at v3.15-rc7 1264 lines 35 kB view raw
1/* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10#include <linux/swap.h> 11#include <linux/migrate.h> 12#include <linux/compaction.h> 13#include <linux/mm_inline.h> 14#include <linux/backing-dev.h> 15#include <linux/sysctl.h> 16#include <linux/sysfs.h> 17#include <linux/balloon_compaction.h> 18#include <linux/page-isolation.h> 19#include "internal.h" 20 21#ifdef CONFIG_COMPACTION 22static inline void count_compact_event(enum vm_event_item item) 23{ 24 count_vm_event(item); 25} 26 27static inline void count_compact_events(enum vm_event_item item, long delta) 28{ 29 count_vm_events(item, delta); 30} 31#else 32#define count_compact_event(item) do { } while (0) 33#define count_compact_events(item, delta) do { } while (0) 34#endif 35 36#if defined CONFIG_COMPACTION || defined CONFIG_CMA 37 38#define CREATE_TRACE_POINTS 39#include <trace/events/compaction.h> 40 41static unsigned long release_freepages(struct list_head *freelist) 42{ 43 struct page *page, *next; 44 unsigned long count = 0; 45 46 list_for_each_entry_safe(page, next, freelist, lru) { 47 list_del(&page->lru); 48 __free_page(page); 49 count++; 50 } 51 52 return count; 53} 54 55static void map_pages(struct list_head *list) 56{ 57 struct page *page; 58 59 list_for_each_entry(page, list, lru) { 60 arch_alloc_page(page, 0); 61 kernel_map_pages(page, 1, 1); 62 } 63} 64 65static inline bool migrate_async_suitable(int migratetype) 66{ 67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 68} 69 70#ifdef CONFIG_COMPACTION 71/* Returns true if the pageblock should be scanned for pages to isolate. */ 72static inline bool isolation_suitable(struct compact_control *cc, 73 struct page *page) 74{ 75 if (cc->ignore_skip_hint) 76 return true; 77 78 return !get_pageblock_skip(page); 79} 80 81/* 82 * This function is called to clear all cached information on pageblocks that 83 * should be skipped for page isolation when the migrate and free page scanner 84 * meet. 85 */ 86static void __reset_isolation_suitable(struct zone *zone) 87{ 88 unsigned long start_pfn = zone->zone_start_pfn; 89 unsigned long end_pfn = zone_end_pfn(zone); 90 unsigned long pfn; 91 92 zone->compact_cached_migrate_pfn = start_pfn; 93 zone->compact_cached_free_pfn = end_pfn; 94 zone->compact_blockskip_flush = false; 95 96 /* Walk the zone and mark every pageblock as suitable for isolation */ 97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 98 struct page *page; 99 100 cond_resched(); 101 102 if (!pfn_valid(pfn)) 103 continue; 104 105 page = pfn_to_page(pfn); 106 if (zone != page_zone(page)) 107 continue; 108 109 clear_pageblock_skip(page); 110 } 111} 112 113void reset_isolation_suitable(pg_data_t *pgdat) 114{ 115 int zoneid; 116 117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 118 struct zone *zone = &pgdat->node_zones[zoneid]; 119 if (!populated_zone(zone)) 120 continue; 121 122 /* Only flush if a full compaction finished recently */ 123 if (zone->compact_blockskip_flush) 124 __reset_isolation_suitable(zone); 125 } 126} 127 128/* 129 * If no pages were isolated then mark this pageblock to be skipped in the 130 * future. The information is later cleared by __reset_isolation_suitable(). 131 */ 132static void update_pageblock_skip(struct compact_control *cc, 133 struct page *page, unsigned long nr_isolated, 134 bool migrate_scanner) 135{ 136 struct zone *zone = cc->zone; 137 138 if (cc->ignore_skip_hint) 139 return; 140 141 if (!page) 142 return; 143 144 if (!nr_isolated) { 145 unsigned long pfn = page_to_pfn(page); 146 set_pageblock_skip(page); 147 148 /* Update where compaction should restart */ 149 if (migrate_scanner) { 150 if (!cc->finished_update_migrate && 151 pfn > zone->compact_cached_migrate_pfn) 152 zone->compact_cached_migrate_pfn = pfn; 153 } else { 154 if (!cc->finished_update_free && 155 pfn < zone->compact_cached_free_pfn) 156 zone->compact_cached_free_pfn = pfn; 157 } 158 } 159} 160#else 161static inline bool isolation_suitable(struct compact_control *cc, 162 struct page *page) 163{ 164 return true; 165} 166 167static void update_pageblock_skip(struct compact_control *cc, 168 struct page *page, unsigned long nr_isolated, 169 bool migrate_scanner) 170{ 171} 172#endif /* CONFIG_COMPACTION */ 173 174static inline bool should_release_lock(spinlock_t *lock) 175{ 176 return need_resched() || spin_is_contended(lock); 177} 178 179/* 180 * Compaction requires the taking of some coarse locks that are potentially 181 * very heavily contended. Check if the process needs to be scheduled or 182 * if the lock is contended. For async compaction, back out in the event 183 * if contention is severe. For sync compaction, schedule. 184 * 185 * Returns true if the lock is held. 186 * Returns false if the lock is released and compaction should abort 187 */ 188static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 189 bool locked, struct compact_control *cc) 190{ 191 if (should_release_lock(lock)) { 192 if (locked) { 193 spin_unlock_irqrestore(lock, *flags); 194 locked = false; 195 } 196 197 /* async aborts if taking too long or contended */ 198 if (!cc->sync) { 199 cc->contended = true; 200 return false; 201 } 202 203 cond_resched(); 204 } 205 206 if (!locked) 207 spin_lock_irqsave(lock, *flags); 208 return true; 209} 210 211static inline bool compact_trylock_irqsave(spinlock_t *lock, 212 unsigned long *flags, struct compact_control *cc) 213{ 214 return compact_checklock_irqsave(lock, flags, false, cc); 215} 216 217/* Returns true if the page is within a block suitable for migration to */ 218static bool suitable_migration_target(struct page *page) 219{ 220 /* If the page is a large free page, then disallow migration */ 221 if (PageBuddy(page) && page_order(page) >= pageblock_order) 222 return false; 223 224 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 225 if (migrate_async_suitable(get_pageblock_migratetype(page))) 226 return true; 227 228 /* Otherwise skip the block */ 229 return false; 230} 231 232/* 233 * Isolate free pages onto a private freelist. If @strict is true, will abort 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 235 * (even though it may still end up isolating some pages). 236 */ 237static unsigned long isolate_freepages_block(struct compact_control *cc, 238 unsigned long blockpfn, 239 unsigned long end_pfn, 240 struct list_head *freelist, 241 bool strict) 242{ 243 int nr_scanned = 0, total_isolated = 0; 244 struct page *cursor, *valid_page = NULL; 245 unsigned long flags; 246 bool locked = false; 247 bool checked_pageblock = false; 248 249 cursor = pfn_to_page(blockpfn); 250 251 /* Isolate free pages. */ 252 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 253 int isolated, i; 254 struct page *page = cursor; 255 256 nr_scanned++; 257 if (!pfn_valid_within(blockpfn)) 258 goto isolate_fail; 259 260 if (!valid_page) 261 valid_page = page; 262 if (!PageBuddy(page)) 263 goto isolate_fail; 264 265 /* 266 * The zone lock must be held to isolate freepages. 267 * Unfortunately this is a very coarse lock and can be 268 * heavily contended if there are parallel allocations 269 * or parallel compactions. For async compaction do not 270 * spin on the lock and we acquire the lock as late as 271 * possible. 272 */ 273 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 274 locked, cc); 275 if (!locked) 276 break; 277 278 /* Recheck this is a suitable migration target under lock */ 279 if (!strict && !checked_pageblock) { 280 /* 281 * We need to check suitability of pageblock only once 282 * and this isolate_freepages_block() is called with 283 * pageblock range, so just check once is sufficient. 284 */ 285 checked_pageblock = true; 286 if (!suitable_migration_target(page)) 287 break; 288 } 289 290 /* Recheck this is a buddy page under lock */ 291 if (!PageBuddy(page)) 292 goto isolate_fail; 293 294 /* Found a free page, break it into order-0 pages */ 295 isolated = split_free_page(page); 296 total_isolated += isolated; 297 for (i = 0; i < isolated; i++) { 298 list_add(&page->lru, freelist); 299 page++; 300 } 301 302 /* If a page was split, advance to the end of it */ 303 if (isolated) { 304 blockpfn += isolated - 1; 305 cursor += isolated - 1; 306 continue; 307 } 308 309isolate_fail: 310 if (strict) 311 break; 312 else 313 continue; 314 315 } 316 317 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 318 319 /* 320 * If strict isolation is requested by CMA then check that all the 321 * pages requested were isolated. If there were any failures, 0 is 322 * returned and CMA will fail. 323 */ 324 if (strict && blockpfn < end_pfn) 325 total_isolated = 0; 326 327 if (locked) 328 spin_unlock_irqrestore(&cc->zone->lock, flags); 329 330 /* Update the pageblock-skip if the whole pageblock was scanned */ 331 if (blockpfn == end_pfn) 332 update_pageblock_skip(cc, valid_page, total_isolated, false); 333 334 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 335 if (total_isolated) 336 count_compact_events(COMPACTISOLATED, total_isolated); 337 return total_isolated; 338} 339 340/** 341 * isolate_freepages_range() - isolate free pages. 342 * @start_pfn: The first PFN to start isolating. 343 * @end_pfn: The one-past-last PFN. 344 * 345 * Non-free pages, invalid PFNs, or zone boundaries within the 346 * [start_pfn, end_pfn) range are considered errors, cause function to 347 * undo its actions and return zero. 348 * 349 * Otherwise, function returns one-past-the-last PFN of isolated page 350 * (which may be greater then end_pfn if end fell in a middle of 351 * a free page). 352 */ 353unsigned long 354isolate_freepages_range(struct compact_control *cc, 355 unsigned long start_pfn, unsigned long end_pfn) 356{ 357 unsigned long isolated, pfn, block_end_pfn; 358 LIST_HEAD(freelist); 359 360 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 361 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 362 break; 363 364 /* 365 * On subsequent iterations ALIGN() is actually not needed, 366 * but we keep it that we not to complicate the code. 367 */ 368 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 369 block_end_pfn = min(block_end_pfn, end_pfn); 370 371 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 372 &freelist, true); 373 374 /* 375 * In strict mode, isolate_freepages_block() returns 0 if 376 * there are any holes in the block (ie. invalid PFNs or 377 * non-free pages). 378 */ 379 if (!isolated) 380 break; 381 382 /* 383 * If we managed to isolate pages, it is always (1 << n) * 384 * pageblock_nr_pages for some non-negative n. (Max order 385 * page may span two pageblocks). 386 */ 387 } 388 389 /* split_free_page does not map the pages */ 390 map_pages(&freelist); 391 392 if (pfn < end_pfn) { 393 /* Loop terminated early, cleanup. */ 394 release_freepages(&freelist); 395 return 0; 396 } 397 398 /* We don't use freelists for anything. */ 399 return pfn; 400} 401 402/* Update the number of anon and file isolated pages in the zone */ 403static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 404{ 405 struct page *page; 406 unsigned int count[2] = { 0, }; 407 408 list_for_each_entry(page, &cc->migratepages, lru) 409 count[!!page_is_file_cache(page)]++; 410 411 /* If locked we can use the interrupt unsafe versions */ 412 if (locked) { 413 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 414 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 415 } else { 416 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 417 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 418 } 419} 420 421/* Similar to reclaim, but different enough that they don't share logic */ 422static bool too_many_isolated(struct zone *zone) 423{ 424 unsigned long active, inactive, isolated; 425 426 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 427 zone_page_state(zone, NR_INACTIVE_ANON); 428 active = zone_page_state(zone, NR_ACTIVE_FILE) + 429 zone_page_state(zone, NR_ACTIVE_ANON); 430 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 431 zone_page_state(zone, NR_ISOLATED_ANON); 432 433 return isolated > (inactive + active) / 2; 434} 435 436/** 437 * isolate_migratepages_range() - isolate all migrate-able pages in range. 438 * @zone: Zone pages are in. 439 * @cc: Compaction control structure. 440 * @low_pfn: The first PFN of the range. 441 * @end_pfn: The one-past-the-last PFN of the range. 442 * @unevictable: true if it allows to isolate unevictable pages 443 * 444 * Isolate all pages that can be migrated from the range specified by 445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 446 * pending), otherwise PFN of the first page that was not scanned 447 * (which may be both less, equal to or more then end_pfn). 448 * 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 450 * zero. 451 * 452 * Apart from cc->migratepages and cc->nr_migratetypes this function 453 * does not modify any cc's fields, in particular it does not modify 454 * (or read for that matter) cc->migrate_pfn. 455 */ 456unsigned long 457isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 458 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 459{ 460 unsigned long last_pageblock_nr = 0, pageblock_nr; 461 unsigned long nr_scanned = 0, nr_isolated = 0; 462 struct list_head *migratelist = &cc->migratepages; 463 struct lruvec *lruvec; 464 unsigned long flags; 465 bool locked = false; 466 struct page *page = NULL, *valid_page = NULL; 467 bool skipped_async_unsuitable = false; 468 const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) | 469 (unevictable ? ISOLATE_UNEVICTABLE : 0); 470 471 /* 472 * Ensure that there are not too many pages isolated from the LRU 473 * list by either parallel reclaimers or compaction. If there are, 474 * delay for some time until fewer pages are isolated 475 */ 476 while (unlikely(too_many_isolated(zone))) { 477 /* async migration should just abort */ 478 if (!cc->sync) 479 return 0; 480 481 congestion_wait(BLK_RW_ASYNC, HZ/10); 482 483 if (fatal_signal_pending(current)) 484 return 0; 485 } 486 487 /* Time to isolate some pages for migration */ 488 cond_resched(); 489 for (; low_pfn < end_pfn; low_pfn++) { 490 /* give a chance to irqs before checking need_resched() */ 491 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) { 492 if (should_release_lock(&zone->lru_lock)) { 493 spin_unlock_irqrestore(&zone->lru_lock, flags); 494 locked = false; 495 } 496 } 497 498 /* 499 * migrate_pfn does not necessarily start aligned to a 500 * pageblock. Ensure that pfn_valid is called when moving 501 * into a new MAX_ORDER_NR_PAGES range in case of large 502 * memory holes within the zone 503 */ 504 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 505 if (!pfn_valid(low_pfn)) { 506 low_pfn += MAX_ORDER_NR_PAGES - 1; 507 continue; 508 } 509 } 510 511 if (!pfn_valid_within(low_pfn)) 512 continue; 513 nr_scanned++; 514 515 /* 516 * Get the page and ensure the page is within the same zone. 517 * See the comment in isolate_freepages about overlapping 518 * nodes. It is deliberate that the new zone lock is not taken 519 * as memory compaction should not move pages between nodes. 520 */ 521 page = pfn_to_page(low_pfn); 522 if (page_zone(page) != zone) 523 continue; 524 525 if (!valid_page) 526 valid_page = page; 527 528 /* If isolation recently failed, do not retry */ 529 pageblock_nr = low_pfn >> pageblock_order; 530 if (last_pageblock_nr != pageblock_nr) { 531 int mt; 532 533 last_pageblock_nr = pageblock_nr; 534 if (!isolation_suitable(cc, page)) 535 goto next_pageblock; 536 537 /* 538 * For async migration, also only scan in MOVABLE 539 * blocks. Async migration is optimistic to see if 540 * the minimum amount of work satisfies the allocation 541 */ 542 mt = get_pageblock_migratetype(page); 543 if (!cc->sync && !migrate_async_suitable(mt)) { 544 cc->finished_update_migrate = true; 545 skipped_async_unsuitable = true; 546 goto next_pageblock; 547 } 548 } 549 550 /* 551 * Skip if free. page_order cannot be used without zone->lock 552 * as nothing prevents parallel allocations or buddy merging. 553 */ 554 if (PageBuddy(page)) 555 continue; 556 557 /* 558 * Check may be lockless but that's ok as we recheck later. 559 * It's possible to migrate LRU pages and balloon pages 560 * Skip any other type of page 561 */ 562 if (!PageLRU(page)) { 563 if (unlikely(balloon_page_movable(page))) { 564 if (locked && balloon_page_isolate(page)) { 565 /* Successfully isolated */ 566 goto isolate_success; 567 } 568 } 569 continue; 570 } 571 572 /* 573 * PageLRU is set. lru_lock normally excludes isolation 574 * splitting and collapsing (collapsing has already happened 575 * if PageLRU is set) but the lock is not necessarily taken 576 * here and it is wasteful to take it just to check transhuge. 577 * Check TransHuge without lock and skip the whole pageblock if 578 * it's either a transhuge or hugetlbfs page, as calling 579 * compound_order() without preventing THP from splitting the 580 * page underneath us may return surprising results. 581 */ 582 if (PageTransHuge(page)) { 583 if (!locked) 584 goto next_pageblock; 585 low_pfn += (1 << compound_order(page)) - 1; 586 continue; 587 } 588 589 /* 590 * Migration will fail if an anonymous page is pinned in memory, 591 * so avoid taking lru_lock and isolating it unnecessarily in an 592 * admittedly racy check. 593 */ 594 if (!page_mapping(page) && 595 page_count(page) > page_mapcount(page)) 596 continue; 597 598 /* Check if it is ok to still hold the lock */ 599 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 600 locked, cc); 601 if (!locked || fatal_signal_pending(current)) 602 break; 603 604 /* Recheck PageLRU and PageTransHuge under lock */ 605 if (!PageLRU(page)) 606 continue; 607 if (PageTransHuge(page)) { 608 low_pfn += (1 << compound_order(page)) - 1; 609 continue; 610 } 611 612 lruvec = mem_cgroup_page_lruvec(page, zone); 613 614 /* Try isolate the page */ 615 if (__isolate_lru_page(page, mode) != 0) 616 continue; 617 618 VM_BUG_ON_PAGE(PageTransCompound(page), page); 619 620 /* Successfully isolated */ 621 del_page_from_lru_list(page, lruvec, page_lru(page)); 622 623isolate_success: 624 cc->finished_update_migrate = true; 625 list_add(&page->lru, migratelist); 626 cc->nr_migratepages++; 627 nr_isolated++; 628 629 /* Avoid isolating too much */ 630 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 631 ++low_pfn; 632 break; 633 } 634 635 continue; 636 637next_pageblock: 638 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; 639 } 640 641 acct_isolated(zone, locked, cc); 642 643 if (locked) 644 spin_unlock_irqrestore(&zone->lru_lock, flags); 645 646 /* 647 * Update the pageblock-skip information and cached scanner pfn, 648 * if the whole pageblock was scanned without isolating any page. 649 * This is not done when pageblock was skipped due to being unsuitable 650 * for async compaction, so that eventual sync compaction can try. 651 */ 652 if (low_pfn == end_pfn && !skipped_async_unsuitable) 653 update_pageblock_skip(cc, valid_page, nr_isolated, true); 654 655 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 656 657 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 658 if (nr_isolated) 659 count_compact_events(COMPACTISOLATED, nr_isolated); 660 661 return low_pfn; 662} 663 664#endif /* CONFIG_COMPACTION || CONFIG_CMA */ 665#ifdef CONFIG_COMPACTION 666/* 667 * Based on information in the current compact_control, find blocks 668 * suitable for isolating free pages from and then isolate them. 669 */ 670static void isolate_freepages(struct zone *zone, 671 struct compact_control *cc) 672{ 673 struct page *page; 674 unsigned long high_pfn, low_pfn, pfn, z_end_pfn; 675 int nr_freepages = cc->nr_freepages; 676 struct list_head *freelist = &cc->freepages; 677 678 /* 679 * Initialise the free scanner. The starting point is where we last 680 * successfully isolated from, zone-cached value, or the end of the 681 * zone when isolating for the first time. We need this aligned to 682 * the pageblock boundary, because we do pfn -= pageblock_nr_pages 683 * in the for loop. 684 * The low boundary is the end of the pageblock the migration scanner 685 * is using. 686 */ 687 pfn = cc->free_pfn & ~(pageblock_nr_pages-1); 688 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 689 690 /* 691 * Take care that if the migration scanner is at the end of the zone 692 * that the free scanner does not accidentally move to the next zone 693 * in the next isolation cycle. 694 */ 695 high_pfn = min(low_pfn, pfn); 696 697 z_end_pfn = zone_end_pfn(zone); 698 699 /* 700 * Isolate free pages until enough are available to migrate the 701 * pages on cc->migratepages. We stop searching if the migrate 702 * and free page scanners meet or enough free pages are isolated. 703 */ 704 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages; 705 pfn -= pageblock_nr_pages) { 706 unsigned long isolated; 707 unsigned long end_pfn; 708 709 /* 710 * This can iterate a massively long zone without finding any 711 * suitable migration targets, so periodically check if we need 712 * to schedule. 713 */ 714 cond_resched(); 715 716 if (!pfn_valid(pfn)) 717 continue; 718 719 /* 720 * Check for overlapping nodes/zones. It's possible on some 721 * configurations to have a setup like 722 * node0 node1 node0 723 * i.e. it's possible that all pages within a zones range of 724 * pages do not belong to a single zone. 725 */ 726 page = pfn_to_page(pfn); 727 if (page_zone(page) != zone) 728 continue; 729 730 /* Check the block is suitable for migration */ 731 if (!suitable_migration_target(page)) 732 continue; 733 734 /* If isolation recently failed, do not retry */ 735 if (!isolation_suitable(cc, page)) 736 continue; 737 738 /* Found a block suitable for isolating free pages from */ 739 isolated = 0; 740 741 /* 742 * Take care when isolating in last pageblock of a zone which 743 * ends in the middle of a pageblock. 744 */ 745 end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn); 746 isolated = isolate_freepages_block(cc, pfn, end_pfn, 747 freelist, false); 748 nr_freepages += isolated; 749 750 /* 751 * Record the highest PFN we isolated pages from. When next 752 * looking for free pages, the search will restart here as 753 * page migration may have returned some pages to the allocator 754 */ 755 if (isolated) { 756 cc->finished_update_free = true; 757 high_pfn = max(high_pfn, pfn); 758 } 759 } 760 761 /* split_free_page does not map the pages */ 762 map_pages(freelist); 763 764 /* 765 * If we crossed the migrate scanner, we want to keep it that way 766 * so that compact_finished() may detect this 767 */ 768 if (pfn < low_pfn) 769 cc->free_pfn = max(pfn, zone->zone_start_pfn); 770 else 771 cc->free_pfn = high_pfn; 772 cc->nr_freepages = nr_freepages; 773} 774 775/* 776 * This is a migrate-callback that "allocates" freepages by taking pages 777 * from the isolated freelists in the block we are migrating to. 778 */ 779static struct page *compaction_alloc(struct page *migratepage, 780 unsigned long data, 781 int **result) 782{ 783 struct compact_control *cc = (struct compact_control *)data; 784 struct page *freepage; 785 786 /* Isolate free pages if necessary */ 787 if (list_empty(&cc->freepages)) { 788 isolate_freepages(cc->zone, cc); 789 790 if (list_empty(&cc->freepages)) 791 return NULL; 792 } 793 794 freepage = list_entry(cc->freepages.next, struct page, lru); 795 list_del(&freepage->lru); 796 cc->nr_freepages--; 797 798 return freepage; 799} 800 801/* 802 * We cannot control nr_migratepages and nr_freepages fully when migration is 803 * running as migrate_pages() has no knowledge of compact_control. When 804 * migration is complete, we count the number of pages on the lists by hand. 805 */ 806static void update_nr_listpages(struct compact_control *cc) 807{ 808 int nr_migratepages = 0; 809 int nr_freepages = 0; 810 struct page *page; 811 812 list_for_each_entry(page, &cc->migratepages, lru) 813 nr_migratepages++; 814 list_for_each_entry(page, &cc->freepages, lru) 815 nr_freepages++; 816 817 cc->nr_migratepages = nr_migratepages; 818 cc->nr_freepages = nr_freepages; 819} 820 821/* possible outcome of isolate_migratepages */ 822typedef enum { 823 ISOLATE_ABORT, /* Abort compaction now */ 824 ISOLATE_NONE, /* No pages isolated, continue scanning */ 825 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 826} isolate_migrate_t; 827 828/* 829 * Isolate all pages that can be migrated from the block pointed to by 830 * the migrate scanner within compact_control. 831 */ 832static isolate_migrate_t isolate_migratepages(struct zone *zone, 833 struct compact_control *cc) 834{ 835 unsigned long low_pfn, end_pfn; 836 837 /* Do not scan outside zone boundaries */ 838 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 839 840 /* Only scan within a pageblock boundary */ 841 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 842 843 /* Do not cross the free scanner or scan within a memory hole */ 844 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 845 cc->migrate_pfn = end_pfn; 846 return ISOLATE_NONE; 847 } 848 849 /* Perform the isolation */ 850 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 851 if (!low_pfn || cc->contended) 852 return ISOLATE_ABORT; 853 854 cc->migrate_pfn = low_pfn; 855 856 return ISOLATE_SUCCESS; 857} 858 859static int compact_finished(struct zone *zone, 860 struct compact_control *cc) 861{ 862 unsigned int order; 863 unsigned long watermark; 864 865 if (fatal_signal_pending(current)) 866 return COMPACT_PARTIAL; 867 868 /* Compaction run completes if the migrate and free scanner meet */ 869 if (cc->free_pfn <= cc->migrate_pfn) { 870 /* Let the next compaction start anew. */ 871 zone->compact_cached_migrate_pfn = zone->zone_start_pfn; 872 zone->compact_cached_free_pfn = zone_end_pfn(zone); 873 874 /* 875 * Mark that the PG_migrate_skip information should be cleared 876 * by kswapd when it goes to sleep. kswapd does not set the 877 * flag itself as the decision to be clear should be directly 878 * based on an allocation request. 879 */ 880 if (!current_is_kswapd()) 881 zone->compact_blockskip_flush = true; 882 883 return COMPACT_COMPLETE; 884 } 885 886 /* 887 * order == -1 is expected when compacting via 888 * /proc/sys/vm/compact_memory 889 */ 890 if (cc->order == -1) 891 return COMPACT_CONTINUE; 892 893 /* Compaction run is not finished if the watermark is not met */ 894 watermark = low_wmark_pages(zone); 895 watermark += (1 << cc->order); 896 897 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 898 return COMPACT_CONTINUE; 899 900 /* Direct compactor: Is a suitable page free? */ 901 for (order = cc->order; order < MAX_ORDER; order++) { 902 struct free_area *area = &zone->free_area[order]; 903 904 /* Job done if page is free of the right migratetype */ 905 if (!list_empty(&area->free_list[cc->migratetype])) 906 return COMPACT_PARTIAL; 907 908 /* Job done if allocation would set block type */ 909 if (cc->order >= pageblock_order && area->nr_free) 910 return COMPACT_PARTIAL; 911 } 912 913 return COMPACT_CONTINUE; 914} 915 916/* 917 * compaction_suitable: Is this suitable to run compaction on this zone now? 918 * Returns 919 * COMPACT_SKIPPED - If there are too few free pages for compaction 920 * COMPACT_PARTIAL - If the allocation would succeed without compaction 921 * COMPACT_CONTINUE - If compaction should run now 922 */ 923unsigned long compaction_suitable(struct zone *zone, int order) 924{ 925 int fragindex; 926 unsigned long watermark; 927 928 /* 929 * order == -1 is expected when compacting via 930 * /proc/sys/vm/compact_memory 931 */ 932 if (order == -1) 933 return COMPACT_CONTINUE; 934 935 /* 936 * Watermarks for order-0 must be met for compaction. Note the 2UL. 937 * This is because during migration, copies of pages need to be 938 * allocated and for a short time, the footprint is higher 939 */ 940 watermark = low_wmark_pages(zone) + (2UL << order); 941 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 942 return COMPACT_SKIPPED; 943 944 /* 945 * fragmentation index determines if allocation failures are due to 946 * low memory or external fragmentation 947 * 948 * index of -1000 implies allocations might succeed depending on 949 * watermarks 950 * index towards 0 implies failure is due to lack of memory 951 * index towards 1000 implies failure is due to fragmentation 952 * 953 * Only compact if a failure would be due to fragmentation. 954 */ 955 fragindex = fragmentation_index(zone, order); 956 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 957 return COMPACT_SKIPPED; 958 959 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 960 0, 0)) 961 return COMPACT_PARTIAL; 962 963 return COMPACT_CONTINUE; 964} 965 966static int compact_zone(struct zone *zone, struct compact_control *cc) 967{ 968 int ret; 969 unsigned long start_pfn = zone->zone_start_pfn; 970 unsigned long end_pfn = zone_end_pfn(zone); 971 972 ret = compaction_suitable(zone, cc->order); 973 switch (ret) { 974 case COMPACT_PARTIAL: 975 case COMPACT_SKIPPED: 976 /* Compaction is likely to fail */ 977 return ret; 978 case COMPACT_CONTINUE: 979 /* Fall through to compaction */ 980 ; 981 } 982 983 /* 984 * Clear pageblock skip if there were failures recently and compaction 985 * is about to be retried after being deferred. kswapd does not do 986 * this reset as it'll reset the cached information when going to sleep. 987 */ 988 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 989 __reset_isolation_suitable(zone); 990 991 /* 992 * Setup to move all movable pages to the end of the zone. Used cached 993 * information on where the scanners should start but check that it 994 * is initialised by ensuring the values are within zone boundaries. 995 */ 996 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 997 cc->free_pfn = zone->compact_cached_free_pfn; 998 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 999 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 1000 zone->compact_cached_free_pfn = cc->free_pfn; 1001 } 1002 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 1003 cc->migrate_pfn = start_pfn; 1004 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 1005 } 1006 1007 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); 1008 1009 migrate_prep_local(); 1010 1011 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1012 unsigned long nr_migrate, nr_remaining; 1013 int err; 1014 1015 switch (isolate_migratepages(zone, cc)) { 1016 case ISOLATE_ABORT: 1017 ret = COMPACT_PARTIAL; 1018 putback_movable_pages(&cc->migratepages); 1019 cc->nr_migratepages = 0; 1020 goto out; 1021 case ISOLATE_NONE: 1022 continue; 1023 case ISOLATE_SUCCESS: 1024 ; 1025 } 1026 1027 nr_migrate = cc->nr_migratepages; 1028 err = migrate_pages(&cc->migratepages, compaction_alloc, 1029 (unsigned long)cc, 1030 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 1031 MR_COMPACTION); 1032 update_nr_listpages(cc); 1033 nr_remaining = cc->nr_migratepages; 1034 1035 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 1036 nr_remaining); 1037 1038 /* Release isolated pages not migrated */ 1039 if (err) { 1040 putback_movable_pages(&cc->migratepages); 1041 cc->nr_migratepages = 0; 1042 /* 1043 * migrate_pages() may return -ENOMEM when scanners meet 1044 * and we want compact_finished() to detect it 1045 */ 1046 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { 1047 ret = COMPACT_PARTIAL; 1048 goto out; 1049 } 1050 } 1051 } 1052 1053out: 1054 /* Release free pages and check accounting */ 1055 cc->nr_freepages -= release_freepages(&cc->freepages); 1056 VM_BUG_ON(cc->nr_freepages != 0); 1057 1058 trace_mm_compaction_end(ret); 1059 1060 return ret; 1061} 1062 1063static unsigned long compact_zone_order(struct zone *zone, 1064 int order, gfp_t gfp_mask, 1065 bool sync, bool *contended) 1066{ 1067 unsigned long ret; 1068 struct compact_control cc = { 1069 .nr_freepages = 0, 1070 .nr_migratepages = 0, 1071 .order = order, 1072 .migratetype = allocflags_to_migratetype(gfp_mask), 1073 .zone = zone, 1074 .sync = sync, 1075 }; 1076 INIT_LIST_HEAD(&cc.freepages); 1077 INIT_LIST_HEAD(&cc.migratepages); 1078 1079 ret = compact_zone(zone, &cc); 1080 1081 VM_BUG_ON(!list_empty(&cc.freepages)); 1082 VM_BUG_ON(!list_empty(&cc.migratepages)); 1083 1084 *contended = cc.contended; 1085 return ret; 1086} 1087 1088int sysctl_extfrag_threshold = 500; 1089 1090/** 1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1092 * @zonelist: The zonelist used for the current allocation 1093 * @order: The order of the current allocation 1094 * @gfp_mask: The GFP mask of the current allocation 1095 * @nodemask: The allowed nodes to allocate from 1096 * @sync: Whether migration is synchronous or not 1097 * @contended: Return value that is true if compaction was aborted due to lock contention 1098 * @page: Optionally capture a free page of the requested order during compaction 1099 * 1100 * This is the main entry point for direct page compaction. 1101 */ 1102unsigned long try_to_compact_pages(struct zonelist *zonelist, 1103 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1104 bool sync, bool *contended) 1105{ 1106 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1107 int may_enter_fs = gfp_mask & __GFP_FS; 1108 int may_perform_io = gfp_mask & __GFP_IO; 1109 struct zoneref *z; 1110 struct zone *zone; 1111 int rc = COMPACT_SKIPPED; 1112 int alloc_flags = 0; 1113 1114 /* Check if the GFP flags allow compaction */ 1115 if (!order || !may_enter_fs || !may_perform_io) 1116 return rc; 1117 1118 count_compact_event(COMPACTSTALL); 1119 1120#ifdef CONFIG_CMA 1121 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1122 alloc_flags |= ALLOC_CMA; 1123#endif 1124 /* Compact each zone in the list */ 1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1126 nodemask) { 1127 int status; 1128 1129 status = compact_zone_order(zone, order, gfp_mask, sync, 1130 contended); 1131 rc = max(status, rc); 1132 1133 /* If a normal allocation would succeed, stop compacting */ 1134 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1135 alloc_flags)) 1136 break; 1137 } 1138 1139 return rc; 1140} 1141 1142 1143/* Compact all zones within a node */ 1144static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1145{ 1146 int zoneid; 1147 struct zone *zone; 1148 1149 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1150 1151 zone = &pgdat->node_zones[zoneid]; 1152 if (!populated_zone(zone)) 1153 continue; 1154 1155 cc->nr_freepages = 0; 1156 cc->nr_migratepages = 0; 1157 cc->zone = zone; 1158 INIT_LIST_HEAD(&cc->freepages); 1159 INIT_LIST_HEAD(&cc->migratepages); 1160 1161 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1162 compact_zone(zone, cc); 1163 1164 if (cc->order > 0) { 1165 if (zone_watermark_ok(zone, cc->order, 1166 low_wmark_pages(zone), 0, 0)) 1167 compaction_defer_reset(zone, cc->order, false); 1168 /* Currently async compaction is never deferred. */ 1169 else if (cc->sync) 1170 defer_compaction(zone, cc->order); 1171 } 1172 1173 VM_BUG_ON(!list_empty(&cc->freepages)); 1174 VM_BUG_ON(!list_empty(&cc->migratepages)); 1175 } 1176} 1177 1178void compact_pgdat(pg_data_t *pgdat, int order) 1179{ 1180 struct compact_control cc = { 1181 .order = order, 1182 .sync = false, 1183 }; 1184 1185 if (!order) 1186 return; 1187 1188 __compact_pgdat(pgdat, &cc); 1189} 1190 1191static void compact_node(int nid) 1192{ 1193 struct compact_control cc = { 1194 .order = -1, 1195 .sync = true, 1196 .ignore_skip_hint = true, 1197 }; 1198 1199 __compact_pgdat(NODE_DATA(nid), &cc); 1200} 1201 1202/* Compact all nodes in the system */ 1203static void compact_nodes(void) 1204{ 1205 int nid; 1206 1207 /* Flush pending updates to the LRU lists */ 1208 lru_add_drain_all(); 1209 1210 for_each_online_node(nid) 1211 compact_node(nid); 1212} 1213 1214/* The written value is actually unused, all memory is compacted */ 1215int sysctl_compact_memory; 1216 1217/* This is the entry point for compacting all nodes via /proc/sys/vm */ 1218int sysctl_compaction_handler(struct ctl_table *table, int write, 1219 void __user *buffer, size_t *length, loff_t *ppos) 1220{ 1221 if (write) 1222 compact_nodes(); 1223 1224 return 0; 1225} 1226 1227int sysctl_extfrag_handler(struct ctl_table *table, int write, 1228 void __user *buffer, size_t *length, loff_t *ppos) 1229{ 1230 proc_dointvec_minmax(table, write, buffer, length, ppos); 1231 1232 return 0; 1233} 1234 1235#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1236static ssize_t sysfs_compact_node(struct device *dev, 1237 struct device_attribute *attr, 1238 const char *buf, size_t count) 1239{ 1240 int nid = dev->id; 1241 1242 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1243 /* Flush pending updates to the LRU lists */ 1244 lru_add_drain_all(); 1245 1246 compact_node(nid); 1247 } 1248 1249 return count; 1250} 1251static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1252 1253int compaction_register_node(struct node *node) 1254{ 1255 return device_create_file(&node->dev, &dev_attr_compact); 1256} 1257 1258void compaction_unregister_node(struct node *node) 1259{ 1260 return device_remove_file(&node->dev, &dev_attr_compact); 1261} 1262#endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1263 1264#endif /* CONFIG_COMPACTION */