at v3.14 179 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <linux/bitops.h> 77#include <linux/capability.h> 78#include <linux/cpu.h> 79#include <linux/types.h> 80#include <linux/kernel.h> 81#include <linux/hash.h> 82#include <linux/slab.h> 83#include <linux/sched.h> 84#include <linux/mutex.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/notifier.h> 96#include <linux/skbuff.h> 97#include <net/net_namespace.h> 98#include <net/sock.h> 99#include <linux/rtnetlink.h> 100#include <linux/stat.h> 101#include <net/dst.h> 102#include <net/pkt_sched.h> 103#include <net/checksum.h> 104#include <net/xfrm.h> 105#include <linux/highmem.h> 106#include <linux/init.h> 107#include <linux/module.h> 108#include <linux/netpoll.h> 109#include <linux/rcupdate.h> 110#include <linux/delay.h> 111#include <net/iw_handler.h> 112#include <asm/current.h> 113#include <linux/audit.h> 114#include <linux/dmaengine.h> 115#include <linux/err.h> 116#include <linux/ctype.h> 117#include <linux/if_arp.h> 118#include <linux/if_vlan.h> 119#include <linux/ip.h> 120#include <net/ip.h> 121#include <linux/ipv6.h> 122#include <linux/in.h> 123#include <linux/jhash.h> 124#include <linux/random.h> 125#include <trace/events/napi.h> 126#include <trace/events/net.h> 127#include <trace/events/skb.h> 128#include <linux/pci.h> 129#include <linux/inetdevice.h> 130#include <linux/cpu_rmap.h> 131#include <linux/static_key.h> 132#include <linux/hashtable.h> 133#include <linux/vmalloc.h> 134#include <linux/if_macvlan.h> 135 136#include "net-sysfs.h" 137 138/* Instead of increasing this, you should create a hash table. */ 139#define MAX_GRO_SKBS 8 140 141/* This should be increased if a protocol with a bigger head is added. */ 142#define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144static DEFINE_SPINLOCK(ptype_lock); 145static DEFINE_SPINLOCK(offload_lock); 146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147struct list_head ptype_all __read_mostly; /* Taps */ 148static struct list_head offload_base __read_mostly; 149 150static int netif_rx_internal(struct sk_buff *skb); 151 152/* 153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 154 * semaphore. 155 * 156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 157 * 158 * Writers must hold the rtnl semaphore while they loop through the 159 * dev_base_head list, and hold dev_base_lock for writing when they do the 160 * actual updates. This allows pure readers to access the list even 161 * while a writer is preparing to update it. 162 * 163 * To put it another way, dev_base_lock is held for writing only to 164 * protect against pure readers; the rtnl semaphore provides the 165 * protection against other writers. 166 * 167 * See, for example usages, register_netdevice() and 168 * unregister_netdevice(), which must be called with the rtnl 169 * semaphore held. 170 */ 171DEFINE_RWLOCK(dev_base_lock); 172EXPORT_SYMBOL(dev_base_lock); 173 174/* protects napi_hash addition/deletion and napi_gen_id */ 175static DEFINE_SPINLOCK(napi_hash_lock); 176 177static unsigned int napi_gen_id; 178static DEFINE_HASHTABLE(napi_hash, 8); 179 180static seqcount_t devnet_rename_seq; 181 182static inline void dev_base_seq_inc(struct net *net) 183{ 184 while (++net->dev_base_seq == 0); 185} 186 187static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 188{ 189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 190 191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 192} 193 194static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 195{ 196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 197} 198 199static inline void rps_lock(struct softnet_data *sd) 200{ 201#ifdef CONFIG_RPS 202 spin_lock(&sd->input_pkt_queue.lock); 203#endif 204} 205 206static inline void rps_unlock(struct softnet_data *sd) 207{ 208#ifdef CONFIG_RPS 209 spin_unlock(&sd->input_pkt_queue.lock); 210#endif 211} 212 213/* Device list insertion */ 214static void list_netdevice(struct net_device *dev) 215{ 216 struct net *net = dev_net(dev); 217 218 ASSERT_RTNL(); 219 220 write_lock_bh(&dev_base_lock); 221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 223 hlist_add_head_rcu(&dev->index_hlist, 224 dev_index_hash(net, dev->ifindex)); 225 write_unlock_bh(&dev_base_lock); 226 227 dev_base_seq_inc(net); 228} 229 230/* Device list removal 231 * caller must respect a RCU grace period before freeing/reusing dev 232 */ 233static void unlist_netdevice(struct net_device *dev) 234{ 235 ASSERT_RTNL(); 236 237 /* Unlink dev from the device chain */ 238 write_lock_bh(&dev_base_lock); 239 list_del_rcu(&dev->dev_list); 240 hlist_del_rcu(&dev->name_hlist); 241 hlist_del_rcu(&dev->index_hlist); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(dev_net(dev)); 245} 246 247/* 248 * Our notifier list 249 */ 250 251static RAW_NOTIFIER_HEAD(netdev_chain); 252 253/* 254 * Device drivers call our routines to queue packets here. We empty the 255 * queue in the local softnet handler. 256 */ 257 258DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 259EXPORT_PER_CPU_SYMBOL(softnet_data); 260 261#ifdef CONFIG_LOCKDEP 262/* 263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 264 * according to dev->type 265 */ 266static const unsigned short netdev_lock_type[] = 267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 282 283static const char *const netdev_lock_name[] = 284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 299 300static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 301static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 302 303static inline unsigned short netdev_lock_pos(unsigned short dev_type) 304{ 305 int i; 306 307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 308 if (netdev_lock_type[i] == dev_type) 309 return i; 310 /* the last key is used by default */ 311 return ARRAY_SIZE(netdev_lock_type) - 1; 312} 313 314static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 315 unsigned short dev_type) 316{ 317 int i; 318 319 i = netdev_lock_pos(dev_type); 320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 321 netdev_lock_name[i]); 322} 323 324static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 325{ 326 int i; 327 328 i = netdev_lock_pos(dev->type); 329 lockdep_set_class_and_name(&dev->addr_list_lock, 330 &netdev_addr_lock_key[i], 331 netdev_lock_name[i]); 332} 333#else 334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336{ 337} 338static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339{ 340} 341#endif 342 343/******************************************************************************* 344 345 Protocol management and registration routines 346 347*******************************************************************************/ 348 349/* 350 * Add a protocol ID to the list. Now that the input handler is 351 * smarter we can dispense with all the messy stuff that used to be 352 * here. 353 * 354 * BEWARE!!! Protocol handlers, mangling input packets, 355 * MUST BE last in hash buckets and checking protocol handlers 356 * MUST start from promiscuous ptype_all chain in net_bh. 357 * It is true now, do not change it. 358 * Explanation follows: if protocol handler, mangling packet, will 359 * be the first on list, it is not able to sense, that packet 360 * is cloned and should be copied-on-write, so that it will 361 * change it and subsequent readers will get broken packet. 362 * --ANK (980803) 363 */ 364 365static inline struct list_head *ptype_head(const struct packet_type *pt) 366{ 367 if (pt->type == htons(ETH_P_ALL)) 368 return &ptype_all; 369 else 370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 371} 372 373/** 374 * dev_add_pack - add packet handler 375 * @pt: packet type declaration 376 * 377 * Add a protocol handler to the networking stack. The passed &packet_type 378 * is linked into kernel lists and may not be freed until it has been 379 * removed from the kernel lists. 380 * 381 * This call does not sleep therefore it can not 382 * guarantee all CPU's that are in middle of receiving packets 383 * will see the new packet type (until the next received packet). 384 */ 385 386void dev_add_pack(struct packet_type *pt) 387{ 388 struct list_head *head = ptype_head(pt); 389 390 spin_lock(&ptype_lock); 391 list_add_rcu(&pt->list, head); 392 spin_unlock(&ptype_lock); 393} 394EXPORT_SYMBOL(dev_add_pack); 395 396/** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409void __dev_remove_pack(struct packet_type *pt) 410{ 411 struct list_head *head = ptype_head(pt); 412 struct packet_type *pt1; 413 414 spin_lock(&ptype_lock); 415 416 list_for_each_entry(pt1, head, list) { 417 if (pt == pt1) { 418 list_del_rcu(&pt->list); 419 goto out; 420 } 421 } 422 423 pr_warn("dev_remove_pack: %p not found\n", pt); 424out: 425 spin_unlock(&ptype_lock); 426} 427EXPORT_SYMBOL(__dev_remove_pack); 428 429/** 430 * dev_remove_pack - remove packet handler 431 * @pt: packet type declaration 432 * 433 * Remove a protocol handler that was previously added to the kernel 434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 435 * from the kernel lists and can be freed or reused once this function 436 * returns. 437 * 438 * This call sleeps to guarantee that no CPU is looking at the packet 439 * type after return. 440 */ 441void dev_remove_pack(struct packet_type *pt) 442{ 443 __dev_remove_pack(pt); 444 445 synchronize_net(); 446} 447EXPORT_SYMBOL(dev_remove_pack); 448 449 450/** 451 * dev_add_offload - register offload handlers 452 * @po: protocol offload declaration 453 * 454 * Add protocol offload handlers to the networking stack. The passed 455 * &proto_offload is linked into kernel lists and may not be freed until 456 * it has been removed from the kernel lists. 457 * 458 * This call does not sleep therefore it can not 459 * guarantee all CPU's that are in middle of receiving packets 460 * will see the new offload handlers (until the next received packet). 461 */ 462void dev_add_offload(struct packet_offload *po) 463{ 464 struct list_head *head = &offload_base; 465 466 spin_lock(&offload_lock); 467 list_add_rcu(&po->list, head); 468 spin_unlock(&offload_lock); 469} 470EXPORT_SYMBOL(dev_add_offload); 471 472/** 473 * __dev_remove_offload - remove offload handler 474 * @po: packet offload declaration 475 * 476 * Remove a protocol offload handler that was previously added to the 477 * kernel offload handlers by dev_add_offload(). The passed &offload_type 478 * is removed from the kernel lists and can be freed or reused once this 479 * function returns. 480 * 481 * The packet type might still be in use by receivers 482 * and must not be freed until after all the CPU's have gone 483 * through a quiescent state. 484 */ 485static void __dev_remove_offload(struct packet_offload *po) 486{ 487 struct list_head *head = &offload_base; 488 struct packet_offload *po1; 489 490 spin_lock(&offload_lock); 491 492 list_for_each_entry(po1, head, list) { 493 if (po == po1) { 494 list_del_rcu(&po->list); 495 goto out; 496 } 497 } 498 499 pr_warn("dev_remove_offload: %p not found\n", po); 500out: 501 spin_unlock(&offload_lock); 502} 503 504/** 505 * dev_remove_offload - remove packet offload handler 506 * @po: packet offload declaration 507 * 508 * Remove a packet offload handler that was previously added to the kernel 509 * offload handlers by dev_add_offload(). The passed &offload_type is 510 * removed from the kernel lists and can be freed or reused once this 511 * function returns. 512 * 513 * This call sleeps to guarantee that no CPU is looking at the packet 514 * type after return. 515 */ 516void dev_remove_offload(struct packet_offload *po) 517{ 518 __dev_remove_offload(po); 519 520 synchronize_net(); 521} 522EXPORT_SYMBOL(dev_remove_offload); 523 524/****************************************************************************** 525 526 Device Boot-time Settings Routines 527 528*******************************************************************************/ 529 530/* Boot time configuration table */ 531static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 532 533/** 534 * netdev_boot_setup_add - add new setup entry 535 * @name: name of the device 536 * @map: configured settings for the device 537 * 538 * Adds new setup entry to the dev_boot_setup list. The function 539 * returns 0 on error and 1 on success. This is a generic routine to 540 * all netdevices. 541 */ 542static int netdev_boot_setup_add(char *name, struct ifmap *map) 543{ 544 struct netdev_boot_setup *s; 545 int i; 546 547 s = dev_boot_setup; 548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 550 memset(s[i].name, 0, sizeof(s[i].name)); 551 strlcpy(s[i].name, name, IFNAMSIZ); 552 memcpy(&s[i].map, map, sizeof(s[i].map)); 553 break; 554 } 555 } 556 557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 558} 559 560/** 561 * netdev_boot_setup_check - check boot time settings 562 * @dev: the netdevice 563 * 564 * Check boot time settings for the device. 565 * The found settings are set for the device to be used 566 * later in the device probing. 567 * Returns 0 if no settings found, 1 if they are. 568 */ 569int netdev_boot_setup_check(struct net_device *dev) 570{ 571 struct netdev_boot_setup *s = dev_boot_setup; 572 int i; 573 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 576 !strcmp(dev->name, s[i].name)) { 577 dev->irq = s[i].map.irq; 578 dev->base_addr = s[i].map.base_addr; 579 dev->mem_start = s[i].map.mem_start; 580 dev->mem_end = s[i].map.mem_end; 581 return 1; 582 } 583 } 584 return 0; 585} 586EXPORT_SYMBOL(netdev_boot_setup_check); 587 588 589/** 590 * netdev_boot_base - get address from boot time settings 591 * @prefix: prefix for network device 592 * @unit: id for network device 593 * 594 * Check boot time settings for the base address of device. 595 * The found settings are set for the device to be used 596 * later in the device probing. 597 * Returns 0 if no settings found. 598 */ 599unsigned long netdev_boot_base(const char *prefix, int unit) 600{ 601 const struct netdev_boot_setup *s = dev_boot_setup; 602 char name[IFNAMSIZ]; 603 int i; 604 605 sprintf(name, "%s%d", prefix, unit); 606 607 /* 608 * If device already registered then return base of 1 609 * to indicate not to probe for this interface 610 */ 611 if (__dev_get_by_name(&init_net, name)) 612 return 1; 613 614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 615 if (!strcmp(name, s[i].name)) 616 return s[i].map.base_addr; 617 return 0; 618} 619 620/* 621 * Saves at boot time configured settings for any netdevice. 622 */ 623int __init netdev_boot_setup(char *str) 624{ 625 int ints[5]; 626 struct ifmap map; 627 628 str = get_options(str, ARRAY_SIZE(ints), ints); 629 if (!str || !*str) 630 return 0; 631 632 /* Save settings */ 633 memset(&map, 0, sizeof(map)); 634 if (ints[0] > 0) 635 map.irq = ints[1]; 636 if (ints[0] > 1) 637 map.base_addr = ints[2]; 638 if (ints[0] > 2) 639 map.mem_start = ints[3]; 640 if (ints[0] > 3) 641 map.mem_end = ints[4]; 642 643 /* Add new entry to the list */ 644 return netdev_boot_setup_add(str, &map); 645} 646 647__setup("netdev=", netdev_boot_setup); 648 649/******************************************************************************* 650 651 Device Interface Subroutines 652 653*******************************************************************************/ 654 655/** 656 * __dev_get_by_name - find a device by its name 657 * @net: the applicable net namespace 658 * @name: name to find 659 * 660 * Find an interface by name. Must be called under RTNL semaphore 661 * or @dev_base_lock. If the name is found a pointer to the device 662 * is returned. If the name is not found then %NULL is returned. The 663 * reference counters are not incremented so the caller must be 664 * careful with locks. 665 */ 666 667struct net_device *__dev_get_by_name(struct net *net, const char *name) 668{ 669 struct net_device *dev; 670 struct hlist_head *head = dev_name_hash(net, name); 671 672 hlist_for_each_entry(dev, head, name_hlist) 673 if (!strncmp(dev->name, name, IFNAMSIZ)) 674 return dev; 675 676 return NULL; 677} 678EXPORT_SYMBOL(__dev_get_by_name); 679 680/** 681 * dev_get_by_name_rcu - find a device by its name 682 * @net: the applicable net namespace 683 * @name: name to find 684 * 685 * Find an interface by name. 686 * If the name is found a pointer to the device is returned. 687 * If the name is not found then %NULL is returned. 688 * The reference counters are not incremented so the caller must be 689 * careful with locks. The caller must hold RCU lock. 690 */ 691 692struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 693{ 694 struct net_device *dev; 695 struct hlist_head *head = dev_name_hash(net, name); 696 697 hlist_for_each_entry_rcu(dev, head, name_hlist) 698 if (!strncmp(dev->name, name, IFNAMSIZ)) 699 return dev; 700 701 return NULL; 702} 703EXPORT_SYMBOL(dev_get_by_name_rcu); 704 705/** 706 * dev_get_by_name - find a device by its name 707 * @net: the applicable net namespace 708 * @name: name to find 709 * 710 * Find an interface by name. This can be called from any 711 * context and does its own locking. The returned handle has 712 * the usage count incremented and the caller must use dev_put() to 713 * release it when it is no longer needed. %NULL is returned if no 714 * matching device is found. 715 */ 716 717struct net_device *dev_get_by_name(struct net *net, const char *name) 718{ 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_name_rcu(net, name); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727} 728EXPORT_SYMBOL(dev_get_by_name); 729 730/** 731 * __dev_get_by_index - find a device by its ifindex 732 * @net: the applicable net namespace 733 * @ifindex: index of device 734 * 735 * Search for an interface by index. Returns %NULL if the device 736 * is not found or a pointer to the device. The device has not 737 * had its reference counter increased so the caller must be careful 738 * about locking. The caller must hold either the RTNL semaphore 739 * or @dev_base_lock. 740 */ 741 742struct net_device *__dev_get_by_index(struct net *net, int ifindex) 743{ 744 struct net_device *dev; 745 struct hlist_head *head = dev_index_hash(net, ifindex); 746 747 hlist_for_each_entry(dev, head, index_hlist) 748 if (dev->ifindex == ifindex) 749 return dev; 750 751 return NULL; 752} 753EXPORT_SYMBOL(__dev_get_by_index); 754 755/** 756 * dev_get_by_index_rcu - find a device by its ifindex 757 * @net: the applicable net namespace 758 * @ifindex: index of device 759 * 760 * Search for an interface by index. Returns %NULL if the device 761 * is not found or a pointer to the device. The device has not 762 * had its reference counter increased so the caller must be careful 763 * about locking. The caller must hold RCU lock. 764 */ 765 766struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 767{ 768 struct net_device *dev; 769 struct hlist_head *head = dev_index_hash(net, ifindex); 770 771 hlist_for_each_entry_rcu(dev, head, index_hlist) 772 if (dev->ifindex == ifindex) 773 return dev; 774 775 return NULL; 776} 777EXPORT_SYMBOL(dev_get_by_index_rcu); 778 779 780/** 781 * dev_get_by_index - find a device by its ifindex 782 * @net: the applicable net namespace 783 * @ifindex: index of device 784 * 785 * Search for an interface by index. Returns NULL if the device 786 * is not found or a pointer to the device. The device returned has 787 * had a reference added and the pointer is safe until the user calls 788 * dev_put to indicate they have finished with it. 789 */ 790 791struct net_device *dev_get_by_index(struct net *net, int ifindex) 792{ 793 struct net_device *dev; 794 795 rcu_read_lock(); 796 dev = dev_get_by_index_rcu(net, ifindex); 797 if (dev) 798 dev_hold(dev); 799 rcu_read_unlock(); 800 return dev; 801} 802EXPORT_SYMBOL(dev_get_by_index); 803 804/** 805 * netdev_get_name - get a netdevice name, knowing its ifindex. 806 * @net: network namespace 807 * @name: a pointer to the buffer where the name will be stored. 808 * @ifindex: the ifindex of the interface to get the name from. 809 * 810 * The use of raw_seqcount_begin() and cond_resched() before 811 * retrying is required as we want to give the writers a chance 812 * to complete when CONFIG_PREEMPT is not set. 813 */ 814int netdev_get_name(struct net *net, char *name, int ifindex) 815{ 816 struct net_device *dev; 817 unsigned int seq; 818 819retry: 820 seq = raw_seqcount_begin(&devnet_rename_seq); 821 rcu_read_lock(); 822 dev = dev_get_by_index_rcu(net, ifindex); 823 if (!dev) { 824 rcu_read_unlock(); 825 return -ENODEV; 826 } 827 828 strcpy(name, dev->name); 829 rcu_read_unlock(); 830 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 831 cond_resched(); 832 goto retry; 833 } 834 835 return 0; 836} 837 838/** 839 * dev_getbyhwaddr_rcu - find a device by its hardware address 840 * @net: the applicable net namespace 841 * @type: media type of device 842 * @ha: hardware address 843 * 844 * Search for an interface by MAC address. Returns NULL if the device 845 * is not found or a pointer to the device. 846 * The caller must hold RCU or RTNL. 847 * The returned device has not had its ref count increased 848 * and the caller must therefore be careful about locking 849 * 850 */ 851 852struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 853 const char *ha) 854{ 855 struct net_device *dev; 856 857 for_each_netdev_rcu(net, dev) 858 if (dev->type == type && 859 !memcmp(dev->dev_addr, ha, dev->addr_len)) 860 return dev; 861 862 return NULL; 863} 864EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 865 866struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 867{ 868 struct net_device *dev; 869 870 ASSERT_RTNL(); 871 for_each_netdev(net, dev) 872 if (dev->type == type) 873 return dev; 874 875 return NULL; 876} 877EXPORT_SYMBOL(__dev_getfirstbyhwtype); 878 879struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 880{ 881 struct net_device *dev, *ret = NULL; 882 883 rcu_read_lock(); 884 for_each_netdev_rcu(net, dev) 885 if (dev->type == type) { 886 dev_hold(dev); 887 ret = dev; 888 break; 889 } 890 rcu_read_unlock(); 891 return ret; 892} 893EXPORT_SYMBOL(dev_getfirstbyhwtype); 894 895/** 896 * dev_get_by_flags_rcu - find any device with given flags 897 * @net: the applicable net namespace 898 * @if_flags: IFF_* values 899 * @mask: bitmask of bits in if_flags to check 900 * 901 * Search for any interface with the given flags. Returns NULL if a device 902 * is not found or a pointer to the device. Must be called inside 903 * rcu_read_lock(), and result refcount is unchanged. 904 */ 905 906struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 907 unsigned short mask) 908{ 909 struct net_device *dev, *ret; 910 911 ret = NULL; 912 for_each_netdev_rcu(net, dev) { 913 if (((dev->flags ^ if_flags) & mask) == 0) { 914 ret = dev; 915 break; 916 } 917 } 918 return ret; 919} 920EXPORT_SYMBOL(dev_get_by_flags_rcu); 921 922/** 923 * dev_valid_name - check if name is okay for network device 924 * @name: name string 925 * 926 * Network device names need to be valid file names to 927 * to allow sysfs to work. We also disallow any kind of 928 * whitespace. 929 */ 930bool dev_valid_name(const char *name) 931{ 932 if (*name == '\0') 933 return false; 934 if (strlen(name) >= IFNAMSIZ) 935 return false; 936 if (!strcmp(name, ".") || !strcmp(name, "..")) 937 return false; 938 939 while (*name) { 940 if (*name == '/' || isspace(*name)) 941 return false; 942 name++; 943 } 944 return true; 945} 946EXPORT_SYMBOL(dev_valid_name); 947 948/** 949 * __dev_alloc_name - allocate a name for a device 950 * @net: network namespace to allocate the device name in 951 * @name: name format string 952 * @buf: scratch buffer and result name string 953 * 954 * Passed a format string - eg "lt%d" it will try and find a suitable 955 * id. It scans list of devices to build up a free map, then chooses 956 * the first empty slot. The caller must hold the dev_base or rtnl lock 957 * while allocating the name and adding the device in order to avoid 958 * duplicates. 959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 960 * Returns the number of the unit assigned or a negative errno code. 961 */ 962 963static int __dev_alloc_name(struct net *net, const char *name, char *buf) 964{ 965 int i = 0; 966 const char *p; 967 const int max_netdevices = 8*PAGE_SIZE; 968 unsigned long *inuse; 969 struct net_device *d; 970 971 p = strnchr(name, IFNAMSIZ-1, '%'); 972 if (p) { 973 /* 974 * Verify the string as this thing may have come from 975 * the user. There must be either one "%d" and no other "%" 976 * characters. 977 */ 978 if (p[1] != 'd' || strchr(p + 2, '%')) 979 return -EINVAL; 980 981 /* Use one page as a bit array of possible slots */ 982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 983 if (!inuse) 984 return -ENOMEM; 985 986 for_each_netdev(net, d) { 987 if (!sscanf(d->name, name, &i)) 988 continue; 989 if (i < 0 || i >= max_netdevices) 990 continue; 991 992 /* avoid cases where sscanf is not exact inverse of printf */ 993 snprintf(buf, IFNAMSIZ, name, i); 994 if (!strncmp(buf, d->name, IFNAMSIZ)) 995 set_bit(i, inuse); 996 } 997 998 i = find_first_zero_bit(inuse, max_netdevices); 999 free_page((unsigned long) inuse); 1000 } 1001 1002 if (buf != name) 1003 snprintf(buf, IFNAMSIZ, name, i); 1004 if (!__dev_get_by_name(net, buf)) 1005 return i; 1006 1007 /* It is possible to run out of possible slots 1008 * when the name is long and there isn't enough space left 1009 * for the digits, or if all bits are used. 1010 */ 1011 return -ENFILE; 1012} 1013 1014/** 1015 * dev_alloc_name - allocate a name for a device 1016 * @dev: device 1017 * @name: name format string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028int dev_alloc_name(struct net_device *dev, const char *name) 1029{ 1030 char buf[IFNAMSIZ]; 1031 struct net *net; 1032 int ret; 1033 1034 BUG_ON(!dev_net(dev)); 1035 net = dev_net(dev); 1036 ret = __dev_alloc_name(net, name, buf); 1037 if (ret >= 0) 1038 strlcpy(dev->name, buf, IFNAMSIZ); 1039 return ret; 1040} 1041EXPORT_SYMBOL(dev_alloc_name); 1042 1043static int dev_alloc_name_ns(struct net *net, 1044 struct net_device *dev, 1045 const char *name) 1046{ 1047 char buf[IFNAMSIZ]; 1048 int ret; 1049 1050 ret = __dev_alloc_name(net, name, buf); 1051 if (ret >= 0) 1052 strlcpy(dev->name, buf, IFNAMSIZ); 1053 return ret; 1054} 1055 1056static int dev_get_valid_name(struct net *net, 1057 struct net_device *dev, 1058 const char *name) 1059{ 1060 BUG_ON(!net); 1061 1062 if (!dev_valid_name(name)) 1063 return -EINVAL; 1064 1065 if (strchr(name, '%')) 1066 return dev_alloc_name_ns(net, dev, name); 1067 else if (__dev_get_by_name(net, name)) 1068 return -EEXIST; 1069 else if (dev->name != name) 1070 strlcpy(dev->name, name, IFNAMSIZ); 1071 1072 return 0; 1073} 1074 1075/** 1076 * dev_change_name - change name of a device 1077 * @dev: device 1078 * @newname: name (or format string) must be at least IFNAMSIZ 1079 * 1080 * Change name of a device, can pass format strings "eth%d". 1081 * for wildcarding. 1082 */ 1083int dev_change_name(struct net_device *dev, const char *newname) 1084{ 1085 char oldname[IFNAMSIZ]; 1086 int err = 0; 1087 int ret; 1088 struct net *net; 1089 1090 ASSERT_RTNL(); 1091 BUG_ON(!dev_net(dev)); 1092 1093 net = dev_net(dev); 1094 if (dev->flags & IFF_UP) 1095 return -EBUSY; 1096 1097 write_seqcount_begin(&devnet_rename_seq); 1098 1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1100 write_seqcount_end(&devnet_rename_seq); 1101 return 0; 1102 } 1103 1104 memcpy(oldname, dev->name, IFNAMSIZ); 1105 1106 err = dev_get_valid_name(net, dev, newname); 1107 if (err < 0) { 1108 write_seqcount_end(&devnet_rename_seq); 1109 return err; 1110 } 1111 1112rollback: 1113 ret = device_rename(&dev->dev, dev->name); 1114 if (ret) { 1115 memcpy(dev->name, oldname, IFNAMSIZ); 1116 write_seqcount_end(&devnet_rename_seq); 1117 return ret; 1118 } 1119 1120 write_seqcount_end(&devnet_rename_seq); 1121 1122 netdev_adjacent_rename_links(dev, oldname); 1123 1124 write_lock_bh(&dev_base_lock); 1125 hlist_del_rcu(&dev->name_hlist); 1126 write_unlock_bh(&dev_base_lock); 1127 1128 synchronize_rcu(); 1129 1130 write_lock_bh(&dev_base_lock); 1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1132 write_unlock_bh(&dev_base_lock); 1133 1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1135 ret = notifier_to_errno(ret); 1136 1137 if (ret) { 1138 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1139 if (err >= 0) { 1140 err = ret; 1141 write_seqcount_begin(&devnet_rename_seq); 1142 memcpy(dev->name, oldname, IFNAMSIZ); 1143 memcpy(oldname, newname, IFNAMSIZ); 1144 goto rollback; 1145 } else { 1146 pr_err("%s: name change rollback failed: %d\n", 1147 dev->name, ret); 1148 } 1149 } 1150 1151 return err; 1152} 1153 1154/** 1155 * dev_set_alias - change ifalias of a device 1156 * @dev: device 1157 * @alias: name up to IFALIASZ 1158 * @len: limit of bytes to copy from info 1159 * 1160 * Set ifalias for a device, 1161 */ 1162int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1163{ 1164 char *new_ifalias; 1165 1166 ASSERT_RTNL(); 1167 1168 if (len >= IFALIASZ) 1169 return -EINVAL; 1170 1171 if (!len) { 1172 kfree(dev->ifalias); 1173 dev->ifalias = NULL; 1174 return 0; 1175 } 1176 1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1178 if (!new_ifalias) 1179 return -ENOMEM; 1180 dev->ifalias = new_ifalias; 1181 1182 strlcpy(dev->ifalias, alias, len+1); 1183 return len; 1184} 1185 1186 1187/** 1188 * netdev_features_change - device changes features 1189 * @dev: device to cause notification 1190 * 1191 * Called to indicate a device has changed features. 1192 */ 1193void netdev_features_change(struct net_device *dev) 1194{ 1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1196} 1197EXPORT_SYMBOL(netdev_features_change); 1198 1199/** 1200 * netdev_state_change - device changes state 1201 * @dev: device to cause notification 1202 * 1203 * Called to indicate a device has changed state. This function calls 1204 * the notifier chains for netdev_chain and sends a NEWLINK message 1205 * to the routing socket. 1206 */ 1207void netdev_state_change(struct net_device *dev) 1208{ 1209 if (dev->flags & IFF_UP) { 1210 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1212 } 1213} 1214EXPORT_SYMBOL(netdev_state_change); 1215 1216/** 1217 * netdev_notify_peers - notify network peers about existence of @dev 1218 * @dev: network device 1219 * 1220 * Generate traffic such that interested network peers are aware of 1221 * @dev, such as by generating a gratuitous ARP. This may be used when 1222 * a device wants to inform the rest of the network about some sort of 1223 * reconfiguration such as a failover event or virtual machine 1224 * migration. 1225 */ 1226void netdev_notify_peers(struct net_device *dev) 1227{ 1228 rtnl_lock(); 1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1230 rtnl_unlock(); 1231} 1232EXPORT_SYMBOL(netdev_notify_peers); 1233 1234static int __dev_open(struct net_device *dev) 1235{ 1236 const struct net_device_ops *ops = dev->netdev_ops; 1237 int ret; 1238 1239 ASSERT_RTNL(); 1240 1241 if (!netif_device_present(dev)) 1242 return -ENODEV; 1243 1244 /* Block netpoll from trying to do any rx path servicing. 1245 * If we don't do this there is a chance ndo_poll_controller 1246 * or ndo_poll may be running while we open the device 1247 */ 1248 netpoll_rx_disable(dev); 1249 1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1251 ret = notifier_to_errno(ret); 1252 if (ret) 1253 return ret; 1254 1255 set_bit(__LINK_STATE_START, &dev->state); 1256 1257 if (ops->ndo_validate_addr) 1258 ret = ops->ndo_validate_addr(dev); 1259 1260 if (!ret && ops->ndo_open) 1261 ret = ops->ndo_open(dev); 1262 1263 netpoll_rx_enable(dev); 1264 1265 if (ret) 1266 clear_bit(__LINK_STATE_START, &dev->state); 1267 else { 1268 dev->flags |= IFF_UP; 1269 net_dmaengine_get(); 1270 dev_set_rx_mode(dev); 1271 dev_activate(dev); 1272 add_device_randomness(dev->dev_addr, dev->addr_len); 1273 } 1274 1275 return ret; 1276} 1277 1278/** 1279 * dev_open - prepare an interface for use. 1280 * @dev: device to open 1281 * 1282 * Takes a device from down to up state. The device's private open 1283 * function is invoked and then the multicast lists are loaded. Finally 1284 * the device is moved into the up state and a %NETDEV_UP message is 1285 * sent to the netdev notifier chain. 1286 * 1287 * Calling this function on an active interface is a nop. On a failure 1288 * a negative errno code is returned. 1289 */ 1290int dev_open(struct net_device *dev) 1291{ 1292 int ret; 1293 1294 if (dev->flags & IFF_UP) 1295 return 0; 1296 1297 ret = __dev_open(dev); 1298 if (ret < 0) 1299 return ret; 1300 1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1302 call_netdevice_notifiers(NETDEV_UP, dev); 1303 1304 return ret; 1305} 1306EXPORT_SYMBOL(dev_open); 1307 1308static int __dev_close_many(struct list_head *head) 1309{ 1310 struct net_device *dev; 1311 1312 ASSERT_RTNL(); 1313 might_sleep(); 1314 1315 list_for_each_entry(dev, head, close_list) { 1316 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1317 1318 clear_bit(__LINK_STATE_START, &dev->state); 1319 1320 /* Synchronize to scheduled poll. We cannot touch poll list, it 1321 * can be even on different cpu. So just clear netif_running(). 1322 * 1323 * dev->stop() will invoke napi_disable() on all of it's 1324 * napi_struct instances on this device. 1325 */ 1326 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1327 } 1328 1329 dev_deactivate_many(head); 1330 1331 list_for_each_entry(dev, head, close_list) { 1332 const struct net_device_ops *ops = dev->netdev_ops; 1333 1334 /* 1335 * Call the device specific close. This cannot fail. 1336 * Only if device is UP 1337 * 1338 * We allow it to be called even after a DETACH hot-plug 1339 * event. 1340 */ 1341 if (ops->ndo_stop) 1342 ops->ndo_stop(dev); 1343 1344 dev->flags &= ~IFF_UP; 1345 net_dmaengine_put(); 1346 } 1347 1348 return 0; 1349} 1350 1351static int __dev_close(struct net_device *dev) 1352{ 1353 int retval; 1354 LIST_HEAD(single); 1355 1356 /* Temporarily disable netpoll until the interface is down */ 1357 netpoll_rx_disable(dev); 1358 1359 list_add(&dev->close_list, &single); 1360 retval = __dev_close_many(&single); 1361 list_del(&single); 1362 1363 netpoll_rx_enable(dev); 1364 return retval; 1365} 1366 1367static int dev_close_many(struct list_head *head) 1368{ 1369 struct net_device *dev, *tmp; 1370 1371 /* Remove the devices that don't need to be closed */ 1372 list_for_each_entry_safe(dev, tmp, head, close_list) 1373 if (!(dev->flags & IFF_UP)) 1374 list_del_init(&dev->close_list); 1375 1376 __dev_close_many(head); 1377 1378 list_for_each_entry_safe(dev, tmp, head, close_list) { 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1380 call_netdevice_notifiers(NETDEV_DOWN, dev); 1381 list_del_init(&dev->close_list); 1382 } 1383 1384 return 0; 1385} 1386 1387/** 1388 * dev_close - shutdown an interface. 1389 * @dev: device to shutdown 1390 * 1391 * This function moves an active device into down state. A 1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1394 * chain. 1395 */ 1396int dev_close(struct net_device *dev) 1397{ 1398 if (dev->flags & IFF_UP) { 1399 LIST_HEAD(single); 1400 1401 /* Block netpoll rx while the interface is going down */ 1402 netpoll_rx_disable(dev); 1403 1404 list_add(&dev->close_list, &single); 1405 dev_close_many(&single); 1406 list_del(&single); 1407 1408 netpoll_rx_enable(dev); 1409 } 1410 return 0; 1411} 1412EXPORT_SYMBOL(dev_close); 1413 1414 1415/** 1416 * dev_disable_lro - disable Large Receive Offload on a device 1417 * @dev: device 1418 * 1419 * Disable Large Receive Offload (LRO) on a net device. Must be 1420 * called under RTNL. This is needed if received packets may be 1421 * forwarded to another interface. 1422 */ 1423void dev_disable_lro(struct net_device *dev) 1424{ 1425 /* 1426 * If we're trying to disable lro on a vlan device 1427 * use the underlying physical device instead 1428 */ 1429 if (is_vlan_dev(dev)) 1430 dev = vlan_dev_real_dev(dev); 1431 1432 /* the same for macvlan devices */ 1433 if (netif_is_macvlan(dev)) 1434 dev = macvlan_dev_real_dev(dev); 1435 1436 dev->wanted_features &= ~NETIF_F_LRO; 1437 netdev_update_features(dev); 1438 1439 if (unlikely(dev->features & NETIF_F_LRO)) 1440 netdev_WARN(dev, "failed to disable LRO!\n"); 1441} 1442EXPORT_SYMBOL(dev_disable_lro); 1443 1444static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1445 struct net_device *dev) 1446{ 1447 struct netdev_notifier_info info; 1448 1449 netdev_notifier_info_init(&info, dev); 1450 return nb->notifier_call(nb, val, &info); 1451} 1452 1453static int dev_boot_phase = 1; 1454 1455/** 1456 * register_netdevice_notifier - register a network notifier block 1457 * @nb: notifier 1458 * 1459 * Register a notifier to be called when network device events occur. 1460 * The notifier passed is linked into the kernel structures and must 1461 * not be reused until it has been unregistered. A negative errno code 1462 * is returned on a failure. 1463 * 1464 * When registered all registration and up events are replayed 1465 * to the new notifier to allow device to have a race free 1466 * view of the network device list. 1467 */ 1468 1469int register_netdevice_notifier(struct notifier_block *nb) 1470{ 1471 struct net_device *dev; 1472 struct net_device *last; 1473 struct net *net; 1474 int err; 1475 1476 rtnl_lock(); 1477 err = raw_notifier_chain_register(&netdev_chain, nb); 1478 if (err) 1479 goto unlock; 1480 if (dev_boot_phase) 1481 goto unlock; 1482 for_each_net(net) { 1483 for_each_netdev(net, dev) { 1484 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1485 err = notifier_to_errno(err); 1486 if (err) 1487 goto rollback; 1488 1489 if (!(dev->flags & IFF_UP)) 1490 continue; 1491 1492 call_netdevice_notifier(nb, NETDEV_UP, dev); 1493 } 1494 } 1495 1496unlock: 1497 rtnl_unlock(); 1498 return err; 1499 1500rollback: 1501 last = dev; 1502 for_each_net(net) { 1503 for_each_netdev(net, dev) { 1504 if (dev == last) 1505 goto outroll; 1506 1507 if (dev->flags & IFF_UP) { 1508 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1509 dev); 1510 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1511 } 1512 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1513 } 1514 } 1515 1516outroll: 1517 raw_notifier_chain_unregister(&netdev_chain, nb); 1518 goto unlock; 1519} 1520EXPORT_SYMBOL(register_netdevice_notifier); 1521 1522/** 1523 * unregister_netdevice_notifier - unregister a network notifier block 1524 * @nb: notifier 1525 * 1526 * Unregister a notifier previously registered by 1527 * register_netdevice_notifier(). The notifier is unlinked into the 1528 * kernel structures and may then be reused. A negative errno code 1529 * is returned on a failure. 1530 * 1531 * After unregistering unregister and down device events are synthesized 1532 * for all devices on the device list to the removed notifier to remove 1533 * the need for special case cleanup code. 1534 */ 1535 1536int unregister_netdevice_notifier(struct notifier_block *nb) 1537{ 1538 struct net_device *dev; 1539 struct net *net; 1540 int err; 1541 1542 rtnl_lock(); 1543 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1544 if (err) 1545 goto unlock; 1546 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 if (dev->flags & IFF_UP) { 1550 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1551 dev); 1552 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1553 } 1554 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1555 } 1556 } 1557unlock: 1558 rtnl_unlock(); 1559 return err; 1560} 1561EXPORT_SYMBOL(unregister_netdevice_notifier); 1562 1563/** 1564 * call_netdevice_notifiers_info - call all network notifier blocks 1565 * @val: value passed unmodified to notifier function 1566 * @dev: net_device pointer passed unmodified to notifier function 1567 * @info: notifier information data 1568 * 1569 * Call all network notifier blocks. Parameters and return value 1570 * are as for raw_notifier_call_chain(). 1571 */ 1572 1573static int call_netdevice_notifiers_info(unsigned long val, 1574 struct net_device *dev, 1575 struct netdev_notifier_info *info) 1576{ 1577 ASSERT_RTNL(); 1578 netdev_notifier_info_init(info, dev); 1579 return raw_notifier_call_chain(&netdev_chain, val, info); 1580} 1581 1582/** 1583 * call_netdevice_notifiers - call all network notifier blocks 1584 * @val: value passed unmodified to notifier function 1585 * @dev: net_device pointer passed unmodified to notifier function 1586 * 1587 * Call all network notifier blocks. Parameters and return value 1588 * are as for raw_notifier_call_chain(). 1589 */ 1590 1591int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1592{ 1593 struct netdev_notifier_info info; 1594 1595 return call_netdevice_notifiers_info(val, dev, &info); 1596} 1597EXPORT_SYMBOL(call_netdevice_notifiers); 1598 1599static struct static_key netstamp_needed __read_mostly; 1600#ifdef HAVE_JUMP_LABEL 1601/* We are not allowed to call static_key_slow_dec() from irq context 1602 * If net_disable_timestamp() is called from irq context, defer the 1603 * static_key_slow_dec() calls. 1604 */ 1605static atomic_t netstamp_needed_deferred; 1606#endif 1607 1608void net_enable_timestamp(void) 1609{ 1610#ifdef HAVE_JUMP_LABEL 1611 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1612 1613 if (deferred) { 1614 while (--deferred) 1615 static_key_slow_dec(&netstamp_needed); 1616 return; 1617 } 1618#endif 1619 static_key_slow_inc(&netstamp_needed); 1620} 1621EXPORT_SYMBOL(net_enable_timestamp); 1622 1623void net_disable_timestamp(void) 1624{ 1625#ifdef HAVE_JUMP_LABEL 1626 if (in_interrupt()) { 1627 atomic_inc(&netstamp_needed_deferred); 1628 return; 1629 } 1630#endif 1631 static_key_slow_dec(&netstamp_needed); 1632} 1633EXPORT_SYMBOL(net_disable_timestamp); 1634 1635static inline void net_timestamp_set(struct sk_buff *skb) 1636{ 1637 skb->tstamp.tv64 = 0; 1638 if (static_key_false(&netstamp_needed)) 1639 __net_timestamp(skb); 1640} 1641 1642#define net_timestamp_check(COND, SKB) \ 1643 if (static_key_false(&netstamp_needed)) { \ 1644 if ((COND) && !(SKB)->tstamp.tv64) \ 1645 __net_timestamp(SKB); \ 1646 } \ 1647 1648static inline bool is_skb_forwardable(struct net_device *dev, 1649 struct sk_buff *skb) 1650{ 1651 unsigned int len; 1652 1653 if (!(dev->flags & IFF_UP)) 1654 return false; 1655 1656 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1657 if (skb->len <= len) 1658 return true; 1659 1660 /* if TSO is enabled, we don't care about the length as the packet 1661 * could be forwarded without being segmented before 1662 */ 1663 if (skb_is_gso(skb)) 1664 return true; 1665 1666 return false; 1667} 1668 1669/** 1670 * dev_forward_skb - loopback an skb to another netif 1671 * 1672 * @dev: destination network device 1673 * @skb: buffer to forward 1674 * 1675 * return values: 1676 * NET_RX_SUCCESS (no congestion) 1677 * NET_RX_DROP (packet was dropped, but freed) 1678 * 1679 * dev_forward_skb can be used for injecting an skb from the 1680 * start_xmit function of one device into the receive queue 1681 * of another device. 1682 * 1683 * The receiving device may be in another namespace, so 1684 * we have to clear all information in the skb that could 1685 * impact namespace isolation. 1686 */ 1687int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1688{ 1689 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1690 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1691 atomic_long_inc(&dev->rx_dropped); 1692 kfree_skb(skb); 1693 return NET_RX_DROP; 1694 } 1695 } 1696 1697 if (unlikely(!is_skb_forwardable(dev, skb))) { 1698 atomic_long_inc(&dev->rx_dropped); 1699 kfree_skb(skb); 1700 return NET_RX_DROP; 1701 } 1702 1703 skb_scrub_packet(skb, true); 1704 skb->protocol = eth_type_trans(skb, dev); 1705 1706 return netif_rx_internal(skb); 1707} 1708EXPORT_SYMBOL_GPL(dev_forward_skb); 1709 1710static inline int deliver_skb(struct sk_buff *skb, 1711 struct packet_type *pt_prev, 1712 struct net_device *orig_dev) 1713{ 1714 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1715 return -ENOMEM; 1716 atomic_inc(&skb->users); 1717 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1718} 1719 1720static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1721{ 1722 if (!ptype->af_packet_priv || !skb->sk) 1723 return false; 1724 1725 if (ptype->id_match) 1726 return ptype->id_match(ptype, skb->sk); 1727 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1728 return true; 1729 1730 return false; 1731} 1732 1733/* 1734 * Support routine. Sends outgoing frames to any network 1735 * taps currently in use. 1736 */ 1737 1738static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1739{ 1740 struct packet_type *ptype; 1741 struct sk_buff *skb2 = NULL; 1742 struct packet_type *pt_prev = NULL; 1743 1744 rcu_read_lock(); 1745 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1746 /* Never send packets back to the socket 1747 * they originated from - MvS (miquels@drinkel.ow.org) 1748 */ 1749 if ((ptype->dev == dev || !ptype->dev) && 1750 (!skb_loop_sk(ptype, skb))) { 1751 if (pt_prev) { 1752 deliver_skb(skb2, pt_prev, skb->dev); 1753 pt_prev = ptype; 1754 continue; 1755 } 1756 1757 skb2 = skb_clone(skb, GFP_ATOMIC); 1758 if (!skb2) 1759 break; 1760 1761 net_timestamp_set(skb2); 1762 1763 /* skb->nh should be correctly 1764 set by sender, so that the second statement is 1765 just protection against buggy protocols. 1766 */ 1767 skb_reset_mac_header(skb2); 1768 1769 if (skb_network_header(skb2) < skb2->data || 1770 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1771 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1772 ntohs(skb2->protocol), 1773 dev->name); 1774 skb_reset_network_header(skb2); 1775 } 1776 1777 skb2->transport_header = skb2->network_header; 1778 skb2->pkt_type = PACKET_OUTGOING; 1779 pt_prev = ptype; 1780 } 1781 } 1782 if (pt_prev) 1783 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1784 rcu_read_unlock(); 1785} 1786 1787/** 1788 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1789 * @dev: Network device 1790 * @txq: number of queues available 1791 * 1792 * If real_num_tx_queues is changed the tc mappings may no longer be 1793 * valid. To resolve this verify the tc mapping remains valid and if 1794 * not NULL the mapping. With no priorities mapping to this 1795 * offset/count pair it will no longer be used. In the worst case TC0 1796 * is invalid nothing can be done so disable priority mappings. If is 1797 * expected that drivers will fix this mapping if they can before 1798 * calling netif_set_real_num_tx_queues. 1799 */ 1800static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1801{ 1802 int i; 1803 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1804 1805 /* If TC0 is invalidated disable TC mapping */ 1806 if (tc->offset + tc->count > txq) { 1807 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1808 dev->num_tc = 0; 1809 return; 1810 } 1811 1812 /* Invalidated prio to tc mappings set to TC0 */ 1813 for (i = 1; i < TC_BITMASK + 1; i++) { 1814 int q = netdev_get_prio_tc_map(dev, i); 1815 1816 tc = &dev->tc_to_txq[q]; 1817 if (tc->offset + tc->count > txq) { 1818 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1819 i, q); 1820 netdev_set_prio_tc_map(dev, i, 0); 1821 } 1822 } 1823} 1824 1825#ifdef CONFIG_XPS 1826static DEFINE_MUTEX(xps_map_mutex); 1827#define xmap_dereference(P) \ 1828 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1829 1830static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1831 int cpu, u16 index) 1832{ 1833 struct xps_map *map = NULL; 1834 int pos; 1835 1836 if (dev_maps) 1837 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1838 1839 for (pos = 0; map && pos < map->len; pos++) { 1840 if (map->queues[pos] == index) { 1841 if (map->len > 1) { 1842 map->queues[pos] = map->queues[--map->len]; 1843 } else { 1844 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1845 kfree_rcu(map, rcu); 1846 map = NULL; 1847 } 1848 break; 1849 } 1850 } 1851 1852 return map; 1853} 1854 1855static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1856{ 1857 struct xps_dev_maps *dev_maps; 1858 int cpu, i; 1859 bool active = false; 1860 1861 mutex_lock(&xps_map_mutex); 1862 dev_maps = xmap_dereference(dev->xps_maps); 1863 1864 if (!dev_maps) 1865 goto out_no_maps; 1866 1867 for_each_possible_cpu(cpu) { 1868 for (i = index; i < dev->num_tx_queues; i++) { 1869 if (!remove_xps_queue(dev_maps, cpu, i)) 1870 break; 1871 } 1872 if (i == dev->num_tx_queues) 1873 active = true; 1874 } 1875 1876 if (!active) { 1877 RCU_INIT_POINTER(dev->xps_maps, NULL); 1878 kfree_rcu(dev_maps, rcu); 1879 } 1880 1881 for (i = index; i < dev->num_tx_queues; i++) 1882 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1883 NUMA_NO_NODE); 1884 1885out_no_maps: 1886 mutex_unlock(&xps_map_mutex); 1887} 1888 1889static struct xps_map *expand_xps_map(struct xps_map *map, 1890 int cpu, u16 index) 1891{ 1892 struct xps_map *new_map; 1893 int alloc_len = XPS_MIN_MAP_ALLOC; 1894 int i, pos; 1895 1896 for (pos = 0; map && pos < map->len; pos++) { 1897 if (map->queues[pos] != index) 1898 continue; 1899 return map; 1900 } 1901 1902 /* Need to add queue to this CPU's existing map */ 1903 if (map) { 1904 if (pos < map->alloc_len) 1905 return map; 1906 1907 alloc_len = map->alloc_len * 2; 1908 } 1909 1910 /* Need to allocate new map to store queue on this CPU's map */ 1911 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1912 cpu_to_node(cpu)); 1913 if (!new_map) 1914 return NULL; 1915 1916 for (i = 0; i < pos; i++) 1917 new_map->queues[i] = map->queues[i]; 1918 new_map->alloc_len = alloc_len; 1919 new_map->len = pos; 1920 1921 return new_map; 1922} 1923 1924int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1925 u16 index) 1926{ 1927 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1928 struct xps_map *map, *new_map; 1929 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1930 int cpu, numa_node_id = -2; 1931 bool active = false; 1932 1933 mutex_lock(&xps_map_mutex); 1934 1935 dev_maps = xmap_dereference(dev->xps_maps); 1936 1937 /* allocate memory for queue storage */ 1938 for_each_online_cpu(cpu) { 1939 if (!cpumask_test_cpu(cpu, mask)) 1940 continue; 1941 1942 if (!new_dev_maps) 1943 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1944 if (!new_dev_maps) { 1945 mutex_unlock(&xps_map_mutex); 1946 return -ENOMEM; 1947 } 1948 1949 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1950 NULL; 1951 1952 map = expand_xps_map(map, cpu, index); 1953 if (!map) 1954 goto error; 1955 1956 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1957 } 1958 1959 if (!new_dev_maps) 1960 goto out_no_new_maps; 1961 1962 for_each_possible_cpu(cpu) { 1963 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1964 /* add queue to CPU maps */ 1965 int pos = 0; 1966 1967 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1968 while ((pos < map->len) && (map->queues[pos] != index)) 1969 pos++; 1970 1971 if (pos == map->len) 1972 map->queues[map->len++] = index; 1973#ifdef CONFIG_NUMA 1974 if (numa_node_id == -2) 1975 numa_node_id = cpu_to_node(cpu); 1976 else if (numa_node_id != cpu_to_node(cpu)) 1977 numa_node_id = -1; 1978#endif 1979 } else if (dev_maps) { 1980 /* fill in the new device map from the old device map */ 1981 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1982 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1983 } 1984 1985 } 1986 1987 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1988 1989 /* Cleanup old maps */ 1990 if (dev_maps) { 1991 for_each_possible_cpu(cpu) { 1992 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1993 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1994 if (map && map != new_map) 1995 kfree_rcu(map, rcu); 1996 } 1997 1998 kfree_rcu(dev_maps, rcu); 1999 } 2000 2001 dev_maps = new_dev_maps; 2002 active = true; 2003 2004out_no_new_maps: 2005 /* update Tx queue numa node */ 2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2007 (numa_node_id >= 0) ? numa_node_id : 2008 NUMA_NO_NODE); 2009 2010 if (!dev_maps) 2011 goto out_no_maps; 2012 2013 /* removes queue from unused CPUs */ 2014 for_each_possible_cpu(cpu) { 2015 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2016 continue; 2017 2018 if (remove_xps_queue(dev_maps, cpu, index)) 2019 active = true; 2020 } 2021 2022 /* free map if not active */ 2023 if (!active) { 2024 RCU_INIT_POINTER(dev->xps_maps, NULL); 2025 kfree_rcu(dev_maps, rcu); 2026 } 2027 2028out_no_maps: 2029 mutex_unlock(&xps_map_mutex); 2030 2031 return 0; 2032error: 2033 /* remove any maps that we added */ 2034 for_each_possible_cpu(cpu) { 2035 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2036 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2037 NULL; 2038 if (new_map && new_map != map) 2039 kfree(new_map); 2040 } 2041 2042 mutex_unlock(&xps_map_mutex); 2043 2044 kfree(new_dev_maps); 2045 return -ENOMEM; 2046} 2047EXPORT_SYMBOL(netif_set_xps_queue); 2048 2049#endif 2050/* 2051 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2052 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2053 */ 2054int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2055{ 2056 int rc; 2057 2058 if (txq < 1 || txq > dev->num_tx_queues) 2059 return -EINVAL; 2060 2061 if (dev->reg_state == NETREG_REGISTERED || 2062 dev->reg_state == NETREG_UNREGISTERING) { 2063 ASSERT_RTNL(); 2064 2065 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2066 txq); 2067 if (rc) 2068 return rc; 2069 2070 if (dev->num_tc) 2071 netif_setup_tc(dev, txq); 2072 2073 if (txq < dev->real_num_tx_queues) { 2074 qdisc_reset_all_tx_gt(dev, txq); 2075#ifdef CONFIG_XPS 2076 netif_reset_xps_queues_gt(dev, txq); 2077#endif 2078 } 2079 } 2080 2081 dev->real_num_tx_queues = txq; 2082 return 0; 2083} 2084EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2085 2086#ifdef CONFIG_SYSFS 2087/** 2088 * netif_set_real_num_rx_queues - set actual number of RX queues used 2089 * @dev: Network device 2090 * @rxq: Actual number of RX queues 2091 * 2092 * This must be called either with the rtnl_lock held or before 2093 * registration of the net device. Returns 0 on success, or a 2094 * negative error code. If called before registration, it always 2095 * succeeds. 2096 */ 2097int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2098{ 2099 int rc; 2100 2101 if (rxq < 1 || rxq > dev->num_rx_queues) 2102 return -EINVAL; 2103 2104 if (dev->reg_state == NETREG_REGISTERED) { 2105 ASSERT_RTNL(); 2106 2107 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2108 rxq); 2109 if (rc) 2110 return rc; 2111 } 2112 2113 dev->real_num_rx_queues = rxq; 2114 return 0; 2115} 2116EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2117#endif 2118 2119/** 2120 * netif_get_num_default_rss_queues - default number of RSS queues 2121 * 2122 * This routine should set an upper limit on the number of RSS queues 2123 * used by default by multiqueue devices. 2124 */ 2125int netif_get_num_default_rss_queues(void) 2126{ 2127 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2128} 2129EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2130 2131static inline void __netif_reschedule(struct Qdisc *q) 2132{ 2133 struct softnet_data *sd; 2134 unsigned long flags; 2135 2136 local_irq_save(flags); 2137 sd = &__get_cpu_var(softnet_data); 2138 q->next_sched = NULL; 2139 *sd->output_queue_tailp = q; 2140 sd->output_queue_tailp = &q->next_sched; 2141 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2142 local_irq_restore(flags); 2143} 2144 2145void __netif_schedule(struct Qdisc *q) 2146{ 2147 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2148 __netif_reschedule(q); 2149} 2150EXPORT_SYMBOL(__netif_schedule); 2151 2152struct dev_kfree_skb_cb { 2153 enum skb_free_reason reason; 2154}; 2155 2156static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2157{ 2158 return (struct dev_kfree_skb_cb *)skb->cb; 2159} 2160 2161void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2162{ 2163 unsigned long flags; 2164 2165 if (likely(atomic_read(&skb->users) == 1)) { 2166 smp_rmb(); 2167 atomic_set(&skb->users, 0); 2168 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2169 return; 2170 } 2171 get_kfree_skb_cb(skb)->reason = reason; 2172 local_irq_save(flags); 2173 skb->next = __this_cpu_read(softnet_data.completion_queue); 2174 __this_cpu_write(softnet_data.completion_queue, skb); 2175 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2176 local_irq_restore(flags); 2177} 2178EXPORT_SYMBOL(__dev_kfree_skb_irq); 2179 2180void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2181{ 2182 if (in_irq() || irqs_disabled()) 2183 __dev_kfree_skb_irq(skb, reason); 2184 else 2185 dev_kfree_skb(skb); 2186} 2187EXPORT_SYMBOL(__dev_kfree_skb_any); 2188 2189 2190/** 2191 * netif_device_detach - mark device as removed 2192 * @dev: network device 2193 * 2194 * Mark device as removed from system and therefore no longer available. 2195 */ 2196void netif_device_detach(struct net_device *dev) 2197{ 2198 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2199 netif_running(dev)) { 2200 netif_tx_stop_all_queues(dev); 2201 } 2202} 2203EXPORT_SYMBOL(netif_device_detach); 2204 2205/** 2206 * netif_device_attach - mark device as attached 2207 * @dev: network device 2208 * 2209 * Mark device as attached from system and restart if needed. 2210 */ 2211void netif_device_attach(struct net_device *dev) 2212{ 2213 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2214 netif_running(dev)) { 2215 netif_tx_wake_all_queues(dev); 2216 __netdev_watchdog_up(dev); 2217 } 2218} 2219EXPORT_SYMBOL(netif_device_attach); 2220 2221static void skb_warn_bad_offload(const struct sk_buff *skb) 2222{ 2223 static const netdev_features_t null_features = 0; 2224 struct net_device *dev = skb->dev; 2225 const char *driver = ""; 2226 2227 if (!net_ratelimit()) 2228 return; 2229 2230 if (dev && dev->dev.parent) 2231 driver = dev_driver_string(dev->dev.parent); 2232 2233 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2234 "gso_type=%d ip_summed=%d\n", 2235 driver, dev ? &dev->features : &null_features, 2236 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2237 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2238 skb_shinfo(skb)->gso_type, skb->ip_summed); 2239} 2240 2241/* 2242 * Invalidate hardware checksum when packet is to be mangled, and 2243 * complete checksum manually on outgoing path. 2244 */ 2245int skb_checksum_help(struct sk_buff *skb) 2246{ 2247 __wsum csum; 2248 int ret = 0, offset; 2249 2250 if (skb->ip_summed == CHECKSUM_COMPLETE) 2251 goto out_set_summed; 2252 2253 if (unlikely(skb_shinfo(skb)->gso_size)) { 2254 skb_warn_bad_offload(skb); 2255 return -EINVAL; 2256 } 2257 2258 /* Before computing a checksum, we should make sure no frag could 2259 * be modified by an external entity : checksum could be wrong. 2260 */ 2261 if (skb_has_shared_frag(skb)) { 2262 ret = __skb_linearize(skb); 2263 if (ret) 2264 goto out; 2265 } 2266 2267 offset = skb_checksum_start_offset(skb); 2268 BUG_ON(offset >= skb_headlen(skb)); 2269 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2270 2271 offset += skb->csum_offset; 2272 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2273 2274 if (skb_cloned(skb) && 2275 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2276 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2277 if (ret) 2278 goto out; 2279 } 2280 2281 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2282out_set_summed: 2283 skb->ip_summed = CHECKSUM_NONE; 2284out: 2285 return ret; 2286} 2287EXPORT_SYMBOL(skb_checksum_help); 2288 2289__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2290{ 2291 __be16 type = skb->protocol; 2292 int vlan_depth = ETH_HLEN; 2293 2294 /* Tunnel gso handlers can set protocol to ethernet. */ 2295 if (type == htons(ETH_P_TEB)) { 2296 struct ethhdr *eth; 2297 2298 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2299 return 0; 2300 2301 eth = (struct ethhdr *)skb_mac_header(skb); 2302 type = eth->h_proto; 2303 } 2304 2305 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2306 struct vlan_hdr *vh; 2307 2308 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2309 return 0; 2310 2311 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2312 type = vh->h_vlan_encapsulated_proto; 2313 vlan_depth += VLAN_HLEN; 2314 } 2315 2316 *depth = vlan_depth; 2317 2318 return type; 2319} 2320 2321/** 2322 * skb_mac_gso_segment - mac layer segmentation handler. 2323 * @skb: buffer to segment 2324 * @features: features for the output path (see dev->features) 2325 */ 2326struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2327 netdev_features_t features) 2328{ 2329 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2330 struct packet_offload *ptype; 2331 int vlan_depth = skb->mac_len; 2332 __be16 type = skb_network_protocol(skb, &vlan_depth); 2333 2334 if (unlikely(!type)) 2335 return ERR_PTR(-EINVAL); 2336 2337 __skb_pull(skb, vlan_depth); 2338 2339 rcu_read_lock(); 2340 list_for_each_entry_rcu(ptype, &offload_base, list) { 2341 if (ptype->type == type && ptype->callbacks.gso_segment) { 2342 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2343 int err; 2344 2345 err = ptype->callbacks.gso_send_check(skb); 2346 segs = ERR_PTR(err); 2347 if (err || skb_gso_ok(skb, features)) 2348 break; 2349 __skb_push(skb, (skb->data - 2350 skb_network_header(skb))); 2351 } 2352 segs = ptype->callbacks.gso_segment(skb, features); 2353 break; 2354 } 2355 } 2356 rcu_read_unlock(); 2357 2358 __skb_push(skb, skb->data - skb_mac_header(skb)); 2359 2360 return segs; 2361} 2362EXPORT_SYMBOL(skb_mac_gso_segment); 2363 2364 2365/* openvswitch calls this on rx path, so we need a different check. 2366 */ 2367static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2368{ 2369 if (tx_path) 2370 return skb->ip_summed != CHECKSUM_PARTIAL; 2371 else 2372 return skb->ip_summed == CHECKSUM_NONE; 2373} 2374 2375/** 2376 * __skb_gso_segment - Perform segmentation on skb. 2377 * @skb: buffer to segment 2378 * @features: features for the output path (see dev->features) 2379 * @tx_path: whether it is called in TX path 2380 * 2381 * This function segments the given skb and returns a list of segments. 2382 * 2383 * It may return NULL if the skb requires no segmentation. This is 2384 * only possible when GSO is used for verifying header integrity. 2385 */ 2386struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2387 netdev_features_t features, bool tx_path) 2388{ 2389 if (unlikely(skb_needs_check(skb, tx_path))) { 2390 int err; 2391 2392 skb_warn_bad_offload(skb); 2393 2394 if (skb_header_cloned(skb) && 2395 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2396 return ERR_PTR(err); 2397 } 2398 2399 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2400 SKB_GSO_CB(skb)->encap_level = 0; 2401 2402 skb_reset_mac_header(skb); 2403 skb_reset_mac_len(skb); 2404 2405 return skb_mac_gso_segment(skb, features); 2406} 2407EXPORT_SYMBOL(__skb_gso_segment); 2408 2409/* Take action when hardware reception checksum errors are detected. */ 2410#ifdef CONFIG_BUG 2411void netdev_rx_csum_fault(struct net_device *dev) 2412{ 2413 if (net_ratelimit()) { 2414 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2415 dump_stack(); 2416 } 2417} 2418EXPORT_SYMBOL(netdev_rx_csum_fault); 2419#endif 2420 2421/* Actually, we should eliminate this check as soon as we know, that: 2422 * 1. IOMMU is present and allows to map all the memory. 2423 * 2. No high memory really exists on this machine. 2424 */ 2425 2426static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb) 2427{ 2428#ifdef CONFIG_HIGHMEM 2429 int i; 2430 if (!(dev->features & NETIF_F_HIGHDMA)) { 2431 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2432 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2433 if (PageHighMem(skb_frag_page(frag))) 2434 return 1; 2435 } 2436 } 2437 2438 if (PCI_DMA_BUS_IS_PHYS) { 2439 struct device *pdev = dev->dev.parent; 2440 2441 if (!pdev) 2442 return 0; 2443 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2444 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2445 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2446 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2447 return 1; 2448 } 2449 } 2450#endif 2451 return 0; 2452} 2453 2454struct dev_gso_cb { 2455 void (*destructor)(struct sk_buff *skb); 2456}; 2457 2458#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2459 2460static void dev_gso_skb_destructor(struct sk_buff *skb) 2461{ 2462 struct dev_gso_cb *cb; 2463 2464 kfree_skb_list(skb->next); 2465 skb->next = NULL; 2466 2467 cb = DEV_GSO_CB(skb); 2468 if (cb->destructor) 2469 cb->destructor(skb); 2470} 2471 2472/** 2473 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2474 * @skb: buffer to segment 2475 * @features: device features as applicable to this skb 2476 * 2477 * This function segments the given skb and stores the list of segments 2478 * in skb->next. 2479 */ 2480static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2481{ 2482 struct sk_buff *segs; 2483 2484 segs = skb_gso_segment(skb, features); 2485 2486 /* Verifying header integrity only. */ 2487 if (!segs) 2488 return 0; 2489 2490 if (IS_ERR(segs)) 2491 return PTR_ERR(segs); 2492 2493 skb->next = segs; 2494 DEV_GSO_CB(skb)->destructor = skb->destructor; 2495 skb->destructor = dev_gso_skb_destructor; 2496 2497 return 0; 2498} 2499 2500static netdev_features_t harmonize_features(struct sk_buff *skb, 2501 const struct net_device *dev, 2502 netdev_features_t features) 2503{ 2504 int tmp; 2505 2506 if (skb->ip_summed != CHECKSUM_NONE && 2507 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) { 2508 features &= ~NETIF_F_ALL_CSUM; 2509 } else if (illegal_highdma(dev, skb)) { 2510 features &= ~NETIF_F_SG; 2511 } 2512 2513 return features; 2514} 2515 2516netdev_features_t netif_skb_dev_features(struct sk_buff *skb, 2517 const struct net_device *dev) 2518{ 2519 __be16 protocol = skb->protocol; 2520 netdev_features_t features = dev->features; 2521 2522 if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs) 2523 features &= ~NETIF_F_GSO_MASK; 2524 2525 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2526 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2527 protocol = veh->h_vlan_encapsulated_proto; 2528 } else if (!vlan_tx_tag_present(skb)) { 2529 return harmonize_features(skb, dev, features); 2530 } 2531 2532 features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2533 NETIF_F_HW_VLAN_STAG_TX); 2534 2535 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2536 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2537 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2538 NETIF_F_HW_VLAN_STAG_TX; 2539 2540 return harmonize_features(skb, dev, features); 2541} 2542EXPORT_SYMBOL(netif_skb_dev_features); 2543 2544int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2545 struct netdev_queue *txq) 2546{ 2547 const struct net_device_ops *ops = dev->netdev_ops; 2548 int rc = NETDEV_TX_OK; 2549 unsigned int skb_len; 2550 2551 if (likely(!skb->next)) { 2552 netdev_features_t features; 2553 2554 /* 2555 * If device doesn't need skb->dst, release it right now while 2556 * its hot in this cpu cache 2557 */ 2558 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2559 skb_dst_drop(skb); 2560 2561 features = netif_skb_features(skb); 2562 2563 if (vlan_tx_tag_present(skb) && 2564 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2565 skb = __vlan_put_tag(skb, skb->vlan_proto, 2566 vlan_tx_tag_get(skb)); 2567 if (unlikely(!skb)) 2568 goto out; 2569 2570 skb->vlan_tci = 0; 2571 } 2572 2573 /* If encapsulation offload request, verify we are testing 2574 * hardware encapsulation features instead of standard 2575 * features for the netdev 2576 */ 2577 if (skb->encapsulation) 2578 features &= dev->hw_enc_features; 2579 2580 if (netif_needs_gso(skb, features)) { 2581 if (unlikely(dev_gso_segment(skb, features))) 2582 goto out_kfree_skb; 2583 if (skb->next) 2584 goto gso; 2585 } else { 2586 if (skb_needs_linearize(skb, features) && 2587 __skb_linearize(skb)) 2588 goto out_kfree_skb; 2589 2590 /* If packet is not checksummed and device does not 2591 * support checksumming for this protocol, complete 2592 * checksumming here. 2593 */ 2594 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2595 if (skb->encapsulation) 2596 skb_set_inner_transport_header(skb, 2597 skb_checksum_start_offset(skb)); 2598 else 2599 skb_set_transport_header(skb, 2600 skb_checksum_start_offset(skb)); 2601 if (!(features & NETIF_F_ALL_CSUM) && 2602 skb_checksum_help(skb)) 2603 goto out_kfree_skb; 2604 } 2605 } 2606 2607 if (!list_empty(&ptype_all)) 2608 dev_queue_xmit_nit(skb, dev); 2609 2610 skb_len = skb->len; 2611 trace_net_dev_start_xmit(skb, dev); 2612 rc = ops->ndo_start_xmit(skb, dev); 2613 trace_net_dev_xmit(skb, rc, dev, skb_len); 2614 if (rc == NETDEV_TX_OK) 2615 txq_trans_update(txq); 2616 return rc; 2617 } 2618 2619gso: 2620 do { 2621 struct sk_buff *nskb = skb->next; 2622 2623 skb->next = nskb->next; 2624 nskb->next = NULL; 2625 2626 if (!list_empty(&ptype_all)) 2627 dev_queue_xmit_nit(nskb, dev); 2628 2629 skb_len = nskb->len; 2630 trace_net_dev_start_xmit(nskb, dev); 2631 rc = ops->ndo_start_xmit(nskb, dev); 2632 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2633 if (unlikely(rc != NETDEV_TX_OK)) { 2634 if (rc & ~NETDEV_TX_MASK) 2635 goto out_kfree_gso_skb; 2636 nskb->next = skb->next; 2637 skb->next = nskb; 2638 return rc; 2639 } 2640 txq_trans_update(txq); 2641 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2642 return NETDEV_TX_BUSY; 2643 } while (skb->next); 2644 2645out_kfree_gso_skb: 2646 if (likely(skb->next == NULL)) { 2647 skb->destructor = DEV_GSO_CB(skb)->destructor; 2648 consume_skb(skb); 2649 return rc; 2650 } 2651out_kfree_skb: 2652 kfree_skb(skb); 2653out: 2654 return rc; 2655} 2656EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2657 2658static void qdisc_pkt_len_init(struct sk_buff *skb) 2659{ 2660 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2661 2662 qdisc_skb_cb(skb)->pkt_len = skb->len; 2663 2664 /* To get more precise estimation of bytes sent on wire, 2665 * we add to pkt_len the headers size of all segments 2666 */ 2667 if (shinfo->gso_size) { 2668 unsigned int hdr_len; 2669 u16 gso_segs = shinfo->gso_segs; 2670 2671 /* mac layer + network layer */ 2672 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2673 2674 /* + transport layer */ 2675 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2676 hdr_len += tcp_hdrlen(skb); 2677 else 2678 hdr_len += sizeof(struct udphdr); 2679 2680 if (shinfo->gso_type & SKB_GSO_DODGY) 2681 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2682 shinfo->gso_size); 2683 2684 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2685 } 2686} 2687 2688static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2689 struct net_device *dev, 2690 struct netdev_queue *txq) 2691{ 2692 spinlock_t *root_lock = qdisc_lock(q); 2693 bool contended; 2694 int rc; 2695 2696 qdisc_pkt_len_init(skb); 2697 qdisc_calculate_pkt_len(skb, q); 2698 /* 2699 * Heuristic to force contended enqueues to serialize on a 2700 * separate lock before trying to get qdisc main lock. 2701 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2702 * and dequeue packets faster. 2703 */ 2704 contended = qdisc_is_running(q); 2705 if (unlikely(contended)) 2706 spin_lock(&q->busylock); 2707 2708 spin_lock(root_lock); 2709 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2710 kfree_skb(skb); 2711 rc = NET_XMIT_DROP; 2712 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2713 qdisc_run_begin(q)) { 2714 /* 2715 * This is a work-conserving queue; there are no old skbs 2716 * waiting to be sent out; and the qdisc is not running - 2717 * xmit the skb directly. 2718 */ 2719 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2720 skb_dst_force(skb); 2721 2722 qdisc_bstats_update(q, skb); 2723 2724 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2725 if (unlikely(contended)) { 2726 spin_unlock(&q->busylock); 2727 contended = false; 2728 } 2729 __qdisc_run(q); 2730 } else 2731 qdisc_run_end(q); 2732 2733 rc = NET_XMIT_SUCCESS; 2734 } else { 2735 skb_dst_force(skb); 2736 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2737 if (qdisc_run_begin(q)) { 2738 if (unlikely(contended)) { 2739 spin_unlock(&q->busylock); 2740 contended = false; 2741 } 2742 __qdisc_run(q); 2743 } 2744 } 2745 spin_unlock(root_lock); 2746 if (unlikely(contended)) 2747 spin_unlock(&q->busylock); 2748 return rc; 2749} 2750 2751#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2752static void skb_update_prio(struct sk_buff *skb) 2753{ 2754 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2755 2756 if (!skb->priority && skb->sk && map) { 2757 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2758 2759 if (prioidx < map->priomap_len) 2760 skb->priority = map->priomap[prioidx]; 2761 } 2762} 2763#else 2764#define skb_update_prio(skb) 2765#endif 2766 2767static DEFINE_PER_CPU(int, xmit_recursion); 2768#define RECURSION_LIMIT 10 2769 2770/** 2771 * dev_loopback_xmit - loop back @skb 2772 * @skb: buffer to transmit 2773 */ 2774int dev_loopback_xmit(struct sk_buff *skb) 2775{ 2776 skb_reset_mac_header(skb); 2777 __skb_pull(skb, skb_network_offset(skb)); 2778 skb->pkt_type = PACKET_LOOPBACK; 2779 skb->ip_summed = CHECKSUM_UNNECESSARY; 2780 WARN_ON(!skb_dst(skb)); 2781 skb_dst_force(skb); 2782 netif_rx_ni(skb); 2783 return 0; 2784} 2785EXPORT_SYMBOL(dev_loopback_xmit); 2786 2787/** 2788 * __dev_queue_xmit - transmit a buffer 2789 * @skb: buffer to transmit 2790 * @accel_priv: private data used for L2 forwarding offload 2791 * 2792 * Queue a buffer for transmission to a network device. The caller must 2793 * have set the device and priority and built the buffer before calling 2794 * this function. The function can be called from an interrupt. 2795 * 2796 * A negative errno code is returned on a failure. A success does not 2797 * guarantee the frame will be transmitted as it may be dropped due 2798 * to congestion or traffic shaping. 2799 * 2800 * ----------------------------------------------------------------------------------- 2801 * I notice this method can also return errors from the queue disciplines, 2802 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2803 * be positive. 2804 * 2805 * Regardless of the return value, the skb is consumed, so it is currently 2806 * difficult to retry a send to this method. (You can bump the ref count 2807 * before sending to hold a reference for retry if you are careful.) 2808 * 2809 * When calling this method, interrupts MUST be enabled. This is because 2810 * the BH enable code must have IRQs enabled so that it will not deadlock. 2811 * --BLG 2812 */ 2813static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2814{ 2815 struct net_device *dev = skb->dev; 2816 struct netdev_queue *txq; 2817 struct Qdisc *q; 2818 int rc = -ENOMEM; 2819 2820 skb_reset_mac_header(skb); 2821 2822 /* Disable soft irqs for various locks below. Also 2823 * stops preemption for RCU. 2824 */ 2825 rcu_read_lock_bh(); 2826 2827 skb_update_prio(skb); 2828 2829 txq = netdev_pick_tx(dev, skb, accel_priv); 2830 q = rcu_dereference_bh(txq->qdisc); 2831 2832#ifdef CONFIG_NET_CLS_ACT 2833 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2834#endif 2835 trace_net_dev_queue(skb); 2836 if (q->enqueue) { 2837 rc = __dev_xmit_skb(skb, q, dev, txq); 2838 goto out; 2839 } 2840 2841 /* The device has no queue. Common case for software devices: 2842 loopback, all the sorts of tunnels... 2843 2844 Really, it is unlikely that netif_tx_lock protection is necessary 2845 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2846 counters.) 2847 However, it is possible, that they rely on protection 2848 made by us here. 2849 2850 Check this and shot the lock. It is not prone from deadlocks. 2851 Either shot noqueue qdisc, it is even simpler 8) 2852 */ 2853 if (dev->flags & IFF_UP) { 2854 int cpu = smp_processor_id(); /* ok because BHs are off */ 2855 2856 if (txq->xmit_lock_owner != cpu) { 2857 2858 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2859 goto recursion_alert; 2860 2861 HARD_TX_LOCK(dev, txq, cpu); 2862 2863 if (!netif_xmit_stopped(txq)) { 2864 __this_cpu_inc(xmit_recursion); 2865 rc = dev_hard_start_xmit(skb, dev, txq); 2866 __this_cpu_dec(xmit_recursion); 2867 if (dev_xmit_complete(rc)) { 2868 HARD_TX_UNLOCK(dev, txq); 2869 goto out; 2870 } 2871 } 2872 HARD_TX_UNLOCK(dev, txq); 2873 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2874 dev->name); 2875 } else { 2876 /* Recursion is detected! It is possible, 2877 * unfortunately 2878 */ 2879recursion_alert: 2880 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2881 dev->name); 2882 } 2883 } 2884 2885 rc = -ENETDOWN; 2886 rcu_read_unlock_bh(); 2887 2888 kfree_skb(skb); 2889 return rc; 2890out: 2891 rcu_read_unlock_bh(); 2892 return rc; 2893} 2894 2895int dev_queue_xmit(struct sk_buff *skb) 2896{ 2897 return __dev_queue_xmit(skb, NULL); 2898} 2899EXPORT_SYMBOL(dev_queue_xmit); 2900 2901int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2902{ 2903 return __dev_queue_xmit(skb, accel_priv); 2904} 2905EXPORT_SYMBOL(dev_queue_xmit_accel); 2906 2907 2908/*======================================================================= 2909 Receiver routines 2910 =======================================================================*/ 2911 2912int netdev_max_backlog __read_mostly = 1000; 2913EXPORT_SYMBOL(netdev_max_backlog); 2914 2915int netdev_tstamp_prequeue __read_mostly = 1; 2916int netdev_budget __read_mostly = 300; 2917int weight_p __read_mostly = 64; /* old backlog weight */ 2918 2919/* Called with irq disabled */ 2920static inline void ____napi_schedule(struct softnet_data *sd, 2921 struct napi_struct *napi) 2922{ 2923 list_add_tail(&napi->poll_list, &sd->poll_list); 2924 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2925} 2926 2927#ifdef CONFIG_RPS 2928 2929/* One global table that all flow-based protocols share. */ 2930struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2931EXPORT_SYMBOL(rps_sock_flow_table); 2932 2933struct static_key rps_needed __read_mostly; 2934 2935static struct rps_dev_flow * 2936set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2937 struct rps_dev_flow *rflow, u16 next_cpu) 2938{ 2939 if (next_cpu != RPS_NO_CPU) { 2940#ifdef CONFIG_RFS_ACCEL 2941 struct netdev_rx_queue *rxqueue; 2942 struct rps_dev_flow_table *flow_table; 2943 struct rps_dev_flow *old_rflow; 2944 u32 flow_id; 2945 u16 rxq_index; 2946 int rc; 2947 2948 /* Should we steer this flow to a different hardware queue? */ 2949 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2950 !(dev->features & NETIF_F_NTUPLE)) 2951 goto out; 2952 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2953 if (rxq_index == skb_get_rx_queue(skb)) 2954 goto out; 2955 2956 rxqueue = dev->_rx + rxq_index; 2957 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2958 if (!flow_table) 2959 goto out; 2960 flow_id = skb->rxhash & flow_table->mask; 2961 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2962 rxq_index, flow_id); 2963 if (rc < 0) 2964 goto out; 2965 old_rflow = rflow; 2966 rflow = &flow_table->flows[flow_id]; 2967 rflow->filter = rc; 2968 if (old_rflow->filter == rflow->filter) 2969 old_rflow->filter = RPS_NO_FILTER; 2970 out: 2971#endif 2972 rflow->last_qtail = 2973 per_cpu(softnet_data, next_cpu).input_queue_head; 2974 } 2975 2976 rflow->cpu = next_cpu; 2977 return rflow; 2978} 2979 2980/* 2981 * get_rps_cpu is called from netif_receive_skb and returns the target 2982 * CPU from the RPS map of the receiving queue for a given skb. 2983 * rcu_read_lock must be held on entry. 2984 */ 2985static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2986 struct rps_dev_flow **rflowp) 2987{ 2988 struct netdev_rx_queue *rxqueue; 2989 struct rps_map *map; 2990 struct rps_dev_flow_table *flow_table; 2991 struct rps_sock_flow_table *sock_flow_table; 2992 int cpu = -1; 2993 u16 tcpu; 2994 2995 if (skb_rx_queue_recorded(skb)) { 2996 u16 index = skb_get_rx_queue(skb); 2997 if (unlikely(index >= dev->real_num_rx_queues)) { 2998 WARN_ONCE(dev->real_num_rx_queues > 1, 2999 "%s received packet on queue %u, but number " 3000 "of RX queues is %u\n", 3001 dev->name, index, dev->real_num_rx_queues); 3002 goto done; 3003 } 3004 rxqueue = dev->_rx + index; 3005 } else 3006 rxqueue = dev->_rx; 3007 3008 map = rcu_dereference(rxqueue->rps_map); 3009 if (map) { 3010 if (map->len == 1 && 3011 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3012 tcpu = map->cpus[0]; 3013 if (cpu_online(tcpu)) 3014 cpu = tcpu; 3015 goto done; 3016 } 3017 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3018 goto done; 3019 } 3020 3021 skb_reset_network_header(skb); 3022 if (!skb_get_hash(skb)) 3023 goto done; 3024 3025 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3026 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3027 if (flow_table && sock_flow_table) { 3028 u16 next_cpu; 3029 struct rps_dev_flow *rflow; 3030 3031 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3032 tcpu = rflow->cpu; 3033 3034 next_cpu = sock_flow_table->ents[skb->rxhash & 3035 sock_flow_table->mask]; 3036 3037 /* 3038 * If the desired CPU (where last recvmsg was done) is 3039 * different from current CPU (one in the rx-queue flow 3040 * table entry), switch if one of the following holds: 3041 * - Current CPU is unset (equal to RPS_NO_CPU). 3042 * - Current CPU is offline. 3043 * - The current CPU's queue tail has advanced beyond the 3044 * last packet that was enqueued using this table entry. 3045 * This guarantees that all previous packets for the flow 3046 * have been dequeued, thus preserving in order delivery. 3047 */ 3048 if (unlikely(tcpu != next_cpu) && 3049 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3050 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3051 rflow->last_qtail)) >= 0)) { 3052 tcpu = next_cpu; 3053 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3054 } 3055 3056 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3057 *rflowp = rflow; 3058 cpu = tcpu; 3059 goto done; 3060 } 3061 } 3062 3063 if (map) { 3064 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3065 3066 if (cpu_online(tcpu)) { 3067 cpu = tcpu; 3068 goto done; 3069 } 3070 } 3071 3072done: 3073 return cpu; 3074} 3075 3076#ifdef CONFIG_RFS_ACCEL 3077 3078/** 3079 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3080 * @dev: Device on which the filter was set 3081 * @rxq_index: RX queue index 3082 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3083 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3084 * 3085 * Drivers that implement ndo_rx_flow_steer() should periodically call 3086 * this function for each installed filter and remove the filters for 3087 * which it returns %true. 3088 */ 3089bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3090 u32 flow_id, u16 filter_id) 3091{ 3092 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3093 struct rps_dev_flow_table *flow_table; 3094 struct rps_dev_flow *rflow; 3095 bool expire = true; 3096 int cpu; 3097 3098 rcu_read_lock(); 3099 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3100 if (flow_table && flow_id <= flow_table->mask) { 3101 rflow = &flow_table->flows[flow_id]; 3102 cpu = ACCESS_ONCE(rflow->cpu); 3103 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3104 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3105 rflow->last_qtail) < 3106 (int)(10 * flow_table->mask))) 3107 expire = false; 3108 } 3109 rcu_read_unlock(); 3110 return expire; 3111} 3112EXPORT_SYMBOL(rps_may_expire_flow); 3113 3114#endif /* CONFIG_RFS_ACCEL */ 3115 3116/* Called from hardirq (IPI) context */ 3117static void rps_trigger_softirq(void *data) 3118{ 3119 struct softnet_data *sd = data; 3120 3121 ____napi_schedule(sd, &sd->backlog); 3122 sd->received_rps++; 3123} 3124 3125#endif /* CONFIG_RPS */ 3126 3127/* 3128 * Check if this softnet_data structure is another cpu one 3129 * If yes, queue it to our IPI list and return 1 3130 * If no, return 0 3131 */ 3132static int rps_ipi_queued(struct softnet_data *sd) 3133{ 3134#ifdef CONFIG_RPS 3135 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3136 3137 if (sd != mysd) { 3138 sd->rps_ipi_next = mysd->rps_ipi_list; 3139 mysd->rps_ipi_list = sd; 3140 3141 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3142 return 1; 3143 } 3144#endif /* CONFIG_RPS */ 3145 return 0; 3146} 3147 3148#ifdef CONFIG_NET_FLOW_LIMIT 3149int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3150#endif 3151 3152static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3153{ 3154#ifdef CONFIG_NET_FLOW_LIMIT 3155 struct sd_flow_limit *fl; 3156 struct softnet_data *sd; 3157 unsigned int old_flow, new_flow; 3158 3159 if (qlen < (netdev_max_backlog >> 1)) 3160 return false; 3161 3162 sd = &__get_cpu_var(softnet_data); 3163 3164 rcu_read_lock(); 3165 fl = rcu_dereference(sd->flow_limit); 3166 if (fl) { 3167 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3168 old_flow = fl->history[fl->history_head]; 3169 fl->history[fl->history_head] = new_flow; 3170 3171 fl->history_head++; 3172 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3173 3174 if (likely(fl->buckets[old_flow])) 3175 fl->buckets[old_flow]--; 3176 3177 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3178 fl->count++; 3179 rcu_read_unlock(); 3180 return true; 3181 } 3182 } 3183 rcu_read_unlock(); 3184#endif 3185 return false; 3186} 3187 3188/* 3189 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3190 * queue (may be a remote CPU queue). 3191 */ 3192static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3193 unsigned int *qtail) 3194{ 3195 struct softnet_data *sd; 3196 unsigned long flags; 3197 unsigned int qlen; 3198 3199 sd = &per_cpu(softnet_data, cpu); 3200 3201 local_irq_save(flags); 3202 3203 rps_lock(sd); 3204 qlen = skb_queue_len(&sd->input_pkt_queue); 3205 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3206 if (skb_queue_len(&sd->input_pkt_queue)) { 3207enqueue: 3208 __skb_queue_tail(&sd->input_pkt_queue, skb); 3209 input_queue_tail_incr_save(sd, qtail); 3210 rps_unlock(sd); 3211 local_irq_restore(flags); 3212 return NET_RX_SUCCESS; 3213 } 3214 3215 /* Schedule NAPI for backlog device 3216 * We can use non atomic operation since we own the queue lock 3217 */ 3218 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3219 if (!rps_ipi_queued(sd)) 3220 ____napi_schedule(sd, &sd->backlog); 3221 } 3222 goto enqueue; 3223 } 3224 3225 sd->dropped++; 3226 rps_unlock(sd); 3227 3228 local_irq_restore(flags); 3229 3230 atomic_long_inc(&skb->dev->rx_dropped); 3231 kfree_skb(skb); 3232 return NET_RX_DROP; 3233} 3234 3235static int netif_rx_internal(struct sk_buff *skb) 3236{ 3237 int ret; 3238 3239 /* if netpoll wants it, pretend we never saw it */ 3240 if (netpoll_rx(skb)) 3241 return NET_RX_DROP; 3242 3243 net_timestamp_check(netdev_tstamp_prequeue, skb); 3244 3245 trace_netif_rx(skb); 3246#ifdef CONFIG_RPS 3247 if (static_key_false(&rps_needed)) { 3248 struct rps_dev_flow voidflow, *rflow = &voidflow; 3249 int cpu; 3250 3251 preempt_disable(); 3252 rcu_read_lock(); 3253 3254 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3255 if (cpu < 0) 3256 cpu = smp_processor_id(); 3257 3258 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3259 3260 rcu_read_unlock(); 3261 preempt_enable(); 3262 } else 3263#endif 3264 { 3265 unsigned int qtail; 3266 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3267 put_cpu(); 3268 } 3269 return ret; 3270} 3271 3272/** 3273 * netif_rx - post buffer to the network code 3274 * @skb: buffer to post 3275 * 3276 * This function receives a packet from a device driver and queues it for 3277 * the upper (protocol) levels to process. It always succeeds. The buffer 3278 * may be dropped during processing for congestion control or by the 3279 * protocol layers. 3280 * 3281 * return values: 3282 * NET_RX_SUCCESS (no congestion) 3283 * NET_RX_DROP (packet was dropped) 3284 * 3285 */ 3286 3287int netif_rx(struct sk_buff *skb) 3288{ 3289 trace_netif_rx_entry(skb); 3290 3291 return netif_rx_internal(skb); 3292} 3293EXPORT_SYMBOL(netif_rx); 3294 3295int netif_rx_ni(struct sk_buff *skb) 3296{ 3297 int err; 3298 3299 trace_netif_rx_ni_entry(skb); 3300 3301 preempt_disable(); 3302 err = netif_rx_internal(skb); 3303 if (local_softirq_pending()) 3304 do_softirq(); 3305 preempt_enable(); 3306 3307 return err; 3308} 3309EXPORT_SYMBOL(netif_rx_ni); 3310 3311static void net_tx_action(struct softirq_action *h) 3312{ 3313 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3314 3315 if (sd->completion_queue) { 3316 struct sk_buff *clist; 3317 3318 local_irq_disable(); 3319 clist = sd->completion_queue; 3320 sd->completion_queue = NULL; 3321 local_irq_enable(); 3322 3323 while (clist) { 3324 struct sk_buff *skb = clist; 3325 clist = clist->next; 3326 3327 WARN_ON(atomic_read(&skb->users)); 3328 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3329 trace_consume_skb(skb); 3330 else 3331 trace_kfree_skb(skb, net_tx_action); 3332 __kfree_skb(skb); 3333 } 3334 } 3335 3336 if (sd->output_queue) { 3337 struct Qdisc *head; 3338 3339 local_irq_disable(); 3340 head = sd->output_queue; 3341 sd->output_queue = NULL; 3342 sd->output_queue_tailp = &sd->output_queue; 3343 local_irq_enable(); 3344 3345 while (head) { 3346 struct Qdisc *q = head; 3347 spinlock_t *root_lock; 3348 3349 head = head->next_sched; 3350 3351 root_lock = qdisc_lock(q); 3352 if (spin_trylock(root_lock)) { 3353 smp_mb__before_clear_bit(); 3354 clear_bit(__QDISC_STATE_SCHED, 3355 &q->state); 3356 qdisc_run(q); 3357 spin_unlock(root_lock); 3358 } else { 3359 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3360 &q->state)) { 3361 __netif_reschedule(q); 3362 } else { 3363 smp_mb__before_clear_bit(); 3364 clear_bit(__QDISC_STATE_SCHED, 3365 &q->state); 3366 } 3367 } 3368 } 3369 } 3370} 3371 3372#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3373 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3374/* This hook is defined here for ATM LANE */ 3375int (*br_fdb_test_addr_hook)(struct net_device *dev, 3376 unsigned char *addr) __read_mostly; 3377EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3378#endif 3379 3380#ifdef CONFIG_NET_CLS_ACT 3381/* TODO: Maybe we should just force sch_ingress to be compiled in 3382 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3383 * a compare and 2 stores extra right now if we dont have it on 3384 * but have CONFIG_NET_CLS_ACT 3385 * NOTE: This doesn't stop any functionality; if you dont have 3386 * the ingress scheduler, you just can't add policies on ingress. 3387 * 3388 */ 3389static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3390{ 3391 struct net_device *dev = skb->dev; 3392 u32 ttl = G_TC_RTTL(skb->tc_verd); 3393 int result = TC_ACT_OK; 3394 struct Qdisc *q; 3395 3396 if (unlikely(MAX_RED_LOOP < ttl++)) { 3397 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3398 skb->skb_iif, dev->ifindex); 3399 return TC_ACT_SHOT; 3400 } 3401 3402 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3403 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3404 3405 q = rxq->qdisc; 3406 if (q != &noop_qdisc) { 3407 spin_lock(qdisc_lock(q)); 3408 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3409 result = qdisc_enqueue_root(skb, q); 3410 spin_unlock(qdisc_lock(q)); 3411 } 3412 3413 return result; 3414} 3415 3416static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3417 struct packet_type **pt_prev, 3418 int *ret, struct net_device *orig_dev) 3419{ 3420 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3421 3422 if (!rxq || rxq->qdisc == &noop_qdisc) 3423 goto out; 3424 3425 if (*pt_prev) { 3426 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3427 *pt_prev = NULL; 3428 } 3429 3430 switch (ing_filter(skb, rxq)) { 3431 case TC_ACT_SHOT: 3432 case TC_ACT_STOLEN: 3433 kfree_skb(skb); 3434 return NULL; 3435 } 3436 3437out: 3438 skb->tc_verd = 0; 3439 return skb; 3440} 3441#endif 3442 3443/** 3444 * netdev_rx_handler_register - register receive handler 3445 * @dev: device to register a handler for 3446 * @rx_handler: receive handler to register 3447 * @rx_handler_data: data pointer that is used by rx handler 3448 * 3449 * Register a receive hander for a device. This handler will then be 3450 * called from __netif_receive_skb. A negative errno code is returned 3451 * on a failure. 3452 * 3453 * The caller must hold the rtnl_mutex. 3454 * 3455 * For a general description of rx_handler, see enum rx_handler_result. 3456 */ 3457int netdev_rx_handler_register(struct net_device *dev, 3458 rx_handler_func_t *rx_handler, 3459 void *rx_handler_data) 3460{ 3461 ASSERT_RTNL(); 3462 3463 if (dev->rx_handler) 3464 return -EBUSY; 3465 3466 /* Note: rx_handler_data must be set before rx_handler */ 3467 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3468 rcu_assign_pointer(dev->rx_handler, rx_handler); 3469 3470 return 0; 3471} 3472EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3473 3474/** 3475 * netdev_rx_handler_unregister - unregister receive handler 3476 * @dev: device to unregister a handler from 3477 * 3478 * Unregister a receive handler from a device. 3479 * 3480 * The caller must hold the rtnl_mutex. 3481 */ 3482void netdev_rx_handler_unregister(struct net_device *dev) 3483{ 3484 3485 ASSERT_RTNL(); 3486 RCU_INIT_POINTER(dev->rx_handler, NULL); 3487 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3488 * section has a guarantee to see a non NULL rx_handler_data 3489 * as well. 3490 */ 3491 synchronize_net(); 3492 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3493} 3494EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3495 3496/* 3497 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3498 * the special handling of PFMEMALLOC skbs. 3499 */ 3500static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3501{ 3502 switch (skb->protocol) { 3503 case __constant_htons(ETH_P_ARP): 3504 case __constant_htons(ETH_P_IP): 3505 case __constant_htons(ETH_P_IPV6): 3506 case __constant_htons(ETH_P_8021Q): 3507 case __constant_htons(ETH_P_8021AD): 3508 return true; 3509 default: 3510 return false; 3511 } 3512} 3513 3514static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3515{ 3516 struct packet_type *ptype, *pt_prev; 3517 rx_handler_func_t *rx_handler; 3518 struct net_device *orig_dev; 3519 struct net_device *null_or_dev; 3520 bool deliver_exact = false; 3521 int ret = NET_RX_DROP; 3522 __be16 type; 3523 3524 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3525 3526 trace_netif_receive_skb(skb); 3527 3528 /* if we've gotten here through NAPI, check netpoll */ 3529 if (netpoll_receive_skb(skb)) 3530 goto out; 3531 3532 orig_dev = skb->dev; 3533 3534 skb_reset_network_header(skb); 3535 if (!skb_transport_header_was_set(skb)) 3536 skb_reset_transport_header(skb); 3537 skb_reset_mac_len(skb); 3538 3539 pt_prev = NULL; 3540 3541 rcu_read_lock(); 3542 3543another_round: 3544 skb->skb_iif = skb->dev->ifindex; 3545 3546 __this_cpu_inc(softnet_data.processed); 3547 3548 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3549 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3550 skb = vlan_untag(skb); 3551 if (unlikely(!skb)) 3552 goto unlock; 3553 } 3554 3555#ifdef CONFIG_NET_CLS_ACT 3556 if (skb->tc_verd & TC_NCLS) { 3557 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3558 goto ncls; 3559 } 3560#endif 3561 3562 if (pfmemalloc) 3563 goto skip_taps; 3564 3565 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3566 if (!ptype->dev || ptype->dev == skb->dev) { 3567 if (pt_prev) 3568 ret = deliver_skb(skb, pt_prev, orig_dev); 3569 pt_prev = ptype; 3570 } 3571 } 3572 3573skip_taps: 3574#ifdef CONFIG_NET_CLS_ACT 3575 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3576 if (!skb) 3577 goto unlock; 3578ncls: 3579#endif 3580 3581 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3582 goto drop; 3583 3584 if (vlan_tx_tag_present(skb)) { 3585 if (pt_prev) { 3586 ret = deliver_skb(skb, pt_prev, orig_dev); 3587 pt_prev = NULL; 3588 } 3589 if (vlan_do_receive(&skb)) 3590 goto another_round; 3591 else if (unlikely(!skb)) 3592 goto unlock; 3593 } 3594 3595 rx_handler = rcu_dereference(skb->dev->rx_handler); 3596 if (rx_handler) { 3597 if (pt_prev) { 3598 ret = deliver_skb(skb, pt_prev, orig_dev); 3599 pt_prev = NULL; 3600 } 3601 switch (rx_handler(&skb)) { 3602 case RX_HANDLER_CONSUMED: 3603 ret = NET_RX_SUCCESS; 3604 goto unlock; 3605 case RX_HANDLER_ANOTHER: 3606 goto another_round; 3607 case RX_HANDLER_EXACT: 3608 deliver_exact = true; 3609 case RX_HANDLER_PASS: 3610 break; 3611 default: 3612 BUG(); 3613 } 3614 } 3615 3616 if (unlikely(vlan_tx_tag_present(skb))) { 3617 if (vlan_tx_tag_get_id(skb)) 3618 skb->pkt_type = PACKET_OTHERHOST; 3619 /* Note: we might in the future use prio bits 3620 * and set skb->priority like in vlan_do_receive() 3621 * For the time being, just ignore Priority Code Point 3622 */ 3623 skb->vlan_tci = 0; 3624 } 3625 3626 /* deliver only exact match when indicated */ 3627 null_or_dev = deliver_exact ? skb->dev : NULL; 3628 3629 type = skb->protocol; 3630 list_for_each_entry_rcu(ptype, 3631 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3632 if (ptype->type == type && 3633 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3634 ptype->dev == orig_dev)) { 3635 if (pt_prev) 3636 ret = deliver_skb(skb, pt_prev, orig_dev); 3637 pt_prev = ptype; 3638 } 3639 } 3640 3641 if (pt_prev) { 3642 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3643 goto drop; 3644 else 3645 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3646 } else { 3647drop: 3648 atomic_long_inc(&skb->dev->rx_dropped); 3649 kfree_skb(skb); 3650 /* Jamal, now you will not able to escape explaining 3651 * me how you were going to use this. :-) 3652 */ 3653 ret = NET_RX_DROP; 3654 } 3655 3656unlock: 3657 rcu_read_unlock(); 3658out: 3659 return ret; 3660} 3661 3662static int __netif_receive_skb(struct sk_buff *skb) 3663{ 3664 int ret; 3665 3666 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3667 unsigned long pflags = current->flags; 3668 3669 /* 3670 * PFMEMALLOC skbs are special, they should 3671 * - be delivered to SOCK_MEMALLOC sockets only 3672 * - stay away from userspace 3673 * - have bounded memory usage 3674 * 3675 * Use PF_MEMALLOC as this saves us from propagating the allocation 3676 * context down to all allocation sites. 3677 */ 3678 current->flags |= PF_MEMALLOC; 3679 ret = __netif_receive_skb_core(skb, true); 3680 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3681 } else 3682 ret = __netif_receive_skb_core(skb, false); 3683 3684 return ret; 3685} 3686 3687static int netif_receive_skb_internal(struct sk_buff *skb) 3688{ 3689 net_timestamp_check(netdev_tstamp_prequeue, skb); 3690 3691 if (skb_defer_rx_timestamp(skb)) 3692 return NET_RX_SUCCESS; 3693 3694#ifdef CONFIG_RPS 3695 if (static_key_false(&rps_needed)) { 3696 struct rps_dev_flow voidflow, *rflow = &voidflow; 3697 int cpu, ret; 3698 3699 rcu_read_lock(); 3700 3701 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3702 3703 if (cpu >= 0) { 3704 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3705 rcu_read_unlock(); 3706 return ret; 3707 } 3708 rcu_read_unlock(); 3709 } 3710#endif 3711 return __netif_receive_skb(skb); 3712} 3713 3714/** 3715 * netif_receive_skb - process receive buffer from network 3716 * @skb: buffer to process 3717 * 3718 * netif_receive_skb() is the main receive data processing function. 3719 * It always succeeds. The buffer may be dropped during processing 3720 * for congestion control or by the protocol layers. 3721 * 3722 * This function may only be called from softirq context and interrupts 3723 * should be enabled. 3724 * 3725 * Return values (usually ignored): 3726 * NET_RX_SUCCESS: no congestion 3727 * NET_RX_DROP: packet was dropped 3728 */ 3729int netif_receive_skb(struct sk_buff *skb) 3730{ 3731 trace_netif_receive_skb_entry(skb); 3732 3733 return netif_receive_skb_internal(skb); 3734} 3735EXPORT_SYMBOL(netif_receive_skb); 3736 3737/* Network device is going away, flush any packets still pending 3738 * Called with irqs disabled. 3739 */ 3740static void flush_backlog(void *arg) 3741{ 3742 struct net_device *dev = arg; 3743 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3744 struct sk_buff *skb, *tmp; 3745 3746 rps_lock(sd); 3747 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3748 if (skb->dev == dev) { 3749 __skb_unlink(skb, &sd->input_pkt_queue); 3750 kfree_skb(skb); 3751 input_queue_head_incr(sd); 3752 } 3753 } 3754 rps_unlock(sd); 3755 3756 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3757 if (skb->dev == dev) { 3758 __skb_unlink(skb, &sd->process_queue); 3759 kfree_skb(skb); 3760 input_queue_head_incr(sd); 3761 } 3762 } 3763} 3764 3765static int napi_gro_complete(struct sk_buff *skb) 3766{ 3767 struct packet_offload *ptype; 3768 __be16 type = skb->protocol; 3769 struct list_head *head = &offload_base; 3770 int err = -ENOENT; 3771 3772 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3773 3774 if (NAPI_GRO_CB(skb)->count == 1) { 3775 skb_shinfo(skb)->gso_size = 0; 3776 goto out; 3777 } 3778 3779 rcu_read_lock(); 3780 list_for_each_entry_rcu(ptype, head, list) { 3781 if (ptype->type != type || !ptype->callbacks.gro_complete) 3782 continue; 3783 3784 err = ptype->callbacks.gro_complete(skb, 0); 3785 break; 3786 } 3787 rcu_read_unlock(); 3788 3789 if (err) { 3790 WARN_ON(&ptype->list == head); 3791 kfree_skb(skb); 3792 return NET_RX_SUCCESS; 3793 } 3794 3795out: 3796 return netif_receive_skb_internal(skb); 3797} 3798 3799/* napi->gro_list contains packets ordered by age. 3800 * youngest packets at the head of it. 3801 * Complete skbs in reverse order to reduce latencies. 3802 */ 3803void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3804{ 3805 struct sk_buff *skb, *prev = NULL; 3806 3807 /* scan list and build reverse chain */ 3808 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3809 skb->prev = prev; 3810 prev = skb; 3811 } 3812 3813 for (skb = prev; skb; skb = prev) { 3814 skb->next = NULL; 3815 3816 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3817 return; 3818 3819 prev = skb->prev; 3820 napi_gro_complete(skb); 3821 napi->gro_count--; 3822 } 3823 3824 napi->gro_list = NULL; 3825} 3826EXPORT_SYMBOL(napi_gro_flush); 3827 3828static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3829{ 3830 struct sk_buff *p; 3831 unsigned int maclen = skb->dev->hard_header_len; 3832 u32 hash = skb_get_hash_raw(skb); 3833 3834 for (p = napi->gro_list; p; p = p->next) { 3835 unsigned long diffs; 3836 3837 NAPI_GRO_CB(p)->flush = 0; 3838 3839 if (hash != skb_get_hash_raw(p)) { 3840 NAPI_GRO_CB(p)->same_flow = 0; 3841 continue; 3842 } 3843 3844 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3845 diffs |= p->vlan_tci ^ skb->vlan_tci; 3846 if (maclen == ETH_HLEN) 3847 diffs |= compare_ether_header(skb_mac_header(p), 3848 skb_gro_mac_header(skb)); 3849 else if (!diffs) 3850 diffs = memcmp(skb_mac_header(p), 3851 skb_gro_mac_header(skb), 3852 maclen); 3853 NAPI_GRO_CB(p)->same_flow = !diffs; 3854 } 3855} 3856 3857static void skb_gro_reset_offset(struct sk_buff *skb) 3858{ 3859 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3860 const skb_frag_t *frag0 = &pinfo->frags[0]; 3861 3862 NAPI_GRO_CB(skb)->data_offset = 0; 3863 NAPI_GRO_CB(skb)->frag0 = NULL; 3864 NAPI_GRO_CB(skb)->frag0_len = 0; 3865 3866 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3867 pinfo->nr_frags && 3868 !PageHighMem(skb_frag_page(frag0))) { 3869 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3870 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3871 } 3872} 3873 3874static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3875{ 3876 struct sk_buff **pp = NULL; 3877 struct packet_offload *ptype; 3878 __be16 type = skb->protocol; 3879 struct list_head *head = &offload_base; 3880 int same_flow; 3881 enum gro_result ret; 3882 3883 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3884 goto normal; 3885 3886 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3887 goto normal; 3888 3889 skb_gro_reset_offset(skb); 3890 gro_list_prepare(napi, skb); 3891 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3892 3893 rcu_read_lock(); 3894 list_for_each_entry_rcu(ptype, head, list) { 3895 if (ptype->type != type || !ptype->callbacks.gro_receive) 3896 continue; 3897 3898 skb_set_network_header(skb, skb_gro_offset(skb)); 3899 skb_reset_mac_len(skb); 3900 NAPI_GRO_CB(skb)->same_flow = 0; 3901 NAPI_GRO_CB(skb)->flush = 0; 3902 NAPI_GRO_CB(skb)->free = 0; 3903 NAPI_GRO_CB(skb)->udp_mark = 0; 3904 3905 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3906 break; 3907 } 3908 rcu_read_unlock(); 3909 3910 if (&ptype->list == head) 3911 goto normal; 3912 3913 same_flow = NAPI_GRO_CB(skb)->same_flow; 3914 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3915 3916 if (pp) { 3917 struct sk_buff *nskb = *pp; 3918 3919 *pp = nskb->next; 3920 nskb->next = NULL; 3921 napi_gro_complete(nskb); 3922 napi->gro_count--; 3923 } 3924 3925 if (same_flow) 3926 goto ok; 3927 3928 if (NAPI_GRO_CB(skb)->flush) 3929 goto normal; 3930 3931 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 3932 struct sk_buff *nskb = napi->gro_list; 3933 3934 /* locate the end of the list to select the 'oldest' flow */ 3935 while (nskb->next) { 3936 pp = &nskb->next; 3937 nskb = *pp; 3938 } 3939 *pp = NULL; 3940 nskb->next = NULL; 3941 napi_gro_complete(nskb); 3942 } else { 3943 napi->gro_count++; 3944 } 3945 NAPI_GRO_CB(skb)->count = 1; 3946 NAPI_GRO_CB(skb)->age = jiffies; 3947 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3948 skb->next = napi->gro_list; 3949 napi->gro_list = skb; 3950 ret = GRO_HELD; 3951 3952pull: 3953 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3954 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3955 3956 BUG_ON(skb->end - skb->tail < grow); 3957 3958 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3959 3960 skb->tail += grow; 3961 skb->data_len -= grow; 3962 3963 skb_shinfo(skb)->frags[0].page_offset += grow; 3964 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3965 3966 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3967 skb_frag_unref(skb, 0); 3968 memmove(skb_shinfo(skb)->frags, 3969 skb_shinfo(skb)->frags + 1, 3970 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3971 } 3972 } 3973 3974ok: 3975 return ret; 3976 3977normal: 3978 ret = GRO_NORMAL; 3979 goto pull; 3980} 3981 3982struct packet_offload *gro_find_receive_by_type(__be16 type) 3983{ 3984 struct list_head *offload_head = &offload_base; 3985 struct packet_offload *ptype; 3986 3987 list_for_each_entry_rcu(ptype, offload_head, list) { 3988 if (ptype->type != type || !ptype->callbacks.gro_receive) 3989 continue; 3990 return ptype; 3991 } 3992 return NULL; 3993} 3994EXPORT_SYMBOL(gro_find_receive_by_type); 3995 3996struct packet_offload *gro_find_complete_by_type(__be16 type) 3997{ 3998 struct list_head *offload_head = &offload_base; 3999 struct packet_offload *ptype; 4000 4001 list_for_each_entry_rcu(ptype, offload_head, list) { 4002 if (ptype->type != type || !ptype->callbacks.gro_complete) 4003 continue; 4004 return ptype; 4005 } 4006 return NULL; 4007} 4008EXPORT_SYMBOL(gro_find_complete_by_type); 4009 4010static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4011{ 4012 switch (ret) { 4013 case GRO_NORMAL: 4014 if (netif_receive_skb_internal(skb)) 4015 ret = GRO_DROP; 4016 break; 4017 4018 case GRO_DROP: 4019 kfree_skb(skb); 4020 break; 4021 4022 case GRO_MERGED_FREE: 4023 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4024 kmem_cache_free(skbuff_head_cache, skb); 4025 else 4026 __kfree_skb(skb); 4027 break; 4028 4029 case GRO_HELD: 4030 case GRO_MERGED: 4031 break; 4032 } 4033 4034 return ret; 4035} 4036 4037gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4038{ 4039 trace_napi_gro_receive_entry(skb); 4040 4041 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4042} 4043EXPORT_SYMBOL(napi_gro_receive); 4044 4045static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4046{ 4047 __skb_pull(skb, skb_headlen(skb)); 4048 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4049 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4050 skb->vlan_tci = 0; 4051 skb->dev = napi->dev; 4052 skb->skb_iif = 0; 4053 4054 napi->skb = skb; 4055} 4056 4057struct sk_buff *napi_get_frags(struct napi_struct *napi) 4058{ 4059 struct sk_buff *skb = napi->skb; 4060 4061 if (!skb) { 4062 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4063 napi->skb = skb; 4064 } 4065 return skb; 4066} 4067EXPORT_SYMBOL(napi_get_frags); 4068 4069static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 4070 gro_result_t ret) 4071{ 4072 switch (ret) { 4073 case GRO_NORMAL: 4074 if (netif_receive_skb_internal(skb)) 4075 ret = GRO_DROP; 4076 break; 4077 4078 case GRO_DROP: 4079 case GRO_MERGED_FREE: 4080 napi_reuse_skb(napi, skb); 4081 break; 4082 4083 case GRO_HELD: 4084 case GRO_MERGED: 4085 break; 4086 } 4087 4088 return ret; 4089} 4090 4091static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4092{ 4093 struct sk_buff *skb = napi->skb; 4094 4095 napi->skb = NULL; 4096 4097 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) { 4098 napi_reuse_skb(napi, skb); 4099 return NULL; 4100 } 4101 skb->protocol = eth_type_trans(skb, skb->dev); 4102 4103 return skb; 4104} 4105 4106gro_result_t napi_gro_frags(struct napi_struct *napi) 4107{ 4108 struct sk_buff *skb = napi_frags_skb(napi); 4109 4110 if (!skb) 4111 return GRO_DROP; 4112 4113 trace_napi_gro_frags_entry(skb); 4114 4115 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4116} 4117EXPORT_SYMBOL(napi_gro_frags); 4118 4119/* 4120 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4121 * Note: called with local irq disabled, but exits with local irq enabled. 4122 */ 4123static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4124{ 4125#ifdef CONFIG_RPS 4126 struct softnet_data *remsd = sd->rps_ipi_list; 4127 4128 if (remsd) { 4129 sd->rps_ipi_list = NULL; 4130 4131 local_irq_enable(); 4132 4133 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4134 while (remsd) { 4135 struct softnet_data *next = remsd->rps_ipi_next; 4136 4137 if (cpu_online(remsd->cpu)) 4138 __smp_call_function_single(remsd->cpu, 4139 &remsd->csd, 0); 4140 remsd = next; 4141 } 4142 } else 4143#endif 4144 local_irq_enable(); 4145} 4146 4147static int process_backlog(struct napi_struct *napi, int quota) 4148{ 4149 int work = 0; 4150 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4151 4152#ifdef CONFIG_RPS 4153 /* Check if we have pending ipi, its better to send them now, 4154 * not waiting net_rx_action() end. 4155 */ 4156 if (sd->rps_ipi_list) { 4157 local_irq_disable(); 4158 net_rps_action_and_irq_enable(sd); 4159 } 4160#endif 4161 napi->weight = weight_p; 4162 local_irq_disable(); 4163 while (work < quota) { 4164 struct sk_buff *skb; 4165 unsigned int qlen; 4166 4167 while ((skb = __skb_dequeue(&sd->process_queue))) { 4168 local_irq_enable(); 4169 __netif_receive_skb(skb); 4170 local_irq_disable(); 4171 input_queue_head_incr(sd); 4172 if (++work >= quota) { 4173 local_irq_enable(); 4174 return work; 4175 } 4176 } 4177 4178 rps_lock(sd); 4179 qlen = skb_queue_len(&sd->input_pkt_queue); 4180 if (qlen) 4181 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4182 &sd->process_queue); 4183 4184 if (qlen < quota - work) { 4185 /* 4186 * Inline a custom version of __napi_complete(). 4187 * only current cpu owns and manipulates this napi, 4188 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4189 * we can use a plain write instead of clear_bit(), 4190 * and we dont need an smp_mb() memory barrier. 4191 */ 4192 list_del(&napi->poll_list); 4193 napi->state = 0; 4194 4195 quota = work + qlen; 4196 } 4197 rps_unlock(sd); 4198 } 4199 local_irq_enable(); 4200 4201 return work; 4202} 4203 4204/** 4205 * __napi_schedule - schedule for receive 4206 * @n: entry to schedule 4207 * 4208 * The entry's receive function will be scheduled to run 4209 */ 4210void __napi_schedule(struct napi_struct *n) 4211{ 4212 unsigned long flags; 4213 4214 local_irq_save(flags); 4215 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4216 local_irq_restore(flags); 4217} 4218EXPORT_SYMBOL(__napi_schedule); 4219 4220void __napi_complete(struct napi_struct *n) 4221{ 4222 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4223 BUG_ON(n->gro_list); 4224 4225 list_del(&n->poll_list); 4226 smp_mb__before_clear_bit(); 4227 clear_bit(NAPI_STATE_SCHED, &n->state); 4228} 4229EXPORT_SYMBOL(__napi_complete); 4230 4231void napi_complete(struct napi_struct *n) 4232{ 4233 unsigned long flags; 4234 4235 /* 4236 * don't let napi dequeue from the cpu poll list 4237 * just in case its running on a different cpu 4238 */ 4239 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4240 return; 4241 4242 napi_gro_flush(n, false); 4243 local_irq_save(flags); 4244 __napi_complete(n); 4245 local_irq_restore(flags); 4246} 4247EXPORT_SYMBOL(napi_complete); 4248 4249/* must be called under rcu_read_lock(), as we dont take a reference */ 4250struct napi_struct *napi_by_id(unsigned int napi_id) 4251{ 4252 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4253 struct napi_struct *napi; 4254 4255 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4256 if (napi->napi_id == napi_id) 4257 return napi; 4258 4259 return NULL; 4260} 4261EXPORT_SYMBOL_GPL(napi_by_id); 4262 4263void napi_hash_add(struct napi_struct *napi) 4264{ 4265 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4266 4267 spin_lock(&napi_hash_lock); 4268 4269 /* 0 is not a valid id, we also skip an id that is taken 4270 * we expect both events to be extremely rare 4271 */ 4272 napi->napi_id = 0; 4273 while (!napi->napi_id) { 4274 napi->napi_id = ++napi_gen_id; 4275 if (napi_by_id(napi->napi_id)) 4276 napi->napi_id = 0; 4277 } 4278 4279 hlist_add_head_rcu(&napi->napi_hash_node, 4280 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4281 4282 spin_unlock(&napi_hash_lock); 4283 } 4284} 4285EXPORT_SYMBOL_GPL(napi_hash_add); 4286 4287/* Warning : caller is responsible to make sure rcu grace period 4288 * is respected before freeing memory containing @napi 4289 */ 4290void napi_hash_del(struct napi_struct *napi) 4291{ 4292 spin_lock(&napi_hash_lock); 4293 4294 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4295 hlist_del_rcu(&napi->napi_hash_node); 4296 4297 spin_unlock(&napi_hash_lock); 4298} 4299EXPORT_SYMBOL_GPL(napi_hash_del); 4300 4301void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4302 int (*poll)(struct napi_struct *, int), int weight) 4303{ 4304 INIT_LIST_HEAD(&napi->poll_list); 4305 napi->gro_count = 0; 4306 napi->gro_list = NULL; 4307 napi->skb = NULL; 4308 napi->poll = poll; 4309 if (weight > NAPI_POLL_WEIGHT) 4310 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4311 weight, dev->name); 4312 napi->weight = weight; 4313 list_add(&napi->dev_list, &dev->napi_list); 4314 napi->dev = dev; 4315#ifdef CONFIG_NETPOLL 4316 spin_lock_init(&napi->poll_lock); 4317 napi->poll_owner = -1; 4318#endif 4319 set_bit(NAPI_STATE_SCHED, &napi->state); 4320} 4321EXPORT_SYMBOL(netif_napi_add); 4322 4323void netif_napi_del(struct napi_struct *napi) 4324{ 4325 list_del_init(&napi->dev_list); 4326 napi_free_frags(napi); 4327 4328 kfree_skb_list(napi->gro_list); 4329 napi->gro_list = NULL; 4330 napi->gro_count = 0; 4331} 4332EXPORT_SYMBOL(netif_napi_del); 4333 4334static void net_rx_action(struct softirq_action *h) 4335{ 4336 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4337 unsigned long time_limit = jiffies + 2; 4338 int budget = netdev_budget; 4339 void *have; 4340 4341 local_irq_disable(); 4342 4343 while (!list_empty(&sd->poll_list)) { 4344 struct napi_struct *n; 4345 int work, weight; 4346 4347 /* If softirq window is exhuasted then punt. 4348 * Allow this to run for 2 jiffies since which will allow 4349 * an average latency of 1.5/HZ. 4350 */ 4351 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4352 goto softnet_break; 4353 4354 local_irq_enable(); 4355 4356 /* Even though interrupts have been re-enabled, this 4357 * access is safe because interrupts can only add new 4358 * entries to the tail of this list, and only ->poll() 4359 * calls can remove this head entry from the list. 4360 */ 4361 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4362 4363 have = netpoll_poll_lock(n); 4364 4365 weight = n->weight; 4366 4367 /* This NAPI_STATE_SCHED test is for avoiding a race 4368 * with netpoll's poll_napi(). Only the entity which 4369 * obtains the lock and sees NAPI_STATE_SCHED set will 4370 * actually make the ->poll() call. Therefore we avoid 4371 * accidentally calling ->poll() when NAPI is not scheduled. 4372 */ 4373 work = 0; 4374 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4375 work = n->poll(n, weight); 4376 trace_napi_poll(n); 4377 } 4378 4379 WARN_ON_ONCE(work > weight); 4380 4381 budget -= work; 4382 4383 local_irq_disable(); 4384 4385 /* Drivers must not modify the NAPI state if they 4386 * consume the entire weight. In such cases this code 4387 * still "owns" the NAPI instance and therefore can 4388 * move the instance around on the list at-will. 4389 */ 4390 if (unlikely(work == weight)) { 4391 if (unlikely(napi_disable_pending(n))) { 4392 local_irq_enable(); 4393 napi_complete(n); 4394 local_irq_disable(); 4395 } else { 4396 if (n->gro_list) { 4397 /* flush too old packets 4398 * If HZ < 1000, flush all packets. 4399 */ 4400 local_irq_enable(); 4401 napi_gro_flush(n, HZ >= 1000); 4402 local_irq_disable(); 4403 } 4404 list_move_tail(&n->poll_list, &sd->poll_list); 4405 } 4406 } 4407 4408 netpoll_poll_unlock(have); 4409 } 4410out: 4411 net_rps_action_and_irq_enable(sd); 4412 4413#ifdef CONFIG_NET_DMA 4414 /* 4415 * There may not be any more sk_buffs coming right now, so push 4416 * any pending DMA copies to hardware 4417 */ 4418 dma_issue_pending_all(); 4419#endif 4420 4421 return; 4422 4423softnet_break: 4424 sd->time_squeeze++; 4425 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4426 goto out; 4427} 4428 4429struct netdev_adjacent { 4430 struct net_device *dev; 4431 4432 /* upper master flag, there can only be one master device per list */ 4433 bool master; 4434 4435 /* counter for the number of times this device was added to us */ 4436 u16 ref_nr; 4437 4438 /* private field for the users */ 4439 void *private; 4440 4441 struct list_head list; 4442 struct rcu_head rcu; 4443}; 4444 4445static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4446 struct net_device *adj_dev, 4447 struct list_head *adj_list) 4448{ 4449 struct netdev_adjacent *adj; 4450 4451 list_for_each_entry(adj, adj_list, list) { 4452 if (adj->dev == adj_dev) 4453 return adj; 4454 } 4455 return NULL; 4456} 4457 4458/** 4459 * netdev_has_upper_dev - Check if device is linked to an upper device 4460 * @dev: device 4461 * @upper_dev: upper device to check 4462 * 4463 * Find out if a device is linked to specified upper device and return true 4464 * in case it is. Note that this checks only immediate upper device, 4465 * not through a complete stack of devices. The caller must hold the RTNL lock. 4466 */ 4467bool netdev_has_upper_dev(struct net_device *dev, 4468 struct net_device *upper_dev) 4469{ 4470 ASSERT_RTNL(); 4471 4472 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4473} 4474EXPORT_SYMBOL(netdev_has_upper_dev); 4475 4476/** 4477 * netdev_has_any_upper_dev - Check if device is linked to some device 4478 * @dev: device 4479 * 4480 * Find out if a device is linked to an upper device and return true in case 4481 * it is. The caller must hold the RTNL lock. 4482 */ 4483static bool netdev_has_any_upper_dev(struct net_device *dev) 4484{ 4485 ASSERT_RTNL(); 4486 4487 return !list_empty(&dev->all_adj_list.upper); 4488} 4489 4490/** 4491 * netdev_master_upper_dev_get - Get master upper device 4492 * @dev: device 4493 * 4494 * Find a master upper device and return pointer to it or NULL in case 4495 * it's not there. The caller must hold the RTNL lock. 4496 */ 4497struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4498{ 4499 struct netdev_adjacent *upper; 4500 4501 ASSERT_RTNL(); 4502 4503 if (list_empty(&dev->adj_list.upper)) 4504 return NULL; 4505 4506 upper = list_first_entry(&dev->adj_list.upper, 4507 struct netdev_adjacent, list); 4508 if (likely(upper->master)) 4509 return upper->dev; 4510 return NULL; 4511} 4512EXPORT_SYMBOL(netdev_master_upper_dev_get); 4513 4514void *netdev_adjacent_get_private(struct list_head *adj_list) 4515{ 4516 struct netdev_adjacent *adj; 4517 4518 adj = list_entry(adj_list, struct netdev_adjacent, list); 4519 4520 return adj->private; 4521} 4522EXPORT_SYMBOL(netdev_adjacent_get_private); 4523 4524/** 4525 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4526 * @dev: device 4527 * @iter: list_head ** of the current position 4528 * 4529 * Gets the next device from the dev's upper list, starting from iter 4530 * position. The caller must hold RCU read lock. 4531 */ 4532struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4533 struct list_head **iter) 4534{ 4535 struct netdev_adjacent *upper; 4536 4537 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4538 4539 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4540 4541 if (&upper->list == &dev->all_adj_list.upper) 4542 return NULL; 4543 4544 *iter = &upper->list; 4545 4546 return upper->dev; 4547} 4548EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4549 4550/** 4551 * netdev_lower_get_next_private - Get the next ->private from the 4552 * lower neighbour list 4553 * @dev: device 4554 * @iter: list_head ** of the current position 4555 * 4556 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4557 * list, starting from iter position. The caller must hold either hold the 4558 * RTNL lock or its own locking that guarantees that the neighbour lower 4559 * list will remain unchainged. 4560 */ 4561void *netdev_lower_get_next_private(struct net_device *dev, 4562 struct list_head **iter) 4563{ 4564 struct netdev_adjacent *lower; 4565 4566 lower = list_entry(*iter, struct netdev_adjacent, list); 4567 4568 if (&lower->list == &dev->adj_list.lower) 4569 return NULL; 4570 4571 if (iter) 4572 *iter = lower->list.next; 4573 4574 return lower->private; 4575} 4576EXPORT_SYMBOL(netdev_lower_get_next_private); 4577 4578/** 4579 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4580 * lower neighbour list, RCU 4581 * variant 4582 * @dev: device 4583 * @iter: list_head ** of the current position 4584 * 4585 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4586 * list, starting from iter position. The caller must hold RCU read lock. 4587 */ 4588void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4589 struct list_head **iter) 4590{ 4591 struct netdev_adjacent *lower; 4592 4593 WARN_ON_ONCE(!rcu_read_lock_held()); 4594 4595 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4596 4597 if (&lower->list == &dev->adj_list.lower) 4598 return NULL; 4599 4600 if (iter) 4601 *iter = &lower->list; 4602 4603 return lower->private; 4604} 4605EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4606 4607/** 4608 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4609 * lower neighbour list, RCU 4610 * variant 4611 * @dev: device 4612 * 4613 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4614 * list. The caller must hold RCU read lock. 4615 */ 4616void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4617{ 4618 struct netdev_adjacent *lower; 4619 4620 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4621 struct netdev_adjacent, list); 4622 if (lower) 4623 return lower->private; 4624 return NULL; 4625} 4626EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4627 4628/** 4629 * netdev_master_upper_dev_get_rcu - Get master upper device 4630 * @dev: device 4631 * 4632 * Find a master upper device and return pointer to it or NULL in case 4633 * it's not there. The caller must hold the RCU read lock. 4634 */ 4635struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4636{ 4637 struct netdev_adjacent *upper; 4638 4639 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4640 struct netdev_adjacent, list); 4641 if (upper && likely(upper->master)) 4642 return upper->dev; 4643 return NULL; 4644} 4645EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4646 4647static int netdev_adjacent_sysfs_add(struct net_device *dev, 4648 struct net_device *adj_dev, 4649 struct list_head *dev_list) 4650{ 4651 char linkname[IFNAMSIZ+7]; 4652 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4653 "upper_%s" : "lower_%s", adj_dev->name); 4654 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4655 linkname); 4656} 4657static void netdev_adjacent_sysfs_del(struct net_device *dev, 4658 char *name, 4659 struct list_head *dev_list) 4660{ 4661 char linkname[IFNAMSIZ+7]; 4662 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4663 "upper_%s" : "lower_%s", name); 4664 sysfs_remove_link(&(dev->dev.kobj), linkname); 4665} 4666 4667#define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4668 (dev_list == &dev->adj_list.upper || \ 4669 dev_list == &dev->adj_list.lower) 4670 4671static int __netdev_adjacent_dev_insert(struct net_device *dev, 4672 struct net_device *adj_dev, 4673 struct list_head *dev_list, 4674 void *private, bool master) 4675{ 4676 struct netdev_adjacent *adj; 4677 int ret; 4678 4679 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4680 4681 if (adj) { 4682 adj->ref_nr++; 4683 return 0; 4684 } 4685 4686 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4687 if (!adj) 4688 return -ENOMEM; 4689 4690 adj->dev = adj_dev; 4691 adj->master = master; 4692 adj->ref_nr = 1; 4693 adj->private = private; 4694 dev_hold(adj_dev); 4695 4696 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4697 adj_dev->name, dev->name, adj_dev->name); 4698 4699 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4700 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4701 if (ret) 4702 goto free_adj; 4703 } 4704 4705 /* Ensure that master link is always the first item in list. */ 4706 if (master) { 4707 ret = sysfs_create_link(&(dev->dev.kobj), 4708 &(adj_dev->dev.kobj), "master"); 4709 if (ret) 4710 goto remove_symlinks; 4711 4712 list_add_rcu(&adj->list, dev_list); 4713 } else { 4714 list_add_tail_rcu(&adj->list, dev_list); 4715 } 4716 4717 return 0; 4718 4719remove_symlinks: 4720 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4721 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4722free_adj: 4723 kfree(adj); 4724 dev_put(adj_dev); 4725 4726 return ret; 4727} 4728 4729static void __netdev_adjacent_dev_remove(struct net_device *dev, 4730 struct net_device *adj_dev, 4731 struct list_head *dev_list) 4732{ 4733 struct netdev_adjacent *adj; 4734 4735 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4736 4737 if (!adj) { 4738 pr_err("tried to remove device %s from %s\n", 4739 dev->name, adj_dev->name); 4740 BUG(); 4741 } 4742 4743 if (adj->ref_nr > 1) { 4744 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4745 adj->ref_nr-1); 4746 adj->ref_nr--; 4747 return; 4748 } 4749 4750 if (adj->master) 4751 sysfs_remove_link(&(dev->dev.kobj), "master"); 4752 4753 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4754 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4755 4756 list_del_rcu(&adj->list); 4757 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4758 adj_dev->name, dev->name, adj_dev->name); 4759 dev_put(adj_dev); 4760 kfree_rcu(adj, rcu); 4761} 4762 4763static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4764 struct net_device *upper_dev, 4765 struct list_head *up_list, 4766 struct list_head *down_list, 4767 void *private, bool master) 4768{ 4769 int ret; 4770 4771 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4772 master); 4773 if (ret) 4774 return ret; 4775 4776 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4777 false); 4778 if (ret) { 4779 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4780 return ret; 4781 } 4782 4783 return 0; 4784} 4785 4786static int __netdev_adjacent_dev_link(struct net_device *dev, 4787 struct net_device *upper_dev) 4788{ 4789 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4790 &dev->all_adj_list.upper, 4791 &upper_dev->all_adj_list.lower, 4792 NULL, false); 4793} 4794 4795static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4796 struct net_device *upper_dev, 4797 struct list_head *up_list, 4798 struct list_head *down_list) 4799{ 4800 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4801 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4802} 4803 4804static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4805 struct net_device *upper_dev) 4806{ 4807 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4808 &dev->all_adj_list.upper, 4809 &upper_dev->all_adj_list.lower); 4810} 4811 4812static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4813 struct net_device *upper_dev, 4814 void *private, bool master) 4815{ 4816 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4817 4818 if (ret) 4819 return ret; 4820 4821 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4822 &dev->adj_list.upper, 4823 &upper_dev->adj_list.lower, 4824 private, master); 4825 if (ret) { 4826 __netdev_adjacent_dev_unlink(dev, upper_dev); 4827 return ret; 4828 } 4829 4830 return 0; 4831} 4832 4833static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4834 struct net_device *upper_dev) 4835{ 4836 __netdev_adjacent_dev_unlink(dev, upper_dev); 4837 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4838 &dev->adj_list.upper, 4839 &upper_dev->adj_list.lower); 4840} 4841 4842static int __netdev_upper_dev_link(struct net_device *dev, 4843 struct net_device *upper_dev, bool master, 4844 void *private) 4845{ 4846 struct netdev_adjacent *i, *j, *to_i, *to_j; 4847 int ret = 0; 4848 4849 ASSERT_RTNL(); 4850 4851 if (dev == upper_dev) 4852 return -EBUSY; 4853 4854 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4855 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4856 return -EBUSY; 4857 4858 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4859 return -EEXIST; 4860 4861 if (master && netdev_master_upper_dev_get(dev)) 4862 return -EBUSY; 4863 4864 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4865 master); 4866 if (ret) 4867 return ret; 4868 4869 /* Now that we linked these devs, make all the upper_dev's 4870 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4871 * versa, and don't forget the devices itself. All of these 4872 * links are non-neighbours. 4873 */ 4874 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4875 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4876 pr_debug("Interlinking %s with %s, non-neighbour\n", 4877 i->dev->name, j->dev->name); 4878 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4879 if (ret) 4880 goto rollback_mesh; 4881 } 4882 } 4883 4884 /* add dev to every upper_dev's upper device */ 4885 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4886 pr_debug("linking %s's upper device %s with %s\n", 4887 upper_dev->name, i->dev->name, dev->name); 4888 ret = __netdev_adjacent_dev_link(dev, i->dev); 4889 if (ret) 4890 goto rollback_upper_mesh; 4891 } 4892 4893 /* add upper_dev to every dev's lower device */ 4894 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4895 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4896 i->dev->name, upper_dev->name); 4897 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4898 if (ret) 4899 goto rollback_lower_mesh; 4900 } 4901 4902 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4903 return 0; 4904 4905rollback_lower_mesh: 4906 to_i = i; 4907 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4908 if (i == to_i) 4909 break; 4910 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4911 } 4912 4913 i = NULL; 4914 4915rollback_upper_mesh: 4916 to_i = i; 4917 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4918 if (i == to_i) 4919 break; 4920 __netdev_adjacent_dev_unlink(dev, i->dev); 4921 } 4922 4923 i = j = NULL; 4924 4925rollback_mesh: 4926 to_i = i; 4927 to_j = j; 4928 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4929 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4930 if (i == to_i && j == to_j) 4931 break; 4932 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4933 } 4934 if (i == to_i) 4935 break; 4936 } 4937 4938 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4939 4940 return ret; 4941} 4942 4943/** 4944 * netdev_upper_dev_link - Add a link to the upper device 4945 * @dev: device 4946 * @upper_dev: new upper device 4947 * 4948 * Adds a link to device which is upper to this one. The caller must hold 4949 * the RTNL lock. On a failure a negative errno code is returned. 4950 * On success the reference counts are adjusted and the function 4951 * returns zero. 4952 */ 4953int netdev_upper_dev_link(struct net_device *dev, 4954 struct net_device *upper_dev) 4955{ 4956 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4957} 4958EXPORT_SYMBOL(netdev_upper_dev_link); 4959 4960/** 4961 * netdev_master_upper_dev_link - Add a master link to the upper device 4962 * @dev: device 4963 * @upper_dev: new upper device 4964 * 4965 * Adds a link to device which is upper to this one. In this case, only 4966 * one master upper device can be linked, although other non-master devices 4967 * might be linked as well. The caller must hold the RTNL lock. 4968 * On a failure a negative errno code is returned. On success the reference 4969 * counts are adjusted and the function returns zero. 4970 */ 4971int netdev_master_upper_dev_link(struct net_device *dev, 4972 struct net_device *upper_dev) 4973{ 4974 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4975} 4976EXPORT_SYMBOL(netdev_master_upper_dev_link); 4977 4978int netdev_master_upper_dev_link_private(struct net_device *dev, 4979 struct net_device *upper_dev, 4980 void *private) 4981{ 4982 return __netdev_upper_dev_link(dev, upper_dev, true, private); 4983} 4984EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 4985 4986/** 4987 * netdev_upper_dev_unlink - Removes a link to upper device 4988 * @dev: device 4989 * @upper_dev: new upper device 4990 * 4991 * Removes a link to device which is upper to this one. The caller must hold 4992 * the RTNL lock. 4993 */ 4994void netdev_upper_dev_unlink(struct net_device *dev, 4995 struct net_device *upper_dev) 4996{ 4997 struct netdev_adjacent *i, *j; 4998 ASSERT_RTNL(); 4999 5000 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5001 5002 /* Here is the tricky part. We must remove all dev's lower 5003 * devices from all upper_dev's upper devices and vice 5004 * versa, to maintain the graph relationship. 5005 */ 5006 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5007 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5008 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5009 5010 /* remove also the devices itself from lower/upper device 5011 * list 5012 */ 5013 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5014 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5015 5016 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5017 __netdev_adjacent_dev_unlink(dev, i->dev); 5018 5019 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5020} 5021EXPORT_SYMBOL(netdev_upper_dev_unlink); 5022 5023void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5024{ 5025 struct netdev_adjacent *iter; 5026 5027 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5028 netdev_adjacent_sysfs_del(iter->dev, oldname, 5029 &iter->dev->adj_list.lower); 5030 netdev_adjacent_sysfs_add(iter->dev, dev, 5031 &iter->dev->adj_list.lower); 5032 } 5033 5034 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5035 netdev_adjacent_sysfs_del(iter->dev, oldname, 5036 &iter->dev->adj_list.upper); 5037 netdev_adjacent_sysfs_add(iter->dev, dev, 5038 &iter->dev->adj_list.upper); 5039 } 5040} 5041 5042void *netdev_lower_dev_get_private(struct net_device *dev, 5043 struct net_device *lower_dev) 5044{ 5045 struct netdev_adjacent *lower; 5046 5047 if (!lower_dev) 5048 return NULL; 5049 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5050 if (!lower) 5051 return NULL; 5052 5053 return lower->private; 5054} 5055EXPORT_SYMBOL(netdev_lower_dev_get_private); 5056 5057static void dev_change_rx_flags(struct net_device *dev, int flags) 5058{ 5059 const struct net_device_ops *ops = dev->netdev_ops; 5060 5061 if (ops->ndo_change_rx_flags) 5062 ops->ndo_change_rx_flags(dev, flags); 5063} 5064 5065static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5066{ 5067 unsigned int old_flags = dev->flags; 5068 kuid_t uid; 5069 kgid_t gid; 5070 5071 ASSERT_RTNL(); 5072 5073 dev->flags |= IFF_PROMISC; 5074 dev->promiscuity += inc; 5075 if (dev->promiscuity == 0) { 5076 /* 5077 * Avoid overflow. 5078 * If inc causes overflow, untouch promisc and return error. 5079 */ 5080 if (inc < 0) 5081 dev->flags &= ~IFF_PROMISC; 5082 else { 5083 dev->promiscuity -= inc; 5084 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5085 dev->name); 5086 return -EOVERFLOW; 5087 } 5088 } 5089 if (dev->flags != old_flags) { 5090 pr_info("device %s %s promiscuous mode\n", 5091 dev->name, 5092 dev->flags & IFF_PROMISC ? "entered" : "left"); 5093 if (audit_enabled) { 5094 current_uid_gid(&uid, &gid); 5095 audit_log(current->audit_context, GFP_ATOMIC, 5096 AUDIT_ANOM_PROMISCUOUS, 5097 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5098 dev->name, (dev->flags & IFF_PROMISC), 5099 (old_flags & IFF_PROMISC), 5100 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5101 from_kuid(&init_user_ns, uid), 5102 from_kgid(&init_user_ns, gid), 5103 audit_get_sessionid(current)); 5104 } 5105 5106 dev_change_rx_flags(dev, IFF_PROMISC); 5107 } 5108 if (notify) 5109 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5110 return 0; 5111} 5112 5113/** 5114 * dev_set_promiscuity - update promiscuity count on a device 5115 * @dev: device 5116 * @inc: modifier 5117 * 5118 * Add or remove promiscuity from a device. While the count in the device 5119 * remains above zero the interface remains promiscuous. Once it hits zero 5120 * the device reverts back to normal filtering operation. A negative inc 5121 * value is used to drop promiscuity on the device. 5122 * Return 0 if successful or a negative errno code on error. 5123 */ 5124int dev_set_promiscuity(struct net_device *dev, int inc) 5125{ 5126 unsigned int old_flags = dev->flags; 5127 int err; 5128 5129 err = __dev_set_promiscuity(dev, inc, true); 5130 if (err < 0) 5131 return err; 5132 if (dev->flags != old_flags) 5133 dev_set_rx_mode(dev); 5134 return err; 5135} 5136EXPORT_SYMBOL(dev_set_promiscuity); 5137 5138static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5139{ 5140 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5141 5142 ASSERT_RTNL(); 5143 5144 dev->flags |= IFF_ALLMULTI; 5145 dev->allmulti += inc; 5146 if (dev->allmulti == 0) { 5147 /* 5148 * Avoid overflow. 5149 * If inc causes overflow, untouch allmulti and return error. 5150 */ 5151 if (inc < 0) 5152 dev->flags &= ~IFF_ALLMULTI; 5153 else { 5154 dev->allmulti -= inc; 5155 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5156 dev->name); 5157 return -EOVERFLOW; 5158 } 5159 } 5160 if (dev->flags ^ old_flags) { 5161 dev_change_rx_flags(dev, IFF_ALLMULTI); 5162 dev_set_rx_mode(dev); 5163 if (notify) 5164 __dev_notify_flags(dev, old_flags, 5165 dev->gflags ^ old_gflags); 5166 } 5167 return 0; 5168} 5169 5170/** 5171 * dev_set_allmulti - update allmulti count on a device 5172 * @dev: device 5173 * @inc: modifier 5174 * 5175 * Add or remove reception of all multicast frames to a device. While the 5176 * count in the device remains above zero the interface remains listening 5177 * to all interfaces. Once it hits zero the device reverts back to normal 5178 * filtering operation. A negative @inc value is used to drop the counter 5179 * when releasing a resource needing all multicasts. 5180 * Return 0 if successful or a negative errno code on error. 5181 */ 5182 5183int dev_set_allmulti(struct net_device *dev, int inc) 5184{ 5185 return __dev_set_allmulti(dev, inc, true); 5186} 5187EXPORT_SYMBOL(dev_set_allmulti); 5188 5189/* 5190 * Upload unicast and multicast address lists to device and 5191 * configure RX filtering. When the device doesn't support unicast 5192 * filtering it is put in promiscuous mode while unicast addresses 5193 * are present. 5194 */ 5195void __dev_set_rx_mode(struct net_device *dev) 5196{ 5197 const struct net_device_ops *ops = dev->netdev_ops; 5198 5199 /* dev_open will call this function so the list will stay sane. */ 5200 if (!(dev->flags&IFF_UP)) 5201 return; 5202 5203 if (!netif_device_present(dev)) 5204 return; 5205 5206 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5207 /* Unicast addresses changes may only happen under the rtnl, 5208 * therefore calling __dev_set_promiscuity here is safe. 5209 */ 5210 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5211 __dev_set_promiscuity(dev, 1, false); 5212 dev->uc_promisc = true; 5213 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5214 __dev_set_promiscuity(dev, -1, false); 5215 dev->uc_promisc = false; 5216 } 5217 } 5218 5219 if (ops->ndo_set_rx_mode) 5220 ops->ndo_set_rx_mode(dev); 5221} 5222 5223void dev_set_rx_mode(struct net_device *dev) 5224{ 5225 netif_addr_lock_bh(dev); 5226 __dev_set_rx_mode(dev); 5227 netif_addr_unlock_bh(dev); 5228} 5229 5230/** 5231 * dev_get_flags - get flags reported to userspace 5232 * @dev: device 5233 * 5234 * Get the combination of flag bits exported through APIs to userspace. 5235 */ 5236unsigned int dev_get_flags(const struct net_device *dev) 5237{ 5238 unsigned int flags; 5239 5240 flags = (dev->flags & ~(IFF_PROMISC | 5241 IFF_ALLMULTI | 5242 IFF_RUNNING | 5243 IFF_LOWER_UP | 5244 IFF_DORMANT)) | 5245 (dev->gflags & (IFF_PROMISC | 5246 IFF_ALLMULTI)); 5247 5248 if (netif_running(dev)) { 5249 if (netif_oper_up(dev)) 5250 flags |= IFF_RUNNING; 5251 if (netif_carrier_ok(dev)) 5252 flags |= IFF_LOWER_UP; 5253 if (netif_dormant(dev)) 5254 flags |= IFF_DORMANT; 5255 } 5256 5257 return flags; 5258} 5259EXPORT_SYMBOL(dev_get_flags); 5260 5261int __dev_change_flags(struct net_device *dev, unsigned int flags) 5262{ 5263 unsigned int old_flags = dev->flags; 5264 int ret; 5265 5266 ASSERT_RTNL(); 5267 5268 /* 5269 * Set the flags on our device. 5270 */ 5271 5272 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5273 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5274 IFF_AUTOMEDIA)) | 5275 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5276 IFF_ALLMULTI)); 5277 5278 /* 5279 * Load in the correct multicast list now the flags have changed. 5280 */ 5281 5282 if ((old_flags ^ flags) & IFF_MULTICAST) 5283 dev_change_rx_flags(dev, IFF_MULTICAST); 5284 5285 dev_set_rx_mode(dev); 5286 5287 /* 5288 * Have we downed the interface. We handle IFF_UP ourselves 5289 * according to user attempts to set it, rather than blindly 5290 * setting it. 5291 */ 5292 5293 ret = 0; 5294 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5295 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5296 5297 if (!ret) 5298 dev_set_rx_mode(dev); 5299 } 5300 5301 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5302 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5303 unsigned int old_flags = dev->flags; 5304 5305 dev->gflags ^= IFF_PROMISC; 5306 5307 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5308 if (dev->flags != old_flags) 5309 dev_set_rx_mode(dev); 5310 } 5311 5312 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5313 is important. Some (broken) drivers set IFF_PROMISC, when 5314 IFF_ALLMULTI is requested not asking us and not reporting. 5315 */ 5316 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5317 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5318 5319 dev->gflags ^= IFF_ALLMULTI; 5320 __dev_set_allmulti(dev, inc, false); 5321 } 5322 5323 return ret; 5324} 5325 5326void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5327 unsigned int gchanges) 5328{ 5329 unsigned int changes = dev->flags ^ old_flags; 5330 5331 if (gchanges) 5332 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5333 5334 if (changes & IFF_UP) { 5335 if (dev->flags & IFF_UP) 5336 call_netdevice_notifiers(NETDEV_UP, dev); 5337 else 5338 call_netdevice_notifiers(NETDEV_DOWN, dev); 5339 } 5340 5341 if (dev->flags & IFF_UP && 5342 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5343 struct netdev_notifier_change_info change_info; 5344 5345 change_info.flags_changed = changes; 5346 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5347 &change_info.info); 5348 } 5349} 5350 5351/** 5352 * dev_change_flags - change device settings 5353 * @dev: device 5354 * @flags: device state flags 5355 * 5356 * Change settings on device based state flags. The flags are 5357 * in the userspace exported format. 5358 */ 5359int dev_change_flags(struct net_device *dev, unsigned int flags) 5360{ 5361 int ret; 5362 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5363 5364 ret = __dev_change_flags(dev, flags); 5365 if (ret < 0) 5366 return ret; 5367 5368 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5369 __dev_notify_flags(dev, old_flags, changes); 5370 return ret; 5371} 5372EXPORT_SYMBOL(dev_change_flags); 5373 5374static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5375{ 5376 const struct net_device_ops *ops = dev->netdev_ops; 5377 5378 if (ops->ndo_change_mtu) 5379 return ops->ndo_change_mtu(dev, new_mtu); 5380 5381 dev->mtu = new_mtu; 5382 return 0; 5383} 5384 5385/** 5386 * dev_set_mtu - Change maximum transfer unit 5387 * @dev: device 5388 * @new_mtu: new transfer unit 5389 * 5390 * Change the maximum transfer size of the network device. 5391 */ 5392int dev_set_mtu(struct net_device *dev, int new_mtu) 5393{ 5394 int err, orig_mtu; 5395 5396 if (new_mtu == dev->mtu) 5397 return 0; 5398 5399 /* MTU must be positive. */ 5400 if (new_mtu < 0) 5401 return -EINVAL; 5402 5403 if (!netif_device_present(dev)) 5404 return -ENODEV; 5405 5406 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5407 err = notifier_to_errno(err); 5408 if (err) 5409 return err; 5410 5411 orig_mtu = dev->mtu; 5412 err = __dev_set_mtu(dev, new_mtu); 5413 5414 if (!err) { 5415 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5416 err = notifier_to_errno(err); 5417 if (err) { 5418 /* setting mtu back and notifying everyone again, 5419 * so that they have a chance to revert changes. 5420 */ 5421 __dev_set_mtu(dev, orig_mtu); 5422 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5423 } 5424 } 5425 return err; 5426} 5427EXPORT_SYMBOL(dev_set_mtu); 5428 5429/** 5430 * dev_set_group - Change group this device belongs to 5431 * @dev: device 5432 * @new_group: group this device should belong to 5433 */ 5434void dev_set_group(struct net_device *dev, int new_group) 5435{ 5436 dev->group = new_group; 5437} 5438EXPORT_SYMBOL(dev_set_group); 5439 5440/** 5441 * dev_set_mac_address - Change Media Access Control Address 5442 * @dev: device 5443 * @sa: new address 5444 * 5445 * Change the hardware (MAC) address of the device 5446 */ 5447int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5448{ 5449 const struct net_device_ops *ops = dev->netdev_ops; 5450 int err; 5451 5452 if (!ops->ndo_set_mac_address) 5453 return -EOPNOTSUPP; 5454 if (sa->sa_family != dev->type) 5455 return -EINVAL; 5456 if (!netif_device_present(dev)) 5457 return -ENODEV; 5458 err = ops->ndo_set_mac_address(dev, sa); 5459 if (err) 5460 return err; 5461 dev->addr_assign_type = NET_ADDR_SET; 5462 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5463 add_device_randomness(dev->dev_addr, dev->addr_len); 5464 return 0; 5465} 5466EXPORT_SYMBOL(dev_set_mac_address); 5467 5468/** 5469 * dev_change_carrier - Change device carrier 5470 * @dev: device 5471 * @new_carrier: new value 5472 * 5473 * Change device carrier 5474 */ 5475int dev_change_carrier(struct net_device *dev, bool new_carrier) 5476{ 5477 const struct net_device_ops *ops = dev->netdev_ops; 5478 5479 if (!ops->ndo_change_carrier) 5480 return -EOPNOTSUPP; 5481 if (!netif_device_present(dev)) 5482 return -ENODEV; 5483 return ops->ndo_change_carrier(dev, new_carrier); 5484} 5485EXPORT_SYMBOL(dev_change_carrier); 5486 5487/** 5488 * dev_get_phys_port_id - Get device physical port ID 5489 * @dev: device 5490 * @ppid: port ID 5491 * 5492 * Get device physical port ID 5493 */ 5494int dev_get_phys_port_id(struct net_device *dev, 5495 struct netdev_phys_port_id *ppid) 5496{ 5497 const struct net_device_ops *ops = dev->netdev_ops; 5498 5499 if (!ops->ndo_get_phys_port_id) 5500 return -EOPNOTSUPP; 5501 return ops->ndo_get_phys_port_id(dev, ppid); 5502} 5503EXPORT_SYMBOL(dev_get_phys_port_id); 5504 5505/** 5506 * dev_new_index - allocate an ifindex 5507 * @net: the applicable net namespace 5508 * 5509 * Returns a suitable unique value for a new device interface 5510 * number. The caller must hold the rtnl semaphore or the 5511 * dev_base_lock to be sure it remains unique. 5512 */ 5513static int dev_new_index(struct net *net) 5514{ 5515 int ifindex = net->ifindex; 5516 for (;;) { 5517 if (++ifindex <= 0) 5518 ifindex = 1; 5519 if (!__dev_get_by_index(net, ifindex)) 5520 return net->ifindex = ifindex; 5521 } 5522} 5523 5524/* Delayed registration/unregisteration */ 5525static LIST_HEAD(net_todo_list); 5526static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5527 5528static void net_set_todo(struct net_device *dev) 5529{ 5530 list_add_tail(&dev->todo_list, &net_todo_list); 5531 dev_net(dev)->dev_unreg_count++; 5532} 5533 5534static void rollback_registered_many(struct list_head *head) 5535{ 5536 struct net_device *dev, *tmp; 5537 LIST_HEAD(close_head); 5538 5539 BUG_ON(dev_boot_phase); 5540 ASSERT_RTNL(); 5541 5542 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5543 /* Some devices call without registering 5544 * for initialization unwind. Remove those 5545 * devices and proceed with the remaining. 5546 */ 5547 if (dev->reg_state == NETREG_UNINITIALIZED) { 5548 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5549 dev->name, dev); 5550 5551 WARN_ON(1); 5552 list_del(&dev->unreg_list); 5553 continue; 5554 } 5555 dev->dismantle = true; 5556 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5557 } 5558 5559 /* If device is running, close it first. */ 5560 list_for_each_entry(dev, head, unreg_list) 5561 list_add_tail(&dev->close_list, &close_head); 5562 dev_close_many(&close_head); 5563 5564 list_for_each_entry(dev, head, unreg_list) { 5565 /* And unlink it from device chain. */ 5566 unlist_netdevice(dev); 5567 5568 dev->reg_state = NETREG_UNREGISTERING; 5569 } 5570 5571 synchronize_net(); 5572 5573 list_for_each_entry(dev, head, unreg_list) { 5574 /* Shutdown queueing discipline. */ 5575 dev_shutdown(dev); 5576 5577 5578 /* Notify protocols, that we are about to destroy 5579 this device. They should clean all the things. 5580 */ 5581 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5582 5583 if (!dev->rtnl_link_ops || 5584 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5585 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5586 5587 /* 5588 * Flush the unicast and multicast chains 5589 */ 5590 dev_uc_flush(dev); 5591 dev_mc_flush(dev); 5592 5593 if (dev->netdev_ops->ndo_uninit) 5594 dev->netdev_ops->ndo_uninit(dev); 5595 5596 /* Notifier chain MUST detach us all upper devices. */ 5597 WARN_ON(netdev_has_any_upper_dev(dev)); 5598 5599 /* Remove entries from kobject tree */ 5600 netdev_unregister_kobject(dev); 5601#ifdef CONFIG_XPS 5602 /* Remove XPS queueing entries */ 5603 netif_reset_xps_queues_gt(dev, 0); 5604#endif 5605 } 5606 5607 synchronize_net(); 5608 5609 list_for_each_entry(dev, head, unreg_list) 5610 dev_put(dev); 5611} 5612 5613static void rollback_registered(struct net_device *dev) 5614{ 5615 LIST_HEAD(single); 5616 5617 list_add(&dev->unreg_list, &single); 5618 rollback_registered_many(&single); 5619 list_del(&single); 5620} 5621 5622static netdev_features_t netdev_fix_features(struct net_device *dev, 5623 netdev_features_t features) 5624{ 5625 /* Fix illegal checksum combinations */ 5626 if ((features & NETIF_F_HW_CSUM) && 5627 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5628 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5629 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5630 } 5631 5632 /* TSO requires that SG is present as well. */ 5633 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5634 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5635 features &= ~NETIF_F_ALL_TSO; 5636 } 5637 5638 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5639 !(features & NETIF_F_IP_CSUM)) { 5640 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5641 features &= ~NETIF_F_TSO; 5642 features &= ~NETIF_F_TSO_ECN; 5643 } 5644 5645 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5646 !(features & NETIF_F_IPV6_CSUM)) { 5647 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5648 features &= ~NETIF_F_TSO6; 5649 } 5650 5651 /* TSO ECN requires that TSO is present as well. */ 5652 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5653 features &= ~NETIF_F_TSO_ECN; 5654 5655 /* Software GSO depends on SG. */ 5656 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5657 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5658 features &= ~NETIF_F_GSO; 5659 } 5660 5661 /* UFO needs SG and checksumming */ 5662 if (features & NETIF_F_UFO) { 5663 /* maybe split UFO into V4 and V6? */ 5664 if (!((features & NETIF_F_GEN_CSUM) || 5665 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5666 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5667 netdev_dbg(dev, 5668 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5669 features &= ~NETIF_F_UFO; 5670 } 5671 5672 if (!(features & NETIF_F_SG)) { 5673 netdev_dbg(dev, 5674 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5675 features &= ~NETIF_F_UFO; 5676 } 5677 } 5678 5679 return features; 5680} 5681 5682int __netdev_update_features(struct net_device *dev) 5683{ 5684 netdev_features_t features; 5685 int err = 0; 5686 5687 ASSERT_RTNL(); 5688 5689 features = netdev_get_wanted_features(dev); 5690 5691 if (dev->netdev_ops->ndo_fix_features) 5692 features = dev->netdev_ops->ndo_fix_features(dev, features); 5693 5694 /* driver might be less strict about feature dependencies */ 5695 features = netdev_fix_features(dev, features); 5696 5697 if (dev->features == features) 5698 return 0; 5699 5700 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5701 &dev->features, &features); 5702 5703 if (dev->netdev_ops->ndo_set_features) 5704 err = dev->netdev_ops->ndo_set_features(dev, features); 5705 5706 if (unlikely(err < 0)) { 5707 netdev_err(dev, 5708 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5709 err, &features, &dev->features); 5710 return -1; 5711 } 5712 5713 if (!err) 5714 dev->features = features; 5715 5716 return 1; 5717} 5718 5719/** 5720 * netdev_update_features - recalculate device features 5721 * @dev: the device to check 5722 * 5723 * Recalculate dev->features set and send notifications if it 5724 * has changed. Should be called after driver or hardware dependent 5725 * conditions might have changed that influence the features. 5726 */ 5727void netdev_update_features(struct net_device *dev) 5728{ 5729 if (__netdev_update_features(dev)) 5730 netdev_features_change(dev); 5731} 5732EXPORT_SYMBOL(netdev_update_features); 5733 5734/** 5735 * netdev_change_features - recalculate device features 5736 * @dev: the device to check 5737 * 5738 * Recalculate dev->features set and send notifications even 5739 * if they have not changed. Should be called instead of 5740 * netdev_update_features() if also dev->vlan_features might 5741 * have changed to allow the changes to be propagated to stacked 5742 * VLAN devices. 5743 */ 5744void netdev_change_features(struct net_device *dev) 5745{ 5746 __netdev_update_features(dev); 5747 netdev_features_change(dev); 5748} 5749EXPORT_SYMBOL(netdev_change_features); 5750 5751/** 5752 * netif_stacked_transfer_operstate - transfer operstate 5753 * @rootdev: the root or lower level device to transfer state from 5754 * @dev: the device to transfer operstate to 5755 * 5756 * Transfer operational state from root to device. This is normally 5757 * called when a stacking relationship exists between the root 5758 * device and the device(a leaf device). 5759 */ 5760void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5761 struct net_device *dev) 5762{ 5763 if (rootdev->operstate == IF_OPER_DORMANT) 5764 netif_dormant_on(dev); 5765 else 5766 netif_dormant_off(dev); 5767 5768 if (netif_carrier_ok(rootdev)) { 5769 if (!netif_carrier_ok(dev)) 5770 netif_carrier_on(dev); 5771 } else { 5772 if (netif_carrier_ok(dev)) 5773 netif_carrier_off(dev); 5774 } 5775} 5776EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5777 5778#ifdef CONFIG_SYSFS 5779static int netif_alloc_rx_queues(struct net_device *dev) 5780{ 5781 unsigned int i, count = dev->num_rx_queues; 5782 struct netdev_rx_queue *rx; 5783 5784 BUG_ON(count < 1); 5785 5786 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5787 if (!rx) 5788 return -ENOMEM; 5789 5790 dev->_rx = rx; 5791 5792 for (i = 0; i < count; i++) 5793 rx[i].dev = dev; 5794 return 0; 5795} 5796#endif 5797 5798static void netdev_init_one_queue(struct net_device *dev, 5799 struct netdev_queue *queue, void *_unused) 5800{ 5801 /* Initialize queue lock */ 5802 spin_lock_init(&queue->_xmit_lock); 5803 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5804 queue->xmit_lock_owner = -1; 5805 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5806 queue->dev = dev; 5807#ifdef CONFIG_BQL 5808 dql_init(&queue->dql, HZ); 5809#endif 5810} 5811 5812static void netif_free_tx_queues(struct net_device *dev) 5813{ 5814 if (is_vmalloc_addr(dev->_tx)) 5815 vfree(dev->_tx); 5816 else 5817 kfree(dev->_tx); 5818} 5819 5820static int netif_alloc_netdev_queues(struct net_device *dev) 5821{ 5822 unsigned int count = dev->num_tx_queues; 5823 struct netdev_queue *tx; 5824 size_t sz = count * sizeof(*tx); 5825 5826 BUG_ON(count < 1 || count > 0xffff); 5827 5828 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5829 if (!tx) { 5830 tx = vzalloc(sz); 5831 if (!tx) 5832 return -ENOMEM; 5833 } 5834 dev->_tx = tx; 5835 5836 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5837 spin_lock_init(&dev->tx_global_lock); 5838 5839 return 0; 5840} 5841 5842/** 5843 * register_netdevice - register a network device 5844 * @dev: device to register 5845 * 5846 * Take a completed network device structure and add it to the kernel 5847 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5848 * chain. 0 is returned on success. A negative errno code is returned 5849 * on a failure to set up the device, or if the name is a duplicate. 5850 * 5851 * Callers must hold the rtnl semaphore. You may want 5852 * register_netdev() instead of this. 5853 * 5854 * BUGS: 5855 * The locking appears insufficient to guarantee two parallel registers 5856 * will not get the same name. 5857 */ 5858 5859int register_netdevice(struct net_device *dev) 5860{ 5861 int ret; 5862 struct net *net = dev_net(dev); 5863 5864 BUG_ON(dev_boot_phase); 5865 ASSERT_RTNL(); 5866 5867 might_sleep(); 5868 5869 /* When net_device's are persistent, this will be fatal. */ 5870 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5871 BUG_ON(!net); 5872 5873 spin_lock_init(&dev->addr_list_lock); 5874 netdev_set_addr_lockdep_class(dev); 5875 5876 dev->iflink = -1; 5877 5878 ret = dev_get_valid_name(net, dev, dev->name); 5879 if (ret < 0) 5880 goto out; 5881 5882 /* Init, if this function is available */ 5883 if (dev->netdev_ops->ndo_init) { 5884 ret = dev->netdev_ops->ndo_init(dev); 5885 if (ret) { 5886 if (ret > 0) 5887 ret = -EIO; 5888 goto out; 5889 } 5890 } 5891 5892 if (((dev->hw_features | dev->features) & 5893 NETIF_F_HW_VLAN_CTAG_FILTER) && 5894 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5895 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5896 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5897 ret = -EINVAL; 5898 goto err_uninit; 5899 } 5900 5901 ret = -EBUSY; 5902 if (!dev->ifindex) 5903 dev->ifindex = dev_new_index(net); 5904 else if (__dev_get_by_index(net, dev->ifindex)) 5905 goto err_uninit; 5906 5907 if (dev->iflink == -1) 5908 dev->iflink = dev->ifindex; 5909 5910 /* Transfer changeable features to wanted_features and enable 5911 * software offloads (GSO and GRO). 5912 */ 5913 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5914 dev->features |= NETIF_F_SOFT_FEATURES; 5915 dev->wanted_features = dev->features & dev->hw_features; 5916 5917 if (!(dev->flags & IFF_LOOPBACK)) { 5918 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5919 } 5920 5921 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5922 */ 5923 dev->vlan_features |= NETIF_F_HIGHDMA; 5924 5925 /* Make NETIF_F_SG inheritable to tunnel devices. 5926 */ 5927 dev->hw_enc_features |= NETIF_F_SG; 5928 5929 /* Make NETIF_F_SG inheritable to MPLS. 5930 */ 5931 dev->mpls_features |= NETIF_F_SG; 5932 5933 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5934 ret = notifier_to_errno(ret); 5935 if (ret) 5936 goto err_uninit; 5937 5938 ret = netdev_register_kobject(dev); 5939 if (ret) 5940 goto err_uninit; 5941 dev->reg_state = NETREG_REGISTERED; 5942 5943 __netdev_update_features(dev); 5944 5945 /* 5946 * Default initial state at registry is that the 5947 * device is present. 5948 */ 5949 5950 set_bit(__LINK_STATE_PRESENT, &dev->state); 5951 5952 linkwatch_init_dev(dev); 5953 5954 dev_init_scheduler(dev); 5955 dev_hold(dev); 5956 list_netdevice(dev); 5957 add_device_randomness(dev->dev_addr, dev->addr_len); 5958 5959 /* If the device has permanent device address, driver should 5960 * set dev_addr and also addr_assign_type should be set to 5961 * NET_ADDR_PERM (default value). 5962 */ 5963 if (dev->addr_assign_type == NET_ADDR_PERM) 5964 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5965 5966 /* Notify protocols, that a new device appeared. */ 5967 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5968 ret = notifier_to_errno(ret); 5969 if (ret) { 5970 rollback_registered(dev); 5971 dev->reg_state = NETREG_UNREGISTERED; 5972 } 5973 /* 5974 * Prevent userspace races by waiting until the network 5975 * device is fully setup before sending notifications. 5976 */ 5977 if (!dev->rtnl_link_ops || 5978 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5979 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 5980 5981out: 5982 return ret; 5983 5984err_uninit: 5985 if (dev->netdev_ops->ndo_uninit) 5986 dev->netdev_ops->ndo_uninit(dev); 5987 goto out; 5988} 5989EXPORT_SYMBOL(register_netdevice); 5990 5991/** 5992 * init_dummy_netdev - init a dummy network device for NAPI 5993 * @dev: device to init 5994 * 5995 * This takes a network device structure and initialize the minimum 5996 * amount of fields so it can be used to schedule NAPI polls without 5997 * registering a full blown interface. This is to be used by drivers 5998 * that need to tie several hardware interfaces to a single NAPI 5999 * poll scheduler due to HW limitations. 6000 */ 6001int init_dummy_netdev(struct net_device *dev) 6002{ 6003 /* Clear everything. Note we don't initialize spinlocks 6004 * are they aren't supposed to be taken by any of the 6005 * NAPI code and this dummy netdev is supposed to be 6006 * only ever used for NAPI polls 6007 */ 6008 memset(dev, 0, sizeof(struct net_device)); 6009 6010 /* make sure we BUG if trying to hit standard 6011 * register/unregister code path 6012 */ 6013 dev->reg_state = NETREG_DUMMY; 6014 6015 /* NAPI wants this */ 6016 INIT_LIST_HEAD(&dev->napi_list); 6017 6018 /* a dummy interface is started by default */ 6019 set_bit(__LINK_STATE_PRESENT, &dev->state); 6020 set_bit(__LINK_STATE_START, &dev->state); 6021 6022 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6023 * because users of this 'device' dont need to change 6024 * its refcount. 6025 */ 6026 6027 return 0; 6028} 6029EXPORT_SYMBOL_GPL(init_dummy_netdev); 6030 6031 6032/** 6033 * register_netdev - register a network device 6034 * @dev: device to register 6035 * 6036 * Take a completed network device structure and add it to the kernel 6037 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6038 * chain. 0 is returned on success. A negative errno code is returned 6039 * on a failure to set up the device, or if the name is a duplicate. 6040 * 6041 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6042 * and expands the device name if you passed a format string to 6043 * alloc_netdev. 6044 */ 6045int register_netdev(struct net_device *dev) 6046{ 6047 int err; 6048 6049 rtnl_lock(); 6050 err = register_netdevice(dev); 6051 rtnl_unlock(); 6052 return err; 6053} 6054EXPORT_SYMBOL(register_netdev); 6055 6056int netdev_refcnt_read(const struct net_device *dev) 6057{ 6058 int i, refcnt = 0; 6059 6060 for_each_possible_cpu(i) 6061 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6062 return refcnt; 6063} 6064EXPORT_SYMBOL(netdev_refcnt_read); 6065 6066/** 6067 * netdev_wait_allrefs - wait until all references are gone. 6068 * @dev: target net_device 6069 * 6070 * This is called when unregistering network devices. 6071 * 6072 * Any protocol or device that holds a reference should register 6073 * for netdevice notification, and cleanup and put back the 6074 * reference if they receive an UNREGISTER event. 6075 * We can get stuck here if buggy protocols don't correctly 6076 * call dev_put. 6077 */ 6078static void netdev_wait_allrefs(struct net_device *dev) 6079{ 6080 unsigned long rebroadcast_time, warning_time; 6081 int refcnt; 6082 6083 linkwatch_forget_dev(dev); 6084 6085 rebroadcast_time = warning_time = jiffies; 6086 refcnt = netdev_refcnt_read(dev); 6087 6088 while (refcnt != 0) { 6089 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6090 rtnl_lock(); 6091 6092 /* Rebroadcast unregister notification */ 6093 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6094 6095 __rtnl_unlock(); 6096 rcu_barrier(); 6097 rtnl_lock(); 6098 6099 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6100 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6101 &dev->state)) { 6102 /* We must not have linkwatch events 6103 * pending on unregister. If this 6104 * happens, we simply run the queue 6105 * unscheduled, resulting in a noop 6106 * for this device. 6107 */ 6108 linkwatch_run_queue(); 6109 } 6110 6111 __rtnl_unlock(); 6112 6113 rebroadcast_time = jiffies; 6114 } 6115 6116 msleep(250); 6117 6118 refcnt = netdev_refcnt_read(dev); 6119 6120 if (time_after(jiffies, warning_time + 10 * HZ)) { 6121 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6122 dev->name, refcnt); 6123 warning_time = jiffies; 6124 } 6125 } 6126} 6127 6128/* The sequence is: 6129 * 6130 * rtnl_lock(); 6131 * ... 6132 * register_netdevice(x1); 6133 * register_netdevice(x2); 6134 * ... 6135 * unregister_netdevice(y1); 6136 * unregister_netdevice(y2); 6137 * ... 6138 * rtnl_unlock(); 6139 * free_netdev(y1); 6140 * free_netdev(y2); 6141 * 6142 * We are invoked by rtnl_unlock(). 6143 * This allows us to deal with problems: 6144 * 1) We can delete sysfs objects which invoke hotplug 6145 * without deadlocking with linkwatch via keventd. 6146 * 2) Since we run with the RTNL semaphore not held, we can sleep 6147 * safely in order to wait for the netdev refcnt to drop to zero. 6148 * 6149 * We must not return until all unregister events added during 6150 * the interval the lock was held have been completed. 6151 */ 6152void netdev_run_todo(void) 6153{ 6154 struct list_head list; 6155 6156 /* Snapshot list, allow later requests */ 6157 list_replace_init(&net_todo_list, &list); 6158 6159 __rtnl_unlock(); 6160 6161 6162 /* Wait for rcu callbacks to finish before next phase */ 6163 if (!list_empty(&list)) 6164 rcu_barrier(); 6165 6166 while (!list_empty(&list)) { 6167 struct net_device *dev 6168 = list_first_entry(&list, struct net_device, todo_list); 6169 list_del(&dev->todo_list); 6170 6171 rtnl_lock(); 6172 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6173 __rtnl_unlock(); 6174 6175 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6176 pr_err("network todo '%s' but state %d\n", 6177 dev->name, dev->reg_state); 6178 dump_stack(); 6179 continue; 6180 } 6181 6182 dev->reg_state = NETREG_UNREGISTERED; 6183 6184 on_each_cpu(flush_backlog, dev, 1); 6185 6186 netdev_wait_allrefs(dev); 6187 6188 /* paranoia */ 6189 BUG_ON(netdev_refcnt_read(dev)); 6190 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6191 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6192 WARN_ON(dev->dn_ptr); 6193 6194 if (dev->destructor) 6195 dev->destructor(dev); 6196 6197 /* Report a network device has been unregistered */ 6198 rtnl_lock(); 6199 dev_net(dev)->dev_unreg_count--; 6200 __rtnl_unlock(); 6201 wake_up(&netdev_unregistering_wq); 6202 6203 /* Free network device */ 6204 kobject_put(&dev->dev.kobj); 6205 } 6206} 6207 6208/* Convert net_device_stats to rtnl_link_stats64. They have the same 6209 * fields in the same order, with only the type differing. 6210 */ 6211void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6212 const struct net_device_stats *netdev_stats) 6213{ 6214#if BITS_PER_LONG == 64 6215 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6216 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6217#else 6218 size_t i, n = sizeof(*stats64) / sizeof(u64); 6219 const unsigned long *src = (const unsigned long *)netdev_stats; 6220 u64 *dst = (u64 *)stats64; 6221 6222 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6223 sizeof(*stats64) / sizeof(u64)); 6224 for (i = 0; i < n; i++) 6225 dst[i] = src[i]; 6226#endif 6227} 6228EXPORT_SYMBOL(netdev_stats_to_stats64); 6229 6230/** 6231 * dev_get_stats - get network device statistics 6232 * @dev: device to get statistics from 6233 * @storage: place to store stats 6234 * 6235 * Get network statistics from device. Return @storage. 6236 * The device driver may provide its own method by setting 6237 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6238 * otherwise the internal statistics structure is used. 6239 */ 6240struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6241 struct rtnl_link_stats64 *storage) 6242{ 6243 const struct net_device_ops *ops = dev->netdev_ops; 6244 6245 if (ops->ndo_get_stats64) { 6246 memset(storage, 0, sizeof(*storage)); 6247 ops->ndo_get_stats64(dev, storage); 6248 } else if (ops->ndo_get_stats) { 6249 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6250 } else { 6251 netdev_stats_to_stats64(storage, &dev->stats); 6252 } 6253 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6254 return storage; 6255} 6256EXPORT_SYMBOL(dev_get_stats); 6257 6258struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6259{ 6260 struct netdev_queue *queue = dev_ingress_queue(dev); 6261 6262#ifdef CONFIG_NET_CLS_ACT 6263 if (queue) 6264 return queue; 6265 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6266 if (!queue) 6267 return NULL; 6268 netdev_init_one_queue(dev, queue, NULL); 6269 queue->qdisc = &noop_qdisc; 6270 queue->qdisc_sleeping = &noop_qdisc; 6271 rcu_assign_pointer(dev->ingress_queue, queue); 6272#endif 6273 return queue; 6274} 6275 6276static const struct ethtool_ops default_ethtool_ops; 6277 6278void netdev_set_default_ethtool_ops(struct net_device *dev, 6279 const struct ethtool_ops *ops) 6280{ 6281 if (dev->ethtool_ops == &default_ethtool_ops) 6282 dev->ethtool_ops = ops; 6283} 6284EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6285 6286void netdev_freemem(struct net_device *dev) 6287{ 6288 char *addr = (char *)dev - dev->padded; 6289 6290 if (is_vmalloc_addr(addr)) 6291 vfree(addr); 6292 else 6293 kfree(addr); 6294} 6295 6296/** 6297 * alloc_netdev_mqs - allocate network device 6298 * @sizeof_priv: size of private data to allocate space for 6299 * @name: device name format string 6300 * @setup: callback to initialize device 6301 * @txqs: the number of TX subqueues to allocate 6302 * @rxqs: the number of RX subqueues to allocate 6303 * 6304 * Allocates a struct net_device with private data area for driver use 6305 * and performs basic initialization. Also allocates subqueue structs 6306 * for each queue on the device. 6307 */ 6308struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6309 void (*setup)(struct net_device *), 6310 unsigned int txqs, unsigned int rxqs) 6311{ 6312 struct net_device *dev; 6313 size_t alloc_size; 6314 struct net_device *p; 6315 6316 BUG_ON(strlen(name) >= sizeof(dev->name)); 6317 6318 if (txqs < 1) { 6319 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6320 return NULL; 6321 } 6322 6323#ifdef CONFIG_SYSFS 6324 if (rxqs < 1) { 6325 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6326 return NULL; 6327 } 6328#endif 6329 6330 alloc_size = sizeof(struct net_device); 6331 if (sizeof_priv) { 6332 /* ensure 32-byte alignment of private area */ 6333 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6334 alloc_size += sizeof_priv; 6335 } 6336 /* ensure 32-byte alignment of whole construct */ 6337 alloc_size += NETDEV_ALIGN - 1; 6338 6339 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6340 if (!p) 6341 p = vzalloc(alloc_size); 6342 if (!p) 6343 return NULL; 6344 6345 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6346 dev->padded = (char *)dev - (char *)p; 6347 6348 dev->pcpu_refcnt = alloc_percpu(int); 6349 if (!dev->pcpu_refcnt) 6350 goto free_dev; 6351 6352 if (dev_addr_init(dev)) 6353 goto free_pcpu; 6354 6355 dev_mc_init(dev); 6356 dev_uc_init(dev); 6357 6358 dev_net_set(dev, &init_net); 6359 6360 dev->gso_max_size = GSO_MAX_SIZE; 6361 dev->gso_max_segs = GSO_MAX_SEGS; 6362 6363 INIT_LIST_HEAD(&dev->napi_list); 6364 INIT_LIST_HEAD(&dev->unreg_list); 6365 INIT_LIST_HEAD(&dev->close_list); 6366 INIT_LIST_HEAD(&dev->link_watch_list); 6367 INIT_LIST_HEAD(&dev->adj_list.upper); 6368 INIT_LIST_HEAD(&dev->adj_list.lower); 6369 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6370 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6371 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6372 setup(dev); 6373 6374 dev->num_tx_queues = txqs; 6375 dev->real_num_tx_queues = txqs; 6376 if (netif_alloc_netdev_queues(dev)) 6377 goto free_all; 6378 6379#ifdef CONFIG_SYSFS 6380 dev->num_rx_queues = rxqs; 6381 dev->real_num_rx_queues = rxqs; 6382 if (netif_alloc_rx_queues(dev)) 6383 goto free_all; 6384#endif 6385 6386 strcpy(dev->name, name); 6387 dev->group = INIT_NETDEV_GROUP; 6388 if (!dev->ethtool_ops) 6389 dev->ethtool_ops = &default_ethtool_ops; 6390 return dev; 6391 6392free_all: 6393 free_netdev(dev); 6394 return NULL; 6395 6396free_pcpu: 6397 free_percpu(dev->pcpu_refcnt); 6398 netif_free_tx_queues(dev); 6399#ifdef CONFIG_SYSFS 6400 kfree(dev->_rx); 6401#endif 6402 6403free_dev: 6404 netdev_freemem(dev); 6405 return NULL; 6406} 6407EXPORT_SYMBOL(alloc_netdev_mqs); 6408 6409/** 6410 * free_netdev - free network device 6411 * @dev: device 6412 * 6413 * This function does the last stage of destroying an allocated device 6414 * interface. The reference to the device object is released. 6415 * If this is the last reference then it will be freed. 6416 */ 6417void free_netdev(struct net_device *dev) 6418{ 6419 struct napi_struct *p, *n; 6420 6421 release_net(dev_net(dev)); 6422 6423 netif_free_tx_queues(dev); 6424#ifdef CONFIG_SYSFS 6425 kfree(dev->_rx); 6426#endif 6427 6428 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6429 6430 /* Flush device addresses */ 6431 dev_addr_flush(dev); 6432 6433 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6434 netif_napi_del(p); 6435 6436 free_percpu(dev->pcpu_refcnt); 6437 dev->pcpu_refcnt = NULL; 6438 6439 /* Compatibility with error handling in drivers */ 6440 if (dev->reg_state == NETREG_UNINITIALIZED) { 6441 netdev_freemem(dev); 6442 return; 6443 } 6444 6445 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6446 dev->reg_state = NETREG_RELEASED; 6447 6448 /* will free via device release */ 6449 put_device(&dev->dev); 6450} 6451EXPORT_SYMBOL(free_netdev); 6452 6453/** 6454 * synchronize_net - Synchronize with packet receive processing 6455 * 6456 * Wait for packets currently being received to be done. 6457 * Does not block later packets from starting. 6458 */ 6459void synchronize_net(void) 6460{ 6461 might_sleep(); 6462 if (rtnl_is_locked()) 6463 synchronize_rcu_expedited(); 6464 else 6465 synchronize_rcu(); 6466} 6467EXPORT_SYMBOL(synchronize_net); 6468 6469/** 6470 * unregister_netdevice_queue - remove device from the kernel 6471 * @dev: device 6472 * @head: list 6473 * 6474 * This function shuts down a device interface and removes it 6475 * from the kernel tables. 6476 * If head not NULL, device is queued to be unregistered later. 6477 * 6478 * Callers must hold the rtnl semaphore. You may want 6479 * unregister_netdev() instead of this. 6480 */ 6481 6482void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6483{ 6484 ASSERT_RTNL(); 6485 6486 if (head) { 6487 list_move_tail(&dev->unreg_list, head); 6488 } else { 6489 rollback_registered(dev); 6490 /* Finish processing unregister after unlock */ 6491 net_set_todo(dev); 6492 } 6493} 6494EXPORT_SYMBOL(unregister_netdevice_queue); 6495 6496/** 6497 * unregister_netdevice_many - unregister many devices 6498 * @head: list of devices 6499 */ 6500void unregister_netdevice_many(struct list_head *head) 6501{ 6502 struct net_device *dev; 6503 6504 if (!list_empty(head)) { 6505 rollback_registered_many(head); 6506 list_for_each_entry(dev, head, unreg_list) 6507 net_set_todo(dev); 6508 } 6509} 6510EXPORT_SYMBOL(unregister_netdevice_many); 6511 6512/** 6513 * unregister_netdev - remove device from the kernel 6514 * @dev: device 6515 * 6516 * This function shuts down a device interface and removes it 6517 * from the kernel tables. 6518 * 6519 * This is just a wrapper for unregister_netdevice that takes 6520 * the rtnl semaphore. In general you want to use this and not 6521 * unregister_netdevice. 6522 */ 6523void unregister_netdev(struct net_device *dev) 6524{ 6525 rtnl_lock(); 6526 unregister_netdevice(dev); 6527 rtnl_unlock(); 6528} 6529EXPORT_SYMBOL(unregister_netdev); 6530 6531/** 6532 * dev_change_net_namespace - move device to different nethost namespace 6533 * @dev: device 6534 * @net: network namespace 6535 * @pat: If not NULL name pattern to try if the current device name 6536 * is already taken in the destination network namespace. 6537 * 6538 * This function shuts down a device interface and moves it 6539 * to a new network namespace. On success 0 is returned, on 6540 * a failure a netagive errno code is returned. 6541 * 6542 * Callers must hold the rtnl semaphore. 6543 */ 6544 6545int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6546{ 6547 int err; 6548 6549 ASSERT_RTNL(); 6550 6551 /* Don't allow namespace local devices to be moved. */ 6552 err = -EINVAL; 6553 if (dev->features & NETIF_F_NETNS_LOCAL) 6554 goto out; 6555 6556 /* Ensure the device has been registrered */ 6557 if (dev->reg_state != NETREG_REGISTERED) 6558 goto out; 6559 6560 /* Get out if there is nothing todo */ 6561 err = 0; 6562 if (net_eq(dev_net(dev), net)) 6563 goto out; 6564 6565 /* Pick the destination device name, and ensure 6566 * we can use it in the destination network namespace. 6567 */ 6568 err = -EEXIST; 6569 if (__dev_get_by_name(net, dev->name)) { 6570 /* We get here if we can't use the current device name */ 6571 if (!pat) 6572 goto out; 6573 if (dev_get_valid_name(net, dev, pat) < 0) 6574 goto out; 6575 } 6576 6577 /* 6578 * And now a mini version of register_netdevice unregister_netdevice. 6579 */ 6580 6581 /* If device is running close it first. */ 6582 dev_close(dev); 6583 6584 /* And unlink it from device chain */ 6585 err = -ENODEV; 6586 unlist_netdevice(dev); 6587 6588 synchronize_net(); 6589 6590 /* Shutdown queueing discipline. */ 6591 dev_shutdown(dev); 6592 6593 /* Notify protocols, that we are about to destroy 6594 this device. They should clean all the things. 6595 6596 Note that dev->reg_state stays at NETREG_REGISTERED. 6597 This is wanted because this way 8021q and macvlan know 6598 the device is just moving and can keep their slaves up. 6599 */ 6600 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6601 rcu_barrier(); 6602 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6603 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6604 6605 /* 6606 * Flush the unicast and multicast chains 6607 */ 6608 dev_uc_flush(dev); 6609 dev_mc_flush(dev); 6610 6611 /* Send a netdev-removed uevent to the old namespace */ 6612 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6613 6614 /* Actually switch the network namespace */ 6615 dev_net_set(dev, net); 6616 6617 /* If there is an ifindex conflict assign a new one */ 6618 if (__dev_get_by_index(net, dev->ifindex)) { 6619 int iflink = (dev->iflink == dev->ifindex); 6620 dev->ifindex = dev_new_index(net); 6621 if (iflink) 6622 dev->iflink = dev->ifindex; 6623 } 6624 6625 /* Send a netdev-add uevent to the new namespace */ 6626 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6627 6628 /* Fixup kobjects */ 6629 err = device_rename(&dev->dev, dev->name); 6630 WARN_ON(err); 6631 6632 /* Add the device back in the hashes */ 6633 list_netdevice(dev); 6634 6635 /* Notify protocols, that a new device appeared. */ 6636 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6637 6638 /* 6639 * Prevent userspace races by waiting until the network 6640 * device is fully setup before sending notifications. 6641 */ 6642 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6643 6644 synchronize_net(); 6645 err = 0; 6646out: 6647 return err; 6648} 6649EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6650 6651static int dev_cpu_callback(struct notifier_block *nfb, 6652 unsigned long action, 6653 void *ocpu) 6654{ 6655 struct sk_buff **list_skb; 6656 struct sk_buff *skb; 6657 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6658 struct softnet_data *sd, *oldsd; 6659 6660 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6661 return NOTIFY_OK; 6662 6663 local_irq_disable(); 6664 cpu = smp_processor_id(); 6665 sd = &per_cpu(softnet_data, cpu); 6666 oldsd = &per_cpu(softnet_data, oldcpu); 6667 6668 /* Find end of our completion_queue. */ 6669 list_skb = &sd->completion_queue; 6670 while (*list_skb) 6671 list_skb = &(*list_skb)->next; 6672 /* Append completion queue from offline CPU. */ 6673 *list_skb = oldsd->completion_queue; 6674 oldsd->completion_queue = NULL; 6675 6676 /* Append output queue from offline CPU. */ 6677 if (oldsd->output_queue) { 6678 *sd->output_queue_tailp = oldsd->output_queue; 6679 sd->output_queue_tailp = oldsd->output_queue_tailp; 6680 oldsd->output_queue = NULL; 6681 oldsd->output_queue_tailp = &oldsd->output_queue; 6682 } 6683 /* Append NAPI poll list from offline CPU. */ 6684 if (!list_empty(&oldsd->poll_list)) { 6685 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6686 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6687 } 6688 6689 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6690 local_irq_enable(); 6691 6692 /* Process offline CPU's input_pkt_queue */ 6693 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6694 netif_rx_internal(skb); 6695 input_queue_head_incr(oldsd); 6696 } 6697 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6698 netif_rx_internal(skb); 6699 input_queue_head_incr(oldsd); 6700 } 6701 6702 return NOTIFY_OK; 6703} 6704 6705 6706/** 6707 * netdev_increment_features - increment feature set by one 6708 * @all: current feature set 6709 * @one: new feature set 6710 * @mask: mask feature set 6711 * 6712 * Computes a new feature set after adding a device with feature set 6713 * @one to the master device with current feature set @all. Will not 6714 * enable anything that is off in @mask. Returns the new feature set. 6715 */ 6716netdev_features_t netdev_increment_features(netdev_features_t all, 6717 netdev_features_t one, netdev_features_t mask) 6718{ 6719 if (mask & NETIF_F_GEN_CSUM) 6720 mask |= NETIF_F_ALL_CSUM; 6721 mask |= NETIF_F_VLAN_CHALLENGED; 6722 6723 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6724 all &= one | ~NETIF_F_ALL_FOR_ALL; 6725 6726 /* If one device supports hw checksumming, set for all. */ 6727 if (all & NETIF_F_GEN_CSUM) 6728 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6729 6730 return all; 6731} 6732EXPORT_SYMBOL(netdev_increment_features); 6733 6734static struct hlist_head * __net_init netdev_create_hash(void) 6735{ 6736 int i; 6737 struct hlist_head *hash; 6738 6739 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6740 if (hash != NULL) 6741 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6742 INIT_HLIST_HEAD(&hash[i]); 6743 6744 return hash; 6745} 6746 6747/* Initialize per network namespace state */ 6748static int __net_init netdev_init(struct net *net) 6749{ 6750 if (net != &init_net) 6751 INIT_LIST_HEAD(&net->dev_base_head); 6752 6753 net->dev_name_head = netdev_create_hash(); 6754 if (net->dev_name_head == NULL) 6755 goto err_name; 6756 6757 net->dev_index_head = netdev_create_hash(); 6758 if (net->dev_index_head == NULL) 6759 goto err_idx; 6760 6761 return 0; 6762 6763err_idx: 6764 kfree(net->dev_name_head); 6765err_name: 6766 return -ENOMEM; 6767} 6768 6769/** 6770 * netdev_drivername - network driver for the device 6771 * @dev: network device 6772 * 6773 * Determine network driver for device. 6774 */ 6775const char *netdev_drivername(const struct net_device *dev) 6776{ 6777 const struct device_driver *driver; 6778 const struct device *parent; 6779 const char *empty = ""; 6780 6781 parent = dev->dev.parent; 6782 if (!parent) 6783 return empty; 6784 6785 driver = parent->driver; 6786 if (driver && driver->name) 6787 return driver->name; 6788 return empty; 6789} 6790 6791static int __netdev_printk(const char *level, const struct net_device *dev, 6792 struct va_format *vaf) 6793{ 6794 int r; 6795 6796 if (dev && dev->dev.parent) { 6797 r = dev_printk_emit(level[1] - '0', 6798 dev->dev.parent, 6799 "%s %s %s: %pV", 6800 dev_driver_string(dev->dev.parent), 6801 dev_name(dev->dev.parent), 6802 netdev_name(dev), vaf); 6803 } else if (dev) { 6804 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6805 } else { 6806 r = printk("%s(NULL net_device): %pV", level, vaf); 6807 } 6808 6809 return r; 6810} 6811 6812int netdev_printk(const char *level, const struct net_device *dev, 6813 const char *format, ...) 6814{ 6815 struct va_format vaf; 6816 va_list args; 6817 int r; 6818 6819 va_start(args, format); 6820 6821 vaf.fmt = format; 6822 vaf.va = &args; 6823 6824 r = __netdev_printk(level, dev, &vaf); 6825 6826 va_end(args); 6827 6828 return r; 6829} 6830EXPORT_SYMBOL(netdev_printk); 6831 6832#define define_netdev_printk_level(func, level) \ 6833int func(const struct net_device *dev, const char *fmt, ...) \ 6834{ \ 6835 int r; \ 6836 struct va_format vaf; \ 6837 va_list args; \ 6838 \ 6839 va_start(args, fmt); \ 6840 \ 6841 vaf.fmt = fmt; \ 6842 vaf.va = &args; \ 6843 \ 6844 r = __netdev_printk(level, dev, &vaf); \ 6845 \ 6846 va_end(args); \ 6847 \ 6848 return r; \ 6849} \ 6850EXPORT_SYMBOL(func); 6851 6852define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6853define_netdev_printk_level(netdev_alert, KERN_ALERT); 6854define_netdev_printk_level(netdev_crit, KERN_CRIT); 6855define_netdev_printk_level(netdev_err, KERN_ERR); 6856define_netdev_printk_level(netdev_warn, KERN_WARNING); 6857define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6858define_netdev_printk_level(netdev_info, KERN_INFO); 6859 6860static void __net_exit netdev_exit(struct net *net) 6861{ 6862 kfree(net->dev_name_head); 6863 kfree(net->dev_index_head); 6864} 6865 6866static struct pernet_operations __net_initdata netdev_net_ops = { 6867 .init = netdev_init, 6868 .exit = netdev_exit, 6869}; 6870 6871static void __net_exit default_device_exit(struct net *net) 6872{ 6873 struct net_device *dev, *aux; 6874 /* 6875 * Push all migratable network devices back to the 6876 * initial network namespace 6877 */ 6878 rtnl_lock(); 6879 for_each_netdev_safe(net, dev, aux) { 6880 int err; 6881 char fb_name[IFNAMSIZ]; 6882 6883 /* Ignore unmoveable devices (i.e. loopback) */ 6884 if (dev->features & NETIF_F_NETNS_LOCAL) 6885 continue; 6886 6887 /* Leave virtual devices for the generic cleanup */ 6888 if (dev->rtnl_link_ops) 6889 continue; 6890 6891 /* Push remaining network devices to init_net */ 6892 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6893 err = dev_change_net_namespace(dev, &init_net, fb_name); 6894 if (err) { 6895 pr_emerg("%s: failed to move %s to init_net: %d\n", 6896 __func__, dev->name, err); 6897 BUG(); 6898 } 6899 } 6900 rtnl_unlock(); 6901} 6902 6903static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6904{ 6905 /* Return with the rtnl_lock held when there are no network 6906 * devices unregistering in any network namespace in net_list. 6907 */ 6908 struct net *net; 6909 bool unregistering; 6910 DEFINE_WAIT(wait); 6911 6912 for (;;) { 6913 prepare_to_wait(&netdev_unregistering_wq, &wait, 6914 TASK_UNINTERRUPTIBLE); 6915 unregistering = false; 6916 rtnl_lock(); 6917 list_for_each_entry(net, net_list, exit_list) { 6918 if (net->dev_unreg_count > 0) { 6919 unregistering = true; 6920 break; 6921 } 6922 } 6923 if (!unregistering) 6924 break; 6925 __rtnl_unlock(); 6926 schedule(); 6927 } 6928 finish_wait(&netdev_unregistering_wq, &wait); 6929} 6930 6931static void __net_exit default_device_exit_batch(struct list_head *net_list) 6932{ 6933 /* At exit all network devices most be removed from a network 6934 * namespace. Do this in the reverse order of registration. 6935 * Do this across as many network namespaces as possible to 6936 * improve batching efficiency. 6937 */ 6938 struct net_device *dev; 6939 struct net *net; 6940 LIST_HEAD(dev_kill_list); 6941 6942 /* To prevent network device cleanup code from dereferencing 6943 * loopback devices or network devices that have been freed 6944 * wait here for all pending unregistrations to complete, 6945 * before unregistring the loopback device and allowing the 6946 * network namespace be freed. 6947 * 6948 * The netdev todo list containing all network devices 6949 * unregistrations that happen in default_device_exit_batch 6950 * will run in the rtnl_unlock() at the end of 6951 * default_device_exit_batch. 6952 */ 6953 rtnl_lock_unregistering(net_list); 6954 list_for_each_entry(net, net_list, exit_list) { 6955 for_each_netdev_reverse(net, dev) { 6956 if (dev->rtnl_link_ops) 6957 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6958 else 6959 unregister_netdevice_queue(dev, &dev_kill_list); 6960 } 6961 } 6962 unregister_netdevice_many(&dev_kill_list); 6963 list_del(&dev_kill_list); 6964 rtnl_unlock(); 6965} 6966 6967static struct pernet_operations __net_initdata default_device_ops = { 6968 .exit = default_device_exit, 6969 .exit_batch = default_device_exit_batch, 6970}; 6971 6972/* 6973 * Initialize the DEV module. At boot time this walks the device list and 6974 * unhooks any devices that fail to initialise (normally hardware not 6975 * present) and leaves us with a valid list of present and active devices. 6976 * 6977 */ 6978 6979/* 6980 * This is called single threaded during boot, so no need 6981 * to take the rtnl semaphore. 6982 */ 6983static int __init net_dev_init(void) 6984{ 6985 int i, rc = -ENOMEM; 6986 6987 BUG_ON(!dev_boot_phase); 6988 6989 if (dev_proc_init()) 6990 goto out; 6991 6992 if (netdev_kobject_init()) 6993 goto out; 6994 6995 INIT_LIST_HEAD(&ptype_all); 6996 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6997 INIT_LIST_HEAD(&ptype_base[i]); 6998 6999 INIT_LIST_HEAD(&offload_base); 7000 7001 if (register_pernet_subsys(&netdev_net_ops)) 7002 goto out; 7003 7004 /* 7005 * Initialise the packet receive queues. 7006 */ 7007 7008 for_each_possible_cpu(i) { 7009 struct softnet_data *sd = &per_cpu(softnet_data, i); 7010 7011 skb_queue_head_init(&sd->input_pkt_queue); 7012 skb_queue_head_init(&sd->process_queue); 7013 INIT_LIST_HEAD(&sd->poll_list); 7014 sd->output_queue_tailp = &sd->output_queue; 7015#ifdef CONFIG_RPS 7016 sd->csd.func = rps_trigger_softirq; 7017 sd->csd.info = sd; 7018 sd->cpu = i; 7019#endif 7020 7021 sd->backlog.poll = process_backlog; 7022 sd->backlog.weight = weight_p; 7023 } 7024 7025 dev_boot_phase = 0; 7026 7027 /* The loopback device is special if any other network devices 7028 * is present in a network namespace the loopback device must 7029 * be present. Since we now dynamically allocate and free the 7030 * loopback device ensure this invariant is maintained by 7031 * keeping the loopback device as the first device on the 7032 * list of network devices. Ensuring the loopback devices 7033 * is the first device that appears and the last network device 7034 * that disappears. 7035 */ 7036 if (register_pernet_device(&loopback_net_ops)) 7037 goto out; 7038 7039 if (register_pernet_device(&default_device_ops)) 7040 goto out; 7041 7042 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7043 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7044 7045 hotcpu_notifier(dev_cpu_callback, 0); 7046 dst_init(); 7047 rc = 0; 7048out: 7049 return rc; 7050} 7051 7052subsys_initcall(net_dev_init);