at v3.15-rc2 38 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/err.h> 26#include <linux/uio.h> 27#include <linux/bug.h> 28#include <linux/scatterlist.h> 29#include <linux/bitmap.h> 30#include <linux/types.h> 31#include <asm/page.h> 32 33/** 34 * typedef dma_cookie_t - an opaque DMA cookie 35 * 36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 37 */ 38typedef s32 dma_cookie_t; 39#define DMA_MIN_COOKIE 1 40#define DMA_MAX_COOKIE INT_MAX 41 42static inline int dma_submit_error(dma_cookie_t cookie) 43{ 44 return cookie < 0 ? cookie : 0; 45} 46 47/** 48 * enum dma_status - DMA transaction status 49 * @DMA_COMPLETE: transaction completed 50 * @DMA_IN_PROGRESS: transaction not yet processed 51 * @DMA_PAUSED: transaction is paused 52 * @DMA_ERROR: transaction failed 53 */ 54enum dma_status { 55 DMA_COMPLETE, 56 DMA_IN_PROGRESS, 57 DMA_PAUSED, 58 DMA_ERROR, 59}; 60 61/** 62 * enum dma_transaction_type - DMA transaction types/indexes 63 * 64 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 65 * automatically set as dma devices are registered. 66 */ 67enum dma_transaction_type { 68 DMA_MEMCPY, 69 DMA_XOR, 70 DMA_PQ, 71 DMA_XOR_VAL, 72 DMA_PQ_VAL, 73 DMA_INTERRUPT, 74 DMA_SG, 75 DMA_PRIVATE, 76 DMA_ASYNC_TX, 77 DMA_SLAVE, 78 DMA_CYCLIC, 79 DMA_INTERLEAVE, 80/* last transaction type for creation of the capabilities mask */ 81 DMA_TX_TYPE_END, 82}; 83 84/** 85 * enum dma_transfer_direction - dma transfer mode and direction indicator 86 * @DMA_MEM_TO_MEM: Async/Memcpy mode 87 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 88 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 89 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 90 */ 91enum dma_transfer_direction { 92 DMA_MEM_TO_MEM, 93 DMA_MEM_TO_DEV, 94 DMA_DEV_TO_MEM, 95 DMA_DEV_TO_DEV, 96 DMA_TRANS_NONE, 97}; 98 99/** 100 * Interleaved Transfer Request 101 * ---------------------------- 102 * A chunk is collection of contiguous bytes to be transfered. 103 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 104 * ICGs may or maynot change between chunks. 105 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 106 * that when repeated an integral number of times, specifies the transfer. 107 * A transfer template is specification of a Frame, the number of times 108 * it is to be repeated and other per-transfer attributes. 109 * 110 * Practically, a client driver would have ready a template for each 111 * type of transfer it is going to need during its lifetime and 112 * set only 'src_start' and 'dst_start' before submitting the requests. 113 * 114 * 115 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 116 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 117 * 118 * == Chunk size 119 * ... ICG 120 */ 121 122/** 123 * struct data_chunk - Element of scatter-gather list that makes a frame. 124 * @size: Number of bytes to read from source. 125 * size_dst := fn(op, size_src), so doesn't mean much for destination. 126 * @icg: Number of bytes to jump after last src/dst address of this 127 * chunk and before first src/dst address for next chunk. 128 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 129 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 130 */ 131struct data_chunk { 132 size_t size; 133 size_t icg; 134}; 135 136/** 137 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 138 * and attributes. 139 * @src_start: Bus address of source for the first chunk. 140 * @dst_start: Bus address of destination for the first chunk. 141 * @dir: Specifies the type of Source and Destination. 142 * @src_inc: If the source address increments after reading from it. 143 * @dst_inc: If the destination address increments after writing to it. 144 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 145 * Otherwise, source is read contiguously (icg ignored). 146 * Ignored if src_inc is false. 147 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 148 * Otherwise, destination is filled contiguously (icg ignored). 149 * Ignored if dst_inc is false. 150 * @numf: Number of frames in this template. 151 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 152 * @sgl: Array of {chunk,icg} pairs that make up a frame. 153 */ 154struct dma_interleaved_template { 155 dma_addr_t src_start; 156 dma_addr_t dst_start; 157 enum dma_transfer_direction dir; 158 bool src_inc; 159 bool dst_inc; 160 bool src_sgl; 161 bool dst_sgl; 162 size_t numf; 163 size_t frame_size; 164 struct data_chunk sgl[0]; 165}; 166 167/** 168 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 169 * control completion, and communicate status. 170 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 171 * this transaction 172 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 173 * acknowledges receipt, i.e. has has a chance to establish any dependency 174 * chains 175 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 176 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 177 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 178 * sources that were the result of a previous operation, in the case of a PQ 179 * operation it continues the calculation with new sources 180 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 181 * on the result of this operation 182 */ 183enum dma_ctrl_flags { 184 DMA_PREP_INTERRUPT = (1 << 0), 185 DMA_CTRL_ACK = (1 << 1), 186 DMA_PREP_PQ_DISABLE_P = (1 << 2), 187 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 188 DMA_PREP_CONTINUE = (1 << 4), 189 DMA_PREP_FENCE = (1 << 5), 190}; 191 192/** 193 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 194 * on a running channel. 195 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 196 * @DMA_PAUSE: pause ongoing transfers 197 * @DMA_RESUME: resume paused transfer 198 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 199 * that need to runtime reconfigure the slave channels (as opposed to passing 200 * configuration data in statically from the platform). An additional 201 * argument of struct dma_slave_config must be passed in with this 202 * command. 203 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 204 * into external start mode. 205 */ 206enum dma_ctrl_cmd { 207 DMA_TERMINATE_ALL, 208 DMA_PAUSE, 209 DMA_RESUME, 210 DMA_SLAVE_CONFIG, 211 FSLDMA_EXTERNAL_START, 212}; 213 214/** 215 * enum sum_check_bits - bit position of pq_check_flags 216 */ 217enum sum_check_bits { 218 SUM_CHECK_P = 0, 219 SUM_CHECK_Q = 1, 220}; 221 222/** 223 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 224 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 225 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 226 */ 227enum sum_check_flags { 228 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 229 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 230}; 231 232 233/** 234 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 235 * See linux/cpumask.h 236 */ 237typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 238 239/** 240 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 241 * @memcpy_count: transaction counter 242 * @bytes_transferred: byte counter 243 */ 244 245struct dma_chan_percpu { 246 /* stats */ 247 unsigned long memcpy_count; 248 unsigned long bytes_transferred; 249}; 250 251/** 252 * struct dma_chan - devices supply DMA channels, clients use them 253 * @device: ptr to the dma device who supplies this channel, always !%NULL 254 * @cookie: last cookie value returned to client 255 * @completed_cookie: last completed cookie for this channel 256 * @chan_id: channel ID for sysfs 257 * @dev: class device for sysfs 258 * @device_node: used to add this to the device chan list 259 * @local: per-cpu pointer to a struct dma_chan_percpu 260 * @client_count: how many clients are using this channel 261 * @table_count: number of appearances in the mem-to-mem allocation table 262 * @private: private data for certain client-channel associations 263 */ 264struct dma_chan { 265 struct dma_device *device; 266 dma_cookie_t cookie; 267 dma_cookie_t completed_cookie; 268 269 /* sysfs */ 270 int chan_id; 271 struct dma_chan_dev *dev; 272 273 struct list_head device_node; 274 struct dma_chan_percpu __percpu *local; 275 int client_count; 276 int table_count; 277 void *private; 278}; 279 280/** 281 * struct dma_chan_dev - relate sysfs device node to backing channel device 282 * @chan: driver channel device 283 * @device: sysfs device 284 * @dev_id: parent dma_device dev_id 285 * @idr_ref: reference count to gate release of dma_device dev_id 286 */ 287struct dma_chan_dev { 288 struct dma_chan *chan; 289 struct device device; 290 int dev_id; 291 atomic_t *idr_ref; 292}; 293 294/** 295 * enum dma_slave_buswidth - defines bus with of the DMA slave 296 * device, source or target buses 297 */ 298enum dma_slave_buswidth { 299 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 300 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 301 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 304}; 305 306/** 307 * struct dma_slave_config - dma slave channel runtime config 308 * @direction: whether the data shall go in or out on this slave 309 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 310 * legal values. 311 * @src_addr: this is the physical address where DMA slave data 312 * should be read (RX), if the source is memory this argument is 313 * ignored. 314 * @dst_addr: this is the physical address where DMA slave data 315 * should be written (TX), if the source is memory this argument 316 * is ignored. 317 * @src_addr_width: this is the width in bytes of the source (RX) 318 * register where DMA data shall be read. If the source 319 * is memory this may be ignored depending on architecture. 320 * Legal values: 1, 2, 4, 8. 321 * @dst_addr_width: same as src_addr_width but for destination 322 * target (TX) mutatis mutandis. 323 * @src_maxburst: the maximum number of words (note: words, as in 324 * units of the src_addr_width member, not bytes) that can be sent 325 * in one burst to the device. Typically something like half the 326 * FIFO depth on I/O peripherals so you don't overflow it. This 327 * may or may not be applicable on memory sources. 328 * @dst_maxburst: same as src_maxburst but for destination target 329 * mutatis mutandis. 330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 331 * with 'true' if peripheral should be flow controller. Direction will be 332 * selected at Runtime. 333 * @slave_id: Slave requester id. Only valid for slave channels. The dma 334 * slave peripheral will have unique id as dma requester which need to be 335 * pass as slave config. 336 * 337 * This struct is passed in as configuration data to a DMA engine 338 * in order to set up a certain channel for DMA transport at runtime. 339 * The DMA device/engine has to provide support for an additional 340 * command in the channel config interface, DMA_SLAVE_CONFIG 341 * and this struct will then be passed in as an argument to the 342 * DMA engine device_control() function. 343 * 344 * The rationale for adding configuration information to this struct is as 345 * follows: if it is likely that more than one DMA slave controllers in 346 * the world will support the configuration option, then make it generic. 347 * If not: if it is fixed so that it be sent in static from the platform 348 * data, then prefer to do that. 349 */ 350struct dma_slave_config { 351 enum dma_transfer_direction direction; 352 dma_addr_t src_addr; 353 dma_addr_t dst_addr; 354 enum dma_slave_buswidth src_addr_width; 355 enum dma_slave_buswidth dst_addr_width; 356 u32 src_maxburst; 357 u32 dst_maxburst; 358 bool device_fc; 359 unsigned int slave_id; 360}; 361 362/** 363 * enum dma_residue_granularity - Granularity of the reported transfer residue 364 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 365 * DMA channel is only able to tell whether a descriptor has been completed or 366 * not, which means residue reporting is not supported by this channel. The 367 * residue field of the dma_tx_state field will always be 0. 368 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 369 * completed segment of the transfer (For cyclic transfers this is after each 370 * period). This is typically implemented by having the hardware generate an 371 * interrupt after each transferred segment and then the drivers updates the 372 * outstanding residue by the size of the segment. Another possibility is if 373 * the hardware supports scatter-gather and the segment descriptor has a field 374 * which gets set after the segment has been completed. The driver then counts 375 * the number of segments without the flag set to compute the residue. 376 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 377 * burst. This is typically only supported if the hardware has a progress 378 * register of some sort (E.g. a register with the current read/write address 379 * or a register with the amount of bursts/beats/bytes that have been 380 * transferred or still need to be transferred). 381 */ 382enum dma_residue_granularity { 383 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 384 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 385 DMA_RESIDUE_GRANULARITY_BURST = 2, 386}; 387 388/* struct dma_slave_caps - expose capabilities of a slave channel only 389 * 390 * @src_addr_widths: bit mask of src addr widths the channel supports 391 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports 392 * @directions: bit mask of slave direction the channel supported 393 * since the enum dma_transfer_direction is not defined as bits for each 394 * type of direction, the dma controller should fill (1 << <TYPE>) and same 395 * should be checked by controller as well 396 * @cmd_pause: true, if pause and thereby resume is supported 397 * @cmd_terminate: true, if terminate cmd is supported 398 * @residue_granularity: granularity of the reported transfer residue 399 */ 400struct dma_slave_caps { 401 u32 src_addr_widths; 402 u32 dstn_addr_widths; 403 u32 directions; 404 bool cmd_pause; 405 bool cmd_terminate; 406 enum dma_residue_granularity residue_granularity; 407}; 408 409static inline const char *dma_chan_name(struct dma_chan *chan) 410{ 411 return dev_name(&chan->dev->device); 412} 413 414void dma_chan_cleanup(struct kref *kref); 415 416/** 417 * typedef dma_filter_fn - callback filter for dma_request_channel 418 * @chan: channel to be reviewed 419 * @filter_param: opaque parameter passed through dma_request_channel 420 * 421 * When this optional parameter is specified in a call to dma_request_channel a 422 * suitable channel is passed to this routine for further dispositioning before 423 * being returned. Where 'suitable' indicates a non-busy channel that 424 * satisfies the given capability mask. It returns 'true' to indicate that the 425 * channel is suitable. 426 */ 427typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 428 429typedef void (*dma_async_tx_callback)(void *dma_async_param); 430 431struct dmaengine_unmap_data { 432 u8 to_cnt; 433 u8 from_cnt; 434 u8 bidi_cnt; 435 struct device *dev; 436 struct kref kref; 437 size_t len; 438 dma_addr_t addr[0]; 439}; 440 441/** 442 * struct dma_async_tx_descriptor - async transaction descriptor 443 * ---dma generic offload fields--- 444 * @cookie: tracking cookie for this transaction, set to -EBUSY if 445 * this tx is sitting on a dependency list 446 * @flags: flags to augment operation preparation, control completion, and 447 * communicate status 448 * @phys: physical address of the descriptor 449 * @chan: target channel for this operation 450 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 451 * @callback: routine to call after this operation is complete 452 * @callback_param: general parameter to pass to the callback routine 453 * ---async_tx api specific fields--- 454 * @next: at completion submit this descriptor 455 * @parent: pointer to the next level up in the dependency chain 456 * @lock: protect the parent and next pointers 457 */ 458struct dma_async_tx_descriptor { 459 dma_cookie_t cookie; 460 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 461 dma_addr_t phys; 462 struct dma_chan *chan; 463 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 464 dma_async_tx_callback callback; 465 void *callback_param; 466 struct dmaengine_unmap_data *unmap; 467#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 468 struct dma_async_tx_descriptor *next; 469 struct dma_async_tx_descriptor *parent; 470 spinlock_t lock; 471#endif 472}; 473 474#ifdef CONFIG_DMA_ENGINE 475static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 476 struct dmaengine_unmap_data *unmap) 477{ 478 kref_get(&unmap->kref); 479 tx->unmap = unmap; 480} 481 482struct dmaengine_unmap_data * 483dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 484void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 485#else 486static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 487 struct dmaengine_unmap_data *unmap) 488{ 489} 490static inline struct dmaengine_unmap_data * 491dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 492{ 493 return NULL; 494} 495static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 496{ 497} 498#endif 499 500static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 501{ 502 if (tx->unmap) { 503 dmaengine_unmap_put(tx->unmap); 504 tx->unmap = NULL; 505 } 506} 507 508#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 509static inline void txd_lock(struct dma_async_tx_descriptor *txd) 510{ 511} 512static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 513{ 514} 515static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 516{ 517 BUG(); 518} 519static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 520{ 521} 522static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 523{ 524} 525static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 526{ 527 return NULL; 528} 529static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 530{ 531 return NULL; 532} 533 534#else 535static inline void txd_lock(struct dma_async_tx_descriptor *txd) 536{ 537 spin_lock_bh(&txd->lock); 538} 539static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 540{ 541 spin_unlock_bh(&txd->lock); 542} 543static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 544{ 545 txd->next = next; 546 next->parent = txd; 547} 548static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 549{ 550 txd->parent = NULL; 551} 552static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 553{ 554 txd->next = NULL; 555} 556static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 557{ 558 return txd->parent; 559} 560static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 561{ 562 return txd->next; 563} 564#endif 565 566/** 567 * struct dma_tx_state - filled in to report the status of 568 * a transfer. 569 * @last: last completed DMA cookie 570 * @used: last issued DMA cookie (i.e. the one in progress) 571 * @residue: the remaining number of bytes left to transmit 572 * on the selected transfer for states DMA_IN_PROGRESS and 573 * DMA_PAUSED if this is implemented in the driver, else 0 574 */ 575struct dma_tx_state { 576 dma_cookie_t last; 577 dma_cookie_t used; 578 u32 residue; 579}; 580 581/** 582 * struct dma_device - info on the entity supplying DMA services 583 * @chancnt: how many DMA channels are supported 584 * @privatecnt: how many DMA channels are requested by dma_request_channel 585 * @channels: the list of struct dma_chan 586 * @global_node: list_head for global dma_device_list 587 * @cap_mask: one or more dma_capability flags 588 * @max_xor: maximum number of xor sources, 0 if no capability 589 * @max_pq: maximum number of PQ sources and PQ-continue capability 590 * @copy_align: alignment shift for memcpy operations 591 * @xor_align: alignment shift for xor operations 592 * @pq_align: alignment shift for pq operations 593 * @fill_align: alignment shift for memset operations 594 * @dev_id: unique device ID 595 * @dev: struct device reference for dma mapping api 596 * @device_alloc_chan_resources: allocate resources and return the 597 * number of allocated descriptors 598 * @device_free_chan_resources: release DMA channel's resources 599 * @device_prep_dma_memcpy: prepares a memcpy operation 600 * @device_prep_dma_xor: prepares a xor operation 601 * @device_prep_dma_xor_val: prepares a xor validation operation 602 * @device_prep_dma_pq: prepares a pq operation 603 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 604 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 605 * @device_prep_slave_sg: prepares a slave dma operation 606 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 607 * The function takes a buffer of size buf_len. The callback function will 608 * be called after period_len bytes have been transferred. 609 * @device_prep_interleaved_dma: Transfer expression in a generic way. 610 * @device_control: manipulate all pending operations on a channel, returns 611 * zero or error code 612 * @device_tx_status: poll for transaction completion, the optional 613 * txstate parameter can be supplied with a pointer to get a 614 * struct with auxiliary transfer status information, otherwise the call 615 * will just return a simple status code 616 * @device_issue_pending: push pending transactions to hardware 617 * @device_slave_caps: return the slave channel capabilities 618 */ 619struct dma_device { 620 621 unsigned int chancnt; 622 unsigned int privatecnt; 623 struct list_head channels; 624 struct list_head global_node; 625 dma_cap_mask_t cap_mask; 626 unsigned short max_xor; 627 unsigned short max_pq; 628 u8 copy_align; 629 u8 xor_align; 630 u8 pq_align; 631 u8 fill_align; 632 #define DMA_HAS_PQ_CONTINUE (1 << 15) 633 634 int dev_id; 635 struct device *dev; 636 637 int (*device_alloc_chan_resources)(struct dma_chan *chan); 638 void (*device_free_chan_resources)(struct dma_chan *chan); 639 640 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 641 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 642 size_t len, unsigned long flags); 643 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 644 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 645 unsigned int src_cnt, size_t len, unsigned long flags); 646 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 647 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 648 size_t len, enum sum_check_flags *result, unsigned long flags); 649 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 650 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 651 unsigned int src_cnt, const unsigned char *scf, 652 size_t len, unsigned long flags); 653 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 654 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 655 unsigned int src_cnt, const unsigned char *scf, size_t len, 656 enum sum_check_flags *pqres, unsigned long flags); 657 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 658 struct dma_chan *chan, unsigned long flags); 659 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 660 struct dma_chan *chan, 661 struct scatterlist *dst_sg, unsigned int dst_nents, 662 struct scatterlist *src_sg, unsigned int src_nents, 663 unsigned long flags); 664 665 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 666 struct dma_chan *chan, struct scatterlist *sgl, 667 unsigned int sg_len, enum dma_transfer_direction direction, 668 unsigned long flags, void *context); 669 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 670 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 671 size_t period_len, enum dma_transfer_direction direction, 672 unsigned long flags, void *context); 673 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 674 struct dma_chan *chan, struct dma_interleaved_template *xt, 675 unsigned long flags); 676 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 677 unsigned long arg); 678 679 enum dma_status (*device_tx_status)(struct dma_chan *chan, 680 dma_cookie_t cookie, 681 struct dma_tx_state *txstate); 682 void (*device_issue_pending)(struct dma_chan *chan); 683 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 684}; 685 686static inline int dmaengine_device_control(struct dma_chan *chan, 687 enum dma_ctrl_cmd cmd, 688 unsigned long arg) 689{ 690 if (chan->device->device_control) 691 return chan->device->device_control(chan, cmd, arg); 692 693 return -ENOSYS; 694} 695 696static inline int dmaengine_slave_config(struct dma_chan *chan, 697 struct dma_slave_config *config) 698{ 699 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 700 (unsigned long)config); 701} 702 703static inline bool is_slave_direction(enum dma_transfer_direction direction) 704{ 705 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 706} 707 708static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 709 struct dma_chan *chan, dma_addr_t buf, size_t len, 710 enum dma_transfer_direction dir, unsigned long flags) 711{ 712 struct scatterlist sg; 713 sg_init_table(&sg, 1); 714 sg_dma_address(&sg) = buf; 715 sg_dma_len(&sg) = len; 716 717 return chan->device->device_prep_slave_sg(chan, &sg, 1, 718 dir, flags, NULL); 719} 720 721static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 722 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 723 enum dma_transfer_direction dir, unsigned long flags) 724{ 725 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 726 dir, flags, NULL); 727} 728 729#ifdef CONFIG_RAPIDIO_DMA_ENGINE 730struct rio_dma_ext; 731static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 732 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 733 enum dma_transfer_direction dir, unsigned long flags, 734 struct rio_dma_ext *rio_ext) 735{ 736 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 737 dir, flags, rio_ext); 738} 739#endif 740 741static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 742 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 743 size_t period_len, enum dma_transfer_direction dir, 744 unsigned long flags) 745{ 746 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 747 period_len, dir, flags, NULL); 748} 749 750static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 751 struct dma_chan *chan, struct dma_interleaved_template *xt, 752 unsigned long flags) 753{ 754 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 755} 756 757static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 758{ 759 if (!chan || !caps) 760 return -EINVAL; 761 762 /* check if the channel supports slave transactions */ 763 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits)) 764 return -ENXIO; 765 766 if (chan->device->device_slave_caps) 767 return chan->device->device_slave_caps(chan, caps); 768 769 return -ENXIO; 770} 771 772static inline int dmaengine_terminate_all(struct dma_chan *chan) 773{ 774 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 775} 776 777static inline int dmaengine_pause(struct dma_chan *chan) 778{ 779 return dmaengine_device_control(chan, DMA_PAUSE, 0); 780} 781 782static inline int dmaengine_resume(struct dma_chan *chan) 783{ 784 return dmaengine_device_control(chan, DMA_RESUME, 0); 785} 786 787static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 788 dma_cookie_t cookie, struct dma_tx_state *state) 789{ 790 return chan->device->device_tx_status(chan, cookie, state); 791} 792 793static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 794{ 795 return desc->tx_submit(desc); 796} 797 798static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 799{ 800 size_t mask; 801 802 if (!align) 803 return true; 804 mask = (1 << align) - 1; 805 if (mask & (off1 | off2 | len)) 806 return false; 807 return true; 808} 809 810static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 811 size_t off2, size_t len) 812{ 813 return dmaengine_check_align(dev->copy_align, off1, off2, len); 814} 815 816static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 817 size_t off2, size_t len) 818{ 819 return dmaengine_check_align(dev->xor_align, off1, off2, len); 820} 821 822static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 823 size_t off2, size_t len) 824{ 825 return dmaengine_check_align(dev->pq_align, off1, off2, len); 826} 827 828static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 829 size_t off2, size_t len) 830{ 831 return dmaengine_check_align(dev->fill_align, off1, off2, len); 832} 833 834static inline void 835dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 836{ 837 dma->max_pq = maxpq; 838 if (has_pq_continue) 839 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 840} 841 842static inline bool dmaf_continue(enum dma_ctrl_flags flags) 843{ 844 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 845} 846 847static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 848{ 849 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 850 851 return (flags & mask) == mask; 852} 853 854static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 855{ 856 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 857} 858 859static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 860{ 861 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 862} 863 864/* dma_maxpq - reduce maxpq in the face of continued operations 865 * @dma - dma device with PQ capability 866 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 867 * 868 * When an engine does not support native continuation we need 3 extra 869 * source slots to reuse P and Q with the following coefficients: 870 * 1/ {00} * P : remove P from Q', but use it as a source for P' 871 * 2/ {01} * Q : use Q to continue Q' calculation 872 * 3/ {00} * Q : subtract Q from P' to cancel (2) 873 * 874 * In the case where P is disabled we only need 1 extra source: 875 * 1/ {01} * Q : use Q to continue Q' calculation 876 */ 877static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 878{ 879 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 880 return dma_dev_to_maxpq(dma); 881 else if (dmaf_p_disabled_continue(flags)) 882 return dma_dev_to_maxpq(dma) - 1; 883 else if (dmaf_continue(flags)) 884 return dma_dev_to_maxpq(dma) - 3; 885 BUG(); 886} 887 888/* --- public DMA engine API --- */ 889 890#ifdef CONFIG_DMA_ENGINE 891void dmaengine_get(void); 892void dmaengine_put(void); 893#else 894static inline void dmaengine_get(void) 895{ 896} 897static inline void dmaengine_put(void) 898{ 899} 900#endif 901 902#ifdef CONFIG_NET_DMA 903#define net_dmaengine_get() dmaengine_get() 904#define net_dmaengine_put() dmaengine_put() 905#else 906static inline void net_dmaengine_get(void) 907{ 908} 909static inline void net_dmaengine_put(void) 910{ 911} 912#endif 913 914#ifdef CONFIG_ASYNC_TX_DMA 915#define async_dmaengine_get() dmaengine_get() 916#define async_dmaengine_put() dmaengine_put() 917#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 918#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 919#else 920#define async_dma_find_channel(type) dma_find_channel(type) 921#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 922#else 923static inline void async_dmaengine_get(void) 924{ 925} 926static inline void async_dmaengine_put(void) 927{ 928} 929static inline struct dma_chan * 930async_dma_find_channel(enum dma_transaction_type type) 931{ 932 return NULL; 933} 934#endif /* CONFIG_ASYNC_TX_DMA */ 935 936dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 937 void *dest, void *src, size_t len); 938dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 939 struct page *page, unsigned int offset, void *kdata, size_t len); 940dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 941 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 942 unsigned int src_off, size_t len); 943void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 944 struct dma_chan *chan); 945 946static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 947{ 948 tx->flags |= DMA_CTRL_ACK; 949} 950 951static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 952{ 953 tx->flags &= ~DMA_CTRL_ACK; 954} 955 956static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 957{ 958 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 959} 960 961#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 962static inline void 963__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 964{ 965 set_bit(tx_type, dstp->bits); 966} 967 968#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 969static inline void 970__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 971{ 972 clear_bit(tx_type, dstp->bits); 973} 974 975#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 976static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 977{ 978 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 979} 980 981#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 982static inline int 983__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 984{ 985 return test_bit(tx_type, srcp->bits); 986} 987 988#define for_each_dma_cap_mask(cap, mask) \ 989 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 990 991/** 992 * dma_async_issue_pending - flush pending transactions to HW 993 * @chan: target DMA channel 994 * 995 * This allows drivers to push copies to HW in batches, 996 * reducing MMIO writes where possible. 997 */ 998static inline void dma_async_issue_pending(struct dma_chan *chan) 999{ 1000 chan->device->device_issue_pending(chan); 1001} 1002 1003/** 1004 * dma_async_is_tx_complete - poll for transaction completion 1005 * @chan: DMA channel 1006 * @cookie: transaction identifier to check status of 1007 * @last: returns last completed cookie, can be NULL 1008 * @used: returns last issued cookie, can be NULL 1009 * 1010 * If @last and @used are passed in, upon return they reflect the driver 1011 * internal state and can be used with dma_async_is_complete() to check 1012 * the status of multiple cookies without re-checking hardware state. 1013 */ 1014static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1015 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1016{ 1017 struct dma_tx_state state; 1018 enum dma_status status; 1019 1020 status = chan->device->device_tx_status(chan, cookie, &state); 1021 if (last) 1022 *last = state.last; 1023 if (used) 1024 *used = state.used; 1025 return status; 1026} 1027 1028/** 1029 * dma_async_is_complete - test a cookie against chan state 1030 * @cookie: transaction identifier to test status of 1031 * @last_complete: last know completed transaction 1032 * @last_used: last cookie value handed out 1033 * 1034 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1035 * the test logic is separated for lightweight testing of multiple cookies 1036 */ 1037static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1038 dma_cookie_t last_complete, dma_cookie_t last_used) 1039{ 1040 if (last_complete <= last_used) { 1041 if ((cookie <= last_complete) || (cookie > last_used)) 1042 return DMA_COMPLETE; 1043 } else { 1044 if ((cookie <= last_complete) && (cookie > last_used)) 1045 return DMA_COMPLETE; 1046 } 1047 return DMA_IN_PROGRESS; 1048} 1049 1050static inline void 1051dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1052{ 1053 if (st) { 1054 st->last = last; 1055 st->used = used; 1056 st->residue = residue; 1057 } 1058} 1059 1060#ifdef CONFIG_DMA_ENGINE 1061struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1062enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1063enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1064void dma_issue_pending_all(void); 1065struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1066 dma_filter_fn fn, void *fn_param); 1067struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 1068 const char *name); 1069struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1070void dma_release_channel(struct dma_chan *chan); 1071#else 1072static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1073{ 1074 return NULL; 1075} 1076static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1077{ 1078 return DMA_COMPLETE; 1079} 1080static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1081{ 1082 return DMA_COMPLETE; 1083} 1084static inline void dma_issue_pending_all(void) 1085{ 1086} 1087static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1088 dma_filter_fn fn, void *fn_param) 1089{ 1090 return NULL; 1091} 1092static inline struct dma_chan *dma_request_slave_channel_reason( 1093 struct device *dev, const char *name) 1094{ 1095 return ERR_PTR(-ENODEV); 1096} 1097static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1098 const char *name) 1099{ 1100 return NULL; 1101} 1102static inline void dma_release_channel(struct dma_chan *chan) 1103{ 1104} 1105#endif 1106 1107/* --- DMA device --- */ 1108 1109int dma_async_device_register(struct dma_device *device); 1110void dma_async_device_unregister(struct dma_device *device); 1111void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1112struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1113struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1114struct dma_chan *net_dma_find_channel(void); 1115#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1116#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1117 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1118 1119static inline struct dma_chan 1120*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1121 dma_filter_fn fn, void *fn_param, 1122 struct device *dev, char *name) 1123{ 1124 struct dma_chan *chan; 1125 1126 chan = dma_request_slave_channel(dev, name); 1127 if (chan) 1128 return chan; 1129 1130 return __dma_request_channel(mask, fn, fn_param); 1131} 1132 1133/* --- Helper iov-locking functions --- */ 1134 1135struct dma_page_list { 1136 char __user *base_address; 1137 int nr_pages; 1138 struct page **pages; 1139}; 1140 1141struct dma_pinned_list { 1142 int nr_iovecs; 1143 struct dma_page_list page_list[0]; 1144}; 1145 1146struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1147void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1148 1149dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1150 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1151dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1152 struct dma_pinned_list *pinned_list, struct page *page, 1153 unsigned int offset, size_t len); 1154 1155#endif /* DMAENGINE_H */