Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <linux/kdev_t.h>
20#include <linux/notifier.h>
21#include <linux/of.h>
22#include <linux/of_device.h>
23#include <linux/genhd.h>
24#include <linux/kallsyms.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sysfs.h>
29
30#include "base.h"
31#include "power/power.h"
32
33#ifdef CONFIG_SYSFS_DEPRECATED
34#ifdef CONFIG_SYSFS_DEPRECATED_V2
35long sysfs_deprecated = 1;
36#else
37long sysfs_deprecated = 0;
38#endif
39static int __init sysfs_deprecated_setup(char *arg)
40{
41 return kstrtol(arg, 10, &sysfs_deprecated);
42}
43early_param("sysfs.deprecated", sysfs_deprecated_setup);
44#endif
45
46int (*platform_notify)(struct device *dev) = NULL;
47int (*platform_notify_remove)(struct device *dev) = NULL;
48static struct kobject *dev_kobj;
49struct kobject *sysfs_dev_char_kobj;
50struct kobject *sysfs_dev_block_kobj;
51
52static DEFINE_MUTEX(device_hotplug_lock);
53
54void lock_device_hotplug(void)
55{
56 mutex_lock(&device_hotplug_lock);
57}
58
59void unlock_device_hotplug(void)
60{
61 mutex_unlock(&device_hotplug_lock);
62}
63
64int lock_device_hotplug_sysfs(void)
65{
66 if (mutex_trylock(&device_hotplug_lock))
67 return 0;
68
69 /* Avoid busy looping (5 ms of sleep should do). */
70 msleep(5);
71 return restart_syscall();
72}
73
74#ifdef CONFIG_BLOCK
75static inline int device_is_not_partition(struct device *dev)
76{
77 return !(dev->type == &part_type);
78}
79#else
80static inline int device_is_not_partition(struct device *dev)
81{
82 return 1;
83}
84#endif
85
86/**
87 * dev_driver_string - Return a device's driver name, if at all possible
88 * @dev: struct device to get the name of
89 *
90 * Will return the device's driver's name if it is bound to a device. If
91 * the device is not bound to a driver, it will return the name of the bus
92 * it is attached to. If it is not attached to a bus either, an empty
93 * string will be returned.
94 */
95const char *dev_driver_string(const struct device *dev)
96{
97 struct device_driver *drv;
98
99 /* dev->driver can change to NULL underneath us because of unbinding,
100 * so be careful about accessing it. dev->bus and dev->class should
101 * never change once they are set, so they don't need special care.
102 */
103 drv = ACCESS_ONCE(dev->driver);
104 return drv ? drv->name :
105 (dev->bus ? dev->bus->name :
106 (dev->class ? dev->class->name : ""));
107}
108EXPORT_SYMBOL(dev_driver_string);
109
110#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
111
112static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
113 char *buf)
114{
115 struct device_attribute *dev_attr = to_dev_attr(attr);
116 struct device *dev = kobj_to_dev(kobj);
117 ssize_t ret = -EIO;
118
119 if (dev_attr->show)
120 ret = dev_attr->show(dev, dev_attr, buf);
121 if (ret >= (ssize_t)PAGE_SIZE) {
122 print_symbol("dev_attr_show: %s returned bad count\n",
123 (unsigned long)dev_attr->show);
124 }
125 return ret;
126}
127
128static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
129 const char *buf, size_t count)
130{
131 struct device_attribute *dev_attr = to_dev_attr(attr);
132 struct device *dev = kobj_to_dev(kobj);
133 ssize_t ret = -EIO;
134
135 if (dev_attr->store)
136 ret = dev_attr->store(dev, dev_attr, buf, count);
137 return ret;
138}
139
140static const struct sysfs_ops dev_sysfs_ops = {
141 .show = dev_attr_show,
142 .store = dev_attr_store,
143};
144
145#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
146
147ssize_t device_store_ulong(struct device *dev,
148 struct device_attribute *attr,
149 const char *buf, size_t size)
150{
151 struct dev_ext_attribute *ea = to_ext_attr(attr);
152 char *end;
153 unsigned long new = simple_strtoul(buf, &end, 0);
154 if (end == buf)
155 return -EINVAL;
156 *(unsigned long *)(ea->var) = new;
157 /* Always return full write size even if we didn't consume all */
158 return size;
159}
160EXPORT_SYMBOL_GPL(device_store_ulong);
161
162ssize_t device_show_ulong(struct device *dev,
163 struct device_attribute *attr,
164 char *buf)
165{
166 struct dev_ext_attribute *ea = to_ext_attr(attr);
167 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
168}
169EXPORT_SYMBOL_GPL(device_show_ulong);
170
171ssize_t device_store_int(struct device *dev,
172 struct device_attribute *attr,
173 const char *buf, size_t size)
174{
175 struct dev_ext_attribute *ea = to_ext_attr(attr);
176 char *end;
177 long new = simple_strtol(buf, &end, 0);
178 if (end == buf || new > INT_MAX || new < INT_MIN)
179 return -EINVAL;
180 *(int *)(ea->var) = new;
181 /* Always return full write size even if we didn't consume all */
182 return size;
183}
184EXPORT_SYMBOL_GPL(device_store_int);
185
186ssize_t device_show_int(struct device *dev,
187 struct device_attribute *attr,
188 char *buf)
189{
190 struct dev_ext_attribute *ea = to_ext_attr(attr);
191
192 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
193}
194EXPORT_SYMBOL_GPL(device_show_int);
195
196ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
197 const char *buf, size_t size)
198{
199 struct dev_ext_attribute *ea = to_ext_attr(attr);
200
201 if (strtobool(buf, ea->var) < 0)
202 return -EINVAL;
203
204 return size;
205}
206EXPORT_SYMBOL_GPL(device_store_bool);
207
208ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
209 char *buf)
210{
211 struct dev_ext_attribute *ea = to_ext_attr(attr);
212
213 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
214}
215EXPORT_SYMBOL_GPL(device_show_bool);
216
217/**
218 * device_release - free device structure.
219 * @kobj: device's kobject.
220 *
221 * This is called once the reference count for the object
222 * reaches 0. We forward the call to the device's release
223 * method, which should handle actually freeing the structure.
224 */
225static void device_release(struct kobject *kobj)
226{
227 struct device *dev = kobj_to_dev(kobj);
228 struct device_private *p = dev->p;
229
230 /*
231 * Some platform devices are driven without driver attached
232 * and managed resources may have been acquired. Make sure
233 * all resources are released.
234 *
235 * Drivers still can add resources into device after device
236 * is deleted but alive, so release devres here to avoid
237 * possible memory leak.
238 */
239 devres_release_all(dev);
240
241 if (dev->release)
242 dev->release(dev);
243 else if (dev->type && dev->type->release)
244 dev->type->release(dev);
245 else if (dev->class && dev->class->dev_release)
246 dev->class->dev_release(dev);
247 else
248 WARN(1, KERN_ERR "Device '%s' does not have a release() "
249 "function, it is broken and must be fixed.\n",
250 dev_name(dev));
251 kfree(p);
252}
253
254static const void *device_namespace(struct kobject *kobj)
255{
256 struct device *dev = kobj_to_dev(kobj);
257 const void *ns = NULL;
258
259 if (dev->class && dev->class->ns_type)
260 ns = dev->class->namespace(dev);
261
262 return ns;
263}
264
265static struct kobj_type device_ktype = {
266 .release = device_release,
267 .sysfs_ops = &dev_sysfs_ops,
268 .namespace = device_namespace,
269};
270
271
272static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
273{
274 struct kobj_type *ktype = get_ktype(kobj);
275
276 if (ktype == &device_ktype) {
277 struct device *dev = kobj_to_dev(kobj);
278 if (dev->bus)
279 return 1;
280 if (dev->class)
281 return 1;
282 }
283 return 0;
284}
285
286static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
287{
288 struct device *dev = kobj_to_dev(kobj);
289
290 if (dev->bus)
291 return dev->bus->name;
292 if (dev->class)
293 return dev->class->name;
294 return NULL;
295}
296
297static int dev_uevent(struct kset *kset, struct kobject *kobj,
298 struct kobj_uevent_env *env)
299{
300 struct device *dev = kobj_to_dev(kobj);
301 int retval = 0;
302
303 /* add device node properties if present */
304 if (MAJOR(dev->devt)) {
305 const char *tmp;
306 const char *name;
307 umode_t mode = 0;
308 kuid_t uid = GLOBAL_ROOT_UID;
309 kgid_t gid = GLOBAL_ROOT_GID;
310
311 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
312 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
313 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
314 if (name) {
315 add_uevent_var(env, "DEVNAME=%s", name);
316 if (mode)
317 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
318 if (!uid_eq(uid, GLOBAL_ROOT_UID))
319 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
320 if (!gid_eq(gid, GLOBAL_ROOT_GID))
321 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
322 kfree(tmp);
323 }
324 }
325
326 if (dev->type && dev->type->name)
327 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
328
329 if (dev->driver)
330 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
331
332 /* Add common DT information about the device */
333 of_device_uevent(dev, env);
334
335 /* have the bus specific function add its stuff */
336 if (dev->bus && dev->bus->uevent) {
337 retval = dev->bus->uevent(dev, env);
338 if (retval)
339 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
340 dev_name(dev), __func__, retval);
341 }
342
343 /* have the class specific function add its stuff */
344 if (dev->class && dev->class->dev_uevent) {
345 retval = dev->class->dev_uevent(dev, env);
346 if (retval)
347 pr_debug("device: '%s': %s: class uevent() "
348 "returned %d\n", dev_name(dev),
349 __func__, retval);
350 }
351
352 /* have the device type specific function add its stuff */
353 if (dev->type && dev->type->uevent) {
354 retval = dev->type->uevent(dev, env);
355 if (retval)
356 pr_debug("device: '%s': %s: dev_type uevent() "
357 "returned %d\n", dev_name(dev),
358 __func__, retval);
359 }
360
361 return retval;
362}
363
364static const struct kset_uevent_ops device_uevent_ops = {
365 .filter = dev_uevent_filter,
366 .name = dev_uevent_name,
367 .uevent = dev_uevent,
368};
369
370static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
371 char *buf)
372{
373 struct kobject *top_kobj;
374 struct kset *kset;
375 struct kobj_uevent_env *env = NULL;
376 int i;
377 size_t count = 0;
378 int retval;
379
380 /* search the kset, the device belongs to */
381 top_kobj = &dev->kobj;
382 while (!top_kobj->kset && top_kobj->parent)
383 top_kobj = top_kobj->parent;
384 if (!top_kobj->kset)
385 goto out;
386
387 kset = top_kobj->kset;
388 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
389 goto out;
390
391 /* respect filter */
392 if (kset->uevent_ops && kset->uevent_ops->filter)
393 if (!kset->uevent_ops->filter(kset, &dev->kobj))
394 goto out;
395
396 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
397 if (!env)
398 return -ENOMEM;
399
400 /* let the kset specific function add its keys */
401 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
402 if (retval)
403 goto out;
404
405 /* copy keys to file */
406 for (i = 0; i < env->envp_idx; i++)
407 count += sprintf(&buf[count], "%s\n", env->envp[i]);
408out:
409 kfree(env);
410 return count;
411}
412
413static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
414 const char *buf, size_t count)
415{
416 enum kobject_action action;
417
418 if (kobject_action_type(buf, count, &action) == 0)
419 kobject_uevent(&dev->kobj, action);
420 else
421 dev_err(dev, "uevent: unknown action-string\n");
422 return count;
423}
424static DEVICE_ATTR_RW(uevent);
425
426static ssize_t online_show(struct device *dev, struct device_attribute *attr,
427 char *buf)
428{
429 bool val;
430
431 device_lock(dev);
432 val = !dev->offline;
433 device_unlock(dev);
434 return sprintf(buf, "%u\n", val);
435}
436
437static ssize_t online_store(struct device *dev, struct device_attribute *attr,
438 const char *buf, size_t count)
439{
440 bool val;
441 int ret;
442
443 ret = strtobool(buf, &val);
444 if (ret < 0)
445 return ret;
446
447 ret = lock_device_hotplug_sysfs();
448 if (ret)
449 return ret;
450
451 ret = val ? device_online(dev) : device_offline(dev);
452 unlock_device_hotplug();
453 return ret < 0 ? ret : count;
454}
455static DEVICE_ATTR_RW(online);
456
457int device_add_groups(struct device *dev, const struct attribute_group **groups)
458{
459 return sysfs_create_groups(&dev->kobj, groups);
460}
461
462void device_remove_groups(struct device *dev,
463 const struct attribute_group **groups)
464{
465 sysfs_remove_groups(&dev->kobj, groups);
466}
467
468static int device_add_attrs(struct device *dev)
469{
470 struct class *class = dev->class;
471 const struct device_type *type = dev->type;
472 int error;
473
474 if (class) {
475 error = device_add_groups(dev, class->dev_groups);
476 if (error)
477 return error;
478 }
479
480 if (type) {
481 error = device_add_groups(dev, type->groups);
482 if (error)
483 goto err_remove_class_groups;
484 }
485
486 error = device_add_groups(dev, dev->groups);
487 if (error)
488 goto err_remove_type_groups;
489
490 if (device_supports_offline(dev) && !dev->offline_disabled) {
491 error = device_create_file(dev, &dev_attr_online);
492 if (error)
493 goto err_remove_dev_groups;
494 }
495
496 return 0;
497
498 err_remove_dev_groups:
499 device_remove_groups(dev, dev->groups);
500 err_remove_type_groups:
501 if (type)
502 device_remove_groups(dev, type->groups);
503 err_remove_class_groups:
504 if (class)
505 device_remove_groups(dev, class->dev_groups);
506
507 return error;
508}
509
510static void device_remove_attrs(struct device *dev)
511{
512 struct class *class = dev->class;
513 const struct device_type *type = dev->type;
514
515 device_remove_file(dev, &dev_attr_online);
516 device_remove_groups(dev, dev->groups);
517
518 if (type)
519 device_remove_groups(dev, type->groups);
520
521 if (class)
522 device_remove_groups(dev, class->dev_groups);
523}
524
525static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
526 char *buf)
527{
528 return print_dev_t(buf, dev->devt);
529}
530static DEVICE_ATTR_RO(dev);
531
532/* /sys/devices/ */
533struct kset *devices_kset;
534
535/**
536 * device_create_file - create sysfs attribute file for device.
537 * @dev: device.
538 * @attr: device attribute descriptor.
539 */
540int device_create_file(struct device *dev,
541 const struct device_attribute *attr)
542{
543 int error = 0;
544
545 if (dev) {
546 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
547 "Attribute %s: write permission without 'store'\n",
548 attr->attr.name);
549 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
550 "Attribute %s: read permission without 'show'\n",
551 attr->attr.name);
552 error = sysfs_create_file(&dev->kobj, &attr->attr);
553 }
554
555 return error;
556}
557EXPORT_SYMBOL_GPL(device_create_file);
558
559/**
560 * device_remove_file - remove sysfs attribute file.
561 * @dev: device.
562 * @attr: device attribute descriptor.
563 */
564void device_remove_file(struct device *dev,
565 const struct device_attribute *attr)
566{
567 if (dev)
568 sysfs_remove_file(&dev->kobj, &attr->attr);
569}
570EXPORT_SYMBOL_GPL(device_remove_file);
571
572/**
573 * device_remove_file_self - remove sysfs attribute file from its own method.
574 * @dev: device.
575 * @attr: device attribute descriptor.
576 *
577 * See kernfs_remove_self() for details.
578 */
579bool device_remove_file_self(struct device *dev,
580 const struct device_attribute *attr)
581{
582 if (dev)
583 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
584 else
585 return false;
586}
587EXPORT_SYMBOL_GPL(device_remove_file_self);
588
589/**
590 * device_create_bin_file - create sysfs binary attribute file for device.
591 * @dev: device.
592 * @attr: device binary attribute descriptor.
593 */
594int device_create_bin_file(struct device *dev,
595 const struct bin_attribute *attr)
596{
597 int error = -EINVAL;
598 if (dev)
599 error = sysfs_create_bin_file(&dev->kobj, attr);
600 return error;
601}
602EXPORT_SYMBOL_GPL(device_create_bin_file);
603
604/**
605 * device_remove_bin_file - remove sysfs binary attribute file
606 * @dev: device.
607 * @attr: device binary attribute descriptor.
608 */
609void device_remove_bin_file(struct device *dev,
610 const struct bin_attribute *attr)
611{
612 if (dev)
613 sysfs_remove_bin_file(&dev->kobj, attr);
614}
615EXPORT_SYMBOL_GPL(device_remove_bin_file);
616
617/**
618 * device_schedule_callback_owner - helper to schedule a callback for a device
619 * @dev: device.
620 * @func: callback function to invoke later.
621 * @owner: module owning the callback routine
622 *
623 * Attribute methods must not unregister themselves or their parent device
624 * (which would amount to the same thing). Attempts to do so will deadlock,
625 * since unregistration is mutually exclusive with driver callbacks.
626 *
627 * Instead methods can call this routine, which will attempt to allocate
628 * and schedule a workqueue request to call back @func with @dev as its
629 * argument in the workqueue's process context. @dev will be pinned until
630 * @func returns.
631 *
632 * This routine is usually called via the inline device_schedule_callback(),
633 * which automatically sets @owner to THIS_MODULE.
634 *
635 * Returns 0 if the request was submitted, -ENOMEM if storage could not
636 * be allocated, -ENODEV if a reference to @owner isn't available.
637 *
638 * NOTE: This routine won't work if CONFIG_SYSFS isn't set! It uses an
639 * underlying sysfs routine (since it is intended for use by attribute
640 * methods), and if sysfs isn't available you'll get nothing but -ENOSYS.
641 */
642int device_schedule_callback_owner(struct device *dev,
643 void (*func)(struct device *), struct module *owner)
644{
645 return sysfs_schedule_callback(&dev->kobj,
646 (void (*)(void *)) func, dev, owner);
647}
648EXPORT_SYMBOL_GPL(device_schedule_callback_owner);
649
650static void klist_children_get(struct klist_node *n)
651{
652 struct device_private *p = to_device_private_parent(n);
653 struct device *dev = p->device;
654
655 get_device(dev);
656}
657
658static void klist_children_put(struct klist_node *n)
659{
660 struct device_private *p = to_device_private_parent(n);
661 struct device *dev = p->device;
662
663 put_device(dev);
664}
665
666/**
667 * device_initialize - init device structure.
668 * @dev: device.
669 *
670 * This prepares the device for use by other layers by initializing
671 * its fields.
672 * It is the first half of device_register(), if called by
673 * that function, though it can also be called separately, so one
674 * may use @dev's fields. In particular, get_device()/put_device()
675 * may be used for reference counting of @dev after calling this
676 * function.
677 *
678 * All fields in @dev must be initialized by the caller to 0, except
679 * for those explicitly set to some other value. The simplest
680 * approach is to use kzalloc() to allocate the structure containing
681 * @dev.
682 *
683 * NOTE: Use put_device() to give up your reference instead of freeing
684 * @dev directly once you have called this function.
685 */
686void device_initialize(struct device *dev)
687{
688 dev->kobj.kset = devices_kset;
689 kobject_init(&dev->kobj, &device_ktype);
690 INIT_LIST_HEAD(&dev->dma_pools);
691 mutex_init(&dev->mutex);
692 lockdep_set_novalidate_class(&dev->mutex);
693 spin_lock_init(&dev->devres_lock);
694 INIT_LIST_HEAD(&dev->devres_head);
695 device_pm_init(dev);
696 set_dev_node(dev, -1);
697}
698EXPORT_SYMBOL_GPL(device_initialize);
699
700struct kobject *virtual_device_parent(struct device *dev)
701{
702 static struct kobject *virtual_dir = NULL;
703
704 if (!virtual_dir)
705 virtual_dir = kobject_create_and_add("virtual",
706 &devices_kset->kobj);
707
708 return virtual_dir;
709}
710
711struct class_dir {
712 struct kobject kobj;
713 struct class *class;
714};
715
716#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
717
718static void class_dir_release(struct kobject *kobj)
719{
720 struct class_dir *dir = to_class_dir(kobj);
721 kfree(dir);
722}
723
724static const
725struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
726{
727 struct class_dir *dir = to_class_dir(kobj);
728 return dir->class->ns_type;
729}
730
731static struct kobj_type class_dir_ktype = {
732 .release = class_dir_release,
733 .sysfs_ops = &kobj_sysfs_ops,
734 .child_ns_type = class_dir_child_ns_type
735};
736
737static struct kobject *
738class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
739{
740 struct class_dir *dir;
741 int retval;
742
743 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
744 if (!dir)
745 return NULL;
746
747 dir->class = class;
748 kobject_init(&dir->kobj, &class_dir_ktype);
749
750 dir->kobj.kset = &class->p->glue_dirs;
751
752 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
753 if (retval < 0) {
754 kobject_put(&dir->kobj);
755 return NULL;
756 }
757 return &dir->kobj;
758}
759
760
761static struct kobject *get_device_parent(struct device *dev,
762 struct device *parent)
763{
764 if (dev->class) {
765 static DEFINE_MUTEX(gdp_mutex);
766 struct kobject *kobj = NULL;
767 struct kobject *parent_kobj;
768 struct kobject *k;
769
770#ifdef CONFIG_BLOCK
771 /* block disks show up in /sys/block */
772 if (sysfs_deprecated && dev->class == &block_class) {
773 if (parent && parent->class == &block_class)
774 return &parent->kobj;
775 return &block_class.p->subsys.kobj;
776 }
777#endif
778
779 /*
780 * If we have no parent, we live in "virtual".
781 * Class-devices with a non class-device as parent, live
782 * in a "glue" directory to prevent namespace collisions.
783 */
784 if (parent == NULL)
785 parent_kobj = virtual_device_parent(dev);
786 else if (parent->class && !dev->class->ns_type)
787 return &parent->kobj;
788 else
789 parent_kobj = &parent->kobj;
790
791 mutex_lock(&gdp_mutex);
792
793 /* find our class-directory at the parent and reference it */
794 spin_lock(&dev->class->p->glue_dirs.list_lock);
795 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
796 if (k->parent == parent_kobj) {
797 kobj = kobject_get(k);
798 break;
799 }
800 spin_unlock(&dev->class->p->glue_dirs.list_lock);
801 if (kobj) {
802 mutex_unlock(&gdp_mutex);
803 return kobj;
804 }
805
806 /* or create a new class-directory at the parent device */
807 k = class_dir_create_and_add(dev->class, parent_kobj);
808 /* do not emit an uevent for this simple "glue" directory */
809 mutex_unlock(&gdp_mutex);
810 return k;
811 }
812
813 /* subsystems can specify a default root directory for their devices */
814 if (!parent && dev->bus && dev->bus->dev_root)
815 return &dev->bus->dev_root->kobj;
816
817 if (parent)
818 return &parent->kobj;
819 return NULL;
820}
821
822static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
823{
824 /* see if we live in a "glue" directory */
825 if (!glue_dir || !dev->class ||
826 glue_dir->kset != &dev->class->p->glue_dirs)
827 return;
828
829 kobject_put(glue_dir);
830}
831
832static void cleanup_device_parent(struct device *dev)
833{
834 cleanup_glue_dir(dev, dev->kobj.parent);
835}
836
837static int device_add_class_symlinks(struct device *dev)
838{
839 int error;
840
841 if (!dev->class)
842 return 0;
843
844 error = sysfs_create_link(&dev->kobj,
845 &dev->class->p->subsys.kobj,
846 "subsystem");
847 if (error)
848 goto out;
849
850 if (dev->parent && device_is_not_partition(dev)) {
851 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
852 "device");
853 if (error)
854 goto out_subsys;
855 }
856
857#ifdef CONFIG_BLOCK
858 /* /sys/block has directories and does not need symlinks */
859 if (sysfs_deprecated && dev->class == &block_class)
860 return 0;
861#endif
862
863 /* link in the class directory pointing to the device */
864 error = sysfs_create_link(&dev->class->p->subsys.kobj,
865 &dev->kobj, dev_name(dev));
866 if (error)
867 goto out_device;
868
869 return 0;
870
871out_device:
872 sysfs_remove_link(&dev->kobj, "device");
873
874out_subsys:
875 sysfs_remove_link(&dev->kobj, "subsystem");
876out:
877 return error;
878}
879
880static void device_remove_class_symlinks(struct device *dev)
881{
882 if (!dev->class)
883 return;
884
885 if (dev->parent && device_is_not_partition(dev))
886 sysfs_remove_link(&dev->kobj, "device");
887 sysfs_remove_link(&dev->kobj, "subsystem");
888#ifdef CONFIG_BLOCK
889 if (sysfs_deprecated && dev->class == &block_class)
890 return;
891#endif
892 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
893}
894
895/**
896 * dev_set_name - set a device name
897 * @dev: device
898 * @fmt: format string for the device's name
899 */
900int dev_set_name(struct device *dev, const char *fmt, ...)
901{
902 va_list vargs;
903 int err;
904
905 va_start(vargs, fmt);
906 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
907 va_end(vargs);
908 return err;
909}
910EXPORT_SYMBOL_GPL(dev_set_name);
911
912/**
913 * device_to_dev_kobj - select a /sys/dev/ directory for the device
914 * @dev: device
915 *
916 * By default we select char/ for new entries. Setting class->dev_obj
917 * to NULL prevents an entry from being created. class->dev_kobj must
918 * be set (or cleared) before any devices are registered to the class
919 * otherwise device_create_sys_dev_entry() and
920 * device_remove_sys_dev_entry() will disagree about the presence of
921 * the link.
922 */
923static struct kobject *device_to_dev_kobj(struct device *dev)
924{
925 struct kobject *kobj;
926
927 if (dev->class)
928 kobj = dev->class->dev_kobj;
929 else
930 kobj = sysfs_dev_char_kobj;
931
932 return kobj;
933}
934
935static int device_create_sys_dev_entry(struct device *dev)
936{
937 struct kobject *kobj = device_to_dev_kobj(dev);
938 int error = 0;
939 char devt_str[15];
940
941 if (kobj) {
942 format_dev_t(devt_str, dev->devt);
943 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
944 }
945
946 return error;
947}
948
949static void device_remove_sys_dev_entry(struct device *dev)
950{
951 struct kobject *kobj = device_to_dev_kobj(dev);
952 char devt_str[15];
953
954 if (kobj) {
955 format_dev_t(devt_str, dev->devt);
956 sysfs_remove_link(kobj, devt_str);
957 }
958}
959
960int device_private_init(struct device *dev)
961{
962 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
963 if (!dev->p)
964 return -ENOMEM;
965 dev->p->device = dev;
966 klist_init(&dev->p->klist_children, klist_children_get,
967 klist_children_put);
968 INIT_LIST_HEAD(&dev->p->deferred_probe);
969 return 0;
970}
971
972/**
973 * device_add - add device to device hierarchy.
974 * @dev: device.
975 *
976 * This is part 2 of device_register(), though may be called
977 * separately _iff_ device_initialize() has been called separately.
978 *
979 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
980 * to the global and sibling lists for the device, then
981 * adds it to the other relevant subsystems of the driver model.
982 *
983 * Do not call this routine or device_register() more than once for
984 * any device structure. The driver model core is not designed to work
985 * with devices that get unregistered and then spring back to life.
986 * (Among other things, it's very hard to guarantee that all references
987 * to the previous incarnation of @dev have been dropped.) Allocate
988 * and register a fresh new struct device instead.
989 *
990 * NOTE: _Never_ directly free @dev after calling this function, even
991 * if it returned an error! Always use put_device() to give up your
992 * reference instead.
993 */
994int device_add(struct device *dev)
995{
996 struct device *parent = NULL;
997 struct kobject *kobj;
998 struct class_interface *class_intf;
999 int error = -EINVAL;
1000
1001 dev = get_device(dev);
1002 if (!dev)
1003 goto done;
1004
1005 if (!dev->p) {
1006 error = device_private_init(dev);
1007 if (error)
1008 goto done;
1009 }
1010
1011 /*
1012 * for statically allocated devices, which should all be converted
1013 * some day, we need to initialize the name. We prevent reading back
1014 * the name, and force the use of dev_name()
1015 */
1016 if (dev->init_name) {
1017 dev_set_name(dev, "%s", dev->init_name);
1018 dev->init_name = NULL;
1019 }
1020
1021 /* subsystems can specify simple device enumeration */
1022 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1023 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1024
1025 if (!dev_name(dev)) {
1026 error = -EINVAL;
1027 goto name_error;
1028 }
1029
1030 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1031
1032 parent = get_device(dev->parent);
1033 kobj = get_device_parent(dev, parent);
1034 if (kobj)
1035 dev->kobj.parent = kobj;
1036
1037 /* use parent numa_node */
1038 if (parent)
1039 set_dev_node(dev, dev_to_node(parent));
1040
1041 /* first, register with generic layer. */
1042 /* we require the name to be set before, and pass NULL */
1043 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1044 if (error)
1045 goto Error;
1046
1047 /* notify platform of device entry */
1048 if (platform_notify)
1049 platform_notify(dev);
1050
1051 error = device_create_file(dev, &dev_attr_uevent);
1052 if (error)
1053 goto attrError;
1054
1055 if (MAJOR(dev->devt)) {
1056 error = device_create_file(dev, &dev_attr_dev);
1057 if (error)
1058 goto ueventattrError;
1059
1060 error = device_create_sys_dev_entry(dev);
1061 if (error)
1062 goto devtattrError;
1063
1064 devtmpfs_create_node(dev);
1065 }
1066
1067 error = device_add_class_symlinks(dev);
1068 if (error)
1069 goto SymlinkError;
1070 error = device_add_attrs(dev);
1071 if (error)
1072 goto AttrsError;
1073 error = bus_add_device(dev);
1074 if (error)
1075 goto BusError;
1076 error = dpm_sysfs_add(dev);
1077 if (error)
1078 goto DPMError;
1079 device_pm_add(dev);
1080
1081 /* Notify clients of device addition. This call must come
1082 * after dpm_sysfs_add() and before kobject_uevent().
1083 */
1084 if (dev->bus)
1085 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1086 BUS_NOTIFY_ADD_DEVICE, dev);
1087
1088 kobject_uevent(&dev->kobj, KOBJ_ADD);
1089 bus_probe_device(dev);
1090 if (parent)
1091 klist_add_tail(&dev->p->knode_parent,
1092 &parent->p->klist_children);
1093
1094 if (dev->class) {
1095 mutex_lock(&dev->class->p->mutex);
1096 /* tie the class to the device */
1097 klist_add_tail(&dev->knode_class,
1098 &dev->class->p->klist_devices);
1099
1100 /* notify any interfaces that the device is here */
1101 list_for_each_entry(class_intf,
1102 &dev->class->p->interfaces, node)
1103 if (class_intf->add_dev)
1104 class_intf->add_dev(dev, class_intf);
1105 mutex_unlock(&dev->class->p->mutex);
1106 }
1107done:
1108 put_device(dev);
1109 return error;
1110 DPMError:
1111 bus_remove_device(dev);
1112 BusError:
1113 device_remove_attrs(dev);
1114 AttrsError:
1115 device_remove_class_symlinks(dev);
1116 SymlinkError:
1117 if (MAJOR(dev->devt))
1118 devtmpfs_delete_node(dev);
1119 if (MAJOR(dev->devt))
1120 device_remove_sys_dev_entry(dev);
1121 devtattrError:
1122 if (MAJOR(dev->devt))
1123 device_remove_file(dev, &dev_attr_dev);
1124 ueventattrError:
1125 device_remove_file(dev, &dev_attr_uevent);
1126 attrError:
1127 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1128 kobject_del(&dev->kobj);
1129 Error:
1130 cleanup_device_parent(dev);
1131 if (parent)
1132 put_device(parent);
1133name_error:
1134 kfree(dev->p);
1135 dev->p = NULL;
1136 goto done;
1137}
1138EXPORT_SYMBOL_GPL(device_add);
1139
1140/**
1141 * device_register - register a device with the system.
1142 * @dev: pointer to the device structure
1143 *
1144 * This happens in two clean steps - initialize the device
1145 * and add it to the system. The two steps can be called
1146 * separately, but this is the easiest and most common.
1147 * I.e. you should only call the two helpers separately if
1148 * have a clearly defined need to use and refcount the device
1149 * before it is added to the hierarchy.
1150 *
1151 * For more information, see the kerneldoc for device_initialize()
1152 * and device_add().
1153 *
1154 * NOTE: _Never_ directly free @dev after calling this function, even
1155 * if it returned an error! Always use put_device() to give up the
1156 * reference initialized in this function instead.
1157 */
1158int device_register(struct device *dev)
1159{
1160 device_initialize(dev);
1161 return device_add(dev);
1162}
1163EXPORT_SYMBOL_GPL(device_register);
1164
1165/**
1166 * get_device - increment reference count for device.
1167 * @dev: device.
1168 *
1169 * This simply forwards the call to kobject_get(), though
1170 * we do take care to provide for the case that we get a NULL
1171 * pointer passed in.
1172 */
1173struct device *get_device(struct device *dev)
1174{
1175 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1176}
1177EXPORT_SYMBOL_GPL(get_device);
1178
1179/**
1180 * put_device - decrement reference count.
1181 * @dev: device in question.
1182 */
1183void put_device(struct device *dev)
1184{
1185 /* might_sleep(); */
1186 if (dev)
1187 kobject_put(&dev->kobj);
1188}
1189EXPORT_SYMBOL_GPL(put_device);
1190
1191/**
1192 * device_del - delete device from system.
1193 * @dev: device.
1194 *
1195 * This is the first part of the device unregistration
1196 * sequence. This removes the device from the lists we control
1197 * from here, has it removed from the other driver model
1198 * subsystems it was added to in device_add(), and removes it
1199 * from the kobject hierarchy.
1200 *
1201 * NOTE: this should be called manually _iff_ device_add() was
1202 * also called manually.
1203 */
1204void device_del(struct device *dev)
1205{
1206 struct device *parent = dev->parent;
1207 struct class_interface *class_intf;
1208
1209 /* Notify clients of device removal. This call must come
1210 * before dpm_sysfs_remove().
1211 */
1212 if (dev->bus)
1213 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1214 BUS_NOTIFY_DEL_DEVICE, dev);
1215 dpm_sysfs_remove(dev);
1216 if (parent)
1217 klist_del(&dev->p->knode_parent);
1218 if (MAJOR(dev->devt)) {
1219 devtmpfs_delete_node(dev);
1220 device_remove_sys_dev_entry(dev);
1221 device_remove_file(dev, &dev_attr_dev);
1222 }
1223 if (dev->class) {
1224 device_remove_class_symlinks(dev);
1225
1226 mutex_lock(&dev->class->p->mutex);
1227 /* notify any interfaces that the device is now gone */
1228 list_for_each_entry(class_intf,
1229 &dev->class->p->interfaces, node)
1230 if (class_intf->remove_dev)
1231 class_intf->remove_dev(dev, class_intf);
1232 /* remove the device from the class list */
1233 klist_del(&dev->knode_class);
1234 mutex_unlock(&dev->class->p->mutex);
1235 }
1236 device_remove_file(dev, &dev_attr_uevent);
1237 device_remove_attrs(dev);
1238 bus_remove_device(dev);
1239 device_pm_remove(dev);
1240 driver_deferred_probe_del(dev);
1241
1242 /* Notify the platform of the removal, in case they
1243 * need to do anything...
1244 */
1245 if (platform_notify_remove)
1246 platform_notify_remove(dev);
1247 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1248 cleanup_device_parent(dev);
1249 kobject_del(&dev->kobj);
1250 put_device(parent);
1251}
1252EXPORT_SYMBOL_GPL(device_del);
1253
1254/**
1255 * device_unregister - unregister device from system.
1256 * @dev: device going away.
1257 *
1258 * We do this in two parts, like we do device_register(). First,
1259 * we remove it from all the subsystems with device_del(), then
1260 * we decrement the reference count via put_device(). If that
1261 * is the final reference count, the device will be cleaned up
1262 * via device_release() above. Otherwise, the structure will
1263 * stick around until the final reference to the device is dropped.
1264 */
1265void device_unregister(struct device *dev)
1266{
1267 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1268 device_del(dev);
1269 put_device(dev);
1270}
1271EXPORT_SYMBOL_GPL(device_unregister);
1272
1273static struct device *next_device(struct klist_iter *i)
1274{
1275 struct klist_node *n = klist_next(i);
1276 struct device *dev = NULL;
1277 struct device_private *p;
1278
1279 if (n) {
1280 p = to_device_private_parent(n);
1281 dev = p->device;
1282 }
1283 return dev;
1284}
1285
1286/**
1287 * device_get_devnode - path of device node file
1288 * @dev: device
1289 * @mode: returned file access mode
1290 * @uid: returned file owner
1291 * @gid: returned file group
1292 * @tmp: possibly allocated string
1293 *
1294 * Return the relative path of a possible device node.
1295 * Non-default names may need to allocate a memory to compose
1296 * a name. This memory is returned in tmp and needs to be
1297 * freed by the caller.
1298 */
1299const char *device_get_devnode(struct device *dev,
1300 umode_t *mode, kuid_t *uid, kgid_t *gid,
1301 const char **tmp)
1302{
1303 char *s;
1304
1305 *tmp = NULL;
1306
1307 /* the device type may provide a specific name */
1308 if (dev->type && dev->type->devnode)
1309 *tmp = dev->type->devnode(dev, mode, uid, gid);
1310 if (*tmp)
1311 return *tmp;
1312
1313 /* the class may provide a specific name */
1314 if (dev->class && dev->class->devnode)
1315 *tmp = dev->class->devnode(dev, mode);
1316 if (*tmp)
1317 return *tmp;
1318
1319 /* return name without allocation, tmp == NULL */
1320 if (strchr(dev_name(dev), '!') == NULL)
1321 return dev_name(dev);
1322
1323 /* replace '!' in the name with '/' */
1324 *tmp = kstrdup(dev_name(dev), GFP_KERNEL);
1325 if (!*tmp)
1326 return NULL;
1327 while ((s = strchr(*tmp, '!')))
1328 s[0] = '/';
1329 return *tmp;
1330}
1331
1332/**
1333 * device_for_each_child - device child iterator.
1334 * @parent: parent struct device.
1335 * @fn: function to be called for each device.
1336 * @data: data for the callback.
1337 *
1338 * Iterate over @parent's child devices, and call @fn for each,
1339 * passing it @data.
1340 *
1341 * We check the return of @fn each time. If it returns anything
1342 * other than 0, we break out and return that value.
1343 */
1344int device_for_each_child(struct device *parent, void *data,
1345 int (*fn)(struct device *dev, void *data))
1346{
1347 struct klist_iter i;
1348 struct device *child;
1349 int error = 0;
1350
1351 if (!parent->p)
1352 return 0;
1353
1354 klist_iter_init(&parent->p->klist_children, &i);
1355 while ((child = next_device(&i)) && !error)
1356 error = fn(child, data);
1357 klist_iter_exit(&i);
1358 return error;
1359}
1360EXPORT_SYMBOL_GPL(device_for_each_child);
1361
1362/**
1363 * device_find_child - device iterator for locating a particular device.
1364 * @parent: parent struct device
1365 * @match: Callback function to check device
1366 * @data: Data to pass to match function
1367 *
1368 * This is similar to the device_for_each_child() function above, but it
1369 * returns a reference to a device that is 'found' for later use, as
1370 * determined by the @match callback.
1371 *
1372 * The callback should return 0 if the device doesn't match and non-zero
1373 * if it does. If the callback returns non-zero and a reference to the
1374 * current device can be obtained, this function will return to the caller
1375 * and not iterate over any more devices.
1376 *
1377 * NOTE: you will need to drop the reference with put_device() after use.
1378 */
1379struct device *device_find_child(struct device *parent, void *data,
1380 int (*match)(struct device *dev, void *data))
1381{
1382 struct klist_iter i;
1383 struct device *child;
1384
1385 if (!parent)
1386 return NULL;
1387
1388 klist_iter_init(&parent->p->klist_children, &i);
1389 while ((child = next_device(&i)))
1390 if (match(child, data) && get_device(child))
1391 break;
1392 klist_iter_exit(&i);
1393 return child;
1394}
1395EXPORT_SYMBOL_GPL(device_find_child);
1396
1397int __init devices_init(void)
1398{
1399 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1400 if (!devices_kset)
1401 return -ENOMEM;
1402 dev_kobj = kobject_create_and_add("dev", NULL);
1403 if (!dev_kobj)
1404 goto dev_kobj_err;
1405 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1406 if (!sysfs_dev_block_kobj)
1407 goto block_kobj_err;
1408 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1409 if (!sysfs_dev_char_kobj)
1410 goto char_kobj_err;
1411
1412 return 0;
1413
1414 char_kobj_err:
1415 kobject_put(sysfs_dev_block_kobj);
1416 block_kobj_err:
1417 kobject_put(dev_kobj);
1418 dev_kobj_err:
1419 kset_unregister(devices_kset);
1420 return -ENOMEM;
1421}
1422
1423static int device_check_offline(struct device *dev, void *not_used)
1424{
1425 int ret;
1426
1427 ret = device_for_each_child(dev, NULL, device_check_offline);
1428 if (ret)
1429 return ret;
1430
1431 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1432}
1433
1434/**
1435 * device_offline - Prepare the device for hot-removal.
1436 * @dev: Device to be put offline.
1437 *
1438 * Execute the device bus type's .offline() callback, if present, to prepare
1439 * the device for a subsequent hot-removal. If that succeeds, the device must
1440 * not be used until either it is removed or its bus type's .online() callback
1441 * is executed.
1442 *
1443 * Call under device_hotplug_lock.
1444 */
1445int device_offline(struct device *dev)
1446{
1447 int ret;
1448
1449 if (dev->offline_disabled)
1450 return -EPERM;
1451
1452 ret = device_for_each_child(dev, NULL, device_check_offline);
1453 if (ret)
1454 return ret;
1455
1456 device_lock(dev);
1457 if (device_supports_offline(dev)) {
1458 if (dev->offline) {
1459 ret = 1;
1460 } else {
1461 ret = dev->bus->offline(dev);
1462 if (!ret) {
1463 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1464 dev->offline = true;
1465 }
1466 }
1467 }
1468 device_unlock(dev);
1469
1470 return ret;
1471}
1472
1473/**
1474 * device_online - Put the device back online after successful device_offline().
1475 * @dev: Device to be put back online.
1476 *
1477 * If device_offline() has been successfully executed for @dev, but the device
1478 * has not been removed subsequently, execute its bus type's .online() callback
1479 * to indicate that the device can be used again.
1480 *
1481 * Call under device_hotplug_lock.
1482 */
1483int device_online(struct device *dev)
1484{
1485 int ret = 0;
1486
1487 device_lock(dev);
1488 if (device_supports_offline(dev)) {
1489 if (dev->offline) {
1490 ret = dev->bus->online(dev);
1491 if (!ret) {
1492 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1493 dev->offline = false;
1494 }
1495 } else {
1496 ret = 1;
1497 }
1498 }
1499 device_unlock(dev);
1500
1501 return ret;
1502}
1503
1504struct root_device {
1505 struct device dev;
1506 struct module *owner;
1507};
1508
1509static inline struct root_device *to_root_device(struct device *d)
1510{
1511 return container_of(d, struct root_device, dev);
1512}
1513
1514static void root_device_release(struct device *dev)
1515{
1516 kfree(to_root_device(dev));
1517}
1518
1519/**
1520 * __root_device_register - allocate and register a root device
1521 * @name: root device name
1522 * @owner: owner module of the root device, usually THIS_MODULE
1523 *
1524 * This function allocates a root device and registers it
1525 * using device_register(). In order to free the returned
1526 * device, use root_device_unregister().
1527 *
1528 * Root devices are dummy devices which allow other devices
1529 * to be grouped under /sys/devices. Use this function to
1530 * allocate a root device and then use it as the parent of
1531 * any device which should appear under /sys/devices/{name}
1532 *
1533 * The /sys/devices/{name} directory will also contain a
1534 * 'module' symlink which points to the @owner directory
1535 * in sysfs.
1536 *
1537 * Returns &struct device pointer on success, or ERR_PTR() on error.
1538 *
1539 * Note: You probably want to use root_device_register().
1540 */
1541struct device *__root_device_register(const char *name, struct module *owner)
1542{
1543 struct root_device *root;
1544 int err = -ENOMEM;
1545
1546 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1547 if (!root)
1548 return ERR_PTR(err);
1549
1550 err = dev_set_name(&root->dev, "%s", name);
1551 if (err) {
1552 kfree(root);
1553 return ERR_PTR(err);
1554 }
1555
1556 root->dev.release = root_device_release;
1557
1558 err = device_register(&root->dev);
1559 if (err) {
1560 put_device(&root->dev);
1561 return ERR_PTR(err);
1562 }
1563
1564#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
1565 if (owner) {
1566 struct module_kobject *mk = &owner->mkobj;
1567
1568 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1569 if (err) {
1570 device_unregister(&root->dev);
1571 return ERR_PTR(err);
1572 }
1573 root->owner = owner;
1574 }
1575#endif
1576
1577 return &root->dev;
1578}
1579EXPORT_SYMBOL_GPL(__root_device_register);
1580
1581/**
1582 * root_device_unregister - unregister and free a root device
1583 * @dev: device going away
1584 *
1585 * This function unregisters and cleans up a device that was created by
1586 * root_device_register().
1587 */
1588void root_device_unregister(struct device *dev)
1589{
1590 struct root_device *root = to_root_device(dev);
1591
1592 if (root->owner)
1593 sysfs_remove_link(&root->dev.kobj, "module");
1594
1595 device_unregister(dev);
1596}
1597EXPORT_SYMBOL_GPL(root_device_unregister);
1598
1599
1600static void device_create_release(struct device *dev)
1601{
1602 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1603 kfree(dev);
1604}
1605
1606static struct device *
1607device_create_groups_vargs(struct class *class, struct device *parent,
1608 dev_t devt, void *drvdata,
1609 const struct attribute_group **groups,
1610 const char *fmt, va_list args)
1611{
1612 struct device *dev = NULL;
1613 int retval = -ENODEV;
1614
1615 if (class == NULL || IS_ERR(class))
1616 goto error;
1617
1618 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1619 if (!dev) {
1620 retval = -ENOMEM;
1621 goto error;
1622 }
1623
1624 device_initialize(dev);
1625 dev->devt = devt;
1626 dev->class = class;
1627 dev->parent = parent;
1628 dev->groups = groups;
1629 dev->release = device_create_release;
1630 dev_set_drvdata(dev, drvdata);
1631
1632 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1633 if (retval)
1634 goto error;
1635
1636 retval = device_add(dev);
1637 if (retval)
1638 goto error;
1639
1640 return dev;
1641
1642error:
1643 put_device(dev);
1644 return ERR_PTR(retval);
1645}
1646
1647/**
1648 * device_create_vargs - creates a device and registers it with sysfs
1649 * @class: pointer to the struct class that this device should be registered to
1650 * @parent: pointer to the parent struct device of this new device, if any
1651 * @devt: the dev_t for the char device to be added
1652 * @drvdata: the data to be added to the device for callbacks
1653 * @fmt: string for the device's name
1654 * @args: va_list for the device's name
1655 *
1656 * This function can be used by char device classes. A struct device
1657 * will be created in sysfs, registered to the specified class.
1658 *
1659 * A "dev" file will be created, showing the dev_t for the device, if
1660 * the dev_t is not 0,0.
1661 * If a pointer to a parent struct device is passed in, the newly created
1662 * struct device will be a child of that device in sysfs.
1663 * The pointer to the struct device will be returned from the call.
1664 * Any further sysfs files that might be required can be created using this
1665 * pointer.
1666 *
1667 * Returns &struct device pointer on success, or ERR_PTR() on error.
1668 *
1669 * Note: the struct class passed to this function must have previously
1670 * been created with a call to class_create().
1671 */
1672struct device *device_create_vargs(struct class *class, struct device *parent,
1673 dev_t devt, void *drvdata, const char *fmt,
1674 va_list args)
1675{
1676 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1677 fmt, args);
1678}
1679EXPORT_SYMBOL_GPL(device_create_vargs);
1680
1681/**
1682 * device_create - creates a device and registers it with sysfs
1683 * @class: pointer to the struct class that this device should be registered to
1684 * @parent: pointer to the parent struct device of this new device, if any
1685 * @devt: the dev_t for the char device to be added
1686 * @drvdata: the data to be added to the device for callbacks
1687 * @fmt: string for the device's name
1688 *
1689 * This function can be used by char device classes. A struct device
1690 * will be created in sysfs, registered to the specified class.
1691 *
1692 * A "dev" file will be created, showing the dev_t for the device, if
1693 * the dev_t is not 0,0.
1694 * If a pointer to a parent struct device is passed in, the newly created
1695 * struct device will be a child of that device in sysfs.
1696 * The pointer to the struct device will be returned from the call.
1697 * Any further sysfs files that might be required can be created using this
1698 * pointer.
1699 *
1700 * Returns &struct device pointer on success, or ERR_PTR() on error.
1701 *
1702 * Note: the struct class passed to this function must have previously
1703 * been created with a call to class_create().
1704 */
1705struct device *device_create(struct class *class, struct device *parent,
1706 dev_t devt, void *drvdata, const char *fmt, ...)
1707{
1708 va_list vargs;
1709 struct device *dev;
1710
1711 va_start(vargs, fmt);
1712 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1713 va_end(vargs);
1714 return dev;
1715}
1716EXPORT_SYMBOL_GPL(device_create);
1717
1718/**
1719 * device_create_with_groups - creates a device and registers it with sysfs
1720 * @class: pointer to the struct class that this device should be registered to
1721 * @parent: pointer to the parent struct device of this new device, if any
1722 * @devt: the dev_t for the char device to be added
1723 * @drvdata: the data to be added to the device for callbacks
1724 * @groups: NULL-terminated list of attribute groups to be created
1725 * @fmt: string for the device's name
1726 *
1727 * This function can be used by char device classes. A struct device
1728 * will be created in sysfs, registered to the specified class.
1729 * Additional attributes specified in the groups parameter will also
1730 * be created automatically.
1731 *
1732 * A "dev" file will be created, showing the dev_t for the device, if
1733 * the dev_t is not 0,0.
1734 * If a pointer to a parent struct device is passed in, the newly created
1735 * struct device will be a child of that device in sysfs.
1736 * The pointer to the struct device will be returned from the call.
1737 * Any further sysfs files that might be required can be created using this
1738 * pointer.
1739 *
1740 * Returns &struct device pointer on success, or ERR_PTR() on error.
1741 *
1742 * Note: the struct class passed to this function must have previously
1743 * been created with a call to class_create().
1744 */
1745struct device *device_create_with_groups(struct class *class,
1746 struct device *parent, dev_t devt,
1747 void *drvdata,
1748 const struct attribute_group **groups,
1749 const char *fmt, ...)
1750{
1751 va_list vargs;
1752 struct device *dev;
1753
1754 va_start(vargs, fmt);
1755 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1756 fmt, vargs);
1757 va_end(vargs);
1758 return dev;
1759}
1760EXPORT_SYMBOL_GPL(device_create_with_groups);
1761
1762static int __match_devt(struct device *dev, const void *data)
1763{
1764 const dev_t *devt = data;
1765
1766 return dev->devt == *devt;
1767}
1768
1769/**
1770 * device_destroy - removes a device that was created with device_create()
1771 * @class: pointer to the struct class that this device was registered with
1772 * @devt: the dev_t of the device that was previously registered
1773 *
1774 * This call unregisters and cleans up a device that was created with a
1775 * call to device_create().
1776 */
1777void device_destroy(struct class *class, dev_t devt)
1778{
1779 struct device *dev;
1780
1781 dev = class_find_device(class, NULL, &devt, __match_devt);
1782 if (dev) {
1783 put_device(dev);
1784 device_unregister(dev);
1785 }
1786}
1787EXPORT_SYMBOL_GPL(device_destroy);
1788
1789/**
1790 * device_rename - renames a device
1791 * @dev: the pointer to the struct device to be renamed
1792 * @new_name: the new name of the device
1793 *
1794 * It is the responsibility of the caller to provide mutual
1795 * exclusion between two different calls of device_rename
1796 * on the same device to ensure that new_name is valid and
1797 * won't conflict with other devices.
1798 *
1799 * Note: Don't call this function. Currently, the networking layer calls this
1800 * function, but that will change. The following text from Kay Sievers offers
1801 * some insight:
1802 *
1803 * Renaming devices is racy at many levels, symlinks and other stuff are not
1804 * replaced atomically, and you get a "move" uevent, but it's not easy to
1805 * connect the event to the old and new device. Device nodes are not renamed at
1806 * all, there isn't even support for that in the kernel now.
1807 *
1808 * In the meantime, during renaming, your target name might be taken by another
1809 * driver, creating conflicts. Or the old name is taken directly after you
1810 * renamed it -- then you get events for the same DEVPATH, before you even see
1811 * the "move" event. It's just a mess, and nothing new should ever rely on
1812 * kernel device renaming. Besides that, it's not even implemented now for
1813 * other things than (driver-core wise very simple) network devices.
1814 *
1815 * We are currently about to change network renaming in udev to completely
1816 * disallow renaming of devices in the same namespace as the kernel uses,
1817 * because we can't solve the problems properly, that arise with swapping names
1818 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1819 * be allowed to some other name than eth[0-9]*, for the aforementioned
1820 * reasons.
1821 *
1822 * Make up a "real" name in the driver before you register anything, or add
1823 * some other attributes for userspace to find the device, or use udev to add
1824 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1825 * don't even want to get into that and try to implement the missing pieces in
1826 * the core. We really have other pieces to fix in the driver core mess. :)
1827 */
1828int device_rename(struct device *dev, const char *new_name)
1829{
1830 struct kobject *kobj = &dev->kobj;
1831 char *old_device_name = NULL;
1832 int error;
1833
1834 dev = get_device(dev);
1835 if (!dev)
1836 return -EINVAL;
1837
1838 dev_dbg(dev, "renaming to %s\n", new_name);
1839
1840 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1841 if (!old_device_name) {
1842 error = -ENOMEM;
1843 goto out;
1844 }
1845
1846 if (dev->class) {
1847 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1848 kobj, old_device_name,
1849 new_name, kobject_namespace(kobj));
1850 if (error)
1851 goto out;
1852 }
1853
1854 error = kobject_rename(kobj, new_name);
1855 if (error)
1856 goto out;
1857
1858out:
1859 put_device(dev);
1860
1861 kfree(old_device_name);
1862
1863 return error;
1864}
1865EXPORT_SYMBOL_GPL(device_rename);
1866
1867static int device_move_class_links(struct device *dev,
1868 struct device *old_parent,
1869 struct device *new_parent)
1870{
1871 int error = 0;
1872
1873 if (old_parent)
1874 sysfs_remove_link(&dev->kobj, "device");
1875 if (new_parent)
1876 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1877 "device");
1878 return error;
1879}
1880
1881/**
1882 * device_move - moves a device to a new parent
1883 * @dev: the pointer to the struct device to be moved
1884 * @new_parent: the new parent of the device (can by NULL)
1885 * @dpm_order: how to reorder the dpm_list
1886 */
1887int device_move(struct device *dev, struct device *new_parent,
1888 enum dpm_order dpm_order)
1889{
1890 int error;
1891 struct device *old_parent;
1892 struct kobject *new_parent_kobj;
1893
1894 dev = get_device(dev);
1895 if (!dev)
1896 return -EINVAL;
1897
1898 device_pm_lock();
1899 new_parent = get_device(new_parent);
1900 new_parent_kobj = get_device_parent(dev, new_parent);
1901
1902 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1903 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1904 error = kobject_move(&dev->kobj, new_parent_kobj);
1905 if (error) {
1906 cleanup_glue_dir(dev, new_parent_kobj);
1907 put_device(new_parent);
1908 goto out;
1909 }
1910 old_parent = dev->parent;
1911 dev->parent = new_parent;
1912 if (old_parent)
1913 klist_remove(&dev->p->knode_parent);
1914 if (new_parent) {
1915 klist_add_tail(&dev->p->knode_parent,
1916 &new_parent->p->klist_children);
1917 set_dev_node(dev, dev_to_node(new_parent));
1918 }
1919
1920 if (dev->class) {
1921 error = device_move_class_links(dev, old_parent, new_parent);
1922 if (error) {
1923 /* We ignore errors on cleanup since we're hosed anyway... */
1924 device_move_class_links(dev, new_parent, old_parent);
1925 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
1926 if (new_parent)
1927 klist_remove(&dev->p->knode_parent);
1928 dev->parent = old_parent;
1929 if (old_parent) {
1930 klist_add_tail(&dev->p->knode_parent,
1931 &old_parent->p->klist_children);
1932 set_dev_node(dev, dev_to_node(old_parent));
1933 }
1934 }
1935 cleanup_glue_dir(dev, new_parent_kobj);
1936 put_device(new_parent);
1937 goto out;
1938 }
1939 }
1940 switch (dpm_order) {
1941 case DPM_ORDER_NONE:
1942 break;
1943 case DPM_ORDER_DEV_AFTER_PARENT:
1944 device_pm_move_after(dev, new_parent);
1945 break;
1946 case DPM_ORDER_PARENT_BEFORE_DEV:
1947 device_pm_move_before(new_parent, dev);
1948 break;
1949 case DPM_ORDER_DEV_LAST:
1950 device_pm_move_last(dev);
1951 break;
1952 }
1953
1954 put_device(old_parent);
1955out:
1956 device_pm_unlock();
1957 put_device(dev);
1958 return error;
1959}
1960EXPORT_SYMBOL_GPL(device_move);
1961
1962/**
1963 * device_shutdown - call ->shutdown() on each device to shutdown.
1964 */
1965void device_shutdown(void)
1966{
1967 struct device *dev, *parent;
1968
1969 spin_lock(&devices_kset->list_lock);
1970 /*
1971 * Walk the devices list backward, shutting down each in turn.
1972 * Beware that device unplug events may also start pulling
1973 * devices offline, even as the system is shutting down.
1974 */
1975 while (!list_empty(&devices_kset->list)) {
1976 dev = list_entry(devices_kset->list.prev, struct device,
1977 kobj.entry);
1978
1979 /*
1980 * hold reference count of device's parent to
1981 * prevent it from being freed because parent's
1982 * lock is to be held
1983 */
1984 parent = get_device(dev->parent);
1985 get_device(dev);
1986 /*
1987 * Make sure the device is off the kset list, in the
1988 * event that dev->*->shutdown() doesn't remove it.
1989 */
1990 list_del_init(&dev->kobj.entry);
1991 spin_unlock(&devices_kset->list_lock);
1992
1993 /* hold lock to avoid race with probe/release */
1994 if (parent)
1995 device_lock(parent);
1996 device_lock(dev);
1997
1998 /* Don't allow any more runtime suspends */
1999 pm_runtime_get_noresume(dev);
2000 pm_runtime_barrier(dev);
2001
2002 if (dev->bus && dev->bus->shutdown) {
2003 if (initcall_debug)
2004 dev_info(dev, "shutdown\n");
2005 dev->bus->shutdown(dev);
2006 } else if (dev->driver && dev->driver->shutdown) {
2007 if (initcall_debug)
2008 dev_info(dev, "shutdown\n");
2009 dev->driver->shutdown(dev);
2010 }
2011
2012 device_unlock(dev);
2013 if (parent)
2014 device_unlock(parent);
2015
2016 put_device(dev);
2017 put_device(parent);
2018
2019 spin_lock(&devices_kset->list_lock);
2020 }
2021 spin_unlock(&devices_kset->list_lock);
2022}
2023
2024/*
2025 * Device logging functions
2026 */
2027
2028#ifdef CONFIG_PRINTK
2029static int
2030create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2031{
2032 const char *subsys;
2033 size_t pos = 0;
2034
2035 if (dev->class)
2036 subsys = dev->class->name;
2037 else if (dev->bus)
2038 subsys = dev->bus->name;
2039 else
2040 return 0;
2041
2042 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2043
2044 /*
2045 * Add device identifier DEVICE=:
2046 * b12:8 block dev_t
2047 * c127:3 char dev_t
2048 * n8 netdev ifindex
2049 * +sound:card0 subsystem:devname
2050 */
2051 if (MAJOR(dev->devt)) {
2052 char c;
2053
2054 if (strcmp(subsys, "block") == 0)
2055 c = 'b';
2056 else
2057 c = 'c';
2058 pos++;
2059 pos += snprintf(hdr + pos, hdrlen - pos,
2060 "DEVICE=%c%u:%u",
2061 c, MAJOR(dev->devt), MINOR(dev->devt));
2062 } else if (strcmp(subsys, "net") == 0) {
2063 struct net_device *net = to_net_dev(dev);
2064
2065 pos++;
2066 pos += snprintf(hdr + pos, hdrlen - pos,
2067 "DEVICE=n%u", net->ifindex);
2068 } else {
2069 pos++;
2070 pos += snprintf(hdr + pos, hdrlen - pos,
2071 "DEVICE=+%s:%s", subsys, dev_name(dev));
2072 }
2073
2074 return pos;
2075}
2076
2077int dev_vprintk_emit(int level, const struct device *dev,
2078 const char *fmt, va_list args)
2079{
2080 char hdr[128];
2081 size_t hdrlen;
2082
2083 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2084
2085 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2086}
2087EXPORT_SYMBOL(dev_vprintk_emit);
2088
2089int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2090{
2091 va_list args;
2092 int r;
2093
2094 va_start(args, fmt);
2095
2096 r = dev_vprintk_emit(level, dev, fmt, args);
2097
2098 va_end(args);
2099
2100 return r;
2101}
2102EXPORT_SYMBOL(dev_printk_emit);
2103
2104static int __dev_printk(const char *level, const struct device *dev,
2105 struct va_format *vaf)
2106{
2107 if (!dev)
2108 return printk("%s(NULL device *): %pV", level, vaf);
2109
2110 return dev_printk_emit(level[1] - '0', dev,
2111 "%s %s: %pV",
2112 dev_driver_string(dev), dev_name(dev), vaf);
2113}
2114
2115int dev_printk(const char *level, const struct device *dev,
2116 const char *fmt, ...)
2117{
2118 struct va_format vaf;
2119 va_list args;
2120 int r;
2121
2122 va_start(args, fmt);
2123
2124 vaf.fmt = fmt;
2125 vaf.va = &args;
2126
2127 r = __dev_printk(level, dev, &vaf);
2128
2129 va_end(args);
2130
2131 return r;
2132}
2133EXPORT_SYMBOL(dev_printk);
2134
2135#define define_dev_printk_level(func, kern_level) \
2136int func(const struct device *dev, const char *fmt, ...) \
2137{ \
2138 struct va_format vaf; \
2139 va_list args; \
2140 int r; \
2141 \
2142 va_start(args, fmt); \
2143 \
2144 vaf.fmt = fmt; \
2145 vaf.va = &args; \
2146 \
2147 r = __dev_printk(kern_level, dev, &vaf); \
2148 \
2149 va_end(args); \
2150 \
2151 return r; \
2152} \
2153EXPORT_SYMBOL(func);
2154
2155define_dev_printk_level(dev_emerg, KERN_EMERG);
2156define_dev_printk_level(dev_alert, KERN_ALERT);
2157define_dev_printk_level(dev_crit, KERN_CRIT);
2158define_dev_printk_level(dev_err, KERN_ERR);
2159define_dev_printk_level(dev_warn, KERN_WARNING);
2160define_dev_printk_level(dev_notice, KERN_NOTICE);
2161define_dev_printk_level(_dev_info, KERN_INFO);
2162
2163#endif