Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21
22struct mempolicy;
23struct anon_vma;
24struct anon_vma_chain;
25struct file_ra_state;
26struct user_struct;
27struct writeback_control;
28
29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30extern unsigned long max_mapnr;
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
38#endif
39
40extern unsigned long totalram_pages;
41extern void * high_memory;
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
53
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
58extern unsigned long sysctl_user_reserve_kbytes;
59extern unsigned long sysctl_admin_reserve_kbytes;
60
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87extern struct kmem_cache *vm_area_cachep;
88
89#ifndef CONFIG_MMU
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99#define VM_NONE 0x00000000
100
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
174/*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179
180/* This mask defines which mm->def_flags a process can inherit its parent */
181#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
183/*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187extern pgprot_t protection_map[16];
188
189#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195#define FAULT_FLAG_TRIED 0x40 /* second try */
196#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197
198/*
199 * vm_fault is filled by the the pagefault handler and passed to the vma's
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 *
203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 */
206struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
212 * page here, unless VM_FAULT_NOPAGE
213 * is set (which is also implied by
214 * VM_FAULT_ERROR).
215 */
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
220};
221
222/*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
242#ifdef CONFIG_NUMA
243 /*
244 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 * to hold the policy upon return. Caller should pass NULL @new to
246 * remove a policy and fall back to surrounding context--i.e. do not
247 * install a MPOL_DEFAULT policy, nor the task or system default
248 * mempolicy.
249 */
250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
251
252 /*
253 * get_policy() op must add reference [mpol_get()] to any policy at
254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
255 * in mm/mempolicy.c will do this automatically.
256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 * must return NULL--i.e., do not "fallback" to task or system default
260 * policy.
261 */
262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 unsigned long addr);
264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 const nodemask_t *to, unsigned long flags);
266#endif
267 /* called by sys_remap_file_pages() to populate non-linear mapping */
268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 unsigned long size, pgoff_t pgoff);
270};
271
272struct mmu_gather;
273struct inode;
274
275#define page_private(page) ((page)->private)
276#define set_page_private(page, v) ((page)->private = (v))
277
278/* It's valid only if the page is free path or free_list */
279static inline void set_freepage_migratetype(struct page *page, int migratetype)
280{
281 page->index = migratetype;
282}
283
284/* It's valid only if the page is free path or free_list */
285static inline int get_freepage_migratetype(struct page *page)
286{
287 return page->index;
288}
289
290/*
291 * FIXME: take this include out, include page-flags.h in
292 * files which need it (119 of them)
293 */
294#include <linux/page-flags.h>
295#include <linux/huge_mm.h>
296
297/*
298 * Methods to modify the page usage count.
299 *
300 * What counts for a page usage:
301 * - cache mapping (page->mapping)
302 * - private data (page->private)
303 * - page mapped in a task's page tables, each mapping
304 * is counted separately
305 *
306 * Also, many kernel routines increase the page count before a critical
307 * routine so they can be sure the page doesn't go away from under them.
308 */
309
310/*
311 * Drop a ref, return true if the refcount fell to zero (the page has no users)
312 */
313static inline int put_page_testzero(struct page *page)
314{
315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
316 return atomic_dec_and_test(&page->_count);
317}
318
319/*
320 * Try to grab a ref unless the page has a refcount of zero, return false if
321 * that is the case.
322 * This can be called when MMU is off so it must not access
323 * any of the virtual mappings.
324 */
325static inline int get_page_unless_zero(struct page *page)
326{
327 return atomic_inc_not_zero(&page->_count);
328}
329
330/*
331 * Try to drop a ref unless the page has a refcount of one, return false if
332 * that is the case.
333 * This is to make sure that the refcount won't become zero after this drop.
334 * This can be called when MMU is off so it must not access
335 * any of the virtual mappings.
336 */
337static inline int put_page_unless_one(struct page *page)
338{
339 return atomic_add_unless(&page->_count, -1, 1);
340}
341
342extern int page_is_ram(unsigned long pfn);
343
344/* Support for virtually mapped pages */
345struct page *vmalloc_to_page(const void *addr);
346unsigned long vmalloc_to_pfn(const void *addr);
347
348/*
349 * Determine if an address is within the vmalloc range
350 *
351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352 * is no special casing required.
353 */
354static inline int is_vmalloc_addr(const void *x)
355{
356#ifdef CONFIG_MMU
357 unsigned long addr = (unsigned long)x;
358
359 return addr >= VMALLOC_START && addr < VMALLOC_END;
360#else
361 return 0;
362#endif
363}
364#ifdef CONFIG_MMU
365extern int is_vmalloc_or_module_addr(const void *x);
366#else
367static inline int is_vmalloc_or_module_addr(const void *x)
368{
369 return 0;
370}
371#endif
372
373static inline void compound_lock(struct page *page)
374{
375#ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 VM_BUG_ON_PAGE(PageSlab(page), page);
377 bit_spin_lock(PG_compound_lock, &page->flags);
378#endif
379}
380
381static inline void compound_unlock(struct page *page)
382{
383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 VM_BUG_ON_PAGE(PageSlab(page), page);
385 bit_spin_unlock(PG_compound_lock, &page->flags);
386#endif
387}
388
389static inline unsigned long compound_lock_irqsave(struct page *page)
390{
391 unsigned long uninitialized_var(flags);
392#ifdef CONFIG_TRANSPARENT_HUGEPAGE
393 local_irq_save(flags);
394 compound_lock(page);
395#endif
396 return flags;
397}
398
399static inline void compound_unlock_irqrestore(struct page *page,
400 unsigned long flags)
401{
402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 compound_unlock(page);
404 local_irq_restore(flags);
405#endif
406}
407
408static inline struct page *compound_head(struct page *page)
409{
410 if (unlikely(PageTail(page))) {
411 struct page *head = page->first_page;
412
413 /*
414 * page->first_page may be a dangling pointer to an old
415 * compound page, so recheck that it is still a tail
416 * page before returning.
417 */
418 smp_rmb();
419 if (likely(PageTail(page)))
420 return head;
421 }
422 return page;
423}
424
425/*
426 * The atomic page->_mapcount, starts from -1: so that transitions
427 * both from it and to it can be tracked, using atomic_inc_and_test
428 * and atomic_add_negative(-1).
429 */
430static inline void page_mapcount_reset(struct page *page)
431{
432 atomic_set(&(page)->_mapcount, -1);
433}
434
435static inline int page_mapcount(struct page *page)
436{
437 return atomic_read(&(page)->_mapcount) + 1;
438}
439
440static inline int page_count(struct page *page)
441{
442 return atomic_read(&compound_head(page)->_count);
443}
444
445#ifdef CONFIG_HUGETLB_PAGE
446extern int PageHeadHuge(struct page *page_head);
447#else /* CONFIG_HUGETLB_PAGE */
448static inline int PageHeadHuge(struct page *page_head)
449{
450 return 0;
451}
452#endif /* CONFIG_HUGETLB_PAGE */
453
454static inline bool __compound_tail_refcounted(struct page *page)
455{
456 return !PageSlab(page) && !PageHeadHuge(page);
457}
458
459/*
460 * This takes a head page as parameter and tells if the
461 * tail page reference counting can be skipped.
462 *
463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
464 * any given page where they return true here, until all tail pins
465 * have been released.
466 */
467static inline bool compound_tail_refcounted(struct page *page)
468{
469 VM_BUG_ON_PAGE(!PageHead(page), page);
470 return __compound_tail_refcounted(page);
471}
472
473static inline void get_huge_page_tail(struct page *page)
474{
475 /*
476 * __split_huge_page_refcount() cannot run from under us.
477 */
478 VM_BUG_ON_PAGE(!PageTail(page), page);
479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
481 if (compound_tail_refcounted(page->first_page))
482 atomic_inc(&page->_mapcount);
483}
484
485extern bool __get_page_tail(struct page *page);
486
487static inline void get_page(struct page *page)
488{
489 if (unlikely(PageTail(page)))
490 if (likely(__get_page_tail(page)))
491 return;
492 /*
493 * Getting a normal page or the head of a compound page
494 * requires to already have an elevated page->_count.
495 */
496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
497 atomic_inc(&page->_count);
498}
499
500static inline struct page *virt_to_head_page(const void *x)
501{
502 struct page *page = virt_to_page(x);
503 return compound_head(page);
504}
505
506/*
507 * Setup the page count before being freed into the page allocator for
508 * the first time (boot or memory hotplug)
509 */
510static inline void init_page_count(struct page *page)
511{
512 atomic_set(&page->_count, 1);
513}
514
515/*
516 * PageBuddy() indicate that the page is free and in the buddy system
517 * (see mm/page_alloc.c).
518 *
519 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
520 * -2 so that an underflow of the page_mapcount() won't be mistaken
521 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
522 * efficiently by most CPU architectures.
523 */
524#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
525
526static inline int PageBuddy(struct page *page)
527{
528 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
529}
530
531static inline void __SetPageBuddy(struct page *page)
532{
533 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
534 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
535}
536
537static inline void __ClearPageBuddy(struct page *page)
538{
539 VM_BUG_ON_PAGE(!PageBuddy(page), page);
540 atomic_set(&page->_mapcount, -1);
541}
542
543void put_page(struct page *page);
544void put_pages_list(struct list_head *pages);
545
546void split_page(struct page *page, unsigned int order);
547int split_free_page(struct page *page);
548
549/*
550 * Compound pages have a destructor function. Provide a
551 * prototype for that function and accessor functions.
552 * These are _only_ valid on the head of a PG_compound page.
553 */
554typedef void compound_page_dtor(struct page *);
555
556static inline void set_compound_page_dtor(struct page *page,
557 compound_page_dtor *dtor)
558{
559 page[1].lru.next = (void *)dtor;
560}
561
562static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
563{
564 return (compound_page_dtor *)page[1].lru.next;
565}
566
567static inline int compound_order(struct page *page)
568{
569 if (!PageHead(page))
570 return 0;
571 return (unsigned long)page[1].lru.prev;
572}
573
574static inline void set_compound_order(struct page *page, unsigned long order)
575{
576 page[1].lru.prev = (void *)order;
577}
578
579#ifdef CONFIG_MMU
580/*
581 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
582 * servicing faults for write access. In the normal case, do always want
583 * pte_mkwrite. But get_user_pages can cause write faults for mappings
584 * that do not have writing enabled, when used by access_process_vm.
585 */
586static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
587{
588 if (likely(vma->vm_flags & VM_WRITE))
589 pte = pte_mkwrite(pte);
590 return pte;
591}
592
593void do_set_pte(struct vm_area_struct *vma, unsigned long address,
594 struct page *page, pte_t *pte, bool write, bool anon);
595#endif
596
597/*
598 * Multiple processes may "see" the same page. E.g. for untouched
599 * mappings of /dev/null, all processes see the same page full of
600 * zeroes, and text pages of executables and shared libraries have
601 * only one copy in memory, at most, normally.
602 *
603 * For the non-reserved pages, page_count(page) denotes a reference count.
604 * page_count() == 0 means the page is free. page->lru is then used for
605 * freelist management in the buddy allocator.
606 * page_count() > 0 means the page has been allocated.
607 *
608 * Pages are allocated by the slab allocator in order to provide memory
609 * to kmalloc and kmem_cache_alloc. In this case, the management of the
610 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
611 * unless a particular usage is carefully commented. (the responsibility of
612 * freeing the kmalloc memory is the caller's, of course).
613 *
614 * A page may be used by anyone else who does a __get_free_page().
615 * In this case, page_count still tracks the references, and should only
616 * be used through the normal accessor functions. The top bits of page->flags
617 * and page->virtual store page management information, but all other fields
618 * are unused and could be used privately, carefully. The management of this
619 * page is the responsibility of the one who allocated it, and those who have
620 * subsequently been given references to it.
621 *
622 * The other pages (we may call them "pagecache pages") are completely
623 * managed by the Linux memory manager: I/O, buffers, swapping etc.
624 * The following discussion applies only to them.
625 *
626 * A pagecache page contains an opaque `private' member, which belongs to the
627 * page's address_space. Usually, this is the address of a circular list of
628 * the page's disk buffers. PG_private must be set to tell the VM to call
629 * into the filesystem to release these pages.
630 *
631 * A page may belong to an inode's memory mapping. In this case, page->mapping
632 * is the pointer to the inode, and page->index is the file offset of the page,
633 * in units of PAGE_CACHE_SIZE.
634 *
635 * If pagecache pages are not associated with an inode, they are said to be
636 * anonymous pages. These may become associated with the swapcache, and in that
637 * case PG_swapcache is set, and page->private is an offset into the swapcache.
638 *
639 * In either case (swapcache or inode backed), the pagecache itself holds one
640 * reference to the page. Setting PG_private should also increment the
641 * refcount. The each user mapping also has a reference to the page.
642 *
643 * The pagecache pages are stored in a per-mapping radix tree, which is
644 * rooted at mapping->page_tree, and indexed by offset.
645 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
646 * lists, we instead now tag pages as dirty/writeback in the radix tree.
647 *
648 * All pagecache pages may be subject to I/O:
649 * - inode pages may need to be read from disk,
650 * - inode pages which have been modified and are MAP_SHARED may need
651 * to be written back to the inode on disk,
652 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
653 * modified may need to be swapped out to swap space and (later) to be read
654 * back into memory.
655 */
656
657/*
658 * The zone field is never updated after free_area_init_core()
659 * sets it, so none of the operations on it need to be atomic.
660 */
661
662/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
663#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
664#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
665#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
666#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
667
668/*
669 * Define the bit shifts to access each section. For non-existent
670 * sections we define the shift as 0; that plus a 0 mask ensures
671 * the compiler will optimise away reference to them.
672 */
673#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
674#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
675#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
676#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
677
678/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
679#ifdef NODE_NOT_IN_PAGE_FLAGS
680#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
681#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
682 SECTIONS_PGOFF : ZONES_PGOFF)
683#else
684#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
685#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
686 NODES_PGOFF : ZONES_PGOFF)
687#endif
688
689#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
690
691#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
692#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
693#endif
694
695#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
696#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
697#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
698#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
699#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
700
701static inline enum zone_type page_zonenum(const struct page *page)
702{
703 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
704}
705
706#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
707#define SECTION_IN_PAGE_FLAGS
708#endif
709
710/*
711 * The identification function is mainly used by the buddy allocator for
712 * determining if two pages could be buddies. We are not really identifying
713 * the zone since we could be using the section number id if we do not have
714 * node id available in page flags.
715 * We only guarantee that it will return the same value for two combinable
716 * pages in a zone.
717 */
718static inline int page_zone_id(struct page *page)
719{
720 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
721}
722
723static inline int zone_to_nid(struct zone *zone)
724{
725#ifdef CONFIG_NUMA
726 return zone->node;
727#else
728 return 0;
729#endif
730}
731
732#ifdef NODE_NOT_IN_PAGE_FLAGS
733extern int page_to_nid(const struct page *page);
734#else
735static inline int page_to_nid(const struct page *page)
736{
737 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
738}
739#endif
740
741#ifdef CONFIG_NUMA_BALANCING
742static inline int cpu_pid_to_cpupid(int cpu, int pid)
743{
744 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
745}
746
747static inline int cpupid_to_pid(int cpupid)
748{
749 return cpupid & LAST__PID_MASK;
750}
751
752static inline int cpupid_to_cpu(int cpupid)
753{
754 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
755}
756
757static inline int cpupid_to_nid(int cpupid)
758{
759 return cpu_to_node(cpupid_to_cpu(cpupid));
760}
761
762static inline bool cpupid_pid_unset(int cpupid)
763{
764 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
765}
766
767static inline bool cpupid_cpu_unset(int cpupid)
768{
769 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
770}
771
772static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
773{
774 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
775}
776
777#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
778#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
779static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
780{
781 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
782}
783
784static inline int page_cpupid_last(struct page *page)
785{
786 return page->_last_cpupid;
787}
788static inline void page_cpupid_reset_last(struct page *page)
789{
790 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
791}
792#else
793static inline int page_cpupid_last(struct page *page)
794{
795 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
796}
797
798extern int page_cpupid_xchg_last(struct page *page, int cpupid);
799
800static inline void page_cpupid_reset_last(struct page *page)
801{
802 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
803
804 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
805 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
806}
807#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
808#else /* !CONFIG_NUMA_BALANCING */
809static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
810{
811 return page_to_nid(page); /* XXX */
812}
813
814static inline int page_cpupid_last(struct page *page)
815{
816 return page_to_nid(page); /* XXX */
817}
818
819static inline int cpupid_to_nid(int cpupid)
820{
821 return -1;
822}
823
824static inline int cpupid_to_pid(int cpupid)
825{
826 return -1;
827}
828
829static inline int cpupid_to_cpu(int cpupid)
830{
831 return -1;
832}
833
834static inline int cpu_pid_to_cpupid(int nid, int pid)
835{
836 return -1;
837}
838
839static inline bool cpupid_pid_unset(int cpupid)
840{
841 return 1;
842}
843
844static inline void page_cpupid_reset_last(struct page *page)
845{
846}
847
848static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
849{
850 return false;
851}
852#endif /* CONFIG_NUMA_BALANCING */
853
854static inline struct zone *page_zone(const struct page *page)
855{
856 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
857}
858
859#ifdef SECTION_IN_PAGE_FLAGS
860static inline void set_page_section(struct page *page, unsigned long section)
861{
862 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
863 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
864}
865
866static inline unsigned long page_to_section(const struct page *page)
867{
868 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
869}
870#endif
871
872static inline void set_page_zone(struct page *page, enum zone_type zone)
873{
874 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
875 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
876}
877
878static inline void set_page_node(struct page *page, unsigned long node)
879{
880 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
881 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
882}
883
884static inline void set_page_links(struct page *page, enum zone_type zone,
885 unsigned long node, unsigned long pfn)
886{
887 set_page_zone(page, zone);
888 set_page_node(page, node);
889#ifdef SECTION_IN_PAGE_FLAGS
890 set_page_section(page, pfn_to_section_nr(pfn));
891#endif
892}
893
894/*
895 * Some inline functions in vmstat.h depend on page_zone()
896 */
897#include <linux/vmstat.h>
898
899static __always_inline void *lowmem_page_address(const struct page *page)
900{
901 return __va(PFN_PHYS(page_to_pfn(page)));
902}
903
904#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
905#define HASHED_PAGE_VIRTUAL
906#endif
907
908#if defined(WANT_PAGE_VIRTUAL)
909static inline void *page_address(const struct page *page)
910{
911 return page->virtual;
912}
913static inline void set_page_address(struct page *page, void *address)
914{
915 page->virtual = address;
916}
917#define page_address_init() do { } while(0)
918#endif
919
920#if defined(HASHED_PAGE_VIRTUAL)
921void *page_address(const struct page *page);
922void set_page_address(struct page *page, void *virtual);
923void page_address_init(void);
924#endif
925
926#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
927#define page_address(page) lowmem_page_address(page)
928#define set_page_address(page, address) do { } while(0)
929#define page_address_init() do { } while(0)
930#endif
931
932/*
933 * On an anonymous page mapped into a user virtual memory area,
934 * page->mapping points to its anon_vma, not to a struct address_space;
935 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
936 *
937 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
938 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
939 * and then page->mapping points, not to an anon_vma, but to a private
940 * structure which KSM associates with that merged page. See ksm.h.
941 *
942 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
943 *
944 * Please note that, confusingly, "page_mapping" refers to the inode
945 * address_space which maps the page from disk; whereas "page_mapped"
946 * refers to user virtual address space into which the page is mapped.
947 */
948#define PAGE_MAPPING_ANON 1
949#define PAGE_MAPPING_KSM 2
950#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
951
952extern struct address_space *page_mapping(struct page *page);
953
954/* Neutral page->mapping pointer to address_space or anon_vma or other */
955static inline void *page_rmapping(struct page *page)
956{
957 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
958}
959
960extern struct address_space *__page_file_mapping(struct page *);
961
962static inline
963struct address_space *page_file_mapping(struct page *page)
964{
965 if (unlikely(PageSwapCache(page)))
966 return __page_file_mapping(page);
967
968 return page->mapping;
969}
970
971static inline int PageAnon(struct page *page)
972{
973 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
974}
975
976/*
977 * Return the pagecache index of the passed page. Regular pagecache pages
978 * use ->index whereas swapcache pages use ->private
979 */
980static inline pgoff_t page_index(struct page *page)
981{
982 if (unlikely(PageSwapCache(page)))
983 return page_private(page);
984 return page->index;
985}
986
987extern pgoff_t __page_file_index(struct page *page);
988
989/*
990 * Return the file index of the page. Regular pagecache pages use ->index
991 * whereas swapcache pages use swp_offset(->private)
992 */
993static inline pgoff_t page_file_index(struct page *page)
994{
995 if (unlikely(PageSwapCache(page)))
996 return __page_file_index(page);
997
998 return page->index;
999}
1000
1001/*
1002 * Return true if this page is mapped into pagetables.
1003 */
1004static inline int page_mapped(struct page *page)
1005{
1006 return atomic_read(&(page)->_mapcount) >= 0;
1007}
1008
1009/*
1010 * Different kinds of faults, as returned by handle_mm_fault().
1011 * Used to decide whether a process gets delivered SIGBUS or
1012 * just gets major/minor fault counters bumped up.
1013 */
1014
1015#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1016
1017#define VM_FAULT_OOM 0x0001
1018#define VM_FAULT_SIGBUS 0x0002
1019#define VM_FAULT_MAJOR 0x0004
1020#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1021#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1022#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1023
1024#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1025#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1026#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1027#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1028
1029#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1030
1031#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1032 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1033
1034/* Encode hstate index for a hwpoisoned large page */
1035#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1036#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1037
1038/*
1039 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1040 */
1041extern void pagefault_out_of_memory(void);
1042
1043#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1044
1045/*
1046 * Flags passed to show_mem() and show_free_areas() to suppress output in
1047 * various contexts.
1048 */
1049#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1050
1051extern void show_free_areas(unsigned int flags);
1052extern bool skip_free_areas_node(unsigned int flags, int nid);
1053
1054int shmem_zero_setup(struct vm_area_struct *);
1055#ifdef CONFIG_SHMEM
1056bool shmem_mapping(struct address_space *mapping);
1057#else
1058static inline bool shmem_mapping(struct address_space *mapping)
1059{
1060 return false;
1061}
1062#endif
1063
1064extern int can_do_mlock(void);
1065extern int user_shm_lock(size_t, struct user_struct *);
1066extern void user_shm_unlock(size_t, struct user_struct *);
1067
1068/*
1069 * Parameter block passed down to zap_pte_range in exceptional cases.
1070 */
1071struct zap_details {
1072 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1073 struct address_space *check_mapping; /* Check page->mapping if set */
1074 pgoff_t first_index; /* Lowest page->index to unmap */
1075 pgoff_t last_index; /* Highest page->index to unmap */
1076};
1077
1078struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1079 pte_t pte);
1080
1081int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 unsigned long size);
1083void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084 unsigned long size, struct zap_details *);
1085void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1086 unsigned long start, unsigned long end);
1087
1088/**
1089 * mm_walk - callbacks for walk_page_range
1090 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1091 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1092 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1093 * this handler is required to be able to handle
1094 * pmd_trans_huge() pmds. They may simply choose to
1095 * split_huge_page() instead of handling it explicitly.
1096 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1097 * @pte_hole: if set, called for each hole at all levels
1098 * @hugetlb_entry: if set, called for each hugetlb entry
1099 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1100 * is used.
1101 *
1102 * (see walk_page_range for more details)
1103 */
1104struct mm_walk {
1105 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1106 unsigned long next, struct mm_walk *walk);
1107 int (*pud_entry)(pud_t *pud, unsigned long addr,
1108 unsigned long next, struct mm_walk *walk);
1109 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1110 unsigned long next, struct mm_walk *walk);
1111 int (*pte_entry)(pte_t *pte, unsigned long addr,
1112 unsigned long next, struct mm_walk *walk);
1113 int (*pte_hole)(unsigned long addr, unsigned long next,
1114 struct mm_walk *walk);
1115 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1116 unsigned long addr, unsigned long next,
1117 struct mm_walk *walk);
1118 struct mm_struct *mm;
1119 void *private;
1120};
1121
1122int walk_page_range(unsigned long addr, unsigned long end,
1123 struct mm_walk *walk);
1124void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1125 unsigned long end, unsigned long floor, unsigned long ceiling);
1126int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1127 struct vm_area_struct *vma);
1128void unmap_mapping_range(struct address_space *mapping,
1129 loff_t const holebegin, loff_t const holelen, int even_cows);
1130int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1131 unsigned long *pfn);
1132int follow_phys(struct vm_area_struct *vma, unsigned long address,
1133 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1134int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1135 void *buf, int len, int write);
1136
1137static inline void unmap_shared_mapping_range(struct address_space *mapping,
1138 loff_t const holebegin, loff_t const holelen)
1139{
1140 unmap_mapping_range(mapping, holebegin, holelen, 0);
1141}
1142
1143extern void truncate_pagecache(struct inode *inode, loff_t new);
1144extern void truncate_setsize(struct inode *inode, loff_t newsize);
1145void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1146int truncate_inode_page(struct address_space *mapping, struct page *page);
1147int generic_error_remove_page(struct address_space *mapping, struct page *page);
1148int invalidate_inode_page(struct page *page);
1149
1150#ifdef CONFIG_MMU
1151extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1152 unsigned long address, unsigned int flags);
1153extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1154 unsigned long address, unsigned int fault_flags);
1155#else
1156static inline int handle_mm_fault(struct mm_struct *mm,
1157 struct vm_area_struct *vma, unsigned long address,
1158 unsigned int flags)
1159{
1160 /* should never happen if there's no MMU */
1161 BUG();
1162 return VM_FAULT_SIGBUS;
1163}
1164static inline int fixup_user_fault(struct task_struct *tsk,
1165 struct mm_struct *mm, unsigned long address,
1166 unsigned int fault_flags)
1167{
1168 /* should never happen if there's no MMU */
1169 BUG();
1170 return -EFAULT;
1171}
1172#endif
1173
1174extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1175extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1176 void *buf, int len, int write);
1177
1178long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1179 unsigned long start, unsigned long nr_pages,
1180 unsigned int foll_flags, struct page **pages,
1181 struct vm_area_struct **vmas, int *nonblocking);
1182long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1183 unsigned long start, unsigned long nr_pages,
1184 int write, int force, struct page **pages,
1185 struct vm_area_struct **vmas);
1186int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1187 struct page **pages);
1188struct kvec;
1189int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1190 struct page **pages);
1191int get_kernel_page(unsigned long start, int write, struct page **pages);
1192struct page *get_dump_page(unsigned long addr);
1193
1194extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1195extern void do_invalidatepage(struct page *page, unsigned int offset,
1196 unsigned int length);
1197
1198int __set_page_dirty_nobuffers(struct page *page);
1199int __set_page_dirty_no_writeback(struct page *page);
1200int redirty_page_for_writepage(struct writeback_control *wbc,
1201 struct page *page);
1202void account_page_dirtied(struct page *page, struct address_space *mapping);
1203void account_page_writeback(struct page *page);
1204int set_page_dirty(struct page *page);
1205int set_page_dirty_lock(struct page *page);
1206int clear_page_dirty_for_io(struct page *page);
1207int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1208
1209/* Is the vma a continuation of the stack vma above it? */
1210static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1211{
1212 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1213}
1214
1215static inline int stack_guard_page_start(struct vm_area_struct *vma,
1216 unsigned long addr)
1217{
1218 return (vma->vm_flags & VM_GROWSDOWN) &&
1219 (vma->vm_start == addr) &&
1220 !vma_growsdown(vma->vm_prev, addr);
1221}
1222
1223/* Is the vma a continuation of the stack vma below it? */
1224static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1225{
1226 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1227}
1228
1229static inline int stack_guard_page_end(struct vm_area_struct *vma,
1230 unsigned long addr)
1231{
1232 return (vma->vm_flags & VM_GROWSUP) &&
1233 (vma->vm_end == addr) &&
1234 !vma_growsup(vma->vm_next, addr);
1235}
1236
1237extern pid_t
1238vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1239
1240extern unsigned long move_page_tables(struct vm_area_struct *vma,
1241 unsigned long old_addr, struct vm_area_struct *new_vma,
1242 unsigned long new_addr, unsigned long len,
1243 bool need_rmap_locks);
1244extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1245 unsigned long end, pgprot_t newprot,
1246 int dirty_accountable, int prot_numa);
1247extern int mprotect_fixup(struct vm_area_struct *vma,
1248 struct vm_area_struct **pprev, unsigned long start,
1249 unsigned long end, unsigned long newflags);
1250
1251/*
1252 * doesn't attempt to fault and will return short.
1253 */
1254int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1255 struct page **pages);
1256/*
1257 * per-process(per-mm_struct) statistics.
1258 */
1259static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1260{
1261 long val = atomic_long_read(&mm->rss_stat.count[member]);
1262
1263#ifdef SPLIT_RSS_COUNTING
1264 /*
1265 * counter is updated in asynchronous manner and may go to minus.
1266 * But it's never be expected number for users.
1267 */
1268 if (val < 0)
1269 val = 0;
1270#endif
1271 return (unsigned long)val;
1272}
1273
1274static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1275{
1276 atomic_long_add(value, &mm->rss_stat.count[member]);
1277}
1278
1279static inline void inc_mm_counter(struct mm_struct *mm, int member)
1280{
1281 atomic_long_inc(&mm->rss_stat.count[member]);
1282}
1283
1284static inline void dec_mm_counter(struct mm_struct *mm, int member)
1285{
1286 atomic_long_dec(&mm->rss_stat.count[member]);
1287}
1288
1289static inline unsigned long get_mm_rss(struct mm_struct *mm)
1290{
1291 return get_mm_counter(mm, MM_FILEPAGES) +
1292 get_mm_counter(mm, MM_ANONPAGES);
1293}
1294
1295static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1296{
1297 return max(mm->hiwater_rss, get_mm_rss(mm));
1298}
1299
1300static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1301{
1302 return max(mm->hiwater_vm, mm->total_vm);
1303}
1304
1305static inline void update_hiwater_rss(struct mm_struct *mm)
1306{
1307 unsigned long _rss = get_mm_rss(mm);
1308
1309 if ((mm)->hiwater_rss < _rss)
1310 (mm)->hiwater_rss = _rss;
1311}
1312
1313static inline void update_hiwater_vm(struct mm_struct *mm)
1314{
1315 if (mm->hiwater_vm < mm->total_vm)
1316 mm->hiwater_vm = mm->total_vm;
1317}
1318
1319static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1320 struct mm_struct *mm)
1321{
1322 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1323
1324 if (*maxrss < hiwater_rss)
1325 *maxrss = hiwater_rss;
1326}
1327
1328#if defined(SPLIT_RSS_COUNTING)
1329void sync_mm_rss(struct mm_struct *mm);
1330#else
1331static inline void sync_mm_rss(struct mm_struct *mm)
1332{
1333}
1334#endif
1335
1336int vma_wants_writenotify(struct vm_area_struct *vma);
1337
1338extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1339 spinlock_t **ptl);
1340static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1341 spinlock_t **ptl)
1342{
1343 pte_t *ptep;
1344 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1345 return ptep;
1346}
1347
1348#ifdef __PAGETABLE_PUD_FOLDED
1349static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1350 unsigned long address)
1351{
1352 return 0;
1353}
1354#else
1355int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1356#endif
1357
1358#ifdef __PAGETABLE_PMD_FOLDED
1359static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1360 unsigned long address)
1361{
1362 return 0;
1363}
1364#else
1365int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1366#endif
1367
1368int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1369 pmd_t *pmd, unsigned long address);
1370int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1371
1372/*
1373 * The following ifdef needed to get the 4level-fixup.h header to work.
1374 * Remove it when 4level-fixup.h has been removed.
1375 */
1376#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1377static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1378{
1379 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1380 NULL: pud_offset(pgd, address);
1381}
1382
1383static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1384{
1385 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1386 NULL: pmd_offset(pud, address);
1387}
1388#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1389
1390#if USE_SPLIT_PTE_PTLOCKS
1391#if ALLOC_SPLIT_PTLOCKS
1392void __init ptlock_cache_init(void);
1393extern bool ptlock_alloc(struct page *page);
1394extern void ptlock_free(struct page *page);
1395
1396static inline spinlock_t *ptlock_ptr(struct page *page)
1397{
1398 return page->ptl;
1399}
1400#else /* ALLOC_SPLIT_PTLOCKS */
1401static inline void ptlock_cache_init(void)
1402{
1403}
1404
1405static inline bool ptlock_alloc(struct page *page)
1406{
1407 return true;
1408}
1409
1410static inline void ptlock_free(struct page *page)
1411{
1412}
1413
1414static inline spinlock_t *ptlock_ptr(struct page *page)
1415{
1416 return &page->ptl;
1417}
1418#endif /* ALLOC_SPLIT_PTLOCKS */
1419
1420static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1421{
1422 return ptlock_ptr(pmd_page(*pmd));
1423}
1424
1425static inline bool ptlock_init(struct page *page)
1426{
1427 /*
1428 * prep_new_page() initialize page->private (and therefore page->ptl)
1429 * with 0. Make sure nobody took it in use in between.
1430 *
1431 * It can happen if arch try to use slab for page table allocation:
1432 * slab code uses page->slab_cache and page->first_page (for tail
1433 * pages), which share storage with page->ptl.
1434 */
1435 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1436 if (!ptlock_alloc(page))
1437 return false;
1438 spin_lock_init(ptlock_ptr(page));
1439 return true;
1440}
1441
1442/* Reset page->mapping so free_pages_check won't complain. */
1443static inline void pte_lock_deinit(struct page *page)
1444{
1445 page->mapping = NULL;
1446 ptlock_free(page);
1447}
1448
1449#else /* !USE_SPLIT_PTE_PTLOCKS */
1450/*
1451 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1452 */
1453static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1454{
1455 return &mm->page_table_lock;
1456}
1457static inline void ptlock_cache_init(void) {}
1458static inline bool ptlock_init(struct page *page) { return true; }
1459static inline void pte_lock_deinit(struct page *page) {}
1460#endif /* USE_SPLIT_PTE_PTLOCKS */
1461
1462static inline void pgtable_init(void)
1463{
1464 ptlock_cache_init();
1465 pgtable_cache_init();
1466}
1467
1468static inline bool pgtable_page_ctor(struct page *page)
1469{
1470 inc_zone_page_state(page, NR_PAGETABLE);
1471 return ptlock_init(page);
1472}
1473
1474static inline void pgtable_page_dtor(struct page *page)
1475{
1476 pte_lock_deinit(page);
1477 dec_zone_page_state(page, NR_PAGETABLE);
1478}
1479
1480#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1481({ \
1482 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1483 pte_t *__pte = pte_offset_map(pmd, address); \
1484 *(ptlp) = __ptl; \
1485 spin_lock(__ptl); \
1486 __pte; \
1487})
1488
1489#define pte_unmap_unlock(pte, ptl) do { \
1490 spin_unlock(ptl); \
1491 pte_unmap(pte); \
1492} while (0)
1493
1494#define pte_alloc_map(mm, vma, pmd, address) \
1495 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1496 pmd, address))? \
1497 NULL: pte_offset_map(pmd, address))
1498
1499#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1500 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1501 pmd, address))? \
1502 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1503
1504#define pte_alloc_kernel(pmd, address) \
1505 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1506 NULL: pte_offset_kernel(pmd, address))
1507
1508#if USE_SPLIT_PMD_PTLOCKS
1509
1510static struct page *pmd_to_page(pmd_t *pmd)
1511{
1512 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1513 return virt_to_page((void *)((unsigned long) pmd & mask));
1514}
1515
1516static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1517{
1518 return ptlock_ptr(pmd_to_page(pmd));
1519}
1520
1521static inline bool pgtable_pmd_page_ctor(struct page *page)
1522{
1523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1524 page->pmd_huge_pte = NULL;
1525#endif
1526 return ptlock_init(page);
1527}
1528
1529static inline void pgtable_pmd_page_dtor(struct page *page)
1530{
1531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1533#endif
1534 ptlock_free(page);
1535}
1536
1537#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1538
1539#else
1540
1541static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1542{
1543 return &mm->page_table_lock;
1544}
1545
1546static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1547static inline void pgtable_pmd_page_dtor(struct page *page) {}
1548
1549#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1550
1551#endif
1552
1553static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1554{
1555 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1556 spin_lock(ptl);
1557 return ptl;
1558}
1559
1560extern void free_area_init(unsigned long * zones_size);
1561extern void free_area_init_node(int nid, unsigned long * zones_size,
1562 unsigned long zone_start_pfn, unsigned long *zholes_size);
1563extern void free_initmem(void);
1564
1565/*
1566 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1567 * into the buddy system. The freed pages will be poisoned with pattern
1568 * "poison" if it's within range [0, UCHAR_MAX].
1569 * Return pages freed into the buddy system.
1570 */
1571extern unsigned long free_reserved_area(void *start, void *end,
1572 int poison, char *s);
1573
1574#ifdef CONFIG_HIGHMEM
1575/*
1576 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1577 * and totalram_pages.
1578 */
1579extern void free_highmem_page(struct page *page);
1580#endif
1581
1582extern void adjust_managed_page_count(struct page *page, long count);
1583extern void mem_init_print_info(const char *str);
1584
1585/* Free the reserved page into the buddy system, so it gets managed. */
1586static inline void __free_reserved_page(struct page *page)
1587{
1588 ClearPageReserved(page);
1589 init_page_count(page);
1590 __free_page(page);
1591}
1592
1593static inline void free_reserved_page(struct page *page)
1594{
1595 __free_reserved_page(page);
1596 adjust_managed_page_count(page, 1);
1597}
1598
1599static inline void mark_page_reserved(struct page *page)
1600{
1601 SetPageReserved(page);
1602 adjust_managed_page_count(page, -1);
1603}
1604
1605/*
1606 * Default method to free all the __init memory into the buddy system.
1607 * The freed pages will be poisoned with pattern "poison" if it's within
1608 * range [0, UCHAR_MAX].
1609 * Return pages freed into the buddy system.
1610 */
1611static inline unsigned long free_initmem_default(int poison)
1612{
1613 extern char __init_begin[], __init_end[];
1614
1615 return free_reserved_area(&__init_begin, &__init_end,
1616 poison, "unused kernel");
1617}
1618
1619static inline unsigned long get_num_physpages(void)
1620{
1621 int nid;
1622 unsigned long phys_pages = 0;
1623
1624 for_each_online_node(nid)
1625 phys_pages += node_present_pages(nid);
1626
1627 return phys_pages;
1628}
1629
1630#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1631/*
1632 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1633 * zones, allocate the backing mem_map and account for memory holes in a more
1634 * architecture independent manner. This is a substitute for creating the
1635 * zone_sizes[] and zholes_size[] arrays and passing them to
1636 * free_area_init_node()
1637 *
1638 * An architecture is expected to register range of page frames backed by
1639 * physical memory with memblock_add[_node]() before calling
1640 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1641 * usage, an architecture is expected to do something like
1642 *
1643 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1644 * max_highmem_pfn};
1645 * for_each_valid_physical_page_range()
1646 * memblock_add_node(base, size, nid)
1647 * free_area_init_nodes(max_zone_pfns);
1648 *
1649 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1650 * registered physical page range. Similarly
1651 * sparse_memory_present_with_active_regions() calls memory_present() for
1652 * each range when SPARSEMEM is enabled.
1653 *
1654 * See mm/page_alloc.c for more information on each function exposed by
1655 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1656 */
1657extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1658unsigned long node_map_pfn_alignment(void);
1659unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1660 unsigned long end_pfn);
1661extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1662 unsigned long end_pfn);
1663extern void get_pfn_range_for_nid(unsigned int nid,
1664 unsigned long *start_pfn, unsigned long *end_pfn);
1665extern unsigned long find_min_pfn_with_active_regions(void);
1666extern void free_bootmem_with_active_regions(int nid,
1667 unsigned long max_low_pfn);
1668extern void sparse_memory_present_with_active_regions(int nid);
1669
1670#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1671
1672#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1673 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1674static inline int __early_pfn_to_nid(unsigned long pfn)
1675{
1676 return 0;
1677}
1678#else
1679/* please see mm/page_alloc.c */
1680extern int __meminit early_pfn_to_nid(unsigned long pfn);
1681/* there is a per-arch backend function. */
1682extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1683#endif
1684
1685extern void set_dma_reserve(unsigned long new_dma_reserve);
1686extern void memmap_init_zone(unsigned long, int, unsigned long,
1687 unsigned long, enum memmap_context);
1688extern void setup_per_zone_wmarks(void);
1689extern int __meminit init_per_zone_wmark_min(void);
1690extern void mem_init(void);
1691extern void __init mmap_init(void);
1692extern void show_mem(unsigned int flags);
1693extern void si_meminfo(struct sysinfo * val);
1694extern void si_meminfo_node(struct sysinfo *val, int nid);
1695
1696extern __printf(3, 4)
1697void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1698
1699extern void setup_per_cpu_pageset(void);
1700
1701extern void zone_pcp_update(struct zone *zone);
1702extern void zone_pcp_reset(struct zone *zone);
1703
1704/* page_alloc.c */
1705extern int min_free_kbytes;
1706
1707/* nommu.c */
1708extern atomic_long_t mmap_pages_allocated;
1709extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1710
1711/* interval_tree.c */
1712void vma_interval_tree_insert(struct vm_area_struct *node,
1713 struct rb_root *root);
1714void vma_interval_tree_insert_after(struct vm_area_struct *node,
1715 struct vm_area_struct *prev,
1716 struct rb_root *root);
1717void vma_interval_tree_remove(struct vm_area_struct *node,
1718 struct rb_root *root);
1719struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1720 unsigned long start, unsigned long last);
1721struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1722 unsigned long start, unsigned long last);
1723
1724#define vma_interval_tree_foreach(vma, root, start, last) \
1725 for (vma = vma_interval_tree_iter_first(root, start, last); \
1726 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1727
1728static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1729 struct list_head *list)
1730{
1731 list_add_tail(&vma->shared.nonlinear, list);
1732}
1733
1734void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1735 struct rb_root *root);
1736void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1737 struct rb_root *root);
1738struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1739 struct rb_root *root, unsigned long start, unsigned long last);
1740struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1741 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1742#ifdef CONFIG_DEBUG_VM_RB
1743void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1744#endif
1745
1746#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1747 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1748 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1749
1750/* mmap.c */
1751extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1752extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1753 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1754extern struct vm_area_struct *vma_merge(struct mm_struct *,
1755 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1756 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1757 struct mempolicy *);
1758extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1759extern int split_vma(struct mm_struct *,
1760 struct vm_area_struct *, unsigned long addr, int new_below);
1761extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1762extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1763 struct rb_node **, struct rb_node *);
1764extern void unlink_file_vma(struct vm_area_struct *);
1765extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1766 unsigned long addr, unsigned long len, pgoff_t pgoff,
1767 bool *need_rmap_locks);
1768extern void exit_mmap(struct mm_struct *);
1769
1770extern int mm_take_all_locks(struct mm_struct *mm);
1771extern void mm_drop_all_locks(struct mm_struct *mm);
1772
1773extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1774extern struct file *get_mm_exe_file(struct mm_struct *mm);
1775
1776extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1777extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1778 unsigned long addr, unsigned long len,
1779 unsigned long flags, struct page **pages);
1780extern int install_special_mapping(struct mm_struct *mm,
1781 unsigned long addr, unsigned long len,
1782 unsigned long flags, struct page **pages);
1783
1784extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1785
1786extern unsigned long mmap_region(struct file *file, unsigned long addr,
1787 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1788extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1789 unsigned long len, unsigned long prot, unsigned long flags,
1790 unsigned long pgoff, unsigned long *populate);
1791extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1792
1793#ifdef CONFIG_MMU
1794extern int __mm_populate(unsigned long addr, unsigned long len,
1795 int ignore_errors);
1796static inline void mm_populate(unsigned long addr, unsigned long len)
1797{
1798 /* Ignore errors */
1799 (void) __mm_populate(addr, len, 1);
1800}
1801#else
1802static inline void mm_populate(unsigned long addr, unsigned long len) {}
1803#endif
1804
1805/* These take the mm semaphore themselves */
1806extern unsigned long vm_brk(unsigned long, unsigned long);
1807extern int vm_munmap(unsigned long, size_t);
1808extern unsigned long vm_mmap(struct file *, unsigned long,
1809 unsigned long, unsigned long,
1810 unsigned long, unsigned long);
1811
1812struct vm_unmapped_area_info {
1813#define VM_UNMAPPED_AREA_TOPDOWN 1
1814 unsigned long flags;
1815 unsigned long length;
1816 unsigned long low_limit;
1817 unsigned long high_limit;
1818 unsigned long align_mask;
1819 unsigned long align_offset;
1820};
1821
1822extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1823extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1824
1825/*
1826 * Search for an unmapped address range.
1827 *
1828 * We are looking for a range that:
1829 * - does not intersect with any VMA;
1830 * - is contained within the [low_limit, high_limit) interval;
1831 * - is at least the desired size.
1832 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1833 */
1834static inline unsigned long
1835vm_unmapped_area(struct vm_unmapped_area_info *info)
1836{
1837 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1838 return unmapped_area(info);
1839 else
1840 return unmapped_area_topdown(info);
1841}
1842
1843/* truncate.c */
1844extern void truncate_inode_pages(struct address_space *, loff_t);
1845extern void truncate_inode_pages_range(struct address_space *,
1846 loff_t lstart, loff_t lend);
1847extern void truncate_inode_pages_final(struct address_space *);
1848
1849/* generic vm_area_ops exported for stackable file systems */
1850extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1851extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1852extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1853
1854/* mm/page-writeback.c */
1855int write_one_page(struct page *page, int wait);
1856void task_dirty_inc(struct task_struct *tsk);
1857
1858/* readahead.c */
1859#define VM_MAX_READAHEAD 128 /* kbytes */
1860#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1861
1862int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1863 pgoff_t offset, unsigned long nr_to_read);
1864
1865void page_cache_sync_readahead(struct address_space *mapping,
1866 struct file_ra_state *ra,
1867 struct file *filp,
1868 pgoff_t offset,
1869 unsigned long size);
1870
1871void page_cache_async_readahead(struct address_space *mapping,
1872 struct file_ra_state *ra,
1873 struct file *filp,
1874 struct page *pg,
1875 pgoff_t offset,
1876 unsigned long size);
1877
1878unsigned long max_sane_readahead(unsigned long nr);
1879
1880/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1881extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1882
1883/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1884extern int expand_downwards(struct vm_area_struct *vma,
1885 unsigned long address);
1886#if VM_GROWSUP
1887extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1888#else
1889 #define expand_upwards(vma, address) do { } while (0)
1890#endif
1891
1892/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1893extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1894extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1895 struct vm_area_struct **pprev);
1896
1897/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1898 NULL if none. Assume start_addr < end_addr. */
1899static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1900{
1901 struct vm_area_struct * vma = find_vma(mm,start_addr);
1902
1903 if (vma && end_addr <= vma->vm_start)
1904 vma = NULL;
1905 return vma;
1906}
1907
1908static inline unsigned long vma_pages(struct vm_area_struct *vma)
1909{
1910 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1911}
1912
1913/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1914static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1915 unsigned long vm_start, unsigned long vm_end)
1916{
1917 struct vm_area_struct *vma = find_vma(mm, vm_start);
1918
1919 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1920 vma = NULL;
1921
1922 return vma;
1923}
1924
1925#ifdef CONFIG_MMU
1926pgprot_t vm_get_page_prot(unsigned long vm_flags);
1927#else
1928static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1929{
1930 return __pgprot(0);
1931}
1932#endif
1933
1934#ifdef CONFIG_NUMA_BALANCING
1935unsigned long change_prot_numa(struct vm_area_struct *vma,
1936 unsigned long start, unsigned long end);
1937#endif
1938
1939struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1940int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1941 unsigned long pfn, unsigned long size, pgprot_t);
1942int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1943int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1944 unsigned long pfn);
1945int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1946 unsigned long pfn);
1947int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1948
1949
1950struct page *follow_page_mask(struct vm_area_struct *vma,
1951 unsigned long address, unsigned int foll_flags,
1952 unsigned int *page_mask);
1953
1954static inline struct page *follow_page(struct vm_area_struct *vma,
1955 unsigned long address, unsigned int foll_flags)
1956{
1957 unsigned int unused_page_mask;
1958 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1959}
1960
1961#define FOLL_WRITE 0x01 /* check pte is writable */
1962#define FOLL_TOUCH 0x02 /* mark page accessed */
1963#define FOLL_GET 0x04 /* do get_page on page */
1964#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1965#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1966#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1967 * and return without waiting upon it */
1968#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1969#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1970#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1971#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1972#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1973
1974typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1975 void *data);
1976extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1977 unsigned long size, pte_fn_t fn, void *data);
1978
1979#ifdef CONFIG_PROC_FS
1980void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1981#else
1982static inline void vm_stat_account(struct mm_struct *mm,
1983 unsigned long flags, struct file *file, long pages)
1984{
1985 mm->total_vm += pages;
1986}
1987#endif /* CONFIG_PROC_FS */
1988
1989#ifdef CONFIG_DEBUG_PAGEALLOC
1990extern void kernel_map_pages(struct page *page, int numpages, int enable);
1991#ifdef CONFIG_HIBERNATION
1992extern bool kernel_page_present(struct page *page);
1993#endif /* CONFIG_HIBERNATION */
1994#else
1995static inline void
1996kernel_map_pages(struct page *page, int numpages, int enable) {}
1997#ifdef CONFIG_HIBERNATION
1998static inline bool kernel_page_present(struct page *page) { return true; }
1999#endif /* CONFIG_HIBERNATION */
2000#endif
2001
2002extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2003#ifdef __HAVE_ARCH_GATE_AREA
2004int in_gate_area_no_mm(unsigned long addr);
2005int in_gate_area(struct mm_struct *mm, unsigned long addr);
2006#else
2007int in_gate_area_no_mm(unsigned long addr);
2008#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2009#endif /* __HAVE_ARCH_GATE_AREA */
2010
2011#ifdef CONFIG_SYSCTL
2012extern int sysctl_drop_caches;
2013int drop_caches_sysctl_handler(struct ctl_table *, int,
2014 void __user *, size_t *, loff_t *);
2015#endif
2016
2017unsigned long shrink_slab(struct shrink_control *shrink,
2018 unsigned long nr_pages_scanned,
2019 unsigned long lru_pages);
2020
2021#ifndef CONFIG_MMU
2022#define randomize_va_space 0
2023#else
2024extern int randomize_va_space;
2025#endif
2026
2027const char * arch_vma_name(struct vm_area_struct *vma);
2028void print_vma_addr(char *prefix, unsigned long rip);
2029
2030void sparse_mem_maps_populate_node(struct page **map_map,
2031 unsigned long pnum_begin,
2032 unsigned long pnum_end,
2033 unsigned long map_count,
2034 int nodeid);
2035
2036struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2037pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2038pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2039pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2040pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2041void *vmemmap_alloc_block(unsigned long size, int node);
2042void *vmemmap_alloc_block_buf(unsigned long size, int node);
2043void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2044int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2045 int node);
2046int vmemmap_populate(unsigned long start, unsigned long end, int node);
2047void vmemmap_populate_print_last(void);
2048#ifdef CONFIG_MEMORY_HOTPLUG
2049void vmemmap_free(unsigned long start, unsigned long end);
2050#endif
2051void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2052 unsigned long size);
2053
2054enum mf_flags {
2055 MF_COUNT_INCREASED = 1 << 0,
2056 MF_ACTION_REQUIRED = 1 << 1,
2057 MF_MUST_KILL = 1 << 2,
2058 MF_SOFT_OFFLINE = 1 << 3,
2059};
2060extern int memory_failure(unsigned long pfn, int trapno, int flags);
2061extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2062extern int unpoison_memory(unsigned long pfn);
2063extern int sysctl_memory_failure_early_kill;
2064extern int sysctl_memory_failure_recovery;
2065extern void shake_page(struct page *p, int access);
2066extern atomic_long_t num_poisoned_pages;
2067extern int soft_offline_page(struct page *page, int flags);
2068
2069#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2070extern void clear_huge_page(struct page *page,
2071 unsigned long addr,
2072 unsigned int pages_per_huge_page);
2073extern void copy_user_huge_page(struct page *dst, struct page *src,
2074 unsigned long addr, struct vm_area_struct *vma,
2075 unsigned int pages_per_huge_page);
2076#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2077
2078#ifdef CONFIG_DEBUG_PAGEALLOC
2079extern unsigned int _debug_guardpage_minorder;
2080
2081static inline unsigned int debug_guardpage_minorder(void)
2082{
2083 return _debug_guardpage_minorder;
2084}
2085
2086static inline bool page_is_guard(struct page *page)
2087{
2088 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2089}
2090#else
2091static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2092static inline bool page_is_guard(struct page *page) { return false; }
2093#endif /* CONFIG_DEBUG_PAGEALLOC */
2094
2095#if MAX_NUMNODES > 1
2096void __init setup_nr_node_ids(void);
2097#else
2098static inline void setup_nr_node_ids(void) {}
2099#endif
2100
2101#endif /* __KERNEL__ */
2102#endif /* _LINUX_MM_H */