at v3.15-rc3 360 lines 10 kB view raw
1/* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11/* start node id of a node block dedicated to the given node id */ 12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14/* node block offset on the NAT area dedicated to the given start node id */ 15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17/* # of pages to perform readahead before building free nids */ 18#define FREE_NID_PAGES 4 19 20/* maximum readahead size for node during getting data blocks */ 21#define MAX_RA_NODE 128 22 23/* control the memory footprint threshold (10MB per 1GB ram) */ 24#define DEF_RAM_THRESHOLD 10 25 26/* vector size for gang look-up from nat cache that consists of radix tree */ 27#define NATVEC_SIZE 64 28 29/* return value for read_node_page */ 30#define LOCKED_PAGE 1 31 32/* 33 * For node information 34 */ 35struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40}; 41 42struct nat_entry { 43 struct list_head list; /* for clean or dirty nat list */ 44 bool checkpointed; /* whether it is checkpointed or not */ 45 bool fsync_done; /* whether the latest node has fsync mark */ 46 struct node_info ni; /* in-memory node information */ 47}; 48 49#define nat_get_nid(nat) (nat->ni.nid) 50#define nat_set_nid(nat, n) (nat->ni.nid = n) 51#define nat_get_blkaddr(nat) (nat->ni.blk_addr) 52#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 53#define nat_get_ino(nat) (nat->ni.ino) 54#define nat_set_ino(nat, i) (nat->ni.ino = i) 55#define nat_get_version(nat) (nat->ni.version) 56#define nat_set_version(nat, v) (nat->ni.version = v) 57 58#define __set_nat_cache_dirty(nm_i, ne) \ 59 do { \ 60 ne->checkpointed = false; \ 61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \ 62 } while (0); 63#define __clear_nat_cache_dirty(nm_i, ne) \ 64 do { \ 65 ne->checkpointed = true; \ 66 list_move_tail(&ne->list, &nm_i->nat_entries); \ 67 } while (0); 68#define inc_node_version(version) (++version) 69 70static inline void node_info_from_raw_nat(struct node_info *ni, 71 struct f2fs_nat_entry *raw_ne) 72{ 73 ni->ino = le32_to_cpu(raw_ne->ino); 74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 75 ni->version = raw_ne->version; 76} 77 78enum nid_type { 79 FREE_NIDS, /* indicates the free nid list */ 80 NAT_ENTRIES /* indicates the cached nat entry */ 81}; 82 83/* 84 * For free nid mangement 85 */ 86enum nid_state { 87 NID_NEW, /* newly added to free nid list */ 88 NID_ALLOC /* it is allocated */ 89}; 90 91struct free_nid { 92 struct list_head list; /* for free node id list */ 93 nid_t nid; /* node id */ 94 int state; /* in use or not: NID_NEW or NID_ALLOC */ 95}; 96 97static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 98{ 99 struct f2fs_nm_info *nm_i = NM_I(sbi); 100 struct free_nid *fnid; 101 102 if (nm_i->fcnt <= 0) 103 return -1; 104 spin_lock(&nm_i->free_nid_list_lock); 105 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 106 *nid = fnid->nid; 107 spin_unlock(&nm_i->free_nid_list_lock); 108 return 0; 109} 110 111/* 112 * inline functions 113 */ 114static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 115{ 116 struct f2fs_nm_info *nm_i = NM_I(sbi); 117 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 118} 119 120static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 121{ 122 struct f2fs_nm_info *nm_i = NM_I(sbi); 123 pgoff_t block_off; 124 pgoff_t block_addr; 125 int seg_off; 126 127 block_off = NAT_BLOCK_OFFSET(start); 128 seg_off = block_off >> sbi->log_blocks_per_seg; 129 130 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 131 (seg_off << sbi->log_blocks_per_seg << 1) + 132 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 133 134 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 135 block_addr += sbi->blocks_per_seg; 136 137 return block_addr; 138} 139 140static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 141 pgoff_t block_addr) 142{ 143 struct f2fs_nm_info *nm_i = NM_I(sbi); 144 145 block_addr -= nm_i->nat_blkaddr; 146 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 147 block_addr -= sbi->blocks_per_seg; 148 else 149 block_addr += sbi->blocks_per_seg; 150 151 return block_addr + nm_i->nat_blkaddr; 152} 153 154static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 155{ 156 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 157 158 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 159 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 160 else 161 f2fs_set_bit(block_off, nm_i->nat_bitmap); 162} 163 164static inline void fill_node_footer(struct page *page, nid_t nid, 165 nid_t ino, unsigned int ofs, bool reset) 166{ 167 struct f2fs_node *rn = F2FS_NODE(page); 168 if (reset) 169 memset(rn, 0, sizeof(*rn)); 170 rn->footer.nid = cpu_to_le32(nid); 171 rn->footer.ino = cpu_to_le32(ino); 172 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 173} 174 175static inline void copy_node_footer(struct page *dst, struct page *src) 176{ 177 struct f2fs_node *src_rn = F2FS_NODE(src); 178 struct f2fs_node *dst_rn = F2FS_NODE(dst); 179 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 180} 181 182static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 183{ 184 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 186 struct f2fs_node *rn = F2FS_NODE(page); 187 188 rn->footer.cp_ver = ckpt->checkpoint_ver; 189 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 190} 191 192static inline nid_t ino_of_node(struct page *node_page) 193{ 194 struct f2fs_node *rn = F2FS_NODE(node_page); 195 return le32_to_cpu(rn->footer.ino); 196} 197 198static inline nid_t nid_of_node(struct page *node_page) 199{ 200 struct f2fs_node *rn = F2FS_NODE(node_page); 201 return le32_to_cpu(rn->footer.nid); 202} 203 204static inline unsigned int ofs_of_node(struct page *node_page) 205{ 206 struct f2fs_node *rn = F2FS_NODE(node_page); 207 unsigned flag = le32_to_cpu(rn->footer.flag); 208 return flag >> OFFSET_BIT_SHIFT; 209} 210 211static inline unsigned long long cpver_of_node(struct page *node_page) 212{ 213 struct f2fs_node *rn = F2FS_NODE(node_page); 214 return le64_to_cpu(rn->footer.cp_ver); 215} 216 217static inline block_t next_blkaddr_of_node(struct page *node_page) 218{ 219 struct f2fs_node *rn = F2FS_NODE(node_page); 220 return le32_to_cpu(rn->footer.next_blkaddr); 221} 222 223/* 224 * f2fs assigns the following node offsets described as (num). 225 * N = NIDS_PER_BLOCK 226 * 227 * Inode block (0) 228 * |- direct node (1) 229 * |- direct node (2) 230 * |- indirect node (3) 231 * | `- direct node (4 => 4 + N - 1) 232 * |- indirect node (4 + N) 233 * | `- direct node (5 + N => 5 + 2N - 1) 234 * `- double indirect node (5 + 2N) 235 * `- indirect node (6 + 2N) 236 * `- direct node 237 * ...... 238 * `- indirect node ((6 + 2N) + x(N + 1)) 239 * `- direct node 240 * ...... 241 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 242 * `- direct node 243 */ 244static inline bool IS_DNODE(struct page *node_page) 245{ 246 unsigned int ofs = ofs_of_node(node_page); 247 248 if (f2fs_has_xattr_block(ofs)) 249 return false; 250 251 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 252 ofs == 5 + 2 * NIDS_PER_BLOCK) 253 return false; 254 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 255 ofs -= 6 + 2 * NIDS_PER_BLOCK; 256 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 257 return false; 258 } 259 return true; 260} 261 262static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 263{ 264 struct f2fs_node *rn = F2FS_NODE(p); 265 266 wait_on_page_writeback(p); 267 268 if (i) 269 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 270 else 271 rn->in.nid[off] = cpu_to_le32(nid); 272 set_page_dirty(p); 273} 274 275static inline nid_t get_nid(struct page *p, int off, bool i) 276{ 277 struct f2fs_node *rn = F2FS_NODE(p); 278 279 if (i) 280 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 281 return le32_to_cpu(rn->in.nid[off]); 282} 283 284/* 285 * Coldness identification: 286 * - Mark cold files in f2fs_inode_info 287 * - Mark cold node blocks in their node footer 288 * - Mark cold data pages in page cache 289 */ 290static inline int is_file(struct inode *inode, int type) 291{ 292 return F2FS_I(inode)->i_advise & type; 293} 294 295static inline void set_file(struct inode *inode, int type) 296{ 297 F2FS_I(inode)->i_advise |= type; 298} 299 300static inline void clear_file(struct inode *inode, int type) 301{ 302 F2FS_I(inode)->i_advise &= ~type; 303} 304 305#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 306#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 307#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 308#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 309#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 310#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 311 312static inline int is_cold_data(struct page *page) 313{ 314 return PageChecked(page); 315} 316 317static inline void set_cold_data(struct page *page) 318{ 319 SetPageChecked(page); 320} 321 322static inline void clear_cold_data(struct page *page) 323{ 324 ClearPageChecked(page); 325} 326 327static inline int is_node(struct page *page, int type) 328{ 329 struct f2fs_node *rn = F2FS_NODE(page); 330 return le32_to_cpu(rn->footer.flag) & (1 << type); 331} 332 333#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 334#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 335#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 336 337static inline void set_cold_node(struct inode *inode, struct page *page) 338{ 339 struct f2fs_node *rn = F2FS_NODE(page); 340 unsigned int flag = le32_to_cpu(rn->footer.flag); 341 342 if (S_ISDIR(inode->i_mode)) 343 flag &= ~(0x1 << COLD_BIT_SHIFT); 344 else 345 flag |= (0x1 << COLD_BIT_SHIFT); 346 rn->footer.flag = cpu_to_le32(flag); 347} 348 349static inline void set_mark(struct page *page, int mark, int type) 350{ 351 struct f2fs_node *rn = F2FS_NODE(page); 352 unsigned int flag = le32_to_cpu(rn->footer.flag); 353 if (mark) 354 flag |= (0x1 << type); 355 else 356 flag &= ~(0x1 << type); 357 rn->footer.flag = cpu_to_le32(flag); 358} 359#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 360#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)