx]; 889 spin_unlock(&memcg->pcp_counter_lock); 890#endif 891 put_online_cpus(); 892 return val; 893} 894 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 896 bool charge) 897{ 898 int val = (charge) ? 1 : -1; 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 900} 901 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 903 enum mem_cgroup_events_index idx) 904{ 905 unsigned long val = 0; 906 int cpu; 907 908 get_online_cpus(); 909 for_each_online_cpu(cpu) 910 val += per_cpu(memcg->stat->events[idx], cpu); 911#ifdef CONFIG_HOTPLUG_CPU 912 spin_lock(&memcg->pcp_counter_lock); 913 val += memcg->nocpu_base.events[idx]; 914 spin_unlock(&memcg->pcp_counter_lock); 915#endif 916 put_online_cpus(); 917 return val; 918} 919 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 921 struct page *page, 922 bool anon, int nr_pages) 923{ 924 /* 925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 926 * counted as CACHE even if it's on ANON LRU. 927 */ 928 if (anon) 929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 930 nr_pages); 931 else 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 933 nr_pages); 934 935 if (PageTransHuge(page)) 936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 937 nr_pages); 938 939 /* pagein of a big page is an event. So, ignore page size */ 940 if (nr_pages > 0) 941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 942 else { 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 944 nr_pages = -nr_pages; /* for event */ 945 } 946 947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 948} 949 950unsigned long 951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 952{ 953 struct mem_cgroup_per_zone *mz; 954 955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 956 return mz->lru_size[lru]; 957} 958 959static unsigned long 960mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 961 unsigned int lru_mask) 962{ 963 struct mem_cgroup_per_zone *mz; 964 enum lru_list lru; 965 unsigned long ret = 0; 966 967 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 968 969 for_each_lru(lru) { 970 if (BIT(lru) & lru_mask) 971 ret += mz->lru_size[lru]; 972 } 973 return ret; 974} 975 976static unsigned long 977mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 978 int nid, unsigned int lru_mask) 979{ 980 u64 total = 0; 981 int zid; 982 983 for (zid = 0; zid < MAX_NR_ZONES; zid++) 984 total += mem_cgroup_zone_nr_lru_pages(memcg, 985 nid, zid, lru_mask); 986 987 return total; 988} 989 990static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 991 unsigned int lru_mask) 992{ 993 int nid; 994 u64 total = 0; 995 996 for_each_node_state(nid, N_MEMORY) 997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 998 return total; 999} 1000 1001static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 1002 enum mem_cgroup_events_target target) 1003{ 1004 unsigned long val, next; 1005 1006 val = __this_cpu_read(memcg->stat->nr_page_events); 1007 next = __this_cpu_read(memcg->stat->targets[target]); 1008 /* from time_after() in jiffies.h */ 1009 if ((long)next - (long)val < 0) { 1010 switch (target) { 1011 case MEM_CGROUP_TARGET_THRESH: 1012 next = val + THRESHOLDS_EVENTS_TARGET; 1013 break; 1014 case MEM_CGROUP_TARGET_SOFTLIMIT: 1015 next = val + SOFTLIMIT_EVENTS_TARGET; 1016 break; 1017 case MEM_CGROUP_TARGET_NUMAINFO: 1018 next = val + NUMAINFO_EVENTS_TARGET; 1019 break; 1020 default: 1021 break; 1022 } 1023 __this_cpu_write(memcg->stat->targets[target], next); 1024 return true; 1025 } 1026 return false; 1027} 1028 1029/* 1030 * Check events in order. 1031 * 1032 */ 1033static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1034{ 1035 preempt_disable(); 1036 /* threshold event is triggered in finer grain than soft limit */ 1037 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1038 MEM_CGROUP_TARGET_THRESH))) { 1039 bool do_softlimit; 1040 bool do_numainfo __maybe_unused; 1041 1042 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1043 MEM_CGROUP_TARGET_SOFTLIMIT); 1044#if MAX_NUMNODES > 1 1045 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1046 MEM_CGROUP_TARGET_NUMAINFO); 1047#endif 1048 preempt_enable(); 1049 1050 mem_cgroup_threshold(memcg); 1051 if (unlikely(do_softlimit)) 1052 mem_cgroup_update_tree(memcg, page); 1053#if MAX_NUMNODES > 1 1054 if (unlikely(do_numainfo)) 1055 atomic_inc(&memcg->numainfo_events); 1056#endif 1057 } else 1058 preempt_enable(); 1059} 1060 1061struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1062{ 1063 /* 1064 * mm_update_next_owner() may clear mm->owner to NULL 1065 * if it races with swapoff, page migration, etc. 1066 * So this can be called with p == NULL. 1067 */ 1068 if (unlikely(!p)) 1069 return NULL; 1070 1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1072} 1073 1074static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1075{ 1076 struct mem_cgroup *memcg = NULL; 1077 1078 rcu_read_lock(); 1079 do { 1080 /* 1081 * Page cache insertions can happen withou an 1082 * actual mm context, e.g. during disk probing 1083 * on boot, loopback IO, acct() writes etc. 1084 */ 1085 if (unlikely(!mm)) 1086 memcg = root_mem_cgroup; 1087 else { 1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1089 if (unlikely(!memcg)) 1090 memcg = root_mem_cgroup; 1091 } 1092 } while (!css_tryget(&memcg->css)); 1093 rcu_read_unlock(); 1094 return memcg; 1095} 1096 1097/* 1098 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1099 * ref. count) or NULL if the whole root's subtree has been visited. 1100 * 1101 * helper function to be used by mem_cgroup_iter 1102 */ 1103static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1104 struct mem_cgroup *last_visited) 1105{ 1106 struct cgroup_subsys_state *prev_css, *next_css; 1107 1108 prev_css = last_visited ? &last_visited->css : NULL; 1109skip_node: 1110 next_css = css_next_descendant_pre(prev_css, &root->css); 1111 1112 /* 1113 * Even if we found a group we have to make sure it is 1114 * alive. css && !memcg means that the groups should be 1115 * skipped and we should continue the tree walk. 1116 * last_visited css is safe to use because it is 1117 * protected by css_get and the tree walk is rcu safe. 1118 * 1119 * We do not take a reference on the root of the tree walk 1120 * because we might race with the root removal when it would 1121 * be the only node in the iterated hierarchy and mem_cgroup_iter 1122 * would end up in an endless loop because it expects that at 1123 * least one valid node will be returned. Root cannot disappear 1124 * because caller of the iterator should hold it already so 1125 * skipping css reference should be safe. 1126 */ 1127 if (next_css) { 1128 if ((next_css == &root->css) || 1129 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css))) 1130 return mem_cgroup_from_css(next_css); 1131 1132 prev_css = next_css; 1133 goto skip_node; 1134 } 1135 1136 return NULL; 1137} 1138 1139static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1140{ 1141 /* 1142 * When a group in the hierarchy below root is destroyed, the 1143 * hierarchy iterator can no longer be trusted since it might 1144 * have pointed to the destroyed group. Invalidate it. 1145 */ 1146 atomic_inc(&root->dead_count); 1147} 1148 1149static struct mem_cgroup * 1150mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1151 struct mem_cgroup *root, 1152 int *sequence) 1153{ 1154 struct mem_cgroup *position = NULL; 1155 /* 1156 * A cgroup destruction happens in two stages: offlining and 1157 * release. They are separated by a RCU grace period. 1158 * 1159 * If the iterator is valid, we may still race with an 1160 * offlining. The RCU lock ensures the object won't be 1161 * released, tryget will fail if we lost the race. 1162 */ 1163 *sequence = atomic_read(&root->dead_count); 1164 if (iter->last_dead_count == *sequence) { 1165 smp_rmb(); 1166 position = iter->last_visited; 1167 1168 /* 1169 * We cannot take a reference to root because we might race 1170 * with root removal and returning NULL would end up in 1171 * an endless loop on the iterator user level when root 1172 * would be returned all the time. 1173 */ 1174 if (position && position != root && 1175 !css_tryget(&position->css)) 1176 position = NULL; 1177 } 1178 return position; 1179} 1180 1181static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1182 struct mem_cgroup *last_visited, 1183 struct mem_cgroup *new_position, 1184 struct mem_cgroup *root, 1185 int sequence) 1186{ 1187 /* root reference counting symmetric to mem_cgroup_iter_load */ 1188 if (last_visited && last_visited != root) 1189 css_put(&last_visited->css); 1190 /* 1191 * We store the sequence count from the time @last_visited was 1192 * loaded successfully instead of rereading it here so that we 1193 * don't lose destruction events in between. We could have 1194 * raced with the destruction of @new_position after all. 1195 */ 1196 iter->last_visited = new_position; 1197 smp_wmb(); 1198 iter->last_dead_count = sequence; 1199} 1200 1201/** 1202 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1203 * @root: hierarchy root 1204 * @prev: previously returned memcg, NULL on first invocation 1205 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1206 * 1207 * Returns references to children of the hierarchy below @root, or 1208 * @root itself, or %NULL after a full round-trip. 1209 * 1210 * Caller must pass the return value in @prev on subsequent 1211 * invocations for reference counting, or use mem_cgroup_iter_break() 1212 * to cancel a hierarchy walk before the round-trip is complete. 1213 * 1214 * Reclaimers can specify a zone and a priority level in @reclaim to 1215 * divide up the memcgs in the hierarchy among all concurrent 1216 * reclaimers operating on the same zone and priority. 1217 */ 1218struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1219 struct mem_cgroup *prev, 1220 struct mem_cgroup_reclaim_cookie *reclaim) 1221{ 1222 struct mem_cgroup *memcg = NULL; 1223 struct mem_cgroup *last_visited = NULL; 1224 1225 if (mem_cgroup_disabled()) 1226 return NULL; 1227 1228 if (!root) 1229 root = root_mem_cgroup; 1230 1231 if (prev && !reclaim) 1232 last_visited = prev; 1233 1234 if (!root->use_hierarchy && root != root_mem_cgroup) { 1235 if (prev) 1236 goto out_css_put; 1237 return root; 1238 } 1239 1240 rcu_read_lock(); 1241 while (!memcg) { 1242 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1243 int uninitialized_var(seq); 1244 1245 if (reclaim) { 1246 int nid = zone_to_nid(reclaim->zone); 1247 int zid = zone_idx(reclaim->zone); 1248 struct mem_cgroup_per_zone *mz; 1249 1250 mz = mem_cgroup_zoneinfo(root, nid, zid); 1251 iter = &mz->reclaim_iter[reclaim->priority]; 1252 if (prev && reclaim->generation != iter->generation) { 1253 iter->last_visited = NULL; 1254 goto out_unlock; 1255 } 1256 1257 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1258 } 1259 1260 memcg = __mem_cgroup_iter_next(root, last_visited); 1261 1262 if (reclaim) { 1263 mem_cgroup_iter_update(iter, last_visited, memcg, root, 1264 seq); 1265 1266 if (!memcg) 1267 iter->generation++; 1268 else if (!prev && memcg) 1269 reclaim->generation = iter->generation; 1270 } 1271 1272 if (prev && !memcg) 1273 goto out_unlock; 1274 } 1275out_unlock: 1276 rcu_read_unlock(); 1277out_css_put: 1278 if (prev && prev != root) 1279 css_put(&prev->css); 1280 1281 return memcg; 1282} 1283 1284/** 1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1286 * @root: hierarchy root 1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1288 */ 1289void mem_cgroup_iter_break(struct mem_cgroup *root, 1290 struct mem_cgroup *prev) 1291{ 1292 if (!root) 1293 root = root_mem_cgroup; 1294 if (prev && prev != root) 1295 css_put(&prev->css); 1296} 1297 1298/* 1299 * Iteration constructs for visiting all cgroups (under a tree). If 1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1301 * be used for reference counting. 1302 */ 1303#define for_each_mem_cgroup_tree(iter, root) \ 1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1305 iter != NULL; \ 1306 iter = mem_cgroup_iter(root, iter, NULL)) 1307 1308#define for_each_mem_cgroup(iter) \ 1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1310 iter != NULL; \ 1311 iter = mem_cgroup_iter(NULL, iter, NULL)) 1312 1313void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1314{ 1315 struct mem_cgroup *memcg; 1316 1317 rcu_read_lock(); 1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1319 if (unlikely(!memcg)) 1320 goto out; 1321 1322 switch (idx) { 1323 case PGFAULT: 1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1325 break; 1326 case PGMAJFAULT: 1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1328 break; 1329 default: 1330 BUG(); 1331 } 1332out: 1333 rcu_read_unlock(); 1334} 1335EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1336 1337/** 1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1339 * @zone: zone of the wanted lruvec 1340 * @memcg: memcg of the wanted lruvec 1341 * 1342 * Returns the lru list vector holding pages for the given @zone and 1343 * @mem. This can be the global zone lruvec, if the memory controller 1344 * is disabled. 1345 */ 1346struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1347 struct mem_cgroup *memcg) 1348{ 1349 struct mem_cgroup_per_zone *mz; 1350 struct lruvec *lruvec; 1351 1352 if (mem_cgroup_disabled()) { 1353 lruvec = &zone->lruvec; 1354 goto out; 1355 } 1356 1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1358 lruvec = &mz->lruvec; 1359out: 1360 /* 1361 * Since a node can be onlined after the mem_cgroup was created, 1362 * we have to be prepared to initialize lruvec->zone here; 1363 * and if offlined then reonlined, we need to reinitialize it. 1364 */ 1365 if (unlikely(lruvec->zone != zone)) 1366 lruvec->zone = zone; 1367 return lruvec; 1368} 1369 1370/* 1371 * Following LRU functions are allowed to be used without PCG_LOCK. 1372 * Operations are called by routine of global LRU independently from memcg. 1373 * What we have to take care of here is validness of pc->mem_cgroup. 1374 * 1375 * Changes to pc->mem_cgroup happens when 1376 * 1. charge 1377 * 2. moving account 1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1379 * It is added to LRU before charge. 1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1381 * When moving account, the page is not on LRU. It's isolated. 1382 */ 1383 1384/** 1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1386 * @page: the page 1387 * @zone: zone of the page 1388 */ 1389struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1390{ 1391 struct mem_cgroup_per_zone *mz; 1392 struct mem_cgroup *memcg; 1393 struct page_cgroup *pc; 1394 struct lruvec *lruvec; 1395 1396 if (mem_cgroup_disabled()) { 1397 lruvec = &zone->lruvec; 1398 goto out; 1399 } 1400 1401 pc = lookup_page_cgroup(page); 1402 memcg = pc->mem_cgroup; 1403 1404 /* 1405 * Surreptitiously switch any uncharged offlist page to root: 1406 * an uncharged page off lru does nothing to secure 1407 * its former mem_cgroup from sudden removal. 1408 * 1409 * Our caller holds lru_lock, and PageCgroupUsed is updated 1410 * under page_cgroup lock: between them, they make all uses 1411 * of pc->mem_cgroup safe. 1412 */ 1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1414 pc->mem_cgroup = memcg = root_mem_cgroup; 1415 1416 mz = page_cgroup_zoneinfo(memcg, page); 1417 lruvec = &mz->lruvec; 1418out: 1419 /* 1420 * Since a node can be onlined after the mem_cgroup was created, 1421 * we have to be prepared to initialize lruvec->zone here; 1422 * and if offlined then reonlined, we need to reinitialize it. 1423 */ 1424 if (unlikely(lruvec->zone != zone)) 1425 lruvec->zone = zone; 1426 return lruvec; 1427} 1428 1429/** 1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1431 * @lruvec: mem_cgroup per zone lru vector 1432 * @lru: index of lru list the page is sitting on 1433 * @nr_pages: positive when adding or negative when removing 1434 * 1435 * This function must be called when a page is added to or removed from an 1436 * lru list. 1437 */ 1438void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1439 int nr_pages) 1440{ 1441 struct mem_cgroup_per_zone *mz; 1442 unsigned long *lru_size; 1443 1444 if (mem_cgroup_disabled()) 1445 return; 1446 1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1448 lru_size = mz->lru_size + lru; 1449 *lru_size += nr_pages; 1450 VM_BUG_ON((long)(*lru_size) < 0); 1451} 1452 1453/* 1454 * Checks whether given mem is same or in the root_mem_cgroup's 1455 * hierarchy subtree 1456 */ 1457bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1458 struct mem_cgroup *memcg) 1459{ 1460 if (root_memcg == memcg) 1461 return true; 1462 if (!root_memcg->use_hierarchy || !memcg) 1463 return false; 1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); 1465} 1466 1467static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1468 struct mem_cgroup *memcg) 1469{ 1470 bool ret; 1471 1472 rcu_read_lock(); 1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1474 rcu_read_unlock(); 1475 return ret; 1476} 1477 1478bool task_in_mem_cgroup(struct task_struct *task, 1479 const struct mem_cgroup *memcg) 1480{ 1481 struct mem_cgroup *curr = NULL; 1482 struct task_struct *p; 1483 bool ret; 1484 1485 p = find_lock_task_mm(task); 1486 if (p) { 1487 curr = get_mem_cgroup_from_mm(p->mm); 1488 task_unlock(p); 1489 } else { 1490 /* 1491 * All threads may have already detached their mm's, but the oom 1492 * killer still needs to detect if they have already been oom 1493 * killed to prevent needlessly killing additional tasks. 1494 */ 1495 rcu_read_lock(); 1496 curr = mem_cgroup_from_task(task); 1497 if (curr) 1498 css_get(&curr->css); 1499 rcu_read_unlock(); 1500 } 1501 /* 1502 * We should check use_hierarchy of "memcg" not "curr". Because checking 1503 * use_hierarchy of "curr" here make this function true if hierarchy is 1504 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1505 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1506 */ 1507 ret = mem_cgroup_same_or_subtree(memcg, curr); 1508 css_put(&curr->css); 1509 return ret; 1510} 1511 1512int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1513{ 1514 unsigned long inactive_ratio; 1515 unsigned long inactive; 1516 unsigned long active; 1517 unsigned long gb; 1518 1519 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1520 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1521 1522 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1523 if (gb) 1524 inactive_ratio = int_sqrt(10 * gb); 1525 else 1526 inactive_ratio = 1; 1527 1528 return inactive * inactive_ratio < active; 1529} 1530 1531#define mem_cgroup_from_res_counter(counter, member) \ 1532 container_of(counter, struct mem_cgroup, member) 1533 1534/** 1535 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1536 * @memcg: the memory cgroup 1537 * 1538 * Returns the maximum amount of memory @mem can be charged with, in 1539 * pages. 1540 */ 1541static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1542{ 1543 unsigned long long margin; 1544 1545 margin = res_counter_margin(&memcg->res); 1546 if (do_swap_account) 1547 margin = min(margin, res_counter_margin(&memcg->memsw)); 1548 return margin >> PAGE_SHIFT; 1549} 1550 1551int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1552{ 1553 /* root ? */ 1554 if (!css_parent(&memcg->css)) 1555 return vm_swappiness; 1556 1557 return memcg->swappiness; 1558} 1559 1560/* 1561 * memcg->moving_account is used for checking possibility that some thread is 1562 * calling move_account(). When a thread on CPU-A starts moving pages under 1563 * a memcg, other threads should check memcg->moving_account under 1564 * rcu_read_lock(), like this: 1565 * 1566 * CPU-A CPU-B 1567 * rcu_read_lock() 1568 * memcg->moving_account+1 if (memcg->mocing_account) 1569 * take heavy locks. 1570 * synchronize_rcu() update something. 1571 * rcu_read_unlock() 1572 * start move here. 1573 */ 1574 1575/* for quick checking without looking up memcg */ 1576atomic_t memcg_moving __read_mostly; 1577 1578static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1579{ 1580 atomic_inc(&memcg_moving); 1581 atomic_inc(&memcg->moving_account); 1582 synchronize_rcu(); 1583} 1584 1585static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1586{ 1587 /* 1588 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1589 * We check NULL in callee rather than caller. 1590 */ 1591 if (memcg) { 1592 atomic_dec(&memcg_moving); 1593 atomic_dec(&memcg->moving_account); 1594 } 1595} 1596 1597/* 1598 * 2 routines for checking "mem" is under move_account() or not. 1599 * 1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1601 * is used for avoiding races in accounting. If true, 1602 * pc->mem_cgroup may be overwritten. 1603 * 1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1605 * under hierarchy of moving cgroups. This is for 1606 * waiting at hith-memory prressure caused by "move". 1607 */ 1608 1609static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1610{ 1611 VM_BUG_ON(!rcu_read_lock_held()); 1612 return atomic_read(&memcg->moving_account) > 0; 1613} 1614 1615static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1616{ 1617 struct mem_cgroup *from; 1618 struct mem_cgroup *to; 1619 bool ret = false; 1620 /* 1621 * Unlike task_move routines, we access mc.to, mc.from not under 1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1623 */ 1624 spin_lock(&mc.lock); 1625 from = mc.from; 1626 to = mc.to; 1627 if (!from) 1628 goto unlock; 1629 1630 ret = mem_cgroup_same_or_subtree(memcg, from) 1631 || mem_cgroup_same_or_subtree(memcg, to); 1632unlock: 1633 spin_unlock(&mc.lock); 1634 return ret; 1635} 1636 1637static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1638{ 1639 if (mc.moving_task && current != mc.moving_task) { 1640 if (mem_cgroup_under_move(memcg)) { 1641 DEFINE_WAIT(wait); 1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1643 /* moving charge context might have finished. */ 1644 if (mc.moving_task) 1645 schedule(); 1646 finish_wait(&mc.waitq, &wait); 1647 return true; 1648 } 1649 } 1650 return false; 1651} 1652 1653/* 1654 * Take this lock when 1655 * - a code tries to modify page's memcg while it's USED. 1656 * - a code tries to modify page state accounting in a memcg. 1657 * see mem_cgroup_stolen(), too. 1658 */ 1659static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1660 unsigned long *flags) 1661{ 1662 spin_lock_irqsave(&memcg->move_lock, *flags); 1663} 1664 1665static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1666 unsigned long *flags) 1667{ 1668 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1669} 1670 1671#define K(x) ((x) << (PAGE_SHIFT-10)) 1672/** 1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1674 * @memcg: The memory cgroup that went over limit 1675 * @p: Task that is going to be killed 1676 * 1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1678 * enabled 1679 */ 1680void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1681{ 1682 /* oom_info_lock ensures that parallel ooms do not interleave */ 1683 static DEFINE_MUTEX(oom_info_lock); 1684 struct mem_cgroup *iter; 1685 unsigned int i; 1686 1687 if (!p) 1688 return; 1689 1690 mutex_lock(&oom_info_lock); 1691 rcu_read_lock(); 1692 1693 pr_info("Task in "); 1694 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1695 pr_info(" killed as a result of limit of "); 1696 pr_cont_cgroup_path(memcg->css.cgroup); 1697 pr_info("\n"); 1698 1699 rcu_read_unlock(); 1700 1701 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1702 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1703 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1704 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1706 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1707 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1708 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1709 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1710 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1711 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1712 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1713 1714 for_each_mem_cgroup_tree(iter, memcg) { 1715 pr_info("Memory cgroup stats for "); 1716 pr_cont_cgroup_path(iter->css.cgroup); 1717 pr_cont(":"); 1718 1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1721 continue; 1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1723 K(mem_cgroup_read_stat(iter, i))); 1724 } 1725 1726 for (i = 0; i < NR_LRU_LISTS; i++) 1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1729 1730 pr_cont("\n"); 1731 } 1732 mutex_unlock(&oom_info_lock); 1733} 1734 1735/* 1736 * This function returns the number of memcg under hierarchy tree. Returns 1737 * 1(self count) if no children. 1738 */ 1739static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1740{ 1741 int num = 0; 1742 struct mem_cgroup *iter; 1743 1744 for_each_mem_cgroup_tree(iter, memcg) 1745 num++; 1746 return num; 1747} 1748 1749/* 1750 * Return the memory (and swap, if configured) limit for a memcg. 1751 */ 1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1753{ 1754 u64 limit; 1755 1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1757 1758 /* 1759 * Do not consider swap space if we cannot swap due to swappiness 1760 */ 1761 if (mem_cgroup_swappiness(memcg)) { 1762 u64 memsw; 1763 1764 limit += total_swap_pages << PAGE_SHIFT; 1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1766 1767 /* 1768 * If memsw is finite and limits the amount of swap space 1769 * available to this memcg, return that limit. 1770 */ 1771 limit = min(limit, memsw); 1772 } 1773 1774 return limit; 1775} 1776 1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1778 int order) 1779{ 1780 struct mem_cgroup *iter; 1781 unsigned long chosen_points = 0; 1782 unsigned long totalpages; 1783 unsigned int points = 0; 1784 struct task_struct *chosen = NULL; 1785 1786 /* 1787 * If current has a pending SIGKILL or is exiting, then automatically 1788 * select it. The goal is to allow it to allocate so that it may 1789 * quickly exit and free its memory. 1790 */ 1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1792 set_thread_flag(TIF_MEMDIE); 1793 return; 1794 } 1795 1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1798 for_each_mem_cgroup_tree(iter, memcg) { 1799 struct css_task_iter it; 1800 struct task_struct *task; 1801 1802 css_task_iter_start(&iter->css, &it); 1803 while ((task = css_task_iter_next(&it))) { 1804 switch (oom_scan_process_thread(task, totalpages, NULL, 1805 false)) { 1806 case OOM_SCAN_SELECT: 1807 if (chosen) 1808 put_task_struct(chosen); 1809 chosen = task; 1810 chosen_points = ULONG_MAX; 1811 get_task_struct(chosen); 1812 /* fall through */ 1813 case OOM_SCAN_CONTINUE: 1814 continue; 1815 case OOM_SCAN_ABORT: 1816 css_task_iter_end(&it); 1817 mem_cgroup_iter_break(memcg, iter); 1818 if (chosen) 1819 put_task_struct(chosen); 1820 return; 1821 case OOM_SCAN_OK: 1822 break; 1823 }; 1824 points = oom_badness(task, memcg, NULL, totalpages); 1825 if (!points || points < chosen_points) 1826 continue; 1827 /* Prefer thread group leaders for display purposes */ 1828 if (points == chosen_points && 1829 thread_group_leader(chosen)) 1830 continue; 1831 1832 if (chosen) 1833 put_task_struct(chosen); 1834 chosen = task; 1835 chosen_points = points; 1836 get_task_struct(chosen); 1837 } 1838 css_task_iter_end(&it); 1839 } 1840 1841 if (!chosen) 1842 return; 1843 points = chosen_points * 1000 / totalpages; 1844 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1845 NULL, "Memory cgroup out of memory"); 1846} 1847 1848static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1849 gfp_t gfp_mask, 1850 unsigned long flags) 1851{ 1852 unsigned long total = 0; 1853 bool noswap = false; 1854 int loop; 1855 1856 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1857 noswap = true; 1858 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1859 noswap = true; 1860 1861 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1862 if (loop) 1863 drain_all_stock_async(memcg); 1864 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1865 /* 1866 * Allow limit shrinkers, which are triggered directly 1867 * by userspace, to catch signals and stop reclaim 1868 * after minimal progress, regardless of the margin. 1869 */ 1870 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1871 break; 1872 if (mem_cgroup_margin(memcg)) 1873 break; 1874 /* 1875 * If nothing was reclaimed after two attempts, there 1876 * may be no reclaimable pages in this hierarchy. 1877 */ 1878 if (loop && !total) 1879 break; 1880 } 1881 return total; 1882} 1883 1884/** 1885 * test_mem_cgroup_node_reclaimable 1886 * @memcg: the target memcg 1887 * @nid: the node ID to be checked. 1888 * @noswap : specify true here if the user wants flle only information. 1889 * 1890 * This function returns whether the specified memcg contains any 1891 * reclaimable pages on a node. Returns true if there are any reclaimable 1892 * pages in the node. 1893 */ 1894static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1895 int nid, bool noswap) 1896{ 1897 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1898 return true; 1899 if (noswap || !total_swap_pages) 1900 return false; 1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1902 return true; 1903 return false; 1904 1905} 1906#if MAX_NUMNODES > 1 1907 1908/* 1909 * Always updating the nodemask is not very good - even if we have an empty 1910 * list or the wrong list here, we can start from some node and traverse all 1911 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1912 * 1913 */ 1914static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1915{ 1916 int nid; 1917 /* 1918 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1919 * pagein/pageout changes since the last update. 1920 */ 1921 if (!atomic_read(&memcg->numainfo_events)) 1922 return; 1923 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1924 return; 1925 1926 /* make a nodemask where this memcg uses memory from */ 1927 memcg->scan_nodes = node_states[N_MEMORY]; 1928 1929 for_each_node_mask(nid, node_states[N_MEMORY]) { 1930 1931 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1932 node_clear(nid, memcg->scan_nodes); 1933 } 1934 1935 atomic_set(&memcg->numainfo_events, 0); 1936 atomic_set(&memcg->numainfo_updating, 0); 1937} 1938 1939/* 1940 * Selecting a node where we start reclaim from. Because what we need is just 1941 * reducing usage counter, start from anywhere is O,K. Considering 1942 * memory reclaim from current node, there are pros. and cons. 1943 * 1944 * Freeing memory from current node means freeing memory from a node which 1945 * we'll use or we've used. So, it may make LRU bad. And if several threads 1946 * hit limits, it will see a contention on a node. But freeing from remote 1947 * node means more costs for memory reclaim because of memory latency. 1948 * 1949 * Now, we use round-robin. Better algorithm is welcomed. 1950 */ 1951int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1952{ 1953 int node; 1954 1955 mem_cgroup_may_update_nodemask(memcg); 1956 node = memcg->last_scanned_node; 1957 1958 node = next_node(node, memcg->scan_nodes); 1959 if (node == MAX_NUMNODES) 1960 node = first_node(memcg->scan_nodes); 1961 /* 1962 * We call this when we hit limit, not when pages are added to LRU. 1963 * No LRU may hold pages because all pages are UNEVICTABLE or 1964 * memcg is too small and all pages are not on LRU. In that case, 1965 * we use curret node. 1966 */ 1967 if (unlikely(node == MAX_NUMNODES)) 1968 node = numa_node_id(); 1969 1970 memcg->last_scanned_node = node; 1971 return node; 1972} 1973 1974/* 1975 * Check all nodes whether it contains reclaimable pages or not. 1976 * For quick scan, we make use of scan_nodes. This will allow us to skip 1977 * unused nodes. But scan_nodes is lazily updated and may not cotain 1978 * enough new information. We need to do double check. 1979 */ 1980static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1981{ 1982 int nid; 1983 1984 /* 1985 * quick check...making use of scan_node. 1986 * We can skip unused nodes. 1987 */ 1988 if (!nodes_empty(memcg->scan_nodes)) { 1989 for (nid = first_node(memcg->scan_nodes); 1990 nid < MAX_NUMNODES; 1991 nid = next_node(nid, memcg->scan_nodes)) { 1992 1993 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1994 return true; 1995 } 1996 } 1997 /* 1998 * Check rest of nodes. 1999 */ 2000 for_each_node_state(nid, N_MEMORY) { 2001 if (node_isset(nid, memcg->scan_nodes)) 2002 continue; 2003 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 2004 return true; 2005 } 2006 return false; 2007} 2008 2009#else 2010int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 2011{ 2012 return 0; 2013} 2014 2015static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 2016{ 2017 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 2018} 2019#endif 2020 2021static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 2022 struct zone *zone, 2023 gfp_t gfp_mask, 2024 unsigned long *total_scanned) 2025{ 2026 struct mem_cgroup *victim = NULL; 2027 int total = 0; 2028 int loop = 0; 2029 unsigned long excess; 2030 unsigned long nr_scanned; 2031 struct mem_cgroup_reclaim_cookie reclaim = { 2032 .zone = zone, 2033 .priority = 0, 2034 }; 2035 2036 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2037 2038 while (1) { 2039 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2040 if (!victim) { 2041 loop++; 2042 if (loop >= 2) { 2043 /* 2044 * If we have not been able to reclaim 2045 * anything, it might because there are 2046 * no reclaimable pages under this hierarchy 2047 */ 2048 if (!total) 2049 break; 2050 /* 2051 * We want to do more targeted reclaim. 2052 * excess >> 2 is not to excessive so as to 2053 * reclaim too much, nor too less that we keep 2054 * coming back to reclaim from this cgroup 2055 */ 2056 if (total >= (excess >> 2) || 2057 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2058 break; 2059 } 2060 continue; 2061 } 2062 if (!mem_cgroup_reclaimable(victim, false)) 2063 continue; 2064 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2065 zone, &nr_scanned); 2066 *total_scanned += nr_scanned; 2067 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2068 break; 2069 } 2070 mem_cgroup_iter_break(root_memcg, victim); 2071 return total; 2072} 2073 2074#ifdef CONFIG_LOCKDEP 2075static struct lockdep_map memcg_oom_lock_dep_map = { 2076 .name = "memcg_oom_lock", 2077}; 2078#endif 2079 2080static DEFINE_SPINLOCK(memcg_oom_lock); 2081 2082/* 2083 * Check OOM-Killer is already running under our hierarchy. 2084 * If someone is running, return false. 2085 */ 2086static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2087{ 2088 struct mem_cgroup *iter, *failed = NULL; 2089 2090 spin_lock(&memcg_oom_lock); 2091 2092 for_each_mem_cgroup_tree(iter, memcg) { 2093 if (iter->oom_lock) { 2094 /* 2095 * this subtree of our hierarchy is already locked 2096 * so we cannot give a lock. 2097 */ 2098 failed = iter; 2099 mem_cgroup_iter_break(memcg, iter); 2100 break; 2101 } else 2102 iter->oom_lock = true; 2103 } 2104 2105 if (failed) { 2106 /* 2107 * OK, we failed to lock the whole subtree so we have 2108 * to clean up what we set up to the failing subtree 2109 */ 2110 for_each_mem_cgroup_tree(iter, memcg) { 2111 if (iter == failed) { 2112 mem_cgroup_iter_break(memcg, iter); 2113 break; 2114 } 2115 iter->oom_lock = false; 2116 } 2117 } else 2118 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2119 2120 spin_unlock(&memcg_oom_lock); 2121 2122 return !failed; 2123} 2124 2125static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2126{ 2127 struct mem_cgroup *iter; 2128 2129 spin_lock(&memcg_oom_lock); 2130 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 2131 for_each_mem_cgroup_tree(iter, memcg) 2132 iter->oom_lock = false; 2133 spin_unlock(&memcg_oom_lock); 2134} 2135 2136static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2137{ 2138 struct mem_cgroup *iter; 2139 2140 for_each_mem_cgroup_tree(iter, memcg) 2141 atomic_inc(&iter->under_oom); 2142} 2143 2144static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2145{ 2146 struct mem_cgroup *iter; 2147 2148 /* 2149 * When a new child is created while the hierarchy is under oom, 2150 * mem_cgroup_oom_lock() may not be called. We have to use 2151 * atomic_add_unless() here. 2152 */ 2153 for_each_mem_cgroup_tree(iter, memcg) 2154 atomic_add_unless(&iter->under_oom, -1, 0); 2155} 2156 2157static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2158 2159struct oom_wait_info { 2160 struct mem_cgroup *memcg; 2161 wait_queue_t wait; 2162}; 2163 2164static int memcg_oom_wake_function(wait_queue_t *wait, 2165 unsigned mode, int sync, void *arg) 2166{ 2167 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2168 struct mem_cgroup *oom_wait_memcg; 2169 struct oom_wait_info *oom_wait_info; 2170 2171 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2172 oom_wait_memcg = oom_wait_info->memcg; 2173 2174 /* 2175 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2176 * Then we can use css_is_ancestor without taking care of RCU. 2177 */ 2178 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2179 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2180 return 0; 2181 return autoremove_wake_function(wait, mode, sync, arg); 2182} 2183 2184static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2185{ 2186 atomic_inc(&memcg->oom_wakeups); 2187 /* for filtering, pass "memcg" as argument. */ 2188 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2189} 2190 2191static void memcg_oom_recover(struct mem_cgroup *memcg) 2192{ 2193 if (memcg && atomic_read(&memcg->under_oom)) 2194 memcg_wakeup_oom(memcg); 2195} 2196 2197static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2198{ 2199 if (!current->memcg_oom.may_oom) 2200 return; 2201 /* 2202 * We are in the middle of the charge context here, so we 2203 * don't want to block when potentially sitting on a callstack 2204 * that holds all kinds of filesystem and mm locks. 2205 * 2206 * Also, the caller may handle a failed allocation gracefully 2207 * (like optional page cache readahead) and so an OOM killer 2208 * invocation might not even be necessary. 2209 * 2210 * That's why we don't do anything here except remember the 2211 * OOM context and then deal with it at the end of the page 2212 * fault when the stack is unwound, the locks are released, 2213 * and when we know whether the fault was overall successful. 2214 */ 2215 css_get(&memcg->css); 2216 current->memcg_oom.memcg = memcg; 2217 current->memcg_oom.gfp_mask = mask; 2218 current->memcg_oom.order = order; 2219} 2220 2221/** 2222 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2223 * @handle: actually kill/wait or just clean up the OOM state 2224 * 2225 * This has to be called at the end of a page fault if the memcg OOM 2226 * handler was enabled. 2227 * 2228 * Memcg supports userspace OOM handling where failed allocations must 2229 * sleep on a waitqueue until the userspace task resolves the 2230 * situation. Sleeping directly in the charge context with all kinds 2231 * of locks held is not a good idea, instead we remember an OOM state 2232 * in the task and mem_cgroup_oom_synchronize() has to be called at 2233 * the end of the page fault to complete the OOM handling. 2234 * 2235 * Returns %true if an ongoing memcg OOM situation was detected and 2236 * completed, %false otherwise. 2237 */ 2238bool mem_cgroup_oom_synchronize(bool handle) 2239{ 2240 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2241 struct oom_wait_info owait; 2242 bool locked; 2243 2244 /* OOM is global, do not handle */ 2245 if (!memcg) 2246 return false; 2247 2248 if (!handle) 2249 goto cleanup; 2250 2251 owait.memcg = memcg; 2252 owait.wait.flags = 0; 2253 owait.wait.func = memcg_oom_wake_function; 2254 owait.wait.private = current; 2255 INIT_LIST_HEAD(&owait.wait.task_list); 2256 2257 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2258 mem_cgroup_mark_under_oom(memcg); 2259 2260 locked = mem_cgroup_oom_trylock(memcg); 2261 2262 if (locked) 2263 mem_cgroup_oom_notify(memcg); 2264 2265 if (locked && !memcg->oom_kill_disable) { 2266 mem_cgroup_unmark_under_oom(memcg); 2267 finish_wait(&memcg_oom_waitq, &owait.wait); 2268 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2269 current->memcg_oom.order); 2270 } else { 2271 schedule(); 2272 mem_cgroup_unmark_under_oom(memcg); 2273 finish_wait(&memcg_oom_waitq, &owait.wait); 2274 } 2275 2276 if (locked) { 2277 mem_cgroup_oom_unlock(memcg); 2278 /* 2279 * There is no guarantee that an OOM-lock contender 2280 * sees the wakeups triggered by the OOM kill 2281 * uncharges. Wake any sleepers explicitely. 2282 */ 2283 memcg_oom_recover(memcg); 2284 } 2285cleanup: 2286 current->memcg_oom.memcg = NULL; 2287 css_put(&memcg->css); 2288 return true; 2289} 2290 2291/* 2292 * Currently used to update mapped file statistics, but the routine can be 2293 * generalized to update other statistics as well. 2294 * 2295 * Notes: Race condition 2296 * 2297 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2298 * it tends to be costly. But considering some conditions, we doesn't need 2299 * to do so _always_. 2300 * 2301 * Considering "charge", lock_page_cgroup() is not required because all 2302 * file-stat operations happen after a page is attached to radix-tree. There 2303 * are no race with "charge". 2304 * 2305 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2306 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2307 * if there are race with "uncharge". Statistics itself is properly handled 2308 * by flags. 2309 * 2310 * Considering "move", this is an only case we see a race. To make the race 2311 * small, we check mm->moving_account and detect there are possibility of race 2312 * If there is, we take a lock. 2313 */ 2314 2315void __mem_cgroup_begin_update_page_stat(struct page *page, 2316 bool *locked, unsigned long *flags) 2317{ 2318 struct mem_cgroup *memcg; 2319 struct page_cgroup *pc; 2320 2321 pc = lookup_page_cgroup(page); 2322again: 2323 memcg = pc->mem_cgroup; 2324 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2325 return; 2326 /* 2327 * If this memory cgroup is not under account moving, we don't 2328 * need to take move_lock_mem_cgroup(). Because we already hold 2329 * rcu_read_lock(), any calls to move_account will be delayed until 2330 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2331 */ 2332 if (!mem_cgroup_stolen(memcg)) 2333 return; 2334 2335 move_lock_mem_cgroup(memcg, flags); 2336 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2337 move_unlock_mem_cgroup(memcg, flags); 2338 goto again; 2339 } 2340 *locked = true; 2341} 2342 2343void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2344{ 2345 struct page_cgroup *pc = lookup_page_cgroup(page); 2346 2347 /* 2348 * It's guaranteed that pc->mem_cgroup never changes while 2349 * lock is held because a routine modifies pc->mem_cgroup 2350 * should take move_lock_mem_cgroup(). 2351 */ 2352 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2353} 2354 2355void mem_cgroup_update_page_stat(struct page *page, 2356 enum mem_cgroup_stat_index idx, int val) 2357{ 2358 struct mem_cgroup *memcg; 2359 struct page_cgroup *pc = lookup_page_cgroup(page); 2360 unsigned long uninitialized_var(flags); 2361 2362 if (mem_cgroup_disabled()) 2363 return; 2364 2365 VM_BUG_ON(!rcu_read_lock_held()); 2366 memcg = pc->mem_cgroup; 2367 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2368 return; 2369 2370 this_cpu_add(memcg->stat->count[idx], val); 2371} 2372 2373/* 2374 * size of first charge trial. "32" comes from vmscan.c's magic value. 2375 * TODO: maybe necessary to use big numbers in big irons. 2376 */ 2377#define CHARGE_BATCH 32U 2378struct memcg_stock_pcp { 2379 struct mem_cgroup *cached; /* this never be root cgroup */ 2380 unsigned int nr_pages; 2381 struct work_struct work; 2382 unsigned long flags; 2383#define FLUSHING_CACHED_CHARGE 0 2384}; 2385static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2386static DEFINE_MUTEX(percpu_charge_mutex); 2387 2388/** 2389 * consume_stock: Try to consume stocked charge on this cpu. 2390 * @memcg: memcg to consume from. 2391 * @nr_pages: how many pages to charge. 2392 * 2393 * The charges will only happen if @memcg matches the current cpu's memcg 2394 * stock, and at least @nr_pages are available in that stock. Failure to 2395 * service an allocation will refill the stock. 2396 * 2397 * returns true if successful, false otherwise. 2398 */ 2399static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2400{ 2401 struct memcg_stock_pcp *stock; 2402 bool ret = true; 2403 2404 if (nr_pages > CHARGE_BATCH) 2405 return false; 2406 2407 stock = &get_cpu_var(memcg_stock); 2408 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2409 stock->nr_pages -= nr_pages; 2410 else /* need to call res_counter_charge */ 2411 ret = false; 2412 put_cpu_var(memcg_stock); 2413 return ret; 2414} 2415 2416/* 2417 * Returns stocks cached in percpu to res_counter and reset cached information. 2418 */ 2419static void drain_stock(struct memcg_stock_pcp *stock) 2420{ 2421 struct mem_cgroup *old = stock->cached; 2422 2423 if (stock->nr_pages) { 2424 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2425 2426 res_counter_uncharge(&old->res, bytes); 2427 if (do_swap_account) 2428 res_counter_uncharge(&old->memsw, bytes); 2429 stock->nr_pages = 0; 2430 } 2431 stock->cached = NULL; 2432} 2433 2434/* 2435 * This must be called under preempt disabled or must be called by 2436 * a thread which is pinned to local cpu. 2437 */ 2438static void drain_local_stock(struct work_struct *dummy) 2439{ 2440 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2441 drain_stock(stock); 2442 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2443} 2444 2445static void __init memcg_stock_init(void) 2446{ 2447 int cpu; 2448 2449 for_each_possible_cpu(cpu) { 2450 struct memcg_stock_pcp *stock = 2451 &per_cpu(memcg_stock, cpu); 2452 INIT_WORK(&stock->work, drain_local_stock); 2453 } 2454} 2455 2456/* 2457 * Cache charges(val) which is from res_counter, to local per_cpu area. 2458 * This will be consumed by consume_stock() function, later. 2459 */ 2460static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2461{ 2462 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2463 2464 if (stock->cached != memcg) { /* reset if necessary */ 2465 drain_stock(stock); 2466 stock->cached = memcg; 2467 } 2468 stock->nr_pages += nr_pages; 2469 put_cpu_var(memcg_stock); 2470} 2471 2472/* 2473 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2474 * of the hierarchy under it. sync flag says whether we should block 2475 * until the work is done. 2476 */ 2477static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2478{ 2479 int cpu, curcpu; 2480 2481 /* Notify other cpus that system-wide "drain" is running */ 2482 get_online_cpus(); 2483 curcpu = get_cpu(); 2484 for_each_online_cpu(cpu) { 2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2486 struct mem_cgroup *memcg; 2487 2488 memcg = stock->cached; 2489 if (!memcg || !stock->nr_pages) 2490 continue; 2491 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2492 continue; 2493 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2494 if (cpu == curcpu) 2495 drain_local_stock(&stock->work); 2496 else 2497 schedule_work_on(cpu, &stock->work); 2498 } 2499 } 2500 put_cpu(); 2501 2502 if (!sync) 2503 goto out; 2504 2505 for_each_online_cpu(cpu) { 2506 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2507 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2508 flush_work(&stock->work); 2509 } 2510out: 2511 put_online_cpus(); 2512} 2513 2514/* 2515 * Tries to drain stocked charges in other cpus. This function is asynchronous 2516 * and just put a work per cpu for draining localy on each cpu. Caller can 2517 * expects some charges will be back to res_counter later but cannot wait for 2518 * it. 2519 */ 2520static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2521{ 2522 /* 2523 * If someone calls draining, avoid adding more kworker runs. 2524 */ 2525 if (!mutex_trylock(&percpu_charge_mutex)) 2526 return; 2527 drain_all_stock(root_memcg, false); 2528 mutex_unlock(&percpu_charge_mutex); 2529} 2530 2531/* This is a synchronous drain interface. */ 2532static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2533{ 2534 /* called when force_empty is called */ 2535 mutex_lock(&percpu_charge_mutex); 2536 drain_all_stock(root_memcg, true); 2537 mutex_unlock(&percpu_charge_mutex); 2538} 2539 2540/* 2541 * This function drains percpu counter value from DEAD cpu and 2542 * move it to local cpu. Note that this function can be preempted. 2543 */ 2544static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2545{ 2546 int i; 2547 2548 spin_lock(&memcg->pcp_counter_lock); 2549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2550 long x = per_cpu(memcg->stat->count[i], cpu); 2551 2552 per_cpu(memcg->stat->count[i], cpu) = 0; 2553 memcg->nocpu_base.count[i] += x; 2554 } 2555 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2556 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2557 2558 per_cpu(memcg->stat->events[i], cpu) = 0; 2559 memcg->nocpu_base.events[i] += x; 2560 } 2561 spin_unlock(&memcg->pcp_counter_lock); 2562} 2563 2564static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2565 unsigned long action, 2566 void *hcpu) 2567{ 2568 int cpu = (unsigned long)hcpu; 2569 struct memcg_stock_pcp *stock; 2570 struct mem_cgroup *iter; 2571 2572 if (action == CPU_ONLINE) 2573 return NOTIFY_OK; 2574 2575 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2576 return NOTIFY_OK; 2577 2578 for_each_mem_cgroup(iter) 2579 mem_cgroup_drain_pcp_counter(iter, cpu); 2580 2581 stock = &per_cpu(memcg_stock, cpu); 2582 drain_stock(stock); 2583 return NOTIFY_OK; 2584} 2585 2586 2587/* See mem_cgroup_try_charge() for details */ 2588enum { 2589 CHARGE_OK, /* success */ 2590 CHARGE_RETRY, /* need to retry but retry is not bad */ 2591 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2592 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2593}; 2594 2595static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2596 unsigned int nr_pages, unsigned int min_pages, 2597 bool invoke_oom) 2598{ 2599 unsigned long csize = nr_pages * PAGE_SIZE; 2600 struct mem_cgroup *mem_over_limit; 2601 struct res_counter *fail_res; 2602 unsigned long flags = 0; 2603 int ret; 2604 2605 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2606 2607 if (likely(!ret)) { 2608 if (!do_swap_account) 2609 return CHARGE_OK; 2610 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2611 if (likely(!ret)) 2612 return CHARGE_OK; 2613 2614 res_counter_uncharge(&memcg->res, csize); 2615 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2616 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2617 } else 2618 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2619 /* 2620 * Never reclaim on behalf of optional batching, retry with a 2621 * single page instead. 2622 */ 2623 if (nr_pages > min_pages) 2624 return CHARGE_RETRY; 2625 2626 if (!(gfp_mask & __GFP_WAIT)) 2627 return CHARGE_WOULDBLOCK; 2628 2629 if (gfp_mask & __GFP_NORETRY) 2630 return CHARGE_NOMEM; 2631 2632 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2633 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2634 return CHARGE_RETRY; 2635 /* 2636 * Even though the limit is exceeded at this point, reclaim 2637 * may have been able to free some pages. Retry the charge 2638 * before killing the task. 2639 * 2640 * Only for regular pages, though: huge pages are rather 2641 * unlikely to succeed so close to the limit, and we fall back 2642 * to regular pages anyway in case of failure. 2643 */ 2644 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2645 return CHARGE_RETRY; 2646 2647 /* 2648 * At task move, charge accounts can be doubly counted. So, it's 2649 * better to wait until the end of task_move if something is going on. 2650 */ 2651 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2652 return CHARGE_RETRY; 2653 2654 if (invoke_oom) 2655 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2656 2657 return CHARGE_NOMEM; 2658} 2659 2660/** 2661 * mem_cgroup_try_charge - try charging a memcg 2662 * @memcg: memcg to charge 2663 * @nr_pages: number of pages to charge 2664 * @oom: trigger OOM if reclaim fails 2665 * 2666 * Returns 0 if @memcg was charged successfully, -EINTR if the charge 2667 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed. 2668 */ 2669static int mem_cgroup_try_charge(struct mem_cgroup *memcg, 2670 gfp_t gfp_mask, 2671 unsigned int nr_pages, 2672 bool oom) 2673{ 2674 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2675 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2676 int ret; 2677 2678 if (mem_cgroup_is_root(memcg)) 2679 goto done; 2680 /* 2681 * Unlike in global OOM situations, memcg is not in a physical 2682 * memory shortage. Allow dying and OOM-killed tasks to 2683 * bypass the last charges so that they can exit quickly and 2684 * free their memory. 2685 */ 2686 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2687 fatal_signal_pending(current))) 2688 goto bypass; 2689 2690 if (unlikely(task_in_memcg_oom(current))) 2691 goto nomem; 2692 2693 if (gfp_mask & __GFP_NOFAIL) 2694 oom = false; 2695again: 2696 if (consume_stock(memcg, nr_pages)) 2697 goto done; 2698 2699 do { 2700 bool invoke_oom = oom && !nr_oom_retries; 2701 2702 /* If killed, bypass charge */ 2703 if (fatal_signal_pending(current)) 2704 goto bypass; 2705 2706 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2707 nr_pages, invoke_oom); 2708 switch (ret) { 2709 case CHARGE_OK: 2710 break; 2711 case CHARGE_RETRY: /* not in OOM situation but retry */ 2712 batch = nr_pages; 2713 goto again; 2714 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2715 goto nomem; 2716 case CHARGE_NOMEM: /* OOM routine works */ 2717 if (!oom || invoke_oom) 2718 goto nomem; 2719 nr_oom_retries--; 2720 break; 2721 } 2722 } while (ret != CHARGE_OK); 2723 2724 if (batch > nr_pages) 2725 refill_stock(memcg, batch - nr_pages); 2726done: 2727 return 0; 2728nomem: 2729 if (!(gfp_mask & __GFP_NOFAIL)) 2730 return -ENOMEM; 2731bypass: 2732 return -EINTR; 2733} 2734 2735/** 2736 * mem_cgroup_try_charge_mm - try charging a mm 2737 * @mm: mm_struct to charge 2738 * @nr_pages: number of pages to charge 2739 * @oom: trigger OOM if reclaim fails 2740 * 2741 * Returns the charged mem_cgroup associated with the given mm_struct or 2742 * NULL the charge failed. 2743 */ 2744static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm, 2745 gfp_t gfp_mask, 2746 unsigned int nr_pages, 2747 bool oom) 2748 2749{ 2750 struct mem_cgroup *memcg; 2751 int ret; 2752 2753 memcg = get_mem_cgroup_from_mm(mm); 2754 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom); 2755 css_put(&memcg->css); 2756 if (ret == -EINTR) 2757 memcg = root_mem_cgroup; 2758 else if (ret) 2759 memcg = NULL; 2760 2761 return memcg; 2762} 2763 2764/* 2765 * Somemtimes we have to undo a charge we got by try_charge(). 2766 * This function is for that and do uncharge, put css's refcnt. 2767 * gotten by try_charge(). 2768 */ 2769static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2770 unsigned int nr_pages) 2771{ 2772 if (!mem_cgroup_is_root(memcg)) { 2773 unsigned long bytes = nr_pages * PAGE_SIZE; 2774 2775 res_counter_uncharge(&memcg->res, bytes); 2776 if (do_swap_account) 2777 res_counter_uncharge(&memcg->memsw, bytes); 2778 } 2779} 2780 2781/* 2782 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2783 * This is useful when moving usage to parent cgroup. 2784 */ 2785static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2786 unsigned int nr_pages) 2787{ 2788 unsigned long bytes = nr_pages * PAGE_SIZE; 2789 2790 if (mem_cgroup_is_root(memcg)) 2791 return; 2792 2793 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2794 if (do_swap_account) 2795 res_counter_uncharge_until(&memcg->memsw, 2796 memcg->memsw.parent, bytes); 2797} 2798 2799/* 2800 * A helper function to get mem_cgroup from ID. must be called under 2801 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2802 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2803 * called against removed memcg.) 2804 */ 2805static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2806{ 2807 /* ID 0 is unused ID */ 2808 if (!id) 2809 return NULL; 2810 return mem_cgroup_from_id(id); 2811} 2812 2813struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2814{ 2815 struct mem_cgroup *memcg = NULL; 2816 struct page_cgroup *pc; 2817 unsigned short id; 2818 swp_entry_t ent; 2819 2820 VM_BUG_ON_PAGE(!PageLocked(page), page); 2821 2822 pc = lookup_page_cgroup(page); 2823 lock_page_cgroup(pc); 2824 if (PageCgroupUsed(pc)) { 2825 memcg = pc->mem_cgroup; 2826 if (memcg && !css_tryget(&memcg->css)) 2827 memcg = NULL; 2828 } else if (PageSwapCache(page)) { 2829 ent.val = page_private(page); 2830 id = lookup_swap_cgroup_id(ent); 2831 rcu_read_lock(); 2832 memcg = mem_cgroup_lookup(id); 2833 if (memcg && !css_tryget(&memcg->css)) 2834 memcg = NULL; 2835 rcu_read_unlock(); 2836 } 2837 unlock_page_cgroup(pc); 2838 return memcg; 2839} 2840 2841static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2842 struct page *page, 2843 unsigned int nr_pages, 2844 enum charge_type ctype, 2845 bool lrucare) 2846{ 2847 struct page_cgroup *pc = lookup_page_cgroup(page); 2848 struct zone *uninitialized_var(zone); 2849 struct lruvec *lruvec; 2850 bool was_on_lru = false; 2851 bool anon; 2852 2853 lock_page_cgroup(pc); 2854 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); 2855 /* 2856 * we don't need page_cgroup_lock about tail pages, becase they are not 2857 * accessed by any other context at this point. 2858 */ 2859 2860 /* 2861 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2862 * may already be on some other mem_cgroup's LRU. Take care of it. 2863 */ 2864 if (lrucare) { 2865 zone = page_zone(page); 2866 spin_lock_irq(&zone->lru_lock); 2867 if (PageLRU(page)) { 2868 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2869 ClearPageLRU(page); 2870 del_page_from_lru_list(page, lruvec, page_lru(page)); 2871 was_on_lru = true; 2872 } 2873 } 2874 2875 pc->mem_cgroup = memcg; 2876 /* 2877 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2878 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2879 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2880 * before USED bit, we need memory barrier here. 2881 * See mem_cgroup_add_lru_list(), etc. 2882 */ 2883 smp_wmb(); 2884 SetPageCgroupUsed(pc); 2885 2886 if (lrucare) { 2887 if (was_on_lru) { 2888 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2889 VM_BUG_ON_PAGE(PageLRU(page), page); 2890 SetPageLRU(page); 2891 add_page_to_lru_list(page, lruvec, page_lru(page)); 2892 } 2893 spin_unlock_irq(&zone->lru_lock); 2894 } 2895 2896 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2897 anon = true; 2898 else 2899 anon = false; 2900 2901 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2902 unlock_page_cgroup(pc); 2903 2904 /* 2905 * "charge_statistics" updated event counter. Then, check it. 2906 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2907 * if they exceeds softlimit. 2908 */ 2909 memcg_check_events(memcg, page); 2910} 2911 2912static DEFINE_MUTEX(set_limit_mutex); 2913 2914#ifdef CONFIG_MEMCG_KMEM 2915static DEFINE_MUTEX(activate_kmem_mutex); 2916 2917static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2918{ 2919 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2920 memcg_kmem_is_active(memcg); 2921} 2922 2923/* 2924 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2925 * in the memcg_cache_params struct. 2926 */ 2927static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2928{ 2929 struct kmem_cache *cachep; 2930 2931 VM_BUG_ON(p->is_root_cache); 2932 cachep = p->root_cache; 2933 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); 2934} 2935 2936#ifdef CONFIG_SLABINFO 2937static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) 2938{ 2939 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 2940 struct memcg_cache_params *params; 2941 2942 if (!memcg_can_account_kmem(memcg)) 2943 return -EIO; 2944 2945 print_slabinfo_header(m); 2946 2947 mutex_lock(&memcg->slab_caches_mutex); 2948 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2949 cache_show(memcg_params_to_cache(params), m); 2950 mutex_unlock(&memcg->slab_caches_mutex); 2951 2952 return 0; 2953} 2954#endif 2955 2956static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2957{ 2958 struct res_counter *fail_res; 2959 int ret = 0; 2960 2961 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2962 if (ret) 2963 return ret; 2964 2965 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT, 2966 oom_gfp_allowed(gfp)); 2967 if (ret == -EINTR) { 2968 /* 2969 * mem_cgroup_try_charge() chosed to bypass to root due to 2970 * OOM kill or fatal signal. Since our only options are to 2971 * either fail the allocation or charge it to this cgroup, do 2972 * it as a temporary condition. But we can't fail. From a 2973 * kmem/slab perspective, the cache has already been selected, 2974 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2975 * our minds. 2976 * 2977 * This condition will only trigger if the task entered 2978 * memcg_charge_kmem in a sane state, but was OOM-killed during 2979 * mem_cgroup_try_charge() above. Tasks that were already 2980 * dying when the allocation triggers should have been already 2981 * directed to the root cgroup in memcontrol.h 2982 */ 2983 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2984 if (do_swap_account) 2985 res_counter_charge_nofail(&memcg->memsw, size, 2986 &fail_res); 2987 ret = 0; 2988 } else if (ret) 2989 res_counter_uncharge(&memcg->kmem, size); 2990 2991 return ret; 2992} 2993 2994static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2995{ 2996 res_counter_uncharge(&memcg->res, size); 2997 if (do_swap_account) 2998 res_counter_uncharge(&memcg->memsw, size); 2999 3000 /* Not down to 0 */ 3001 if (res_counter_uncharge(&memcg->kmem, size)) 3002 return; 3003 3004 /* 3005 * Releases a reference taken in kmem_cgroup_css_offline in case 3006 * this last uncharge is racing with the offlining code or it is 3007 * outliving the memcg existence. 3008 * 3009 * The memory barrier imposed by test&clear is paired with the 3010 * explicit one in memcg_kmem_mark_dead(). 3011 */ 3012 if (memcg_kmem_test_and_clear_dead(memcg)) 3013 css_put(&memcg->css); 3014} 3015 3016/* 3017 * helper for acessing a memcg's index. It will be used as an index in the 3018 * child cache array in kmem_cache, and also to derive its name. This function 3019 * will return -1 when this is not a kmem-limited memcg. 3020 */ 3021int memcg_cache_id(struct mem_cgroup *memcg) 3022{ 3023 return memcg ? memcg->kmemcg_id : -1; 3024} 3025 3026static size_t memcg_caches_array_size(int num_groups) 3027{ 3028 ssize_t size; 3029 if (num_groups <= 0) 3030 return 0; 3031 3032 size = 2 * num_groups; 3033 if (size < MEMCG_CACHES_MIN_SIZE) 3034 size = MEMCG_CACHES_MIN_SIZE; 3035 else if (size > MEMCG_CACHES_MAX_SIZE) 3036 size = MEMCG_CACHES_MAX_SIZE; 3037 3038 return size; 3039} 3040 3041/* 3042 * We should update the current array size iff all caches updates succeed. This 3043 * can only be done from the slab side. The slab mutex needs to be held when 3044 * calling this. 3045 */ 3046void memcg_update_array_size(int num) 3047{ 3048 if (num > memcg_limited_groups_array_size) 3049 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3050} 3051 3052static void kmem_cache_destroy_work_func(struct work_struct *w); 3053 3054int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3055{ 3056 struct memcg_cache_params *cur_params = s->memcg_params; 3057 3058 VM_BUG_ON(!is_root_cache(s)); 3059 3060 if (num_groups > memcg_limited_groups_array_size) { 3061 int i; 3062 struct memcg_cache_params *new_params; 3063 ssize_t size = memcg_caches_array_size(num_groups); 3064 3065 size *= sizeof(void *); 3066 size += offsetof(struct memcg_cache_params, memcg_caches); 3067 3068 new_params = kzalloc(size, GFP_KERNEL); 3069 if (!new_params) 3070 return -ENOMEM; 3071 3072 new_params->is_root_cache = true; 3073 3074 /* 3075 * There is the chance it will be bigger than 3076 * memcg_limited_groups_array_size, if we failed an allocation 3077 * in a cache, in which case all caches updated before it, will 3078 * have a bigger array. 3079 * 3080 * But if that is the case, the data after 3081 * memcg_limited_groups_array_size is certainly unused 3082 */ 3083 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3084 if (!cur_params->memcg_caches[i]) 3085 continue; 3086 new_params->memcg_caches[i] = 3087 cur_params->memcg_caches[i]; 3088 } 3089 3090 /* 3091 * Ideally, we would wait until all caches succeed, and only 3092 * then free the old one. But this is not worth the extra 3093 * pointer per-cache we'd have to have for this. 3094 * 3095 * It is not a big deal if some caches are left with a size 3096 * bigger than the others. And all updates will reset this 3097 * anyway. 3098 */ 3099 rcu_assign_pointer(s->memcg_params, new_params); 3100 if (cur_params) 3101 kfree_rcu(cur_params, rcu_head); 3102 } 3103 return 0; 3104} 3105 3106char *memcg_create_cache_name(struct mem_cgroup *memcg, 3107 struct kmem_cache *root_cache) 3108{ 3109 static char *buf = NULL; 3110 3111 /* 3112 * We need a mutex here to protect the shared buffer. Since this is 3113 * expected to be called only on cache creation, we can employ the 3114 * slab_mutex for that purpose. 3115 */ 3116 lockdep_assert_held(&slab_mutex); 3117 3118 if (!buf) { 3119 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); 3120 if (!buf) 3121 return NULL; 3122 } 3123 3124 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1); 3125 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, 3126 memcg_cache_id(memcg), buf); 3127} 3128 3129int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, 3130 struct kmem_cache *root_cache) 3131{ 3132 size_t size; 3133 3134 if (!memcg_kmem_enabled()) 3135 return 0; 3136 3137 if (!memcg) { 3138 size = offsetof(struct memcg_cache_params, memcg_caches); 3139 size += memcg_limited_groups_array_size * sizeof(void *); 3140 } else 3141 size = sizeof(struct memcg_cache_params); 3142 3143 s->memcg_params = kzalloc(size, GFP_KERNEL); 3144 if (!s->memcg_params) 3145 return -ENOMEM; 3146 3147 if (memcg) { 3148 s->memcg_params->memcg = memcg; 3149 s->memcg_params->root_cache = root_cache; 3150 INIT_WORK(&s->memcg_params->destroy, 3151 kmem_cache_destroy_work_func); 3152 css_get(&memcg->css); 3153 } else 3154 s->memcg_params->is_root_cache = true; 3155 3156 return 0; 3157} 3158 3159void memcg_free_cache_params(struct kmem_cache *s) 3160{ 3161 if (!s->memcg_params) 3162 return; 3163 if (!s->memcg_params->is_root_cache) 3164 css_put(&s->memcg_params->memcg->css); 3165 kfree(s->memcg_params); 3166} 3167 3168void memcg_register_cache(struct kmem_cache *s) 3169{ 3170 struct kmem_cache *root; 3171 struct mem_cgroup *memcg; 3172 int id; 3173 3174 if (is_root_cache(s)) 3175 return; 3176 3177 /* 3178 * Holding the slab_mutex assures nobody will touch the memcg_caches 3179 * array while we are modifying it. 3180 */ 3181 lockdep_assert_held(&slab_mutex); 3182 3183 root = s->memcg_params->root_cache; 3184 memcg = s->memcg_params->memcg; 3185 id = memcg_cache_id(memcg); 3186 3187 /* 3188 * Since readers won't lock (see cache_from_memcg_idx()), we need a 3189 * barrier here to ensure nobody will see the kmem_cache partially 3190 * initialized. 3191 */ 3192 smp_wmb(); 3193 3194 /* 3195 * Initialize the pointer to this cache in its parent's memcg_params 3196 * before adding it to the memcg_slab_caches list, otherwise we can 3197 * fail to convert memcg_params_to_cache() while traversing the list. 3198 */ 3199 VM_BUG_ON(root->memcg_params->memcg_caches[id]); 3200 root->memcg_params->memcg_caches[id] = s; 3201 3202 mutex_lock(&memcg->slab_caches_mutex); 3203 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches); 3204 mutex_unlock(&memcg->slab_caches_mutex); 3205} 3206 3207void memcg_unregister_cache(struct kmem_cache *s) 3208{ 3209 struct kmem_cache *root; 3210 struct mem_cgroup *memcg; 3211 int id; 3212 3213 if (is_root_cache(s)) 3214 return; 3215 3216 /* 3217 * Holding the slab_mutex assures nobody will touch the memcg_caches 3218 * array while we are modifying it. 3219 */ 3220 lockdep_assert_held(&slab_mutex); 3221 3222 root = s->memcg_params->root_cache; 3223 memcg = s->memcg_params->memcg; 3224 id = memcg_cache_id(memcg); 3225 3226 mutex_lock(&memcg->slab_caches_mutex); 3227 list_del(&s->memcg_params->list); 3228 mutex_unlock(&memcg->slab_caches_mutex); 3229 3230 /* 3231 * Clear the pointer to this cache in its parent's memcg_params only 3232 * after removing it from the memcg_slab_caches list, otherwise we can 3233 * fail to convert memcg_params_to_cache() while traversing the list. 3234 */ 3235 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s); 3236 root->memcg_params->memcg_caches[id] = NULL; 3237} 3238 3239/* 3240 * During the creation a new cache, we need to disable our accounting mechanism 3241 * altogether. This is true even if we are not creating, but rather just 3242 * enqueing new caches to be created. 3243 * 3244 * This is because that process will trigger allocations; some visible, like 3245 * explicit kmallocs to auxiliary data structures, name strings and internal 3246 * cache structures; some well concealed, like INIT_WORK() that can allocate 3247 * objects during debug. 3248 * 3249 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3250 * to it. This may not be a bounded recursion: since the first cache creation 3251 * failed to complete (waiting on the allocation), we'll just try to create the 3252 * cache again, failing at the same point. 3253 * 3254 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3255 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3256 * inside the following two functions. 3257 */ 3258static inline void memcg_stop_kmem_account(void) 3259{ 3260 VM_BUG_ON(!current->mm); 3261 current->memcg_kmem_skip_account++; 3262} 3263 3264static inline void memcg_resume_kmem_account(void) 3265{ 3266 VM_BUG_ON(!current->mm); 3267 current->memcg_kmem_skip_account--; 3268} 3269 3270static void kmem_cache_destroy_work_func(struct work_struct *w) 3271{ 3272 struct kmem_cache *cachep; 3273 struct memcg_cache_params *p; 3274 3275 p = container_of(w, struct memcg_cache_params, destroy); 3276 3277 cachep = memcg_params_to_cache(p); 3278 3279 /* 3280 * If we get down to 0 after shrink, we could delete right away. 3281 * However, memcg_release_pages() already puts us back in the workqueue 3282 * in that case. If we proceed deleting, we'll get a dangling 3283 * reference, and removing the object from the workqueue in that case 3284 * is unnecessary complication. We are not a fast path. 3285 * 3286 * Note that this case is fundamentally different from racing with 3287 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3288 * kmem_cache_shrink, not only we would be reinserting a dead cache 3289 * into the queue, but doing so from inside the worker racing to 3290 * destroy it. 3291 * 3292 * So if we aren't down to zero, we'll just schedule a worker and try 3293 * again 3294 */ 3295 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) 3296 kmem_cache_shrink(cachep); 3297 else 3298 kmem_cache_destroy(cachep); 3299} 3300 3301void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3302{ 3303 if (!cachep->memcg_params->dead) 3304 return; 3305 3306 /* 3307 * There are many ways in which we can get here. 3308 * 3309 * We can get to a memory-pressure situation while the delayed work is 3310 * still pending to run. The vmscan shrinkers can then release all 3311 * cache memory and get us to destruction. If this is the case, we'll 3312 * be executed twice, which is a bug (the second time will execute over 3313 * bogus data). In this case, cancelling the work should be fine. 3314 * 3315 * But we can also get here from the worker itself, if 3316 * kmem_cache_shrink is enough to shake all the remaining objects and 3317 * get the page count to 0. In this case, we'll deadlock if we try to 3318 * cancel the work (the worker runs with an internal lock held, which 3319 * is the same lock we would hold for cancel_work_sync().) 3320 * 3321 * Since we can't possibly know who got us here, just refrain from 3322 * running if there is already work pending 3323 */ 3324 if (work_pending(&cachep->memcg_params->destroy)) 3325 return; 3326 /* 3327 * We have to defer the actual destroying to a workqueue, because 3328 * we might currently be in a context that cannot sleep. 3329 */ 3330 schedule_work(&cachep->memcg_params->destroy); 3331} 3332 3333int __kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3334{ 3335 struct kmem_cache *c; 3336 int i, failed = 0; 3337 3338 /* 3339 * If the cache is being destroyed, we trust that there is no one else 3340 * requesting objects from it. Even if there are, the sanity checks in 3341 * kmem_cache_destroy should caught this ill-case. 3342 * 3343 * Still, we don't want anyone else freeing memcg_caches under our 3344 * noses, which can happen if a new memcg comes to life. As usual, 3345 * we'll take the activate_kmem_mutex to protect ourselves against 3346 * this. 3347 */ 3348 mutex_lock(&activate_kmem_mutex); 3349 for_each_memcg_cache_index(i) { 3350 c = cache_from_memcg_idx(s, i); 3351 if (!c) 3352 continue; 3353 3354 /* 3355 * We will now manually delete the caches, so to avoid races 3356 * we need to cancel all pending destruction workers and 3357 * proceed with destruction ourselves. 3358 * 3359 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3360 * and that could spawn the workers again: it is likely that 3361 * the cache still have active pages until this very moment. 3362 * This would lead us back to mem_cgroup_destroy_cache. 3363 * 3364 * But that will not execute at all if the "dead" flag is not 3365 * set, so flip it down to guarantee we are in control. 3366 */ 3367 c->memcg_params->dead = false; 3368 cancel_work_sync(&c->memcg_params->destroy); 3369 kmem_cache_destroy(c); 3370 3371 if (cache_from_memcg_idx(s, i)) 3372 failed++; 3373 } 3374 mutex_unlock(&activate_kmem_mutex); 3375 return failed; 3376} 3377 3378static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3379{ 3380 struct kmem_cache *cachep; 3381 struct memcg_cache_params *params; 3382 3383 if (!memcg_kmem_is_active(memcg)) 3384 return; 3385 3386 mutex_lock(&memcg->slab_caches_mutex); 3387 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3388 cachep = memcg_params_to_cache(params); 3389 cachep->memcg_params->dead = true; 3390 schedule_work(&cachep->memcg_params->destroy); 3391 } 3392 mutex_unlock(&memcg->slab_caches_mutex); 3393} 3394 3395struct create_work { 3396 struct mem_cgroup *memcg; 3397 struct kmem_cache *cachep; 3398 struct work_struct work; 3399}; 3400 3401static void memcg_create_cache_work_func(struct work_struct *w) 3402{ 3403 struct create_work *cw = container_of(w, struct create_work, work); 3404 struct mem_cgroup *memcg = cw->memcg; 3405 struct kmem_cache *cachep = cw->cachep; 3406 3407 kmem_cache_create_memcg(memcg, cachep); 3408 css_put(&memcg->css); 3409 kfree(cw); 3410} 3411 3412/* 3413 * Enqueue the creation of a per-memcg kmem_cache. 3414 */ 3415static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3416 struct kmem_cache *cachep) 3417{ 3418 struct create_work *cw; 3419 3420 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3421 if (cw == NULL) { 3422 css_put(&memcg->css); 3423 return; 3424 } 3425 3426 cw->memcg = memcg; 3427 cw->cachep = cachep; 3428 3429 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3430 schedule_work(&cw->work); 3431} 3432 3433static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3434 struct kmem_cache *cachep) 3435{ 3436 /* 3437 * We need to stop accounting when we kmalloc, because if the 3438 * corresponding kmalloc cache is not yet created, the first allocation 3439 * in __memcg_create_cache_enqueue will recurse. 3440 * 3441 * However, it is better to enclose the whole function. Depending on 3442 * the debugging options enabled, INIT_WORK(), for instance, can 3443 * trigger an allocation. This too, will make us recurse. Because at 3444 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3445 * the safest choice is to do it like this, wrapping the whole function. 3446 */ 3447 memcg_stop_kmem_account(); 3448 __memcg_create_cache_enqueue(memcg, cachep); 3449 memcg_resume_kmem_account(); 3450} 3451/* 3452 * Return the kmem_cache we're supposed to use for a slab allocation. 3453 * We try to use the current memcg's version of the cache. 3454 * 3455 * If the cache does not exist yet, if we are the first user of it, 3456 * we either create it immediately, if possible, or create it asynchronously 3457 * in a workqueue. 3458 * In the latter case, we will let the current allocation go through with 3459 * the original cache. 3460 * 3461 * Can't be called in interrupt context or from kernel threads. 3462 * This function needs to be called with rcu_read_lock() held. 3463 */ 3464struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3465 gfp_t gfp) 3466{ 3467 struct mem_cgroup *memcg; 3468 struct kmem_cache *memcg_cachep; 3469 3470 VM_BUG_ON(!cachep->memcg_params); 3471 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3472 3473 if (!current->mm || current->memcg_kmem_skip_account) 3474 return cachep; 3475 3476 rcu_read_lock(); 3477 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3478 3479 if (!memcg_can_account_kmem(memcg)) 3480 goto out; 3481 3482 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); 3483 if (likely(memcg_cachep)) { 3484 cachep = memcg_cachep; 3485 goto out; 3486 } 3487 3488 /* The corresponding put will be done in the workqueue. */ 3489 if (!css_tryget(&memcg->css)) 3490 goto out; 3491 rcu_read_unlock(); 3492 3493 /* 3494 * If we are in a safe context (can wait, and not in interrupt 3495 * context), we could be be predictable and return right away. 3496 * This would guarantee that the allocation being performed 3497 * already belongs in the new cache. 3498 * 3499 * However, there are some clashes that can arrive from locking. 3500 * For instance, because we acquire the slab_mutex while doing 3501 * kmem_cache_dup, this means no further allocation could happen 3502 * with the slab_mutex held. 3503 * 3504 * Also, because cache creation issue get_online_cpus(), this 3505 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3506 * that ends up reversed during cpu hotplug. (cpuset allocates 3507 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3508 * better to defer everything. 3509 */ 3510 memcg_create_cache_enqueue(memcg, cachep); 3511 return cachep; 3512out: 3513 rcu_read_unlock(); 3514 return cachep; 3515} 3516EXPORT_SYMBOL(__memcg_kmem_get_cache); 3517 3518/* 3519 * We need to verify if the allocation against current->mm->owner's memcg is 3520 * possible for the given order. But the page is not allocated yet, so we'll 3521 * need a further commit step to do the final arrangements. 3522 * 3523 * It is possible for the task to switch cgroups in this mean time, so at 3524 * commit time, we can't rely on task conversion any longer. We'll then use 3525 * the handle argument to return to the caller which cgroup we should commit 3526 * against. We could also return the memcg directly and avoid the pointer 3527 * passing, but a boolean return value gives better semantics considering 3528 * the compiled-out case as well. 3529 * 3530 * Returning true means the allocation is possible. 3531 */ 3532bool 3533__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3534{ 3535 struct mem_cgroup *memcg; 3536 int ret; 3537 3538 *_memcg = NULL; 3539 3540 /* 3541 * Disabling accounting is only relevant for some specific memcg 3542 * internal allocations. Therefore we would initially not have such 3543 * check here, since direct calls to the page allocator that are marked 3544 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3545 * concerned with cache allocations, and by having this test at 3546 * memcg_kmem_get_cache, we are already able to relay the allocation to 3547 * the root cache and bypass the memcg cache altogether. 3548 * 3549 * There is one exception, though: the SLUB allocator does not create 3550 * large order caches, but rather service large kmallocs directly from 3551 * the page allocator. Therefore, the following sequence when backed by 3552 * the SLUB allocator: 3553 * 3554 * memcg_stop_kmem_account(); 3555 * kmalloc(<large_number>) 3556 * memcg_resume_kmem_account(); 3557 * 3558 * would effectively ignore the fact that we should skip accounting, 3559 * since it will drive us directly to this function without passing 3560 * through the cache selector memcg_kmem_get_cache. Such large 3561 * allocations are extremely rare but can happen, for instance, for the 3562 * cache arrays. We bring this test here. 3563 */ 3564 if (!current->mm || current->memcg_kmem_skip_account) 3565 return true; 3566 3567 memcg = get_mem_cgroup_from_mm(current->mm); 3568 3569 if (!memcg_can_account_kmem(memcg)) { 3570 css_put(&memcg->css); 3571 return true; 3572 } 3573 3574 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3575 if (!ret) 3576 *_memcg = memcg; 3577 3578 css_put(&memcg->css); 3579 return (ret == 0); 3580} 3581 3582void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3583 int order) 3584{ 3585 struct page_cgroup *pc; 3586 3587 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3588 3589 /* The page allocation failed. Revert */ 3590 if (!page) { 3591 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3592 return; 3593 } 3594 3595 pc = lookup_page_cgroup(page); 3596 lock_page_cgroup(pc); 3597 pc->mem_cgroup = memcg; 3598 SetPageCgroupUsed(pc); 3599 unlock_page_cgroup(pc); 3600} 3601 3602void __memcg_kmem_uncharge_pages(struct page *page, int order) 3603{ 3604 struct mem_cgroup *memcg = NULL; 3605 struct page_cgroup *pc; 3606 3607 3608 pc = lookup_page_cgroup(page); 3609 /* 3610 * Fast unlocked return. Theoretically might have changed, have to 3611 * check again after locking. 3612 */ 3613 if (!PageCgroupUsed(pc)) 3614 return; 3615 3616 lock_page_cgroup(pc); 3617 if (PageCgroupUsed(pc)) { 3618 memcg = pc->mem_cgroup; 3619 ClearPageCgroupUsed(pc); 3620 } 3621 unlock_page_cgroup(pc); 3622 3623 /* 3624 * We trust that only if there is a memcg associated with the page, it 3625 * is a valid allocation 3626 */ 3627 if (!memcg) 3628 return; 3629 3630 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3631 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3632} 3633#else 3634static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3635{ 3636} 3637#endif /* CONFIG_MEMCG_KMEM */ 3638 3639#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3640 3641#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3642/* 3643 * Because tail pages are not marked as "used", set it. We're under 3644 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3645 * charge/uncharge will be never happen and move_account() is done under 3646 * compound_lock(), so we don't have to take care of races. 3647 */ 3648void mem_cgroup_split_huge_fixup(struct page *head) 3649{ 3650 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3651 struct page_cgroup *pc; 3652 struct mem_cgroup *memcg; 3653 int i; 3654 3655 if (mem_cgroup_disabled()) 3656 return; 3657 3658 memcg = head_pc->mem_cgroup; 3659 for (i = 1; i < HPAGE_PMD_NR; i++) { 3660 pc = head_pc + i; 3661 pc->mem_cgroup = memcg; 3662 smp_wmb();/* see __commit_charge() */ 3663 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3664 } 3665 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3666 HPAGE_PMD_NR); 3667} 3668#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3669 3670/** 3671 * mem_cgroup_move_account - move account of the page 3672 * @page: the page 3673 * @nr_pages: number of regular pages (>1 for huge pages) 3674 * @pc: page_cgroup of the page. 3675 * @from: mem_cgroup which the page is moved from. 3676 * @to: mem_cgroup which the page is moved to. @from != @to. 3677 * 3678 * The caller must confirm following. 3679 * - page is not on LRU (isolate_page() is useful.) 3680 * - compound_lock is held when nr_pages > 1 3681 * 3682 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3683 * from old cgroup. 3684 */ 3685static int mem_cgroup_move_account(struct page *page, 3686 unsigned int nr_pages, 3687 struct page_cgroup *pc, 3688 struct mem_cgroup *from, 3689 struct mem_cgroup *to) 3690{ 3691 unsigned long flags; 3692 int ret; 3693 bool anon = PageAnon(page); 3694 3695 VM_BUG_ON(from == to); 3696 VM_BUG_ON_PAGE(PageLRU(page), page); 3697 /* 3698 * The page is isolated from LRU. So, collapse function 3699 * will not handle this page. But page splitting can happen. 3700 * Do this check under compound_page_lock(). The caller should 3701 * hold it. 3702 */ 3703 ret = -EBUSY; 3704 if (nr_pages > 1 && !PageTransHuge(page)) 3705 goto out; 3706 3707 lock_page_cgroup(pc); 3708 3709 ret = -EINVAL; 3710 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3711 goto unlock; 3712 3713 move_lock_mem_cgroup(from, &flags); 3714 3715 if (!anon && page_mapped(page)) { 3716 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3717 nr_pages); 3718 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3719 nr_pages); 3720 } 3721 3722 if (PageWriteback(page)) { 3723 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3724 nr_pages); 3725 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3726 nr_pages); 3727 } 3728 3729 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3730 3731 /* caller should have done css_get */ 3732 pc->mem_cgroup = to; 3733 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3734 move_unlock_mem_cgroup(from, &flags); 3735 ret = 0; 3736unlock: 3737 unlock_page_cgroup(pc); 3738 /* 3739 * check events 3740 */ 3741 memcg_check_events(to, page); 3742 memcg_check_events(from, page); 3743out: 3744 return ret; 3745} 3746 3747/** 3748 * mem_cgroup_move_parent - moves page to the parent group 3749 * @page: the page to move 3750 * @pc: page_cgroup of the page 3751 * @child: page's cgroup 3752 * 3753 * move charges to its parent or the root cgroup if the group has no 3754 * parent (aka use_hierarchy==0). 3755 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3756 * mem_cgroup_move_account fails) the failure is always temporary and 3757 * it signals a race with a page removal/uncharge or migration. In the 3758 * first case the page is on the way out and it will vanish from the LRU 3759 * on the next attempt and the call should be retried later. 3760 * Isolation from the LRU fails only if page has been isolated from 3761 * the LRU since we looked at it and that usually means either global 3762 * reclaim or migration going on. The page will either get back to the 3763 * LRU or vanish. 3764 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3765 * (!PageCgroupUsed) or moved to a different group. The page will 3766 * disappear in the next attempt. 3767 */ 3768static int mem_cgroup_move_parent(struct page *page, 3769 struct page_cgroup *pc, 3770 struct mem_cgroup *child) 3771{ 3772 struct mem_cgroup *parent; 3773 unsigned int nr_pages; 3774 unsigned long uninitialized_var(flags); 3775 int ret; 3776 3777 VM_BUG_ON(mem_cgroup_is_root(child)); 3778 3779 ret = -EBUSY; 3780 if (!get_page_unless_zero(page)) 3781 goto out; 3782 if (isolate_lru_page(page)) 3783 goto put; 3784 3785 nr_pages = hpage_nr_pages(page); 3786 3787 parent = parent_mem_cgroup(child); 3788 /* 3789 * If no parent, move charges to root cgroup. 3790 */ 3791 if (!parent) 3792 parent = root_mem_cgroup; 3793 3794 if (nr_pages > 1) { 3795 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3796 flags = compound_lock_irqsave(page); 3797 } 3798 3799 ret = mem_cgroup_move_account(page, nr_pages, 3800 pc, child, parent); 3801 if (!ret) 3802 __mem_cgroup_cancel_local_charge(child, nr_pages); 3803 3804 if (nr_pages > 1) 3805 compound_unlock_irqrestore(page, flags); 3806 putback_lru_page(page); 3807put: 3808 put_page(page); 3809out: 3810 return ret; 3811} 3812 3813int mem_cgroup_charge_anon(struct page *page, 3814 struct mm_struct *mm, gfp_t gfp_mask) 3815{ 3816 unsigned int nr_pages = 1; 3817 struct mem_cgroup *memcg; 3818 bool oom = true; 3819 3820 if (mem_cgroup_disabled()) 3821 return 0; 3822 3823 VM_BUG_ON_PAGE(page_mapped(page), page); 3824 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); 3825 VM_BUG_ON(!mm); 3826 3827 if (PageTransHuge(page)) { 3828 nr_pages <<= compound_order(page); 3829 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3830 /* 3831 * Never OOM-kill a process for a huge page. The 3832 * fault handler will fall back to regular pages. 3833 */ 3834 oom = false; 3835 } 3836 3837 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom); 3838 if (!memcg) 3839 return -ENOMEM; 3840 __mem_cgroup_commit_charge(memcg, page, nr_pages, 3841 MEM_CGROUP_CHARGE_TYPE_ANON, false); 3842 return 0; 3843} 3844 3845/* 3846 * While swap-in, try_charge -> commit or cancel, the page is locked. 3847 * And when try_charge() successfully returns, one refcnt to memcg without 3848 * struct page_cgroup is acquired. This refcnt will be consumed by 3849 * "commit()" or removed by "cancel()" 3850 */ 3851static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3852 struct page *page, 3853 gfp_t mask, 3854 struct mem_cgroup **memcgp) 3855{ 3856 struct mem_cgroup *memcg = NULL; 3857 struct page_cgroup *pc; 3858 int ret; 3859 3860 pc = lookup_page_cgroup(page); 3861 /* 3862 * Every swap fault against a single page tries to charge the 3863 * page, bail as early as possible. shmem_unuse() encounters 3864 * already charged pages, too. The USED bit is protected by 3865 * the page lock, which serializes swap cache removal, which 3866 * in turn serializes uncharging. 3867 */ 3868 if (PageCgroupUsed(pc)) 3869 goto out; 3870 if (do_swap_account) 3871 memcg = try_get_mem_cgroup_from_page(page); 3872 if (!memcg) 3873 memcg = get_mem_cgroup_from_mm(mm); 3874 ret = mem_cgroup_try_charge(memcg, mask, 1, true); 3875 css_put(&memcg->css); 3876 if (ret == -EINTR) 3877 memcg = root_mem_cgroup; 3878 else if (ret) 3879 return ret; 3880out: 3881 *memcgp = memcg; 3882 return 0; 3883} 3884 3885int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3886 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3887{ 3888 if (mem_cgroup_disabled()) { 3889 *memcgp = NULL; 3890 return 0; 3891 } 3892 /* 3893 * A racing thread's fault, or swapoff, may have already 3894 * updated the pte, and even removed page from swap cache: in 3895 * those cases unuse_pte()'s pte_same() test will fail; but 3896 * there's also a KSM case which does need to charge the page. 3897 */ 3898 if (!PageSwapCache(page)) { 3899 struct mem_cgroup *memcg; 3900 3901 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); 3902 if (!memcg) 3903 return -ENOMEM; 3904 *memcgp = memcg; 3905 return 0; 3906 } 3907 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3908} 3909 3910void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3911{ 3912 if (mem_cgroup_disabled()) 3913 return; 3914 if (!memcg) 3915 return; 3916 __mem_cgroup_cancel_charge(memcg, 1); 3917} 3918 3919static void 3920__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3921 enum charge_type ctype) 3922{ 3923 if (mem_cgroup_disabled()) 3924 return; 3925 if (!memcg) 3926 return; 3927 3928 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3929 /* 3930 * Now swap is on-memory. This means this page may be 3931 * counted both as mem and swap....double count. 3932 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3933 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3934 * may call delete_from_swap_cache() before reach here. 3935 */ 3936 if (do_swap_account && PageSwapCache(page)) { 3937 swp_entry_t ent = {.val = page_private(page)}; 3938 mem_cgroup_uncharge_swap(ent); 3939 } 3940} 3941 3942void mem_cgroup_commit_charge_swapin(struct page *page, 3943 struct mem_cgroup *memcg) 3944{ 3945 __mem_cgroup_commit_charge_swapin(page, memcg, 3946 MEM_CGROUP_CHARGE_TYPE_ANON); 3947} 3948 3949int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, 3950 gfp_t gfp_mask) 3951{ 3952 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3953 struct mem_cgroup *memcg; 3954 int ret; 3955 3956 if (mem_cgroup_disabled()) 3957 return 0; 3958 if (PageCompound(page)) 3959 return 0; 3960 3961 if (PageSwapCache(page)) { /* shmem */ 3962 ret = __mem_cgroup_try_charge_swapin(mm, page, 3963 gfp_mask, &memcg); 3964 if (ret) 3965 return ret; 3966 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3967 return 0; 3968 } 3969 3970 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); 3971 if (!memcg) 3972 return -ENOMEM; 3973 __mem_cgroup_commit_charge(memcg, page, 1, type, false); 3974 return 0; 3975} 3976 3977static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3978 unsigned int nr_pages, 3979 const enum charge_type ctype) 3980{ 3981 struct memcg_batch_info *batch = NULL; 3982 bool uncharge_memsw = true; 3983 3984 /* If swapout, usage of swap doesn't decrease */ 3985 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3986 uncharge_memsw = false; 3987 3988 batch = &current->memcg_batch; 3989 /* 3990 * In usual, we do css_get() when we remember memcg pointer. 3991 * But in this case, we keep res->usage until end of a series of 3992 * uncharges. Then, it's ok to ignore memcg's refcnt. 3993 */ 3994 if (!batch->memcg) 3995 batch->memcg = memcg; 3996 /* 3997 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 3998 * In those cases, all pages freed continuously can be expected to be in 3999 * the same cgroup and we have chance to coalesce uncharges. 4000 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4001 * because we want to do uncharge as soon as possible. 4002 */ 4003 4004 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4005 goto direct_uncharge; 4006 4007 if (nr_pages > 1) 4008 goto direct_uncharge; 4009 4010 /* 4011 * In typical case, batch->memcg == mem. This means we can 4012 * merge a series of uncharges to an uncharge of res_counter. 4013 * If not, we uncharge res_counter ony by one. 4014 */ 4015 if (batch->memcg != memcg) 4016 goto direct_uncharge; 4017 /* remember freed charge and uncharge it later */ 4018 batch->nr_pages++; 4019 if (uncharge_memsw) 4020 batch->memsw_nr_pages++; 4021 return; 4022direct_uncharge: 4023 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4024 if (uncharge_memsw) 4025 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4026 if (unlikely(batch->memcg != memcg)) 4027 memcg_oom_recover(memcg); 4028} 4029 4030/* 4031 * uncharge if !page_mapped(page) 4032 */ 4033static struct mem_cgroup * 4034__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4035 bool end_migration) 4036{ 4037 struct mem_cgroup *memcg = NULL; 4038 unsigned int nr_pages = 1; 4039 struct page_cgroup *pc; 4040 bool anon; 4041 4042 if (mem_cgroup_disabled()) 4043 return NULL; 4044 4045 if (PageTransHuge(page)) { 4046 nr_pages <<= compound_order(page); 4047 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 4048 } 4049 /* 4050 * Check if our page_cgroup is valid 4051 */ 4052 pc = lookup_page_cgroup(page); 4053 if (unlikely(!PageCgroupUsed(pc))) 4054 return NULL; 4055 4056 lock_page_cgroup(pc); 4057 4058 memcg = pc->mem_cgroup; 4059 4060 if (!PageCgroupUsed(pc)) 4061 goto unlock_out; 4062 4063 anon = PageAnon(page); 4064 4065 switch (ctype) { 4066 case MEM_CGROUP_CHARGE_TYPE_ANON: 4067 /* 4068 * Generally PageAnon tells if it's the anon statistics to be 4069 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4070 * used before page reached the stage of being marked PageAnon. 4071 */ 4072 anon = true; 4073 /* fallthrough */ 4074 case MEM_CGROUP_CHARGE_TYPE_DROP: 4075 /* See mem_cgroup_prepare_migration() */ 4076 if (page_mapped(page)) 4077 goto unlock_out; 4078 /* 4079 * Pages under migration may not be uncharged. But 4080 * end_migration() /must/ be the one uncharging the 4081 * unused post-migration page and so it has to call 4082 * here with the migration bit still set. See the 4083 * res_counter handling below. 4084 */ 4085 if (!end_migration && PageCgroupMigration(pc)) 4086 goto unlock_out; 4087 break; 4088 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4089 if (!PageAnon(page)) { /* Shared memory */ 4090 if (page->mapping && !page_is_file_cache(page)) 4091 goto unlock_out; 4092 } else if (page_mapped(page)) /* Anon */ 4093 goto unlock_out; 4094 break; 4095 default: 4096 break; 4097 } 4098 4099 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4100 4101 ClearPageCgroupUsed(pc); 4102 /* 4103 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4104 * freed from LRU. This is safe because uncharged page is expected not 4105 * to be reused (freed soon). Exception is SwapCache, it's handled by 4106 * special functions. 4107 */ 4108 4109 unlock_page_cgroup(pc); 4110 /* 4111 * even after unlock, we have memcg->res.usage here and this memcg 4112 * will never be freed, so it's safe to call css_get(). 4113 */ 4114 memcg_check_events(memcg, page); 4115 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4116 mem_cgroup_swap_statistics(memcg, true); 4117 css_get(&memcg->css); 4118 } 4119 /* 4120 * Migration does not charge the res_counter for the 4121 * replacement page, so leave it alone when phasing out the 4122 * page that is unused after the migration. 4123 */ 4124 if (!end_migration && !mem_cgroup_is_root(memcg)) 4125 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4126 4127 return memcg; 4128 4129unlock_out: 4130 unlock_page_cgroup(pc); 4131 return NULL; 4132} 4133 4134void mem_cgroup_uncharge_page(struct page *page) 4135{ 4136 /* early check. */ 4137 if (page_mapped(page)) 4138 return; 4139 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); 4140 /* 4141 * If the page is in swap cache, uncharge should be deferred 4142 * to the swap path, which also properly accounts swap usage 4143 * and handles memcg lifetime. 4144 * 4145 * Note that this check is not stable and reclaim may add the 4146 * page to swap cache at any time after this. However, if the 4147 * page is not in swap cache by the time page->mapcount hits 4148 * 0, there won't be any page table references to the swap 4149 * slot, and reclaim will free it and not actually write the 4150 * page to disk. 4151 */ 4152 if (PageSwapCache(page)) 4153 return; 4154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4155} 4156 4157void mem_cgroup_uncharge_cache_page(struct page *page) 4158{ 4159 VM_BUG_ON_PAGE(page_mapped(page), page); 4160 VM_BUG_ON_PAGE(page->mapping, page); 4161 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4162} 4163 4164/* 4165 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4166 * In that cases, pages are freed continuously and we can expect pages 4167 * are in the same memcg. All these calls itself limits the number of 4168 * pages freed at once, then uncharge_start/end() is called properly. 4169 * This may be called prural(2) times in a context, 4170 */ 4171 4172void mem_cgroup_uncharge_start(void) 4173{ 4174 current->memcg_batch.do_batch++; 4175 /* We can do nest. */ 4176 if (current->memcg_batch.do_batch == 1) { 4177 current->memcg_batch.memcg = NULL; 4178 current->memcg_batch.nr_pages = 0; 4179 current->memcg_batch.memsw_nr_pages = 0; 4180 } 4181} 4182 4183void mem_cgroup_uncharge_end(void) 4184{ 4185 struct memcg_batch_info *batch = &current->memcg_batch; 4186 4187 if (!batch->do_batch) 4188 return; 4189 4190 batch->do_batch--; 4191 if (batch->do_batch) /* If stacked, do nothing. */ 4192 return; 4193 4194 if (!batch->memcg) 4195 return; 4196 /* 4197 * This "batch->memcg" is valid without any css_get/put etc... 4198 * bacause we hide charges behind us. 4199 */ 4200 if (batch->nr_pages) 4201 res_counter_uncharge(&batch->memcg->res, 4202 batch->nr_pages * PAGE_SIZE); 4203 if (batch->memsw_nr_pages) 4204 res_counter_uncharge(&batch->memcg->memsw, 4205 batch->memsw_nr_pages * PAGE_SIZE); 4206 memcg_oom_recover(batch->memcg); 4207 /* forget this pointer (for sanity check) */ 4208 batch->memcg = NULL; 4209} 4210 4211#ifdef CONFIG_SWAP 4212/* 4213 * called after __delete_from_swap_cache() and drop "page" account. 4214 * memcg information is recorded to swap_cgroup of "ent" 4215 */ 4216void 4217mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4218{ 4219 struct mem_cgroup *memcg; 4220 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4221 4222 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4223 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4224 4225 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4226 4227 /* 4228 * record memcg information, if swapout && memcg != NULL, 4229 * css_get() was called in uncharge(). 4230 */ 4231 if (do_swap_account && swapout && memcg) 4232 swap_cgroup_record(ent, mem_cgroup_id(memcg)); 4233} 4234#endif 4235 4236#ifdef CONFIG_MEMCG_SWAP 4237/* 4238 * called from swap_entry_free(). remove record in swap_cgroup and 4239 * uncharge "memsw" account. 4240 */ 4241void mem_cgroup_uncharge_swap(swp_entry_t ent) 4242{ 4243 struct mem_cgroup *memcg; 4244 unsigned short id; 4245 4246 if (!do_swap_account) 4247 return; 4248 4249 id = swap_cgroup_record(ent, 0); 4250 rcu_read_lock(); 4251 memcg = mem_cgroup_lookup(id); 4252 if (memcg) { 4253 /* 4254 * We uncharge this because swap is freed. 4255 * This memcg can be obsolete one. We avoid calling css_tryget 4256 */ 4257 if (!mem_cgroup_is_root(memcg)) 4258 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4259 mem_cgroup_swap_statistics(memcg, false); 4260 css_put(&memcg->css); 4261 } 4262 rcu_read_unlock(); 4263} 4264 4265/** 4266 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4267 * @entry: swap entry to be moved 4268 * @from: mem_cgroup which the entry is moved from 4269 * @to: mem_cgroup which the entry is moved to 4270 * 4271 * It succeeds only when the swap_cgroup's record for this entry is the same 4272 * as the mem_cgroup's id of @from. 4273 * 4274 * Returns 0 on success, -EINVAL on failure. 4275 * 4276 * The caller must have charged to @to, IOW, called res_counter_charge() about 4277 * both res and memsw, and called css_get(). 4278 */ 4279static int mem_cgroup_move_swap_account(swp_entry_t entry, 4280 struct mem_cgroup *from, struct mem_cgroup *to) 4281{ 4282 unsigned short old_id, new_id; 4283 4284 old_id = mem_cgroup_id(from); 4285 new_id = mem_cgroup_id(to); 4286 4287 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4288 mem_cgroup_swap_statistics(from, false); 4289 mem_cgroup_swap_statistics(to, true); 4290 /* 4291 * This function is only called from task migration context now. 4292 * It postpones res_counter and refcount handling till the end 4293 * of task migration(mem_cgroup_clear_mc()) for performance 4294 * improvement. But we cannot postpone css_get(to) because if 4295 * the process that has been moved to @to does swap-in, the 4296 * refcount of @to might be decreased to 0. 4297 * 4298 * We are in attach() phase, so the cgroup is guaranteed to be 4299 * alive, so we can just call css_get(). 4300 */ 4301 css_get(&to->css); 4302 return 0; 4303 } 4304 return -EINVAL; 4305} 4306#else 4307static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4308 struct mem_cgroup *from, struct mem_cgroup *to) 4309{ 4310 return -EINVAL; 4311} 4312#endif 4313 4314/* 4315 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4316 * page belongs to. 4317 */ 4318void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4319 struct mem_cgroup **memcgp) 4320{ 4321 struct mem_cgroup *memcg = NULL; 4322 unsigned int nr_pages = 1; 4323 struct page_cgroup *pc; 4324 enum charge_type ctype; 4325 4326 *memcgp = NULL; 4327 4328 if (mem_cgroup_disabled()) 4329 return; 4330 4331 if (PageTransHuge(page)) 4332 nr_pages <<= compound_order(page); 4333 4334 pc = lookup_page_cgroup(page); 4335 lock_page_cgroup(pc); 4336 if (PageCgroupUsed(pc)) { 4337 memcg = pc->mem_cgroup; 4338 css_get(&memcg->css); 4339 /* 4340 * At migrating an anonymous page, its mapcount goes down 4341 * to 0 and uncharge() will be called. But, even if it's fully 4342 * unmapped, migration may fail and this page has to be 4343 * charged again. We set MIGRATION flag here and delay uncharge 4344 * until end_migration() is called 4345 * 4346 * Corner Case Thinking 4347 * A) 4348 * When the old page was mapped as Anon and it's unmap-and-freed 4349 * while migration was ongoing. 4350 * If unmap finds the old page, uncharge() of it will be delayed 4351 * until end_migration(). If unmap finds a new page, it's 4352 * uncharged when it make mapcount to be 1->0. If unmap code 4353 * finds swap_migration_entry, the new page will not be mapped 4354 * and end_migration() will find it(mapcount==0). 4355 * 4356 * B) 4357 * When the old page was mapped but migraion fails, the kernel 4358 * remaps it. A charge for it is kept by MIGRATION flag even 4359 * if mapcount goes down to 0. We can do remap successfully 4360 * without charging it again. 4361 * 4362 * C) 4363 * The "old" page is under lock_page() until the end of 4364 * migration, so, the old page itself will not be swapped-out. 4365 * If the new page is swapped out before end_migraton, our 4366 * hook to usual swap-out path will catch the event. 4367 */ 4368 if (PageAnon(page)) 4369 SetPageCgroupMigration(pc); 4370 } 4371 unlock_page_cgroup(pc); 4372 /* 4373 * If the page is not charged at this point, 4374 * we return here. 4375 */ 4376 if (!memcg) 4377 return; 4378 4379 *memcgp = memcg; 4380 /* 4381 * We charge new page before it's used/mapped. So, even if unlock_page() 4382 * is called before end_migration, we can catch all events on this new 4383 * page. In the case new page is migrated but not remapped, new page's 4384 * mapcount will be finally 0 and we call uncharge in end_migration(). 4385 */ 4386 if (PageAnon(page)) 4387 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4388 else 4389 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4390 /* 4391 * The page is committed to the memcg, but it's not actually 4392 * charged to the res_counter since we plan on replacing the 4393 * old one and only one page is going to be left afterwards. 4394 */ 4395 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4396} 4397 4398/* remove redundant charge if migration failed*/ 4399void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4400 struct page *oldpage, struct page *newpage, bool migration_ok) 4401{ 4402 struct page *used, *unused; 4403 struct page_cgroup *pc; 4404 bool anon; 4405 4406 if (!memcg) 4407 return; 4408 4409 if (!migration_ok) { 4410 used = oldpage; 4411 unused = newpage; 4412 } else { 4413 used = newpage; 4414 unused = oldpage; 4415 } 4416 anon = PageAnon(used); 4417 __mem_cgroup_uncharge_common(unused, 4418 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4419 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4420 true); 4421 css_put(&memcg->css); 4422 /* 4423 * We disallowed uncharge of pages under migration because mapcount 4424 * of the page goes down to zero, temporarly. 4425 * Clear the flag and check the page should be charged. 4426 */ 4427 pc = lookup_page_cgroup(oldpage); 4428 lock_page_cgroup(pc); 4429 ClearPageCgroupMigration(pc); 4430 unlock_page_cgroup(pc); 4431 4432 /* 4433 * If a page is a file cache, radix-tree replacement is very atomic 4434 * and we can skip this check. When it was an Anon page, its mapcount 4435 * goes down to 0. But because we added MIGRATION flage, it's not 4436 * uncharged yet. There are several case but page->mapcount check 4437 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4438 * check. (see prepare_charge() also) 4439 */ 4440 if (anon) 4441 mem_cgroup_uncharge_page(used); 4442} 4443 4444/* 4445 * At replace page cache, newpage is not under any memcg but it's on 4446 * LRU. So, this function doesn't touch res_counter but handles LRU 4447 * in correct way. Both pages are locked so we cannot race with uncharge. 4448 */ 4449void mem_cgroup_replace_page_cache(struct page *oldpage, 4450 struct page *newpage) 4451{ 4452 struct mem_cgroup *memcg = NULL; 4453 struct page_cgroup *pc; 4454 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4455 4456 if (mem_cgroup_disabled()) 4457 return; 4458 4459 pc = lookup_page_cgroup(oldpage); 4460 /* fix accounting on old pages */ 4461 lock_page_cgroup(pc); 4462 if (PageCgroupUsed(pc)) { 4463 memcg = pc->mem_cgroup; 4464 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4465 ClearPageCgroupUsed(pc); 4466 } 4467 unlock_page_cgroup(pc); 4468 4469 /* 4470 * When called from shmem_replace_page(), in some cases the 4471 * oldpage has already been charged, and in some cases not. 4472 */ 4473 if (!memcg) 4474 return; 4475 /* 4476 * Even if newpage->mapping was NULL before starting replacement, 4477 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4478 * LRU while we overwrite pc->mem_cgroup. 4479 */ 4480 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4481} 4482 4483#ifdef CONFIG_DEBUG_VM 4484static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4485{ 4486 struct page_cgroup *pc; 4487 4488 pc = lookup_page_cgroup(page); 4489 /* 4490 * Can be NULL while feeding pages into the page allocator for 4491 * the first time, i.e. during boot or memory hotplug; 4492 * or when mem_cgroup_disabled(). 4493 */ 4494 if (likely(pc) && PageCgroupUsed(pc)) 4495 return pc; 4496 return NULL; 4497} 4498 4499bool mem_cgroup_bad_page_check(struct page *page) 4500{ 4501 if (mem_cgroup_disabled()) 4502 return false; 4503 4504 return lookup_page_cgroup_used(page) != NULL; 4505} 4506 4507void mem_cgroup_print_bad_page(struct page *page) 4508{ 4509 struct page_cgroup *pc; 4510 4511 pc = lookup_page_cgroup_used(page); 4512 if (pc) { 4513 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4514 pc, pc->flags, pc->mem_cgroup); 4515 } 4516} 4517#endif 4518 4519static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4520 unsigned long long val) 4521{ 4522 int retry_count; 4523 u64 memswlimit, memlimit; 4524 int ret = 0; 4525 int children = mem_cgroup_count_children(memcg); 4526 u64 curusage, oldusage; 4527 int enlarge; 4528 4529 /* 4530 * For keeping hierarchical_reclaim simple, how long we should retry 4531 * is depends on callers. We set our retry-count to be function 4532 * of # of children which we should visit in this loop. 4533 */ 4534 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4535 4536 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4537 4538 enlarge = 0; 4539 while (retry_count) { 4540 if (signal_pending(current)) { 4541 ret = -EINTR; 4542 break; 4543 } 4544 /* 4545 * Rather than hide all in some function, I do this in 4546 * open coded manner. You see what this really does. 4547 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4548 */ 4549 mutex_lock(&set_limit_mutex); 4550 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4551 if (memswlimit < val) { 4552 ret = -EINVAL; 4553 mutex_unlock(&set_limit_mutex); 4554 break; 4555 } 4556 4557 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4558 if (memlimit < val) 4559 enlarge = 1; 4560 4561 ret = res_counter_set_limit(&memcg->res, val); 4562 if (!ret) { 4563 if (memswlimit == val) 4564 memcg->memsw_is_minimum = true; 4565 else 4566 memcg->memsw_is_minimum = false; 4567 } 4568 mutex_unlock(&set_limit_mutex); 4569 4570 if (!ret) 4571 break; 4572 4573 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4574 MEM_CGROUP_RECLAIM_SHRINK); 4575 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4576 /* Usage is reduced ? */ 4577 if (curusage >= oldusage) 4578 retry_count--; 4579 else 4580 oldusage = curusage; 4581 } 4582 if (!ret && enlarge) 4583 memcg_oom_recover(memcg); 4584 4585 return ret; 4586} 4587 4588static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4589 unsigned long long val) 4590{ 4591 int retry_count; 4592 u64 memlimit, memswlimit, oldusage, curusage; 4593 int children = mem_cgroup_count_children(memcg); 4594 int ret = -EBUSY; 4595 int enlarge = 0; 4596 4597 /* see mem_cgroup_resize_res_limit */ 4598 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4599 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4600 while (retry_count) { 4601 if (signal_pending(current)) { 4602 ret = -EINTR; 4603 break; 4604 } 4605 /* 4606 * Rather than hide all in some function, I do this in 4607 * open coded manner. You see what this really does. 4608 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4609 */ 4610 mutex_lock(&set_limit_mutex); 4611 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4612 if (memlimit > val) { 4613 ret = -EINVAL; 4614 mutex_unlock(&set_limit_mutex); 4615 break; 4616 } 4617 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4618 if (memswlimit < val) 4619 enlarge = 1; 4620 ret = res_counter_set_limit(&memcg->memsw, val); 4621 if (!ret) { 4622 if (memlimit == val) 4623 memcg->memsw_is_minimum = true; 4624 else 4625 memcg->memsw_is_minimum = false; 4626 } 4627 mutex_unlock(&set_limit_mutex); 4628 4629 if (!ret) 4630 break; 4631 4632 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4633 MEM_CGROUP_RECLAIM_NOSWAP | 4634 MEM_CGROUP_RECLAIM_SHRINK); 4635 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4636 /* Usage is reduced ? */ 4637 if (curusage >= oldusage) 4638 retry_count--; 4639 else 4640 oldusage = curusage; 4641 } 4642 if (!ret && enlarge) 4643 memcg_oom_recover(memcg); 4644 return ret; 4645} 4646 4647unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4648 gfp_t gfp_mask, 4649 unsigned long *total_scanned) 4650{ 4651 unsigned long nr_reclaimed = 0; 4652 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4653 unsigned long reclaimed; 4654 int loop = 0; 4655 struct mem_cgroup_tree_per_zone *mctz; 4656 unsigned long long excess; 4657 unsigned long nr_scanned; 4658 4659 if (order > 0) 4660 return 0; 4661 4662 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4663 /* 4664 * This loop can run a while, specially if mem_cgroup's continuously 4665 * keep exceeding their soft limit and putting the system under 4666 * pressure 4667 */ 4668 do { 4669 if (next_mz) 4670 mz = next_mz; 4671 else 4672 mz = mem_cgroup_largest_soft_limit_node(mctz); 4673 if (!mz) 4674 break; 4675 4676 nr_scanned = 0; 4677 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4678 gfp_mask, &nr_scanned); 4679 nr_reclaimed += reclaimed; 4680 *total_scanned += nr_scanned; 4681 spin_lock(&mctz->lock); 4682 4683 /* 4684 * If we failed to reclaim anything from this memory cgroup 4685 * it is time to move on to the next cgroup 4686 */ 4687 next_mz = NULL; 4688 if (!reclaimed) { 4689 do { 4690 /* 4691 * Loop until we find yet another one. 4692 * 4693 * By the time we get the soft_limit lock 4694 * again, someone might have aded the 4695 * group back on the RB tree. Iterate to 4696 * make sure we get a different mem. 4697 * mem_cgroup_largest_soft_limit_node returns 4698 * NULL if no other cgroup is present on 4699 * the tree 4700 */ 4701 next_mz = 4702 __mem_cgroup_largest_soft_limit_node(mctz); 4703 if (next_mz == mz) 4704 css_put(&next_mz->memcg->css); 4705 else /* next_mz == NULL or other memcg */ 4706 break; 4707 } while (1); 4708 } 4709 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 4710 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4711 /* 4712 * One school of thought says that we should not add 4713 * back the node to the tree if reclaim returns 0. 4714 * But our reclaim could return 0, simply because due 4715 * to priority we are exposing a smaller subset of 4716 * memory to reclaim from. Consider this as a longer 4717 * term TODO. 4718 */ 4719 /* If excess == 0, no tree ops */ 4720 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 4721 spin_unlock(&mctz->lock); 4722 css_put(&mz->memcg->css); 4723 loop++; 4724 /* 4725 * Could not reclaim anything and there are no more 4726 * mem cgroups to try or we seem to be looping without 4727 * reclaiming anything. 4728 */ 4729 if (!nr_reclaimed && 4730 (next_mz == NULL || 4731 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4732 break; 4733 } while (!nr_reclaimed); 4734 if (next_mz) 4735 css_put(&next_mz->memcg->css); 4736 return nr_reclaimed; 4737} 4738 4739/** 4740 * mem_cgroup_force_empty_list - clears LRU of a group 4741 * @memcg: group to clear 4742 * @node: NUMA node 4743 * @zid: zone id 4744 * @lru: lru to to clear 4745 * 4746 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4747 * reclaim the pages page themselves - pages are moved to the parent (or root) 4748 * group. 4749 */ 4750static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4751 int node, int zid, enum lru_list lru) 4752{ 4753 struct lruvec *lruvec; 4754 unsigned long flags; 4755 struct list_head *list; 4756 struct page *busy; 4757 struct zone *zone; 4758 4759 zone = &NODE_DATA(node)->node_zones[zid]; 4760 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4761 list = &lruvec->lists[lru]; 4762 4763 busy = NULL; 4764 do { 4765 struct page_cgroup *pc; 4766 struct page *page; 4767 4768 spin_lock_irqsave(&zone->lru_lock, flags); 4769 if (list_empty(list)) { 4770 spin_unlock_irqrestore(&zone->lru_lock, flags); 4771 break; 4772 } 4773 page = list_entry(list->prev, struct page, lru); 4774 if (busy == page) { 4775 list_move(&page->lru, list); 4776 busy = NULL; 4777 spin_unlock_irqrestore(&zone->lru_lock, flags); 4778 continue; 4779 } 4780 spin_unlock_irqrestore(&zone->lru_lock, flags); 4781 4782 pc = lookup_page_cgroup(page); 4783 4784 if (mem_cgroup_move_parent(page, pc, memcg)) { 4785 /* found lock contention or "pc" is obsolete. */ 4786 busy = page; 4787 cond_resched(); 4788 } else 4789 busy = NULL; 4790 } while (!list_empty(list)); 4791} 4792 4793/* 4794 * make mem_cgroup's charge to be 0 if there is no task by moving 4795 * all the charges and pages to the parent. 4796 * This enables deleting this mem_cgroup. 4797 * 4798 * Caller is responsible for holding css reference on the memcg. 4799 */ 4800static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4801{ 4802 int node, zid; 4803 u64 usage; 4804 4805 do { 4806 /* This is for making all *used* pages to be on LRU. */ 4807 lru_add_drain_all(); 4808 drain_all_stock_sync(memcg); 4809 mem_cgroup_start_move(memcg); 4810 for_each_node_state(node, N_MEMORY) { 4811 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4812 enum lru_list lru; 4813 for_each_lru(lru) { 4814 mem_cgroup_force_empty_list(memcg, 4815 node, zid, lru); 4816 } 4817 } 4818 } 4819 mem_cgroup_end_move(memcg); 4820 memcg_oom_recover(memcg); 4821 cond_resched(); 4822 4823 /* 4824 * Kernel memory may not necessarily be trackable to a specific 4825 * process. So they are not migrated, and therefore we can't 4826 * expect their value to drop to 0 here. 4827 * Having res filled up with kmem only is enough. 4828 * 4829 * This is a safety check because mem_cgroup_force_empty_list 4830 * could have raced with mem_cgroup_replace_page_cache callers 4831 * so the lru seemed empty but the page could have been added 4832 * right after the check. RES_USAGE should be safe as we always 4833 * charge before adding to the LRU. 4834 */ 4835 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4836 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4837 } while (usage > 0); 4838} 4839 4840static inline bool memcg_has_children(struct mem_cgroup *memcg) 4841{ 4842 lockdep_assert_held(&memcg_create_mutex); 4843 /* 4844 * The lock does not prevent addition or deletion to the list 4845 * of children, but it prevents a new child from being 4846 * initialized based on this parent in css_online(), so it's 4847 * enough to decide whether hierarchically inherited 4848 * attributes can still be changed or not. 4849 */ 4850 return memcg->use_hierarchy && 4851 !list_empty(&memcg->css.cgroup->children); 4852} 4853 4854/* 4855 * Reclaims as many pages from the given memcg as possible and moves 4856 * the rest to the parent. 4857 * 4858 * Caller is responsible for holding css reference for memcg. 4859 */ 4860static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4861{ 4862 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4863 struct cgroup *cgrp = memcg->css.cgroup; 4864 4865 /* returns EBUSY if there is a task or if we come here twice. */ 4866 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children)) 4867 return -EBUSY; 4868 4869 /* we call try-to-free pages for make this cgroup empty */ 4870 lru_add_drain_all(); 4871 /* try to free all pages in this cgroup */ 4872 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4873 int progress; 4874 4875 if (signal_pending(current)) 4876 return -EINTR; 4877 4878 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4879 false); 4880 if (!progress) { 4881 nr_retries--; 4882 /* maybe some writeback is necessary */ 4883 congestion_wait(BLK_RW_ASYNC, HZ/10); 4884 } 4885 4886 } 4887 lru_add_drain(); 4888 mem_cgroup_reparent_charges(memcg); 4889 4890 return 0; 4891} 4892 4893static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 4894 unsigned int event) 4895{ 4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4897 4898 if (mem_cgroup_is_root(memcg)) 4899 return -EINVAL; 4900 return mem_cgroup_force_empty(memcg); 4901} 4902 4903static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 4904 struct cftype *cft) 4905{ 4906 return mem_cgroup_from_css(css)->use_hierarchy; 4907} 4908 4909static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 4910 struct cftype *cft, u64 val) 4911{ 4912 int retval = 0; 4913 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4914 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 4915 4916 mutex_lock(&memcg_create_mutex); 4917 4918 if (memcg->use_hierarchy == val) 4919 goto out; 4920 4921 /* 4922 * If parent's use_hierarchy is set, we can't make any modifications 4923 * in the child subtrees. If it is unset, then the change can 4924 * occur, provided the current cgroup has no children. 4925 * 4926 * For the root cgroup, parent_mem is NULL, we allow value to be 4927 * set if there are no children. 4928 */ 4929 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4930 (val == 1 || val == 0)) { 4931 if (list_empty(&memcg->css.cgroup->children)) 4932 memcg->use_hierarchy = val; 4933 else 4934 retval = -EBUSY; 4935 } else 4936 retval = -EINVAL; 4937 4938out: 4939 mutex_unlock(&memcg_create_mutex); 4940 4941 return retval; 4942} 4943 4944 4945static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4946 enum mem_cgroup_stat_index idx) 4947{ 4948 struct mem_cgroup *iter; 4949 long val = 0; 4950 4951 /* Per-cpu values can be negative, use a signed accumulator */ 4952 for_each_mem_cgroup_tree(iter, memcg) 4953 val += mem_cgroup_read_stat(iter, idx); 4954 4955 if (val < 0) /* race ? */ 4956 val = 0; 4957 return val; 4958} 4959 4960static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4961{ 4962 u64 val; 4963 4964 if (!mem_cgroup_is_root(memcg)) { 4965 if (!swap) 4966 return res_counter_read_u64(&memcg->res, RES_USAGE); 4967 else 4968 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4969 } 4970 4971 /* 4972 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 4973 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 4974 */ 4975 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4976 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4977 4978 if (swap) 4979 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4980 4981 return val << PAGE_SHIFT; 4982} 4983 4984static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 4985 struct cftype *cft) 4986{ 4987 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4988 u64 val; 4989 int name; 4990 enum res_type type; 4991 4992 type = MEMFILE_TYPE(cft->private); 4993 name = MEMFILE_ATTR(cft->private); 4994 4995 switch (type) { 4996 case _MEM: 4997 if (name == RES_USAGE) 4998 val = mem_cgroup_usage(memcg, false); 4999 else 5000 val = res_counter_read_u64(&memcg->res, name); 5001 break; 5002 case _MEMSWAP: 5003 if (name == RES_USAGE) 5004 val = mem_cgroup_usage(memcg, true); 5005 else 5006 val = res_counter_read_u64(&memcg->memsw, name); 5007 break; 5008 case _KMEM: 5009 val = res_counter_read_u64(&memcg->kmem, name); 5010 break; 5011 default: 5012 BUG(); 5013 } 5014 5015 return val; 5016} 5017 5018#ifdef CONFIG_MEMCG_KMEM 5019/* should be called with activate_kmem_mutex held */ 5020static int __memcg_activate_kmem(struct mem_cgroup *memcg, 5021 unsigned long long limit) 5022{ 5023 int err = 0; 5024 int memcg_id; 5025 5026 if (memcg_kmem_is_active(memcg)) 5027 return 0; 5028 5029 /* 5030 * We are going to allocate memory for data shared by all memory 5031 * cgroups so let's stop accounting here. 5032 */ 5033 memcg_stop_kmem_account(); 5034 5035 /* 5036 * For simplicity, we won't allow this to be disabled. It also can't 5037 * be changed if the cgroup has children already, or if tasks had 5038 * already joined. 5039 * 5040 * If tasks join before we set the limit, a person looking at 5041 * kmem.usage_in_bytes will have no way to determine when it took 5042 * place, which makes the value quite meaningless. 5043 * 5044 * After it first became limited, changes in the value of the limit are 5045 * of course permitted. 5046 */ 5047 mutex_lock(&memcg_create_mutex); 5048 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg)) 5049 err = -EBUSY; 5050 mutex_unlock(&memcg_create_mutex); 5051 if (err) 5052 goto out; 5053 5054 memcg_id = ida_simple_get(&kmem_limited_groups, 5055 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 5056 if (memcg_id < 0) { 5057 err = memcg_id; 5058 goto out; 5059 } 5060 5061 /* 5062 * Make sure we have enough space for this cgroup in each root cache's 5063 * memcg_params. 5064 */ 5065 err = memcg_update_all_caches(memcg_id + 1); 5066 if (err) 5067 goto out_rmid; 5068 5069 memcg->kmemcg_id = memcg_id; 5070 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 5071 mutex_init(&memcg->slab_caches_mutex); 5072 5073 /* 5074 * We couldn't have accounted to this cgroup, because it hasn't got the 5075 * active bit set yet, so this should succeed. 5076 */ 5077 err = res_counter_set_limit(&memcg->kmem, limit); 5078 VM_BUG_ON(err); 5079 5080 static_key_slow_inc(&memcg_kmem_enabled_key); 5081 /* 5082 * Setting the active bit after enabling static branching will 5083 * guarantee no one starts accounting before all call sites are 5084 * patched. 5085 */ 5086 memcg_kmem_set_active(memcg); 5087out: 5088 memcg_resume_kmem_account(); 5089 return err; 5090 5091out_rmid: 5092 ida_simple_remove(&kmem_limited_groups, memcg_id); 5093 goto out; 5094} 5095 5096static int memcg_activate_kmem(struct mem_cgroup *memcg, 5097 unsigned long long limit) 5098{ 5099 int ret; 5100 5101 mutex_lock(&activate_kmem_mutex); 5102 ret = __memcg_activate_kmem(memcg, limit); 5103 mutex_unlock(&activate_kmem_mutex); 5104 return ret; 5105} 5106 5107static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 5108 unsigned long long val) 5109{ 5110 int ret; 5111 5112 if (!memcg_kmem_is_active(memcg)) 5113 ret = memcg_activate_kmem(memcg, val); 5114 else 5115 ret = res_counter_set_limit(&memcg->kmem, val); 5116 return ret; 5117} 5118 5119static int memcg_propagate_kmem(struct mem_cgroup *memcg) 5120{ 5121 int ret = 0; 5122 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5123 5124 if (!parent) 5125 return 0; 5126 5127 mutex_lock(&activate_kmem_mutex); 5128 /* 5129 * If the parent cgroup is not kmem-active now, it cannot be activated 5130 * after this point, because it has at least one child already. 5131 */ 5132 if (memcg_kmem_is_active(parent)) 5133 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); 5134 mutex_unlock(&activate_kmem_mutex); 5135 return ret; 5136} 5137#else 5138static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 5139 unsigned long long val) 5140{ 5141 return -EINVAL; 5142} 5143#endif /* CONFIG_MEMCG_KMEM */ 5144 5145/* 5146 * The user of this function is... 5147 * RES_LIMIT. 5148 */ 5149static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5150 char *buffer) 5151{ 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5153 enum res_type type; 5154 int name; 5155 unsigned long long val; 5156 int ret; 5157 5158 type = MEMFILE_TYPE(cft->private); 5159 name = MEMFILE_ATTR(cft->private); 5160 5161 switch (name) { 5162 case RES_LIMIT: 5163 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5164 ret = -EINVAL; 5165 break; 5166 } 5167 /* This function does all necessary parse...reuse it */ 5168 ret = res_counter_memparse_write_strategy(buffer, &val); 5169 if (ret) 5170 break; 5171 if (type == _MEM) 5172 ret = mem_cgroup_resize_limit(memcg, val); 5173 else if (type == _MEMSWAP) 5174 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5175 else if (type == _KMEM) 5176 ret = memcg_update_kmem_limit(memcg, val); 5177 else 5178 return -EINVAL; 5179 break; 5180 case RES_SOFT_LIMIT: 5181 ret = res_counter_memparse_write_strategy(buffer, &val); 5182 if (ret) 5183 break; 5184 /* 5185 * For memsw, soft limits are hard to implement in terms 5186 * of semantics, for now, we support soft limits for 5187 * control without swap 5188 */ 5189 if (type == _MEM) 5190 ret = res_counter_set_soft_limit(&memcg->res, val); 5191 else 5192 ret = -EINVAL; 5193 break; 5194 default: 5195 ret = -EINVAL; /* should be BUG() ? */ 5196 break; 5197 } 5198 return ret; 5199} 5200 5201static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5202 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5203{ 5204 unsigned long long min_limit, min_memsw_limit, tmp; 5205 5206 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5207 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5208 if (!memcg->use_hierarchy) 5209 goto out; 5210 5211 while (css_parent(&memcg->css)) { 5212 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5213 if (!memcg->use_hierarchy) 5214 break; 5215 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5216 min_limit = min(min_limit, tmp); 5217 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5218 min_memsw_limit = min(min_memsw_limit, tmp); 5219 } 5220out: 5221 *mem_limit = min_limit; 5222 *memsw_limit = min_memsw_limit; 5223} 5224 5225static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5226{ 5227 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5228 int name; 5229 enum res_type type; 5230 5231 type = MEMFILE_TYPE(event); 5232 name = MEMFILE_ATTR(event); 5233 5234 switch (name) { 5235 case RES_MAX_USAGE: 5236 if (type == _MEM) 5237 res_counter_reset_max(&memcg->res); 5238 else if (type == _MEMSWAP) 5239 res_counter_reset_max(&memcg->memsw); 5240 else if (type == _KMEM) 5241 res_counter_reset_max(&memcg->kmem); 5242 else 5243 return -EINVAL; 5244 break; 5245 case RES_FAILCNT: 5246 if (type == _MEM) 5247 res_counter_reset_failcnt(&memcg->res); 5248 else if (type == _MEMSWAP) 5249 res_counter_reset_failcnt(&memcg->memsw); 5250 else if (type == _KMEM) 5251 res_counter_reset_failcnt(&memcg->kmem); 5252 else 5253 return -EINVAL; 5254 break; 5255 } 5256 5257 return 0; 5258} 5259 5260static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5261 struct cftype *cft) 5262{ 5263 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5264} 5265 5266#ifdef CONFIG_MMU 5267static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5268 struct cftype *cft, u64 val) 5269{ 5270 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5271 5272 if (val >= (1 << NR_MOVE_TYPE)) 5273 return -EINVAL; 5274 5275 /* 5276 * No kind of locking is needed in here, because ->can_attach() will 5277 * check this value once in the beginning of the process, and then carry 5278 * on with stale data. This means that changes to this value will only 5279 * affect task migrations starting after the change. 5280 */ 5281 memcg->move_charge_at_immigrate = val; 5282 return 0; 5283} 5284#else 5285static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5286 struct cftype *cft, u64 val) 5287{ 5288 return -ENOSYS; 5289} 5290#endif 5291 5292#ifdef CONFIG_NUMA 5293static int memcg_numa_stat_show(struct seq_file *m, void *v) 5294{ 5295 struct numa_stat { 5296 const char *name; 5297 unsigned int lru_mask; 5298 }; 5299 5300 static const struct numa_stat stats[] = { 5301 { "total", LRU_ALL }, 5302 { "file", LRU_ALL_FILE }, 5303 { "anon", LRU_ALL_ANON }, 5304 { "unevictable", BIT(LRU_UNEVICTABLE) }, 5305 }; 5306 const struct numa_stat *stat; 5307 int nid; 5308 unsigned long nr; 5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5310 5311 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5312 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 5313 seq_printf(m, "%s=%lu", stat->name, nr); 5314 for_each_node_state(nid, N_MEMORY) { 5315 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5316 stat->lru_mask); 5317 seq_printf(m, " N%d=%lu", nid, nr); 5318 } 5319 seq_putc(m, '\n'); 5320 } 5321 5322 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5323 struct mem_cgroup *iter; 5324 5325 nr = 0; 5326 for_each_mem_cgroup_tree(iter, memcg) 5327 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 5328 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 5329 for_each_node_state(nid, N_MEMORY) { 5330 nr = 0; 5331 for_each_mem_cgroup_tree(iter, memcg) 5332 nr += mem_cgroup_node_nr_lru_pages( 5333 iter, nid, stat->lru_mask); 5334 seq_printf(m, " N%d=%lu", nid, nr); 5335 } 5336 seq_putc(m, '\n'); 5337 } 5338 5339 return 0; 5340} 5341#endif /* CONFIG_NUMA */ 5342 5343static inline void mem_cgroup_lru_names_not_uptodate(void) 5344{ 5345 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5346} 5347 5348static int memcg_stat_show(struct seq_file *m, void *v) 5349{ 5350 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5351 struct mem_cgroup *mi; 5352 unsigned int i; 5353 5354 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5355 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5356 continue; 5357 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5358 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5359 } 5360 5361 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5362 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5363 mem_cgroup_read_events(memcg, i)); 5364 5365 for (i = 0; i < NR_LRU_LISTS; i++) 5366 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5367 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5368 5369 /* Hierarchical information */ 5370 { 5371 unsigned long long limit, memsw_limit; 5372 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5373 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5374 if (do_swap_account) 5375 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5376 memsw_limit); 5377 } 5378 5379 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5380 long long val = 0; 5381 5382 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5383 continue; 5384 for_each_mem_cgroup_tree(mi, memcg) 5385 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5386 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5387 } 5388 5389 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5390 unsigned long long val = 0; 5391 5392 for_each_mem_cgroup_tree(mi, memcg) 5393 val += mem_cgroup_read_events(mi, i); 5394 seq_printf(m, "total_%s %llu\n", 5395 mem_cgroup_events_names[i], val); 5396 } 5397 5398 for (i = 0; i < NR_LRU_LISTS; i++) { 5399 unsigned long long val = 0; 5400 5401 for_each_mem_cgroup_tree(mi, memcg) 5402 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5403 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5404 } 5405 5406#ifdef CONFIG_DEBUG_VM 5407 { 5408 int nid, zid; 5409 struct mem_cgroup_per_zone *mz; 5410 struct zone_reclaim_stat *rstat; 5411 unsigned long recent_rotated[2] = {0, 0}; 5412 unsigned long recent_scanned[2] = {0, 0}; 5413 5414 for_each_online_node(nid) 5415 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5416 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5417 rstat = &mz->lruvec.reclaim_stat; 5418 5419 recent_rotated[0] += rstat->recent_rotated[0]; 5420 recent_rotated[1] += rstat->recent_rotated[1]; 5421 recent_scanned[0] += rstat->recent_scanned[0]; 5422 recent_scanned[1] += rstat->recent_scanned[1]; 5423 } 5424 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5425 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5426 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5427 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5428 } 5429#endif 5430 5431 return 0; 5432} 5433 5434static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5435 struct cftype *cft) 5436{ 5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5438 5439 return mem_cgroup_swappiness(memcg); 5440} 5441 5442static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5443 struct cftype *cft, u64 val) 5444{ 5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5446 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5447 5448 if (val > 100 || !parent) 5449 return -EINVAL; 5450 5451 mutex_lock(&memcg_create_mutex); 5452 5453 /* If under hierarchy, only empty-root can set this value */ 5454 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5455 mutex_unlock(&memcg_create_mutex); 5456 return -EINVAL; 5457 } 5458 5459 memcg->swappiness = val; 5460 5461 mutex_unlock(&memcg_create_mutex); 5462 5463 return 0; 5464} 5465 5466static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5467{ 5468 struct mem_cgroup_threshold_ary *t; 5469 u64 usage; 5470 int i; 5471 5472 rcu_read_lock(); 5473 if (!swap) 5474 t = rcu_dereference(memcg->thresholds.primary); 5475 else 5476 t = rcu_dereference(memcg->memsw_thresholds.primary); 5477 5478 if (!t) 5479 goto unlock; 5480 5481 usage = mem_cgroup_usage(memcg, swap); 5482 5483 /* 5484 * current_threshold points to threshold just below or equal to usage. 5485 * If it's not true, a threshold was crossed after last 5486 * call of __mem_cgroup_threshold(). 5487 */ 5488 i = t->current_threshold; 5489 5490 /* 5491 * Iterate backward over array of thresholds starting from 5492 * current_threshold and check if a threshold is crossed. 5493 * If none of thresholds below usage is crossed, we read 5494 * only one element of the array here. 5495 */ 5496 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5497 eventfd_signal(t->entries[i].eventfd, 1); 5498 5499 /* i = current_threshold + 1 */ 5500 i++; 5501 5502 /* 5503 * Iterate forward over array of thresholds starting from 5504 * current_threshold+1 and check if a threshold is crossed. 5505 * If none of thresholds above usage is crossed, we read 5506 * only one element of the array here. 5507 */ 5508 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5509 eventfd_signal(t->entries[i].eventfd, 1); 5510 5511 /* Update current_threshold */ 5512 t->current_threshold = i - 1; 5513unlock: 5514 rcu_read_unlock(); 5515} 5516 5517static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5518{ 5519 while (memcg) { 5520 __mem_cgroup_threshold(memcg, false); 5521 if (do_swap_account) 5522 __mem_cgroup_threshold(memcg, true); 5523 5524 memcg = parent_mem_cgroup(memcg); 5525 } 5526} 5527 5528static int compare_thresholds(const void *a, const void *b) 5529{ 5530 const struct mem_cgroup_threshold *_a = a; 5531 const struct mem_cgroup_threshold *_b = b; 5532 5533 if (_a->threshold > _b->threshold) 5534 return 1; 5535 5536 if (_a->threshold < _b->threshold) 5537 return -1; 5538 5539 return 0; 5540} 5541 5542static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5543{ 5544 struct mem_cgroup_eventfd_list *ev; 5545 5546 list_for_each_entry(ev, &memcg->oom_notify, list) 5547 eventfd_signal(ev->eventfd, 1); 5548 return 0; 5549} 5550 5551static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5552{ 5553 struct mem_cgroup *iter; 5554 5555 for_each_mem_cgroup_tree(iter, memcg) 5556 mem_cgroup_oom_notify_cb(iter); 5557} 5558 5559static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 5560 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 5561{ 5562 struct mem_cgroup_thresholds *thresholds; 5563 struct mem_cgroup_threshold_ary *new; 5564 u64 threshold, usage; 5565 int i, size, ret; 5566 5567 ret = res_counter_memparse_write_strategy(args, &threshold); 5568 if (ret) 5569 return ret; 5570 5571 mutex_lock(&memcg->thresholds_lock); 5572 5573 if (type == _MEM) 5574 thresholds = &memcg->thresholds; 5575 else if (type == _MEMSWAP) 5576 thresholds = &memcg->memsw_thresholds; 5577 else 5578 BUG(); 5579 5580 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5581 5582 /* Check if a threshold crossed before adding a new one */ 5583 if (thresholds->primary) 5584 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5585 5586 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5587 5588 /* Allocate memory for new array of thresholds */ 5589 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5590 GFP_KERNEL); 5591 if (!new) { 5592 ret = -ENOMEM; 5593 goto unlock; 5594 } 5595 new->size = size; 5596 5597 /* Copy thresholds (if any) to new array */ 5598 if (thresholds->primary) { 5599 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5600 sizeof(struct mem_cgroup_threshold)); 5601 } 5602 5603 /* Add new threshold */ 5604 new->entries[size - 1].eventfd = eventfd; 5605 new->entries[size - 1].threshold = threshold; 5606 5607 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5608 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5609 compare_thresholds, NULL); 5610 5611 /* Find current threshold */ 5612 new->current_threshold = -1; 5613 for (i = 0; i < size; i++) { 5614 if (new->entries[i].threshold <= usage) { 5615 /* 5616 * new->current_threshold will not be used until 5617 * rcu_assign_pointer(), so it's safe to increment 5618 * it here. 5619 */ 5620 ++new->current_threshold; 5621 } else 5622 break; 5623 } 5624 5625 /* Free old spare buffer and save old primary buffer as spare */ 5626 kfree(thresholds->spare); 5627 thresholds->spare = thresholds->primary; 5628 5629 rcu_assign_pointer(thresholds->primary, new); 5630 5631 /* To be sure that nobody uses thresholds */ 5632 synchronize_rcu(); 5633 5634unlock: 5635 mutex_unlock(&memcg->thresholds_lock); 5636 5637 return ret; 5638} 5639 5640static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 5641 struct eventfd_ctx *eventfd, const char *args) 5642{ 5643 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 5644} 5645 5646static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 5647 struct eventfd_ctx *eventfd, const char *args) 5648{ 5649 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 5650} 5651 5652static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5653 struct eventfd_ctx *eventfd, enum res_type type) 5654{ 5655 struct mem_cgroup_thresholds *thresholds; 5656 struct mem_cgroup_threshold_ary *new; 5657 u64 usage; 5658 int i, j, size; 5659 5660 mutex_lock(&memcg->thresholds_lock); 5661 if (type == _MEM) 5662 thresholds = &memcg->thresholds; 5663 else if (type == _MEMSWAP) 5664 thresholds = &memcg->memsw_thresholds; 5665 else 5666 BUG(); 5667 5668 if (!thresholds->primary) 5669 goto unlock; 5670 5671 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5672 5673 /* Check if a threshold crossed before removing */ 5674 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5675 5676 /* Calculate new number of threshold */ 5677 size = 0; 5678 for (i = 0; i < thresholds->primary->size; i++) { 5679 if (thresholds->primary->entries[i].eventfd != eventfd) 5680 size++; 5681 } 5682 5683 new = thresholds->spare; 5684 5685 /* Set thresholds array to NULL if we don't have thresholds */ 5686 if (!size) { 5687 kfree(new); 5688 new = NULL; 5689 goto swap_buffers; 5690 } 5691 5692 new->size = size; 5693 5694 /* Copy thresholds and find current threshold */ 5695 new->current_threshold = -1; 5696 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5697 if (thresholds->primary->entries[i].eventfd == eventfd) 5698 continue; 5699 5700 new->entries[j] = thresholds->primary->entries[i]; 5701 if (new->entries[j].threshold <= usage) { 5702 /* 5703 * new->current_threshold will not be used 5704 * until rcu_assign_pointer(), so it's safe to increment 5705 * it here. 5706 */ 5707 ++new->current_threshold; 5708 } 5709 j++; 5710 } 5711 5712swap_buffers: 5713 /* Swap primary and spare array */ 5714 thresholds->spare = thresholds->primary; 5715 /* If all events are unregistered, free the spare array */ 5716 if (!new) { 5717 kfree(thresholds->spare); 5718 thresholds->spare = NULL; 5719 } 5720 5721 rcu_assign_pointer(thresholds->primary, new); 5722 5723 /* To be sure that nobody uses thresholds */ 5724 synchronize_rcu(); 5725unlock: 5726 mutex_unlock(&memcg->thresholds_lock); 5727} 5728 5729static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5730 struct eventfd_ctx *eventfd) 5731{ 5732 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 5733} 5734 5735static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5736 struct eventfd_ctx *eventfd) 5737{ 5738 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 5739} 5740 5741static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 5742 struct eventfd_ctx *eventfd, const char *args) 5743{ 5744 struct mem_cgroup_eventfd_list *event; 5745 5746 event = kmalloc(sizeof(*event), GFP_KERNEL); 5747 if (!event) 5748 return -ENOMEM; 5749 5750 spin_lock(&memcg_oom_lock); 5751 5752 event->eventfd = eventfd; 5753 list_add(&event->list, &memcg->oom_notify); 5754 5755 /* already in OOM ? */ 5756 if (atomic_read(&memcg->under_oom)) 5757 eventfd_signal(eventfd, 1); 5758 spin_unlock(&memcg_oom_lock); 5759 5760 return 0; 5761} 5762 5763static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 5764 struct eventfd_ctx *eventfd) 5765{ 5766 struct mem_cgroup_eventfd_list *ev, *tmp; 5767 5768 spin_lock(&memcg_oom_lock); 5769 5770 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5771 if (ev->eventfd == eventfd) { 5772 list_del(&ev->list); 5773 kfree(ev); 5774 } 5775 } 5776 5777 spin_unlock(&memcg_oom_lock); 5778} 5779 5780static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 5781{ 5782 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5783 5784 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 5785 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); 5786 return 0; 5787} 5788 5789static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5790 struct cftype *cft, u64 val) 5791{ 5792 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5793 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5794 5795 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5796 if (!parent || !((val == 0) || (val == 1))) 5797 return -EINVAL; 5798 5799 mutex_lock(&memcg_create_mutex); 5800 /* oom-kill-disable is a flag for subhierarchy. */ 5801 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5802 mutex_unlock(&memcg_create_mutex); 5803 return -EINVAL; 5804 } 5805 memcg->oom_kill_disable = val; 5806 if (!val) 5807 memcg_oom_recover(memcg); 5808 mutex_unlock(&memcg_create_mutex); 5809 return 0; 5810} 5811 5812#ifdef CONFIG_MEMCG_KMEM 5813static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5814{ 5815 int ret; 5816 5817 memcg->kmemcg_id = -1; 5818 ret = memcg_propagate_kmem(memcg); 5819 if (ret) 5820 return ret; 5821 5822 return mem_cgroup_sockets_init(memcg, ss); 5823} 5824 5825static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5826{ 5827 mem_cgroup_sockets_destroy(memcg); 5828} 5829 5830static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5831{ 5832 if (!memcg_kmem_is_active(memcg)) 5833 return; 5834 5835 /* 5836 * kmem charges can outlive the cgroup. In the case of slab 5837 * pages, for instance, a page contain objects from various 5838 * processes. As we prevent from taking a reference for every 5839 * such allocation we have to be careful when doing uncharge 5840 * (see memcg_uncharge_kmem) and here during offlining. 5841 * 5842 * The idea is that that only the _last_ uncharge which sees 5843 * the dead memcg will drop the last reference. An additional 5844 * reference is taken here before the group is marked dead 5845 * which is then paired with css_put during uncharge resp. here. 5846 * 5847 * Although this might sound strange as this path is called from 5848 * css_offline() when the referencemight have dropped down to 0 5849 * and shouldn't be incremented anymore (css_tryget would fail) 5850 * we do not have other options because of the kmem allocations 5851 * lifetime. 5852 */ 5853 css_get(&memcg->css); 5854 5855 memcg_kmem_mark_dead(memcg); 5856 5857 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5858 return; 5859 5860 if (memcg_kmem_test_and_clear_dead(memcg)) 5861 css_put(&memcg->css); 5862} 5863#else 5864static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5865{ 5866 return 0; 5867} 5868 5869static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5870{ 5871} 5872 5873static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5874{ 5875} 5876#endif 5877 5878/* 5879 * DO NOT USE IN NEW FILES. 5880 * 5881 * "cgroup.event_control" implementation. 5882 * 5883 * This is way over-engineered. It tries to support fully configurable 5884 * events for each user. Such level of flexibility is completely 5885 * unnecessary especially in the light of the planned unified hierarchy. 5886 * 5887 * Please deprecate this and replace with something simpler if at all 5888 * possible. 5889 */ 5890 5891/* 5892 * Unregister event and free resources. 5893 * 5894 * Gets called from workqueue. 5895 */ 5896static void memcg_event_remove(struct work_struct *work) 5897{ 5898 struct mem_cgroup_event *event = 5899 container_of(work, struct mem_cgroup_event, remove); 5900 struct mem_cgroup *memcg = event->memcg; 5901 5902 remove_wait_queue(event->wqh, &event->wait); 5903 5904 event->unregister_event(memcg, event->eventfd); 5905 5906 /* Notify userspace the event is going away. */ 5907 eventfd_signal(event->eventfd, 1); 5908 5909 eventfd_ctx_put(event->eventfd); 5910 kfree(event); 5911 css_put(&memcg->css); 5912} 5913 5914/* 5915 * Gets called on POLLHUP on eventfd when user closes it. 5916 * 5917 * Called with wqh->lock held and interrupts disabled. 5918 */ 5919static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 5920 int sync, void *key) 5921{ 5922 struct mem_cgroup_event *event = 5923 container_of(wait, struct mem_cgroup_event, wait); 5924 struct mem_cgroup *memcg = event->memcg; 5925 unsigned long flags = (unsigned long)key; 5926 5927 if (flags & POLLHUP) { 5928 /* 5929 * If the event has been detached at cgroup removal, we 5930 * can simply return knowing the other side will cleanup 5931 * for us. 5932 * 5933 * We can't race against event freeing since the other 5934 * side will require wqh->lock via remove_wait_queue(), 5935 * which we hold. 5936 */ 5937 spin_lock(&memcg->event_list_lock); 5938 if (!list_empty(&event->list)) { 5939 list_del_init(&event->list); 5940 /* 5941 * We are in atomic context, but cgroup_event_remove() 5942 * may sleep, so we have to call it in workqueue. 5943 */ 5944 schedule_work(&event->remove); 5945 } 5946 spin_unlock(&memcg->event_list_lock); 5947 } 5948 5949 return 0; 5950} 5951 5952static void memcg_event_ptable_queue_proc(struct file *file, 5953 wait_queue_head_t *wqh, poll_table *pt) 5954{ 5955 struct mem_cgroup_event *event = 5956 container_of(pt, struct mem_cgroup_event, pt); 5957 5958 event->wqh = wqh; 5959 add_wait_queue(wqh, &event->wait); 5960} 5961 5962/* 5963 * DO NOT USE IN NEW FILES. 5964 * 5965 * Parse input and register new cgroup event handler. 5966 * 5967 * Input must be in format '<event_fd> <control_fd> <args>'. 5968 * Interpretation of args is defined by control file implementation. 5969 */ 5970static int memcg_write_event_control(struct cgroup_subsys_state *css, 5971 struct cftype *cft, char *buffer) 5972{ 5973 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5974 struct mem_cgroup_event *event; 5975 struct cgroup_subsys_state *cfile_css; 5976 unsigned int efd, cfd; 5977 struct fd efile; 5978 struct fd cfile; 5979 const char *name; 5980 char *endp; 5981 int ret; 5982 5983 efd = simple_strtoul(buffer, &endp, 10); 5984 if (*endp != ' ') 5985 return -EINVAL; 5986 buffer = endp + 1; 5987 5988 cfd = simple_strtoul(buffer, &endp, 10); 5989 if ((*endp != ' ') && (*endp != '\0')) 5990 return -EINVAL; 5991 buffer = endp + 1; 5992 5993 event = kzalloc(sizeof(*event), GFP_KERNEL); 5994 if (!event) 5995 return -ENOMEM; 5996 5997 event->memcg = memcg; 5998 INIT_LIST_HEAD(&event->list); 5999 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 6000 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 6001 INIT_WORK(&event->remove, memcg_event_remove); 6002 6003 efile = fdget(efd); 6004 if (!efile.file) { 6005 ret = -EBADF; 6006 goto out_kfree; 6007 } 6008 6009 event->eventfd = eventfd_ctx_fileget(efile.file); 6010 if (IS_ERR(event->eventfd)) { 6011 ret = PTR_ERR(event->eventfd); 6012 goto out_put_efile; 6013 } 6014 6015 cfile = fdget(cfd); 6016 if (!cfile.file) { 6017 ret = -EBADF; 6018 goto out_put_eventfd; 6019 } 6020 6021 /* the process need read permission on control file */ 6022 /* AV: shouldn't we check that it's been opened for read instead? */ 6023 ret = inode_permission(file_inode(cfile.file), MAY_READ); 6024 if (ret < 0) 6025 goto out_put_cfile; 6026 6027 /* 6028 * Determine the event callbacks and set them in @event. This used 6029 * to be done via struct cftype but cgroup core no longer knows 6030 * about these events. The following is crude but the whole thing 6031 * is for compatibility anyway. 6032 * 6033 * DO NOT ADD NEW FILES. 6034 */ 6035 name = cfile.file->f_dentry->d_name.name; 6036 6037 if (!strcmp(name, "memory.usage_in_bytes")) { 6038 event->register_event = mem_cgroup_usage_register_event; 6039 event->unregister_event = mem_cgroup_usage_unregister_event; 6040 } else if (!strcmp(name, "memory.oom_control")) { 6041 event->register_event = mem_cgroup_oom_register_event; 6042 event->unregister_event = mem_cgroup_oom_unregister_event; 6043 } else if (!strcmp(name, "memory.pressure_level")) { 6044 event->register_event = vmpressure_register_event; 6045 event->unregister_event = vmpressure_unregister_event; 6046 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 6047 event->register_event = memsw_cgroup_usage_register_event; 6048 event->unregister_event = memsw_cgroup_usage_unregister_event; 6049 } else { 6050 ret = -EINVAL; 6051 goto out_put_cfile; 6052 } 6053 6054 /* 6055 * Verify @cfile should belong to @css. Also, remaining events are 6056 * automatically removed on cgroup destruction but the removal is 6057 * asynchronous, so take an extra ref on @css. 6058 */ 6059 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent, 6060 &memory_cgrp_subsys); 6061 ret = -EINVAL; 6062 if (IS_ERR(cfile_css)) 6063 goto out_put_cfile; 6064 if (cfile_css != css) { 6065 css_put(cfile_css); 6066 goto out_put_cfile; 6067 } 6068 6069 ret = event->register_event(memcg, event->eventfd, buffer); 6070 if (ret) 6071 goto out_put_css; 6072 6073 efile.file->f_op->poll(efile.file, &event->pt); 6074 6075 spin_lock(&memcg->event_list_lock); 6076 list_add(&event->list, &memcg->event_list); 6077 spin_unlock(&memcg->event_list_lock); 6078 6079 fdput(cfile); 6080 fdput(efile); 6081 6082 return 0; 6083 6084out_put_css: 6085 css_put(css); 6086out_put_cfile: 6087 fdput(cfile); 6088out_put_eventfd: 6089 eventfd_ctx_put(event->eventfd); 6090out_put_efile: 6091 fdput(efile); 6092out_kfree: 6093 kfree(event); 6094 6095 return ret; 6096} 6097 6098static struct cftype mem_cgroup_files[] = { 6099 { 6100 .name = "usage_in_bytes", 6101 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 6102 .read_u64 = mem_cgroup_read_u64, 6103 }, 6104 { 6105 .name = "max_usage_in_bytes", 6106 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 6107 .trigger = mem_cgroup_reset, 6108 .read_u64 = mem_cgroup_read_u64, 6109 }, 6110 { 6111 .name = "limit_in_bytes", 6112 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 6113 .write_string = mem_cgroup_write, 6114 .read_u64 = mem_cgroup_read_u64, 6115 }, 6116 { 6117 .name = "soft_limit_in_bytes", 6118 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 6119 .write_string = mem_cgroup_write, 6120 .read_u64 = mem_cgroup_read_u64, 6121 }, 6122 { 6123 .name = "failcnt", 6124 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 6125 .trigger = mem_cgroup_reset, 6126 .read_u64 = mem_cgroup_read_u64, 6127 }, 6128 { 6129 .name = "stat", 6130 .seq_show = memcg_stat_show, 6131 }, 6132 { 6133 .name = "force_empty", 6134 .trigger = mem_cgroup_force_empty_write, 6135 }, 6136 { 6137 .name = "use_hierarchy", 6138 .flags = CFTYPE_INSANE, 6139 .write_u64 = mem_cgroup_hierarchy_write, 6140 .read_u64 = mem_cgroup_hierarchy_read, 6141 }, 6142 { 6143 .name = "cgroup.event_control", /* XXX: for compat */ 6144 .write_string = memcg_write_event_control, 6145 .flags = CFTYPE_NO_PREFIX, 6146 .mode = S_IWUGO, 6147 }, 6148 { 6149 .name = "swappiness", 6150 .read_u64 = mem_cgroup_swappiness_read, 6151 .write_u64 = mem_cgroup_swappiness_write, 6152 }, 6153 { 6154 .name = "move_charge_at_immigrate", 6155 .read_u64 = mem_cgroup_move_charge_read, 6156 .write_u64 = mem_cgroup_move_charge_write, 6157 }, 6158 { 6159 .name = "oom_control", 6160 .seq_show = mem_cgroup_oom_control_read, 6161 .write_u64 = mem_cgroup_oom_control_write, 6162 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 6163 }, 6164 { 6165 .name = "pressure_level", 6166 }, 6167#ifdef CONFIG_NUMA 6168 { 6169 .name = "numa_stat", 6170 .seq_show = memcg_numa_stat_show, 6171 }, 6172#endif 6173#ifdef CONFIG_MEMCG_KMEM 6174 { 6175 .name = "kmem.limit_in_bytes", 6176 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6177 .write_string = mem_cgroup_write, 6178 .read_u64 = mem_cgroup_read_u64, 6179 }, 6180 { 6181 .name = "kmem.usage_in_bytes", 6182 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6183 .read_u64 = mem_cgroup_read_u64, 6184 }, 6185 { 6186 .name = "kmem.failcnt", 6187 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6188 .trigger = mem_cgroup_reset, 6189 .read_u64 = mem_cgroup_read_u64, 6190 }, 6191 { 6192 .name = "kmem.max_usage_in_bytes", 6193 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6194 .trigger = mem_cgroup_reset, 6195 .read_u64 = mem_cgroup_read_u64, 6196 }, 6197#ifdef CONFIG_SLABINFO 6198 { 6199 .name = "kmem.slabinfo", 6200 .seq_show = mem_cgroup_slabinfo_read, 6201 }, 6202#endif 6203#endif 6204 { }, /* terminate */ 6205}; 6206 6207#ifdef CONFIG_MEMCG_SWAP 6208static struct cftype memsw_cgroup_files[] = { 6209 { 6210 .name = "memsw.usage_in_bytes", 6211 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6212 .read_u64 = mem_cgroup_read_u64, 6213 }, 6214 { 6215 .name = "memsw.max_usage_in_bytes", 6216 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6217 .trigger = mem_cgroup_reset, 6218 .read_u64 = mem_cgroup_read_u64, 6219 }, 6220 { 6221 .name = "memsw.limit_in_bytes", 6222 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6223 .write_string = mem_cgroup_write, 6224 .read_u64 = mem_cgroup_read_u64, 6225 }, 6226 { 6227 .name = "memsw.failcnt", 6228 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6229 .trigger = mem_cgroup_reset, 6230 .read_u64 = mem_cgroup_read_u64, 6231 }, 6232 { }, /* terminate */ 6233}; 6234#endif 6235static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6236{ 6237 struct mem_cgroup_per_node *pn; 6238 struct mem_cgroup_per_zone *mz; 6239 int zone, tmp = node; 6240 /* 6241 * This routine is called against possible nodes. 6242 * But it's BUG to call kmalloc() against offline node. 6243 * 6244 * TODO: this routine can waste much memory for nodes which will 6245 * never be onlined. It's better to use memory hotplug callback 6246 * function. 6247 */ 6248 if (!node_state(node, N_NORMAL_MEMORY)) 6249 tmp = -1; 6250 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6251 if (!pn) 6252 return 1; 6253 6254 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6255 mz = &pn->zoneinfo[zone]; 6256 lruvec_init(&mz->lruvec); 6257 mz->usage_in_excess = 0; 6258 mz->on_tree = false; 6259 mz->memcg = memcg; 6260 } 6261 memcg->nodeinfo[node] = pn; 6262 return 0; 6263} 6264 6265static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6266{ 6267 kfree(memcg->nodeinfo[node]); 6268} 6269 6270static struct mem_cgroup *mem_cgroup_alloc(void) 6271{ 6272 struct mem_cgroup *memcg; 6273 size_t size; 6274 6275 size = sizeof(struct mem_cgroup); 6276 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 6277 6278 memcg = kzalloc(size, GFP_KERNEL); 6279 if (!memcg) 6280 return NULL; 6281 6282 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6283 if (!memcg->stat) 6284 goto out_free; 6285 spin_lock_init(&memcg->pcp_counter_lock); 6286 return memcg; 6287 6288out_free: 6289 kfree(memcg); 6290 return NULL; 6291} 6292 6293/* 6294 * At destroying mem_cgroup, references from swap_cgroup can remain. 6295 * (scanning all at force_empty is too costly...) 6296 * 6297 * Instead of clearing all references at force_empty, we remember 6298 * the number of reference from swap_cgroup and free mem_cgroup when 6299 * it goes down to 0. 6300 * 6301 * Removal of cgroup itself succeeds regardless of refs from swap. 6302 */ 6303 6304static void __mem_cgroup_free(struct mem_cgroup *memcg) 6305{ 6306 int node; 6307 6308 mem_cgroup_remove_from_trees(memcg); 6309 6310 for_each_node(node) 6311 free_mem_cgroup_per_zone_info(memcg, node); 6312 6313 free_percpu(memcg->stat); 6314 6315 /* 6316 * We need to make sure that (at least for now), the jump label 6317 * destruction code runs outside of the cgroup lock. This is because 6318 * get_online_cpus(), which is called from the static_branch update, 6319 * can't be called inside the cgroup_lock. cpusets are the ones 6320 * enforcing this dependency, so if they ever change, we might as well. 6321 * 6322 * schedule_work() will guarantee this happens. Be careful if you need 6323 * to move this code around, and make sure it is outside 6324 * the cgroup_lock. 6325 */ 6326 disarm_static_keys(memcg); 6327 kfree(memcg); 6328} 6329 6330/* 6331 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6332 */ 6333struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6334{ 6335 if (!memcg->res.parent) 6336 return NULL; 6337 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6338} 6339EXPORT_SYMBOL(parent_mem_cgroup); 6340 6341static void __init mem_cgroup_soft_limit_tree_init(void) 6342{ 6343 struct mem_cgroup_tree_per_node *rtpn; 6344 struct mem_cgroup_tree_per_zone *rtpz; 6345 int tmp, node, zone; 6346 6347 for_each_node(node) { 6348 tmp = node; 6349 if (!node_state(node, N_NORMAL_MEMORY)) 6350 tmp = -1; 6351 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6352 BUG_ON(!rtpn); 6353 6354 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6355 6356 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6357 rtpz = &rtpn->rb_tree_per_zone[zone]; 6358 rtpz->rb_root = RB_ROOT; 6359 spin_lock_init(&rtpz->lock); 6360 } 6361 } 6362} 6363 6364static struct cgroup_subsys_state * __ref 6365mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6366{ 6367 struct mem_cgroup *memcg; 6368 long error = -ENOMEM; 6369 int node; 6370 6371 memcg = mem_cgroup_alloc(); 6372 if (!memcg) 6373 return ERR_PTR(error); 6374 6375 for_each_node(node) 6376 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6377 goto free_out; 6378 6379 /* root ? */ 6380 if (parent_css == NULL) { 6381 root_mem_cgroup = memcg; 6382 res_counter_init(&memcg->res, NULL); 6383 res_counter_init(&memcg->memsw, NULL); 6384 res_counter_init(&memcg->kmem, NULL); 6385 } 6386 6387 memcg->last_scanned_node = MAX_NUMNODES; 6388 INIT_LIST_HEAD(&memcg->oom_notify); 6389 memcg->move_charge_at_immigrate = 0; 6390 mutex_init(&memcg->thresholds_lock); 6391 spin_lock_init(&memcg->move_lock); 6392 vmpressure_init(&memcg->vmpressure); 6393 INIT_LIST_HEAD(&memcg->event_list); 6394 spin_lock_init(&memcg->event_list_lock); 6395 6396 return &memcg->css; 6397 6398free_out: 6399 __mem_cgroup_free(memcg); 6400 return ERR_PTR(error); 6401} 6402 6403static int 6404mem_cgroup_css_online(struct cgroup_subsys_state *css) 6405{ 6406 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6407 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6408 6409 if (css->cgroup->id > MEM_CGROUP_ID_MAX) 6410 return -ENOSPC; 6411 6412 if (!parent) 6413 return 0; 6414 6415 mutex_lock(&memcg_create_mutex); 6416 6417 memcg->use_hierarchy = parent->use_hierarchy; 6418 memcg->oom_kill_disable = parent->oom_kill_disable; 6419 memcg->swappiness = mem_cgroup_swappiness(parent); 6420 6421 if (parent->use_hierarchy) { 6422 res_counter_init(&memcg->res, &parent->res); 6423 res_counter_init(&memcg->memsw, &parent->memsw); 6424 res_counter_init(&memcg->kmem, &parent->kmem); 6425 6426 /* 6427 * No need to take a reference to the parent because cgroup 6428 * core guarantees its existence. 6429 */ 6430 } else { 6431 res_counter_init(&memcg->res, NULL); 6432 res_counter_init(&memcg->memsw, NULL); 6433 res_counter_init(&memcg->kmem, NULL); 6434 /* 6435 * Deeper hierachy with use_hierarchy == false doesn't make 6436 * much sense so let cgroup subsystem know about this 6437 * unfortunate state in our controller. 6438 */ 6439 if (parent != root_mem_cgroup) 6440 memory_cgrp_subsys.broken_hierarchy = true; 6441 } 6442 mutex_unlock(&memcg_create_mutex); 6443 6444 return memcg_init_kmem(memcg, &memory_cgrp_subsys); 6445} 6446 6447/* 6448 * Announce all parents that a group from their hierarchy is gone. 6449 */ 6450static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6451{ 6452 struct mem_cgroup *parent = memcg; 6453 6454 while ((parent = parent_mem_cgroup(parent))) 6455 mem_cgroup_iter_invalidate(parent); 6456 6457 /* 6458 * if the root memcg is not hierarchical we have to check it 6459 * explicitely. 6460 */ 6461 if (!root_mem_cgroup->use_hierarchy) 6462 mem_cgroup_iter_invalidate(root_mem_cgroup); 6463} 6464 6465static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6466{ 6467 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6468 struct mem_cgroup_event *event, *tmp; 6469 struct cgroup_subsys_state *iter; 6470 6471 /* 6472 * Unregister events and notify userspace. 6473 * Notify userspace about cgroup removing only after rmdir of cgroup 6474 * directory to avoid race between userspace and kernelspace. 6475 */ 6476 spin_lock(&memcg->event_list_lock); 6477 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 6478 list_del_init(&event->list); 6479 schedule_work(&event->remove); 6480 } 6481 spin_unlock(&memcg->event_list_lock); 6482 6483 kmem_cgroup_css_offline(memcg); 6484 6485 mem_cgroup_invalidate_reclaim_iterators(memcg); 6486 6487 /* 6488 * This requires that offlining is serialized. Right now that is 6489 * guaranteed because css_killed_work_fn() holds the cgroup_mutex. 6490 */ 6491 css_for_each_descendant_post(iter, css) 6492 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); 6493 6494 mem_cgroup_destroy_all_caches(memcg); 6495 vmpressure_cleanup(&memcg->vmpressure); 6496} 6497 6498static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6499{ 6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6501 /* 6502 * XXX: css_offline() would be where we should reparent all 6503 * memory to prepare the cgroup for destruction. However, 6504 * memcg does not do css_tryget() and res_counter charging 6505 * under the same RCU lock region, which means that charging 6506 * could race with offlining. Offlining only happens to 6507 * cgroups with no tasks in them but charges can show up 6508 * without any tasks from the swapin path when the target 6509 * memcg is looked up from the swapout record and not from the 6510 * current task as it usually is. A race like this can leak 6511 * charges and put pages with stale cgroup pointers into 6512 * circulation: 6513 * 6514 * #0 #1 6515 * lookup_swap_cgroup_id() 6516 * rcu_read_lock() 6517 * mem_cgroup_lookup() 6518 * css_tryget() 6519 * rcu_read_unlock() 6520 * disable css_tryget() 6521 * call_rcu() 6522 * offline_css() 6523 * reparent_charges() 6524 * res_counter_charge() 6525 * css_put() 6526 * css_free() 6527 * pc->mem_cgroup = dead memcg 6528 * add page to lru 6529 * 6530 * The bulk of the charges are still moved in offline_css() to 6531 * avoid pinning a lot of pages in case a long-term reference 6532 * like a swapout record is deferring the css_free() to long 6533 * after offlining. But this makes sure we catch any charges 6534 * made after offlining: 6535 */ 6536 mem_cgroup_reparent_charges(memcg); 6537 6538 memcg_destroy_kmem(memcg); 6539 __mem_cgroup_free(memcg); 6540} 6541 6542#ifdef CONFIG_MMU 6543/* Handlers for move charge at task migration. */ 6544#define PRECHARGE_COUNT_AT_ONCE 256 6545static int mem_cgroup_do_precharge(unsigned long count) 6546{ 6547 int ret = 0; 6548 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6549 struct mem_cgroup *memcg = mc.to; 6550 6551 if (mem_cgroup_is_root(memcg)) { 6552 mc.precharge += count; 6553 /* we don't need css_get for root */ 6554 return ret; 6555 } 6556 /* try to charge at once */ 6557 if (count > 1) { 6558 struct res_counter *dummy; 6559 /* 6560 * "memcg" cannot be under rmdir() because we've already checked 6561 * by cgroup_lock_live_cgroup() that it is not removed and we 6562 * are still under the same cgroup_mutex. So we can postpone 6563 * css_get(). 6564 */ 6565 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6566 goto one_by_one; 6567 if (do_swap_account && res_counter_charge(&memcg->memsw, 6568 PAGE_SIZE * count, &dummy)) { 6569 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6570 goto one_by_one; 6571 } 6572 mc.precharge += count; 6573 return ret; 6574 } 6575one_by_one: 6576 /* fall back to one by one charge */ 6577 while (count--) { 6578 if (signal_pending(current)) { 6579 ret = -EINTR; 6580 break; 6581 } 6582 if (!batch_count--) { 6583 batch_count = PRECHARGE_COUNT_AT_ONCE; 6584 cond_resched(); 6585 } 6586 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false); 6587 if (ret) 6588 /* mem_cgroup_clear_mc() will do uncharge later */ 6589 return ret; 6590 mc.precharge++; 6591 } 6592 return ret; 6593} 6594 6595/** 6596 * get_mctgt_type - get target type of moving charge 6597 * @vma: the vma the pte to be checked belongs 6598 * @addr: the address corresponding to the pte to be checked 6599 * @ptent: the pte to be checked 6600 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6601 * 6602 * Returns 6603 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6604 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6605 * move charge. if @target is not NULL, the page is stored in target->page 6606 * with extra refcnt got(Callers should handle it). 6607 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6608 * target for charge migration. if @target is not NULL, the entry is stored 6609 * in target->ent. 6610 * 6611 * Called with pte lock held. 6612 */ 6613union mc_target { 6614 struct page *page; 6615 swp_entry_t ent; 6616}; 6617 6618enum mc_target_type { 6619 MC_TARGET_NONE = 0, 6620 MC_TARGET_PAGE, 6621 MC_TARGET_SWAP, 6622}; 6623 6624static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6625 unsigned long addr, pte_t ptent) 6626{ 6627 struct page *page = vm_normal_page(vma, addr, ptent); 6628 6629 if (!page || !page_mapped(page)) 6630 return NULL; 6631 if (PageAnon(page)) { 6632 /* we don't move shared anon */ 6633 if (!move_anon()) 6634 return NULL; 6635 } else if (!move_file()) 6636 /* we ignore mapcount for file pages */ 6637 return NULL; 6638 if (!get_page_unless_zero(page)) 6639 return NULL; 6640 6641 return page; 6642} 6643 6644#ifdef CONFIG_SWAP 6645static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6646 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6647{ 6648 struct page *page = NULL; 6649 swp_entry_t ent = pte_to_swp_entry(ptent); 6650 6651 if (!move_anon() || non_swap_entry(ent)) 6652 return NULL; 6653 /* 6654 * Because lookup_swap_cache() updates some statistics counter, 6655 * we call find_get_page() with swapper_space directly. 6656 */ 6657 page = find_get_page(swap_address_space(ent), ent.val); 6658 if (do_swap_account) 6659 entry->val = ent.val; 6660 6661 return page; 6662} 6663#else 6664static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6665 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6666{ 6667 return NULL; 6668} 6669#endif 6670 6671static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6672 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6673{ 6674 struct page *page = NULL; 6675 struct address_space *mapping; 6676 pgoff_t pgoff; 6677 6678 if (!vma->vm_file) /* anonymous vma */ 6679 return NULL; 6680 if (!move_file()) 6681 return NULL; 6682 6683 mapping = vma->vm_file->f_mapping; 6684 if (pte_none(ptent)) 6685 pgoff = linear_page_index(vma, addr); 6686 else /* pte_file(ptent) is true */ 6687 pgoff = pte_to_pgoff(ptent); 6688 6689 /* page is moved even if it's not RSS of this task(page-faulted). */ 6690#ifdef CONFIG_SWAP 6691 /* shmem/tmpfs may report page out on swap: account for that too. */ 6692 if (shmem_mapping(mapping)) { 6693 page = find_get_entry(mapping, pgoff); 6694 if (radix_tree_exceptional_entry(page)) { 6695 swp_entry_t swp = radix_to_swp_entry(page); 6696 if (do_swap_account) 6697 *entry = swp; 6698 page = find_get_page(swap_address_space(swp), swp.val); 6699 } 6700 } else 6701 page = find_get_page(mapping, pgoff); 6702#else 6703 page = find_get_page(mapping, pgoff); 6704#endif 6705 return page; 6706} 6707 6708static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6709 unsigned long addr, pte_t ptent, union mc_target *target) 6710{ 6711 struct page *page = NULL; 6712 struct page_cgroup *pc; 6713 enum mc_target_type ret = MC_TARGET_NONE; 6714 swp_entry_t ent = { .val = 0 }; 6715 6716 if (pte_present(ptent)) 6717 page = mc_handle_present_pte(vma, addr, ptent); 6718 else if (is_swap_pte(ptent)) 6719 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6720 else if (pte_none(ptent) || pte_file(ptent)) 6721 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6722 6723 if (!page && !ent.val) 6724 return ret; 6725 if (page) { 6726 pc = lookup_page_cgroup(page); 6727 /* 6728 * Do only loose check w/o page_cgroup lock. 6729 * mem_cgroup_move_account() checks the pc is valid or not under 6730 * the lock. 6731 */ 6732 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6733 ret = MC_TARGET_PAGE; 6734 if (target) 6735 target->page = page; 6736 } 6737 if (!ret || !target) 6738 put_page(page); 6739 } 6740 /* There is a swap entry and a page doesn't exist or isn't charged */ 6741 if (ent.val && !ret && 6742 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6743 ret = MC_TARGET_SWAP; 6744 if (target) 6745 target->ent = ent; 6746 } 6747 return ret; 6748} 6749 6750#ifdef CONFIG_TRANSPARENT_HUGEPAGE 6751/* 6752 * We don't consider swapping or file mapped pages because THP does not 6753 * support them for now. 6754 * Caller should make sure that pmd_trans_huge(pmd) is true. 6755 */ 6756static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6757 unsigned long addr, pmd_t pmd, union mc_target *target) 6758{ 6759 struct page *page = NULL; 6760 struct page_cgroup *pc; 6761 enum mc_target_type ret = MC_TARGET_NONE; 6762 6763 page = pmd_page(pmd); 6764 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6765 if (!move_anon()) 6766 return ret; 6767 pc = lookup_page_cgroup(page); 6768 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6769 ret = MC_TARGET_PAGE; 6770 if (target) { 6771 get_page(page); 6772 target->page = page; 6773 } 6774 } 6775 return ret; 6776} 6777#else 6778static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6779 unsigned long addr, pmd_t pmd, union mc_target *target) 6780{ 6781 return MC_TARGET_NONE; 6782} 6783#endif 6784 6785static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6786 unsigned long addr, unsigned long end, 6787 struct mm_walk *walk) 6788{ 6789 struct vm_area_struct *vma = walk->private; 6790 pte_t *pte; 6791 spinlock_t *ptl; 6792 6793 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6794 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6795 mc.precharge += HPAGE_PMD_NR; 6796 spin_unlock(ptl); 6797 return 0; 6798 } 6799 6800 if (pmd_trans_unstable(pmd)) 6801 return 0; 6802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6803 for (; addr != end; pte++, addr += PAGE_SIZE) 6804 if (get_mctgt_type(vma, addr, *pte, NULL)) 6805 mc.precharge++; /* increment precharge temporarily */ 6806 pte_unmap_unlock(pte - 1, ptl); 6807 cond_resched(); 6808 6809 return 0; 6810} 6811 6812static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6813{ 6814 unsigned long precharge; 6815 struct vm_area_struct *vma; 6816 6817 down_read(&mm->mmap_sem); 6818 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6819 struct mm_walk mem_cgroup_count_precharge_walk = { 6820 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6821 .mm = mm, 6822 .private = vma, 6823 }; 6824 if (is_vm_hugetlb_page(vma)) 6825 continue; 6826 walk_page_range(vma->vm_start, vma->vm_end, 6827 &mem_cgroup_count_precharge_walk); 6828 } 6829 up_read(&mm->mmap_sem); 6830 6831 precharge = mc.precharge; 6832 mc.precharge = 0; 6833 6834 return precharge; 6835} 6836 6837static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6838{ 6839 unsigned long precharge = mem_cgroup_count_precharge(mm); 6840 6841 VM_BUG_ON(mc.moving_task); 6842 mc.moving_task = current; 6843 return mem_cgroup_do_precharge(precharge); 6844} 6845 6846/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6847static void __mem_cgroup_clear_mc(void) 6848{ 6849 struct mem_cgroup *from = mc.from; 6850 struct mem_cgroup *to = mc.to; 6851 int i; 6852 6853 /* we must uncharge all the leftover precharges from mc.to */ 6854 if (mc.precharge) { 6855 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6856 mc.precharge = 0; 6857 } 6858 /* 6859 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6860 * we must uncharge here. 6861 */ 6862 if (mc.moved_charge) { 6863 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6864 mc.moved_charge = 0; 6865 } 6866 /* we must fixup refcnts and charges */ 6867 if (mc.moved_swap) { 6868 /* uncharge swap account from the old cgroup */ 6869 if (!mem_cgroup_is_root(mc.from)) 6870 res_counter_uncharge(&mc.from->memsw, 6871 PAGE_SIZE * mc.moved_swap); 6872 6873 for (i = 0; i < mc.moved_swap; i++) 6874 css_put(&mc.from->css); 6875 6876 if (!mem_cgroup_is_root(mc.to)) { 6877 /* 6878 * we charged both to->res and to->memsw, so we should 6879 * uncharge to->res. 6880 */ 6881 res_counter_uncharge(&mc.to->res, 6882 PAGE_SIZE * mc.moved_swap); 6883 } 6884 /* we've already done css_get(mc.to) */ 6885 mc.moved_swap = 0; 6886 } 6887 memcg_oom_recover(from); 6888 memcg_oom_recover(to); 6889 wake_up_all(&mc.waitq); 6890} 6891 6892static void mem_cgroup_clear_mc(void) 6893{ 6894 struct mem_cgroup *from = mc.from; 6895 6896 /* 6897 * we must clear moving_task before waking up waiters at the end of 6898 * task migration. 6899 */ 6900 mc.moving_task = NULL; 6901 __mem_cgroup_clear_mc(); 6902 spin_lock(&mc.lock); 6903 mc.from = NULL; 6904 mc.to = NULL; 6905 spin_unlock(&mc.lock); 6906 mem_cgroup_end_move(from); 6907} 6908 6909static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6910 struct cgroup_taskset *tset) 6911{ 6912 struct task_struct *p = cgroup_taskset_first(tset); 6913 int ret = 0; 6914 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6915 unsigned long move_charge_at_immigrate; 6916 6917 /* 6918 * We are now commited to this value whatever it is. Changes in this 6919 * tunable will only affect upcoming migrations, not the current one. 6920 * So we need to save it, and keep it going. 6921 */ 6922 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6923 if (move_charge_at_immigrate) { 6924 struct mm_struct *mm; 6925 struct mem_cgroup *from = mem_cgroup_from_task(p); 6926 6927 VM_BUG_ON(from == memcg); 6928 6929 mm = get_task_mm(p); 6930 if (!mm) 6931 return 0; 6932 /* We move charges only when we move a owner of the mm */ 6933 if (mm->owner == p) { 6934 VM_BUG_ON(mc.from); 6935 VM_BUG_ON(mc.to); 6936 VM_BUG_ON(mc.precharge); 6937 VM_BUG_ON(mc.moved_charge); 6938 VM_BUG_ON(mc.moved_swap); 6939 mem_cgroup_start_move(from); 6940 spin_lock(&mc.lock); 6941 mc.from = from; 6942 mc.to = memcg; 6943 mc.immigrate_flags = move_charge_at_immigrate; 6944 spin_unlock(&mc.lock); 6945 /* We set mc.moving_task later */ 6946 6947 ret = mem_cgroup_precharge_mc(mm); 6948 if (ret) 6949 mem_cgroup_clear_mc(); 6950 } 6951 mmput(mm); 6952 } 6953 return ret; 6954} 6955 6956static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6957 struct cgroup_taskset *tset) 6958{ 6959 mem_cgroup_clear_mc(); 6960} 6961 6962static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6963 unsigned long addr, unsigned long end, 6964 struct mm_walk *walk) 6965{ 6966 int ret = 0; 6967 struct vm_area_struct *vma = walk->private; 6968 pte_t *pte; 6969 spinlock_t *ptl; 6970 enum mc_target_type target_type; 6971 union mc_target target; 6972 struct page *page; 6973 struct page_cgroup *pc; 6974 6975 /* 6976 * We don't take compound_lock() here but no race with splitting thp 6977 * happens because: 6978 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6979 * under splitting, which means there's no concurrent thp split, 6980 * - if another thread runs into split_huge_page() just after we 6981 * entered this if-block, the thread must wait for page table lock 6982 * to be unlocked in __split_huge_page_splitting(), where the main 6983 * part of thp split is not executed yet. 6984 */ 6985 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6986 if (mc.precharge < HPAGE_PMD_NR) { 6987 spin_unlock(ptl); 6988 return 0; 6989 } 6990 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6991 if (target_type == MC_TARGET_PAGE) { 6992 page = target.page; 6993 if (!isolate_lru_page(page)) { 6994 pc = lookup_page_cgroup(page); 6995 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6996 pc, mc.from, mc.to)) { 6997 mc.precharge -= HPAGE_PMD_NR; 6998 mc.moved_charge += HPAGE_PMD_NR; 6999 } 7000 putback_lru_page(page); 7001 } 7002 put_page(page); 7003 } 7004 spin_unlock(ptl); 7005 return 0; 7006 } 7007 7008 if (pmd_trans_unstable(pmd)) 7009 return 0; 7010retry: 7011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 7012 for (; addr != end; addr += PAGE_SIZE) { 7013 pte_t ptent = *(pte++); 7014 swp_entry_t ent; 7015 7016 if (!mc.precharge) 7017 break; 7018 7019 switch (get_mctgt_type(vma, addr, ptent, &target)) { 7020 case MC_TARGET_PAGE: 7021 page = target.page; 7022 if (isolate_lru_page(page)) 7023 goto put; 7024 pc = lookup_page_cgroup(page); 7025 if (!mem_cgroup_move_account(page, 1, pc, 7026 mc.from, mc.to)) { 7027 mc.precharge--; 7028 /* we uncharge from mc.from later. */ 7029 mc.moved_charge++; 7030 } 7031 putback_lru_page(page); 7032put: /* get_mctgt_type() gets the page */ 7033 put_page(page); 7034 break; 7035 case MC_TARGET_SWAP: 7036 ent = target.ent; 7037 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 7038 mc.precharge--; 7039 /* we fixup refcnts and charges later. */ 7040 mc.moved_swap++; 7041 } 7042 break; 7043 default: 7044 break; 7045 } 7046 } 7047 pte_unmap_unlock(pte - 1, ptl); 7048 cond_resched(); 7049 7050 if (addr != end) { 7051 /* 7052 * We have consumed all precharges we got in can_attach(). 7053 * We try charge one by one, but don't do any additional 7054 * charges to mc.to if we have failed in charge once in attach() 7055 * phase. 7056 */ 7057 ret = mem_cgroup_do_precharge(1); 7058 if (!ret) 7059 goto retry; 7060 } 7061 7062 return ret; 7063} 7064 7065static void mem_cgroup_move_charge(struct mm_struct *mm) 7066{ 7067 struct vm_area_struct *vma; 7068 7069 lru_add_drain_all(); 7070retry: 7071 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 7072 /* 7073 * Someone who are holding the mmap_sem might be waiting in 7074 * waitq. So we cancel all extra charges, wake up all waiters, 7075 * and retry. Because we cancel precharges, we might not be able 7076 * to move enough charges, but moving charge is a best-effort 7077 * feature anyway, so it wouldn't be a big problem. 7078 */ 7079 __mem_cgroup_clear_mc(); 7080 cond_resched(); 7081 goto retry; 7082 } 7083 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7084 int ret; 7085 struct mm_walk mem_cgroup_move_charge_walk = { 7086 .pmd_entry = mem_cgroup_move_charge_pte_range, 7087 .mm = mm, 7088 .private = vma, 7089 }; 7090 if (is_vm_hugetlb_page(vma)) 7091 continue; 7092 ret = walk_page_range(vma->vm_start, vma->vm_end, 7093 &mem_cgroup_move_charge_walk); 7094 if (ret) 7095 /* 7096 * means we have consumed all precharges and failed in 7097 * doing additional charge. Just abandon here. 7098 */ 7099 break; 7100 } 7101 up_read(&mm->mmap_sem); 7102} 7103 7104static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 7105 struct cgroup_taskset *tset) 7106{ 7107 struct task_struct *p = cgroup_taskset_first(tset); 7108 struct mm_struct *mm = get_task_mm(p); 7109 7110 if (mm) { 7111 if (mc.to) 7112 mem_cgroup_move_charge(mm); 7113 mmput(mm); 7114 } 7115 if (mc.to) 7116 mem_cgroup_clear_mc(); 7117} 7118#else /* !CONFIG_MMU */ 7119static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 7120 struct cgroup_taskset *tset) 7121{ 7122 return 0; 7123} 7124static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 7125 struct cgroup_taskset *tset) 7126{ 7127} 7128static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 7129 struct cgroup_taskset *tset) 7130{ 7131} 7132#endif 7133 7134/* 7135 * Cgroup retains root cgroups across [un]mount cycles making it necessary 7136 * to verify sane_behavior flag on each mount attempt. 7137 */ 7138static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 7139{ 7140 /* 7141 * use_hierarchy is forced with sane_behavior. cgroup core 7142 * guarantees that @root doesn't have any children, so turning it 7143 * on for the root memcg is enough. 7144 */ 7145 if (cgroup_sane_behavior(root_css->cgroup)) 7146 mem_cgroup_from_css(root_css)->use_hierarchy = true; 7147} 7148 7149struct cgroup_subsys memory_cgrp_subsys = { 7150 .css_alloc = mem_cgroup_css_alloc, 7151 .css_online = mem_cgroup_css_online, 7152 .css_offline = mem_cgroup_css_offline, 7153 .css_free = mem_cgroup_css_free, 7154 .can_attach = mem_cgroup_can_attach, 7155 .cancel_attach = mem_cgroup_cancel_attach, 7156 .attach = mem_cgroup_move_task, 7157 .bind = mem_cgroup_bind, 7158 .base_cftypes = mem_cgroup_files, 7159 .early_init = 0, 7160}; 7161 7162#ifdef CONFIG_MEMCG_SWAP 7163static int __init enable_swap_account(char *s) 7164{ 7165 if (!strcmp(s, "1")) 7166 really_do_swap_account = 1; 7167 else if (!strcmp(s, "0")) 7168 really_do_swap_account = 0; 7169 return 1; 7170} 7171__setup("swapaccount=", enable_swap_account); 7172 7173static void __init memsw_file_init(void) 7174{ 7175 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files)); 7176} 7177 7178static void __init enable_swap_cgroup(void) 7179{ 7180 if (!mem_cgroup_disabled() && really_do_swap_account) { 7181 do_swap_account = 1; 7182 memsw_file_init(); 7183 } 7184} 7185 7186#else 7187static void __init enable_swap_cgroup(void) 7188{ 7189} 7190#endif 7191 7192/* 7193 * subsys_initcall() for memory controller. 7194 * 7195 * Some parts like hotcpu_notifier() have to be initialized from this context 7196 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7197 * everything that doesn't depend on a specific mem_cgroup structure should 7198 * be initialized from here. 7199 */ 7200static int __init mem_cgroup_init(void) 7201{ 7202 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7203 enable_swap_cgroup(); 7204 mem_cgroup_soft_limit_tree_init(); 7205 memcg_stock_init(); 7206 return 0; 7207} 7208subsys_initcall(mem_cgroup_init);