at v3.14 72 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 int extralen; 81 unsigned char *extra; /* Extra descriptors */ 82 83 /* array of desc.bNumEndpoint endpoints associated with this 84 * interface setting. these will be in no particular order. 85 */ 86 struct usb_host_endpoint *endpoint; 87 88 char *string; /* iInterface string, if present */ 89}; 90 91enum usb_interface_condition { 92 USB_INTERFACE_UNBOUND = 0, 93 USB_INTERFACE_BINDING, 94 USB_INTERFACE_BOUND, 95 USB_INTERFACE_UNBINDING, 96}; 97 98/** 99 * struct usb_interface - what usb device drivers talk to 100 * @altsetting: array of interface structures, one for each alternate 101 * setting that may be selected. Each one includes a set of 102 * endpoint configurations. They will be in no particular order. 103 * @cur_altsetting: the current altsetting. 104 * @num_altsetting: number of altsettings defined. 105 * @intf_assoc: interface association descriptor 106 * @minor: the minor number assigned to this interface, if this 107 * interface is bound to a driver that uses the USB major number. 108 * If this interface does not use the USB major, this field should 109 * be unused. The driver should set this value in the probe() 110 * function of the driver, after it has been assigned a minor 111 * number from the USB core by calling usb_register_dev(). 112 * @condition: binding state of the interface: not bound, binding 113 * (in probe()), bound to a driver, or unbinding (in disconnect()) 114 * @sysfs_files_created: sysfs attributes exist 115 * @ep_devs_created: endpoint child pseudo-devices exist 116 * @unregistering: flag set when the interface is being unregistered 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 118 * capability during autosuspend. 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 120 * has been deferred. 121 * @needs_binding: flag set when the driver should be re-probed or unbound 122 * following a reset or suspend operation it doesn't support. 123 * @dev: driver model's view of this device 124 * @usb_dev: if an interface is bound to the USB major, this will point 125 * to the sysfs representation for that device. 126 * @pm_usage_cnt: PM usage counter for this interface 127 * @reset_ws: Used for scheduling resets from atomic context. 128 * @reset_running: set to 1 if the interface is currently running a 129 * queued reset so that usb_cancel_queued_reset() doesn't try to 130 * remove from the workqueue when running inside the worker 131 * thread. See __usb_queue_reset_device(). 132 * @resetting_device: USB core reset the device, so use alt setting 0 as 133 * current; needs bandwidth alloc after reset. 134 * 135 * USB device drivers attach to interfaces on a physical device. Each 136 * interface encapsulates a single high level function, such as feeding 137 * an audio stream to a speaker or reporting a change in a volume control. 138 * Many USB devices only have one interface. The protocol used to talk to 139 * an interface's endpoints can be defined in a usb "class" specification, 140 * or by a product's vendor. The (default) control endpoint is part of 141 * every interface, but is never listed among the interface's descriptors. 142 * 143 * The driver that is bound to the interface can use standard driver model 144 * calls such as dev_get_drvdata() on the dev member of this structure. 145 * 146 * Each interface may have alternate settings. The initial configuration 147 * of a device sets altsetting 0, but the device driver can change 148 * that setting using usb_set_interface(). Alternate settings are often 149 * used to control the use of periodic endpoints, such as by having 150 * different endpoints use different amounts of reserved USB bandwidth. 151 * All standards-conformant USB devices that use isochronous endpoints 152 * will use them in non-default settings. 153 * 154 * The USB specification says that alternate setting numbers must run from 155 * 0 to one less than the total number of alternate settings. But some 156 * devices manage to mess this up, and the structures aren't necessarily 157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 158 * look up an alternate setting in the altsetting array based on its number. 159 */ 160struct usb_interface { 161 /* array of alternate settings for this interface, 162 * stored in no particular order */ 163 struct usb_host_interface *altsetting; 164 165 struct usb_host_interface *cur_altsetting; /* the currently 166 * active alternate setting */ 167 unsigned num_altsetting; /* number of alternate settings */ 168 169 /* If there is an interface association descriptor then it will list 170 * the associated interfaces */ 171 struct usb_interface_assoc_descriptor *intf_assoc; 172 173 int minor; /* minor number this interface is 174 * bound to */ 175 enum usb_interface_condition condition; /* state of binding */ 176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 177 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 178 unsigned unregistering:1; /* unregistration is in progress */ 179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 181 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 182 unsigned reset_running:1; 183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 184 185 struct device dev; /* interface specific device info */ 186 struct device *usb_dev; 187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 188 struct work_struct reset_ws; /* for resets in atomic context */ 189}; 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 191 192static inline void *usb_get_intfdata(struct usb_interface *intf) 193{ 194 return dev_get_drvdata(&intf->dev); 195} 196 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 198{ 199 dev_set_drvdata(&intf->dev, data); 200} 201 202struct usb_interface *usb_get_intf(struct usb_interface *intf); 203void usb_put_intf(struct usb_interface *intf); 204 205/* this maximum is arbitrary */ 206#define USB_MAXINTERFACES 32 207#define USB_MAXIADS (USB_MAXINTERFACES/2) 208 209/** 210 * struct usb_interface_cache - long-term representation of a device interface 211 * @num_altsetting: number of altsettings defined. 212 * @ref: reference counter. 213 * @altsetting: variable-length array of interface structures, one for 214 * each alternate setting that may be selected. Each one includes a 215 * set of endpoint configurations. They will be in no particular order. 216 * 217 * These structures persist for the lifetime of a usb_device, unlike 218 * struct usb_interface (which persists only as long as its configuration 219 * is installed). The altsetting arrays can be accessed through these 220 * structures at any time, permitting comparison of configurations and 221 * providing support for the /proc/bus/usb/devices pseudo-file. 222 */ 223struct usb_interface_cache { 224 unsigned num_altsetting; /* number of alternate settings */ 225 struct kref ref; /* reference counter */ 226 227 /* variable-length array of alternate settings for this interface, 228 * stored in no particular order */ 229 struct usb_host_interface altsetting[0]; 230}; 231#define ref_to_usb_interface_cache(r) \ 232 container_of(r, struct usb_interface_cache, ref) 233#define altsetting_to_usb_interface_cache(a) \ 234 container_of(a, struct usb_interface_cache, altsetting[0]) 235 236/** 237 * struct usb_host_config - representation of a device's configuration 238 * @desc: the device's configuration descriptor. 239 * @string: pointer to the cached version of the iConfiguration string, if 240 * present for this configuration. 241 * @intf_assoc: list of any interface association descriptors in this config 242 * @interface: array of pointers to usb_interface structures, one for each 243 * interface in the configuration. The number of interfaces is stored 244 * in desc.bNumInterfaces. These pointers are valid only while the 245 * the configuration is active. 246 * @intf_cache: array of pointers to usb_interface_cache structures, one 247 * for each interface in the configuration. These structures exist 248 * for the entire life of the device. 249 * @extra: pointer to buffer containing all extra descriptors associated 250 * with this configuration (those preceding the first interface 251 * descriptor). 252 * @extralen: length of the extra descriptors buffer. 253 * 254 * USB devices may have multiple configurations, but only one can be active 255 * at any time. Each encapsulates a different operational environment; 256 * for example, a dual-speed device would have separate configurations for 257 * full-speed and high-speed operation. The number of configurations 258 * available is stored in the device descriptor as bNumConfigurations. 259 * 260 * A configuration can contain multiple interfaces. Each corresponds to 261 * a different function of the USB device, and all are available whenever 262 * the configuration is active. The USB standard says that interfaces 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 264 * of devices get this wrong. In addition, the interface array is not 265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 266 * look up an interface entry based on its number. 267 * 268 * Device drivers should not attempt to activate configurations. The choice 269 * of which configuration to install is a policy decision based on such 270 * considerations as available power, functionality provided, and the user's 271 * desires (expressed through userspace tools). However, drivers can call 272 * usb_reset_configuration() to reinitialize the current configuration and 273 * all its interfaces. 274 */ 275struct usb_host_config { 276 struct usb_config_descriptor desc; 277 278 char *string; /* iConfiguration string, if present */ 279 280 /* List of any Interface Association Descriptors in this 281 * configuration. */ 282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 283 284 /* the interfaces associated with this configuration, 285 * stored in no particular order */ 286 struct usb_interface *interface[USB_MAXINTERFACES]; 287 288 /* Interface information available even when this is not the 289 * active configuration */ 290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 291 292 unsigned char *extra; /* Extra descriptors */ 293 int extralen; 294}; 295 296/* USB2.0 and USB3.0 device BOS descriptor set */ 297struct usb_host_bos { 298 struct usb_bos_descriptor *desc; 299 300 /* wireless cap descriptor is handled by wusb */ 301 struct usb_ext_cap_descriptor *ext_cap; 302 struct usb_ss_cap_descriptor *ss_cap; 303 struct usb_ss_container_id_descriptor *ss_id; 304}; 305 306int __usb_get_extra_descriptor(char *buffer, unsigned size, 307 unsigned char type, void **ptr); 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 309 __usb_get_extra_descriptor((ifpoint)->extra, \ 310 (ifpoint)->extralen, \ 311 type, (void **)ptr) 312 313/* ----------------------------------------------------------------------- */ 314 315/* USB device number allocation bitmap */ 316struct usb_devmap { 317 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 318}; 319 320/* 321 * Allocated per bus (tree of devices) we have: 322 */ 323struct usb_bus { 324 struct device *controller; /* host/master side hardware */ 325 int busnum; /* Bus number (in order of reg) */ 326 const char *bus_name; /* stable id (PCI slot_name etc) */ 327 u8 uses_dma; /* Does the host controller use DMA? */ 328 u8 uses_pio_for_control; /* 329 * Does the host controller use PIO 330 * for control transfers? 331 */ 332 u8 otg_port; /* 0, or number of OTG/HNP port */ 333 unsigned is_b_host:1; /* true during some HNP roleswitches */ 334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 335 unsigned no_stop_on_short:1; /* 336 * Quirk: some controllers don't stop 337 * the ep queue on a short transfer 338 * with the URB_SHORT_NOT_OK flag set. 339 */ 340 unsigned no_sg_constraint:1; /* no sg constraint */ 341 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 342 343 int devnum_next; /* Next open device number in 344 * round-robin allocation */ 345 346 struct usb_devmap devmap; /* device address allocation map */ 347 struct usb_device *root_hub; /* Root hub */ 348 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 349 struct list_head bus_list; /* list of busses */ 350 351 int bandwidth_allocated; /* on this bus: how much of the time 352 * reserved for periodic (intr/iso) 353 * requests is used, on average? 354 * Units: microseconds/frame. 355 * Limits: Full/low speed reserve 90%, 356 * while high speed reserves 80%. 357 */ 358 int bandwidth_int_reqs; /* number of Interrupt requests */ 359 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 360 361 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 362 363#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 364 struct mon_bus *mon_bus; /* non-null when associated */ 365 int monitored; /* non-zero when monitored */ 366#endif 367}; 368 369/* ----------------------------------------------------------------------- */ 370 371struct usb_tt; 372 373enum usb_device_removable { 374 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 375 USB_DEVICE_REMOVABLE, 376 USB_DEVICE_FIXED, 377}; 378 379enum usb_port_connect_type { 380 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 381 USB_PORT_CONNECT_TYPE_HOT_PLUG, 382 USB_PORT_CONNECT_TYPE_HARD_WIRED, 383 USB_PORT_NOT_USED, 384}; 385 386/* 387 * USB 2.0 Link Power Management (LPM) parameters. 388 */ 389struct usb2_lpm_parameters { 390 /* Best effort service latency indicate how long the host will drive 391 * resume on an exit from L1. 392 */ 393 unsigned int besl; 394 395 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 396 * When the timer counts to zero, the parent hub will initiate a LPM 397 * transition to L1. 398 */ 399 int timeout; 400}; 401 402/* 403 * USB 3.0 Link Power Management (LPM) parameters. 404 * 405 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 406 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 407 * All three are stored in nanoseconds. 408 */ 409struct usb3_lpm_parameters { 410 /* 411 * Maximum exit latency (MEL) for the host to send a packet to the 412 * device (either a Ping for isoc endpoints, or a data packet for 413 * interrupt endpoints), the hubs to decode the packet, and for all hubs 414 * in the path to transition the links to U0. 415 */ 416 unsigned int mel; 417 /* 418 * Maximum exit latency for a device-initiated LPM transition to bring 419 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 420 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 421 */ 422 unsigned int pel; 423 424 /* 425 * The System Exit Latency (SEL) includes PEL, and three other 426 * latencies. After a device initiates a U0 transition, it will take 427 * some time from when the device sends the ERDY to when it will finally 428 * receive the data packet. Basically, SEL should be the worse-case 429 * latency from when a device starts initiating a U0 transition to when 430 * it will get data. 431 */ 432 unsigned int sel; 433 /* 434 * The idle timeout value that is currently programmed into the parent 435 * hub for this device. When the timer counts to zero, the parent hub 436 * will initiate an LPM transition to either U1 or U2. 437 */ 438 int timeout; 439}; 440 441/** 442 * struct usb_device - kernel's representation of a USB device 443 * @devnum: device number; address on a USB bus 444 * @devpath: device ID string for use in messages (e.g., /port/...) 445 * @route: tree topology hex string for use with xHCI 446 * @state: device state: configured, not attached, etc. 447 * @speed: device speed: high/full/low (or error) 448 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 449 * @ttport: device port on that tt hub 450 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 451 * @parent: our hub, unless we're the root 452 * @bus: bus we're part of 453 * @ep0: endpoint 0 data (default control pipe) 454 * @dev: generic device interface 455 * @descriptor: USB device descriptor 456 * @bos: USB device BOS descriptor set 457 * @config: all of the device's configs 458 * @actconfig: the active configuration 459 * @ep_in: array of IN endpoints 460 * @ep_out: array of OUT endpoints 461 * @rawdescriptors: raw descriptors for each config 462 * @bus_mA: Current available from the bus 463 * @portnum: parent port number (origin 1) 464 * @level: number of USB hub ancestors 465 * @can_submit: URBs may be submitted 466 * @persist_enabled: USB_PERSIST enabled for this device 467 * @have_langid: whether string_langid is valid 468 * @authorized: policy has said we can use it; 469 * (user space) policy determines if we authorize this device to be 470 * used or not. By default, wired USB devices are authorized. 471 * WUSB devices are not, until we authorize them from user space. 472 * FIXME -- complete doc 473 * @authenticated: Crypto authentication passed 474 * @wusb: device is Wireless USB 475 * @lpm_capable: device supports LPM 476 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 477 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 478 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 479 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 480 * @usb3_lpm_enabled: USB3 hardware LPM enabled 481 * @string_langid: language ID for strings 482 * @product: iProduct string, if present (static) 483 * @manufacturer: iManufacturer string, if present (static) 484 * @serial: iSerialNumber string, if present (static) 485 * @filelist: usbfs files that are open to this device 486 * @maxchild: number of ports if hub 487 * @quirks: quirks of the whole device 488 * @urbnum: number of URBs submitted for the whole device 489 * @active_duration: total time device is not suspended 490 * @connect_time: time device was first connected 491 * @do_remote_wakeup: remote wakeup should be enabled 492 * @reset_resume: needs reset instead of resume 493 * @port_is_suspended: the upstream port is suspended (L2 or U3) 494 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 495 * specific data for the device. 496 * @slot_id: Slot ID assigned by xHCI 497 * @removable: Device can be physically removed from this port 498 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 499 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 500 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 501 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 502 * to keep track of the number of functions that require USB 3.0 Link Power 503 * Management to be disabled for this usb_device. This count should only 504 * be manipulated by those functions, with the bandwidth_mutex is held. 505 * 506 * Notes: 507 * Usbcore drivers should not set usbdev->state directly. Instead use 508 * usb_set_device_state(). 509 */ 510struct usb_device { 511 int devnum; 512 char devpath[16]; 513 u32 route; 514 enum usb_device_state state; 515 enum usb_device_speed speed; 516 517 struct usb_tt *tt; 518 int ttport; 519 520 unsigned int toggle[2]; 521 522 struct usb_device *parent; 523 struct usb_bus *bus; 524 struct usb_host_endpoint ep0; 525 526 struct device dev; 527 528 struct usb_device_descriptor descriptor; 529 struct usb_host_bos *bos; 530 struct usb_host_config *config; 531 532 struct usb_host_config *actconfig; 533 struct usb_host_endpoint *ep_in[16]; 534 struct usb_host_endpoint *ep_out[16]; 535 536 char **rawdescriptors; 537 538 unsigned short bus_mA; 539 u8 portnum; 540 u8 level; 541 542 unsigned can_submit:1; 543 unsigned persist_enabled:1; 544 unsigned have_langid:1; 545 unsigned authorized:1; 546 unsigned authenticated:1; 547 unsigned wusb:1; 548 unsigned lpm_capable:1; 549 unsigned usb2_hw_lpm_capable:1; 550 unsigned usb2_hw_lpm_besl_capable:1; 551 unsigned usb2_hw_lpm_enabled:1; 552 unsigned usb2_hw_lpm_allowed:1; 553 unsigned usb3_lpm_enabled:1; 554 int string_langid; 555 556 /* static strings from the device */ 557 char *product; 558 char *manufacturer; 559 char *serial; 560 561 struct list_head filelist; 562 563 int maxchild; 564 565 u32 quirks; 566 atomic_t urbnum; 567 568 unsigned long active_duration; 569 570#ifdef CONFIG_PM 571 unsigned long connect_time; 572 573 unsigned do_remote_wakeup:1; 574 unsigned reset_resume:1; 575 unsigned port_is_suspended:1; 576#endif 577 struct wusb_dev *wusb_dev; 578 int slot_id; 579 enum usb_device_removable removable; 580 struct usb2_lpm_parameters l1_params; 581 struct usb3_lpm_parameters u1_params; 582 struct usb3_lpm_parameters u2_params; 583 unsigned lpm_disable_count; 584}; 585#define to_usb_device(d) container_of(d, struct usb_device, dev) 586 587static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 588{ 589 return to_usb_device(intf->dev.parent); 590} 591 592extern struct usb_device *usb_get_dev(struct usb_device *dev); 593extern void usb_put_dev(struct usb_device *dev); 594extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 595 int port1); 596 597/** 598 * usb_hub_for_each_child - iterate over all child devices on the hub 599 * @hdev: USB device belonging to the usb hub 600 * @port1: portnum associated with child device 601 * @child: child device pointer 602 */ 603#define usb_hub_for_each_child(hdev, port1, child) \ 604 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 605 port1 <= hdev->maxchild; \ 606 child = usb_hub_find_child(hdev, ++port1)) \ 607 if (!child) continue; else 608 609/* USB device locking */ 610#define usb_lock_device(udev) device_lock(&(udev)->dev) 611#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 612#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 613extern int usb_lock_device_for_reset(struct usb_device *udev, 614 const struct usb_interface *iface); 615 616/* USB port reset for device reinitialization */ 617extern int usb_reset_device(struct usb_device *dev); 618extern void usb_queue_reset_device(struct usb_interface *dev); 619 620#ifdef CONFIG_ACPI 621extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 622 bool enable); 623extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 624#else 625static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 626 bool enable) { return 0; } 627static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 628 { return true; } 629#endif 630 631/* USB autosuspend and autoresume */ 632#ifdef CONFIG_PM_RUNTIME 633extern void usb_enable_autosuspend(struct usb_device *udev); 634extern void usb_disable_autosuspend(struct usb_device *udev); 635 636extern int usb_autopm_get_interface(struct usb_interface *intf); 637extern void usb_autopm_put_interface(struct usb_interface *intf); 638extern int usb_autopm_get_interface_async(struct usb_interface *intf); 639extern void usb_autopm_put_interface_async(struct usb_interface *intf); 640extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 641extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 642 643static inline void usb_mark_last_busy(struct usb_device *udev) 644{ 645 pm_runtime_mark_last_busy(&udev->dev); 646} 647 648#else 649 650static inline int usb_enable_autosuspend(struct usb_device *udev) 651{ return 0; } 652static inline int usb_disable_autosuspend(struct usb_device *udev) 653{ return 0; } 654 655static inline int usb_autopm_get_interface(struct usb_interface *intf) 656{ return 0; } 657static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 658{ return 0; } 659 660static inline void usb_autopm_put_interface(struct usb_interface *intf) 661{ } 662static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 663{ } 664static inline void usb_autopm_get_interface_no_resume( 665 struct usb_interface *intf) 666{ } 667static inline void usb_autopm_put_interface_no_suspend( 668 struct usb_interface *intf) 669{ } 670static inline void usb_mark_last_busy(struct usb_device *udev) 671{ } 672#endif 673 674extern int usb_disable_lpm(struct usb_device *udev); 675extern void usb_enable_lpm(struct usb_device *udev); 676/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 677extern int usb_unlocked_disable_lpm(struct usb_device *udev); 678extern void usb_unlocked_enable_lpm(struct usb_device *udev); 679 680extern int usb_disable_ltm(struct usb_device *udev); 681extern void usb_enable_ltm(struct usb_device *udev); 682 683static inline bool usb_device_supports_ltm(struct usb_device *udev) 684{ 685 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 686 return false; 687 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 688} 689 690static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 691{ 692 return udev && udev->bus && udev->bus->no_sg_constraint; 693} 694 695 696/*-------------------------------------------------------------------------*/ 697 698/* for drivers using iso endpoints */ 699extern int usb_get_current_frame_number(struct usb_device *usb_dev); 700 701/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 702extern int usb_alloc_streams(struct usb_interface *interface, 703 struct usb_host_endpoint **eps, unsigned int num_eps, 704 unsigned int num_streams, gfp_t mem_flags); 705 706/* Reverts a group of bulk endpoints back to not using stream IDs. */ 707extern int usb_free_streams(struct usb_interface *interface, 708 struct usb_host_endpoint **eps, unsigned int num_eps, 709 gfp_t mem_flags); 710 711/* used these for multi-interface device registration */ 712extern int usb_driver_claim_interface(struct usb_driver *driver, 713 struct usb_interface *iface, void *priv); 714 715/** 716 * usb_interface_claimed - returns true iff an interface is claimed 717 * @iface: the interface being checked 718 * 719 * Return: %true (nonzero) iff the interface is claimed, else %false 720 * (zero). 721 * 722 * Note: 723 * Callers must own the driver model's usb bus readlock. So driver 724 * probe() entries don't need extra locking, but other call contexts 725 * may need to explicitly claim that lock. 726 * 727 */ 728static inline int usb_interface_claimed(struct usb_interface *iface) 729{ 730 return (iface->dev.driver != NULL); 731} 732 733extern void usb_driver_release_interface(struct usb_driver *driver, 734 struct usb_interface *iface); 735const struct usb_device_id *usb_match_id(struct usb_interface *interface, 736 const struct usb_device_id *id); 737extern int usb_match_one_id(struct usb_interface *interface, 738 const struct usb_device_id *id); 739 740extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 741extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 742 int minor); 743extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 744 unsigned ifnum); 745extern struct usb_host_interface *usb_altnum_to_altsetting( 746 const struct usb_interface *intf, unsigned int altnum); 747extern struct usb_host_interface *usb_find_alt_setting( 748 struct usb_host_config *config, 749 unsigned int iface_num, 750 unsigned int alt_num); 751 752 753/** 754 * usb_make_path - returns stable device path in the usb tree 755 * @dev: the device whose path is being constructed 756 * @buf: where to put the string 757 * @size: how big is "buf"? 758 * 759 * Return: Length of the string (> 0) or negative if size was too small. 760 * 761 * Note: 762 * This identifier is intended to be "stable", reflecting physical paths in 763 * hardware such as physical bus addresses for host controllers or ports on 764 * USB hubs. That makes it stay the same until systems are physically 765 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 766 * controllers. Adding and removing devices, including virtual root hubs 767 * in host controller driver modules, does not change these path identifiers; 768 * neither does rebooting or re-enumerating. These are more useful identifiers 769 * than changeable ("unstable") ones like bus numbers or device addresses. 770 * 771 * With a partial exception for devices connected to USB 2.0 root hubs, these 772 * identifiers are also predictable. So long as the device tree isn't changed, 773 * plugging any USB device into a given hub port always gives it the same path. 774 * Because of the use of "companion" controllers, devices connected to ports on 775 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 776 * high speed, and a different one if they are full or low speed. 777 */ 778static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 779{ 780 int actual; 781 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 782 dev->devpath); 783 return (actual >= (int)size) ? -1 : actual; 784} 785 786/*-------------------------------------------------------------------------*/ 787 788#define USB_DEVICE_ID_MATCH_DEVICE \ 789 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 790#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 791 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 792#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 793 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 794#define USB_DEVICE_ID_MATCH_DEV_INFO \ 795 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 796 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 797 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 798#define USB_DEVICE_ID_MATCH_INT_INFO \ 799 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 800 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 801 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 802 803/** 804 * USB_DEVICE - macro used to describe a specific usb device 805 * @vend: the 16 bit USB Vendor ID 806 * @prod: the 16 bit USB Product ID 807 * 808 * This macro is used to create a struct usb_device_id that matches a 809 * specific device. 810 */ 811#define USB_DEVICE(vend, prod) \ 812 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 813 .idVendor = (vend), \ 814 .idProduct = (prod) 815/** 816 * USB_DEVICE_VER - describe a specific usb device with a version range 817 * @vend: the 16 bit USB Vendor ID 818 * @prod: the 16 bit USB Product ID 819 * @lo: the bcdDevice_lo value 820 * @hi: the bcdDevice_hi value 821 * 822 * This macro is used to create a struct usb_device_id that matches a 823 * specific device, with a version range. 824 */ 825#define USB_DEVICE_VER(vend, prod, lo, hi) \ 826 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 827 .idVendor = (vend), \ 828 .idProduct = (prod), \ 829 .bcdDevice_lo = (lo), \ 830 .bcdDevice_hi = (hi) 831 832/** 833 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 834 * @vend: the 16 bit USB Vendor ID 835 * @prod: the 16 bit USB Product ID 836 * @cl: bInterfaceClass value 837 * 838 * This macro is used to create a struct usb_device_id that matches a 839 * specific interface class of devices. 840 */ 841#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 842 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 843 USB_DEVICE_ID_MATCH_INT_CLASS, \ 844 .idVendor = (vend), \ 845 .idProduct = (prod), \ 846 .bInterfaceClass = (cl) 847 848/** 849 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 850 * @vend: the 16 bit USB Vendor ID 851 * @prod: the 16 bit USB Product ID 852 * @pr: bInterfaceProtocol value 853 * 854 * This macro is used to create a struct usb_device_id that matches a 855 * specific interface protocol of devices. 856 */ 857#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 858 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 859 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 860 .idVendor = (vend), \ 861 .idProduct = (prod), \ 862 .bInterfaceProtocol = (pr) 863 864/** 865 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 866 * @vend: the 16 bit USB Vendor ID 867 * @prod: the 16 bit USB Product ID 868 * @num: bInterfaceNumber value 869 * 870 * This macro is used to create a struct usb_device_id that matches a 871 * specific interface number of devices. 872 */ 873#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 874 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 875 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 876 .idVendor = (vend), \ 877 .idProduct = (prod), \ 878 .bInterfaceNumber = (num) 879 880/** 881 * USB_DEVICE_INFO - macro used to describe a class of usb devices 882 * @cl: bDeviceClass value 883 * @sc: bDeviceSubClass value 884 * @pr: bDeviceProtocol value 885 * 886 * This macro is used to create a struct usb_device_id that matches a 887 * specific class of devices. 888 */ 889#define USB_DEVICE_INFO(cl, sc, pr) \ 890 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 891 .bDeviceClass = (cl), \ 892 .bDeviceSubClass = (sc), \ 893 .bDeviceProtocol = (pr) 894 895/** 896 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 897 * @cl: bInterfaceClass value 898 * @sc: bInterfaceSubClass value 899 * @pr: bInterfaceProtocol value 900 * 901 * This macro is used to create a struct usb_device_id that matches a 902 * specific class of interfaces. 903 */ 904#define USB_INTERFACE_INFO(cl, sc, pr) \ 905 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 906 .bInterfaceClass = (cl), \ 907 .bInterfaceSubClass = (sc), \ 908 .bInterfaceProtocol = (pr) 909 910/** 911 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 912 * @vend: the 16 bit USB Vendor ID 913 * @prod: the 16 bit USB Product ID 914 * @cl: bInterfaceClass value 915 * @sc: bInterfaceSubClass value 916 * @pr: bInterfaceProtocol value 917 * 918 * This macro is used to create a struct usb_device_id that matches a 919 * specific device with a specific class of interfaces. 920 * 921 * This is especially useful when explicitly matching devices that have 922 * vendor specific bDeviceClass values, but standards-compliant interfaces. 923 */ 924#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 925 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 926 | USB_DEVICE_ID_MATCH_DEVICE, \ 927 .idVendor = (vend), \ 928 .idProduct = (prod), \ 929 .bInterfaceClass = (cl), \ 930 .bInterfaceSubClass = (sc), \ 931 .bInterfaceProtocol = (pr) 932 933/** 934 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 935 * @vend: the 16 bit USB Vendor ID 936 * @cl: bInterfaceClass value 937 * @sc: bInterfaceSubClass value 938 * @pr: bInterfaceProtocol value 939 * 940 * This macro is used to create a struct usb_device_id that matches a 941 * specific vendor with a specific class of interfaces. 942 * 943 * This is especially useful when explicitly matching devices that have 944 * vendor specific bDeviceClass values, but standards-compliant interfaces. 945 */ 946#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 947 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 948 | USB_DEVICE_ID_MATCH_VENDOR, \ 949 .idVendor = (vend), \ 950 .bInterfaceClass = (cl), \ 951 .bInterfaceSubClass = (sc), \ 952 .bInterfaceProtocol = (pr) 953 954/* ----------------------------------------------------------------------- */ 955 956/* Stuff for dynamic usb ids */ 957struct usb_dynids { 958 spinlock_t lock; 959 struct list_head list; 960}; 961 962struct usb_dynid { 963 struct list_head node; 964 struct usb_device_id id; 965}; 966 967extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 968 const struct usb_device_id *id_table, 969 struct device_driver *driver, 970 const char *buf, size_t count); 971 972extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 973 974/** 975 * struct usbdrv_wrap - wrapper for driver-model structure 976 * @driver: The driver-model core driver structure. 977 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 978 */ 979struct usbdrv_wrap { 980 struct device_driver driver; 981 int for_devices; 982}; 983 984/** 985 * struct usb_driver - identifies USB interface driver to usbcore 986 * @name: The driver name should be unique among USB drivers, 987 * and should normally be the same as the module name. 988 * @probe: Called to see if the driver is willing to manage a particular 989 * interface on a device. If it is, probe returns zero and uses 990 * usb_set_intfdata() to associate driver-specific data with the 991 * interface. It may also use usb_set_interface() to specify the 992 * appropriate altsetting. If unwilling to manage the interface, 993 * return -ENODEV, if genuine IO errors occurred, an appropriate 994 * negative errno value. 995 * @disconnect: Called when the interface is no longer accessible, usually 996 * because its device has been (or is being) disconnected or the 997 * driver module is being unloaded. 998 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 999 * the "usbfs" filesystem. This lets devices provide ways to 1000 * expose information to user space regardless of where they 1001 * do (or don't) show up otherwise in the filesystem. 1002 * @suspend: Called when the device is going to be suspended by the 1003 * system either from system sleep or runtime suspend context. The 1004 * return value will be ignored in system sleep context, so do NOT 1005 * try to continue using the device if suspend fails in this case. 1006 * Instead, let the resume or reset-resume routine recover from 1007 * the failure. 1008 * @resume: Called when the device is being resumed by the system. 1009 * @reset_resume: Called when the suspended device has been reset instead 1010 * of being resumed. 1011 * @pre_reset: Called by usb_reset_device() when the device is about to be 1012 * reset. This routine must not return until the driver has no active 1013 * URBs for the device, and no more URBs may be submitted until the 1014 * post_reset method is called. 1015 * @post_reset: Called by usb_reset_device() after the device 1016 * has been reset 1017 * @id_table: USB drivers use ID table to support hotplugging. 1018 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1019 * or your driver's probe function will never get called. 1020 * @dynids: used internally to hold the list of dynamically added device 1021 * ids for this driver. 1022 * @drvwrap: Driver-model core structure wrapper. 1023 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1024 * added to this driver by preventing the sysfs file from being created. 1025 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1026 * for interfaces bound to this driver. 1027 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1028 * endpoints before calling the driver's disconnect method. 1029 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 1030 * to initiate lower power link state transitions when an idle timeout 1031 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1032 * 1033 * USB interface drivers must provide a name, probe() and disconnect() 1034 * methods, and an id_table. Other driver fields are optional. 1035 * 1036 * The id_table is used in hotplugging. It holds a set of descriptors, 1037 * and specialized data may be associated with each entry. That table 1038 * is used by both user and kernel mode hotplugging support. 1039 * 1040 * The probe() and disconnect() methods are called in a context where 1041 * they can sleep, but they should avoid abusing the privilege. Most 1042 * work to connect to a device should be done when the device is opened, 1043 * and undone at the last close. The disconnect code needs to address 1044 * concurrency issues with respect to open() and close() methods, as 1045 * well as forcing all pending I/O requests to complete (by unlinking 1046 * them as necessary, and blocking until the unlinks complete). 1047 */ 1048struct usb_driver { 1049 const char *name; 1050 1051 int (*probe) (struct usb_interface *intf, 1052 const struct usb_device_id *id); 1053 1054 void (*disconnect) (struct usb_interface *intf); 1055 1056 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1057 void *buf); 1058 1059 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1060 int (*resume) (struct usb_interface *intf); 1061 int (*reset_resume)(struct usb_interface *intf); 1062 1063 int (*pre_reset)(struct usb_interface *intf); 1064 int (*post_reset)(struct usb_interface *intf); 1065 1066 const struct usb_device_id *id_table; 1067 1068 struct usb_dynids dynids; 1069 struct usbdrv_wrap drvwrap; 1070 unsigned int no_dynamic_id:1; 1071 unsigned int supports_autosuspend:1; 1072 unsigned int disable_hub_initiated_lpm:1; 1073 unsigned int soft_unbind:1; 1074}; 1075#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1076 1077/** 1078 * struct usb_device_driver - identifies USB device driver to usbcore 1079 * @name: The driver name should be unique among USB drivers, 1080 * and should normally be the same as the module name. 1081 * @probe: Called to see if the driver is willing to manage a particular 1082 * device. If it is, probe returns zero and uses dev_set_drvdata() 1083 * to associate driver-specific data with the device. If unwilling 1084 * to manage the device, return a negative errno value. 1085 * @disconnect: Called when the device is no longer accessible, usually 1086 * because it has been (or is being) disconnected or the driver's 1087 * module is being unloaded. 1088 * @suspend: Called when the device is going to be suspended by the system. 1089 * @resume: Called when the device is being resumed by the system. 1090 * @drvwrap: Driver-model core structure wrapper. 1091 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1092 * for devices bound to this driver. 1093 * 1094 * USB drivers must provide all the fields listed above except drvwrap. 1095 */ 1096struct usb_device_driver { 1097 const char *name; 1098 1099 int (*probe) (struct usb_device *udev); 1100 void (*disconnect) (struct usb_device *udev); 1101 1102 int (*suspend) (struct usb_device *udev, pm_message_t message); 1103 int (*resume) (struct usb_device *udev, pm_message_t message); 1104 struct usbdrv_wrap drvwrap; 1105 unsigned int supports_autosuspend:1; 1106}; 1107#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1108 drvwrap.driver) 1109 1110extern struct bus_type usb_bus_type; 1111 1112/** 1113 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1114 * @name: the usb class device name for this driver. Will show up in sysfs. 1115 * @devnode: Callback to provide a naming hint for a possible 1116 * device node to create. 1117 * @fops: pointer to the struct file_operations of this driver. 1118 * @minor_base: the start of the minor range for this driver. 1119 * 1120 * This structure is used for the usb_register_dev() and 1121 * usb_unregister_dev() functions, to consolidate a number of the 1122 * parameters used for them. 1123 */ 1124struct usb_class_driver { 1125 char *name; 1126 char *(*devnode)(struct device *dev, umode_t *mode); 1127 const struct file_operations *fops; 1128 int minor_base; 1129}; 1130 1131/* 1132 * use these in module_init()/module_exit() 1133 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1134 */ 1135extern int usb_register_driver(struct usb_driver *, struct module *, 1136 const char *); 1137 1138/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1139#define usb_register(driver) \ 1140 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1141 1142extern void usb_deregister(struct usb_driver *); 1143 1144/** 1145 * module_usb_driver() - Helper macro for registering a USB driver 1146 * @__usb_driver: usb_driver struct 1147 * 1148 * Helper macro for USB drivers which do not do anything special in module 1149 * init/exit. This eliminates a lot of boilerplate. Each module may only 1150 * use this macro once, and calling it replaces module_init() and module_exit() 1151 */ 1152#define module_usb_driver(__usb_driver) \ 1153 module_driver(__usb_driver, usb_register, \ 1154 usb_deregister) 1155 1156extern int usb_register_device_driver(struct usb_device_driver *, 1157 struct module *); 1158extern void usb_deregister_device_driver(struct usb_device_driver *); 1159 1160extern int usb_register_dev(struct usb_interface *intf, 1161 struct usb_class_driver *class_driver); 1162extern void usb_deregister_dev(struct usb_interface *intf, 1163 struct usb_class_driver *class_driver); 1164 1165extern int usb_disabled(void); 1166 1167/* ----------------------------------------------------------------------- */ 1168 1169/* 1170 * URB support, for asynchronous request completions 1171 */ 1172 1173/* 1174 * urb->transfer_flags: 1175 * 1176 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1177 */ 1178#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1179#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1180 * slot in the schedule */ 1181#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1182#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1183#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1184#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1185 * needed */ 1186#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1187 1188/* The following flags are used internally by usbcore and HCDs */ 1189#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1190#define URB_DIR_OUT 0 1191#define URB_DIR_MASK URB_DIR_IN 1192 1193#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1194#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1195#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1196#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1197#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1198#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1199#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1200#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1201 1202struct usb_iso_packet_descriptor { 1203 unsigned int offset; 1204 unsigned int length; /* expected length */ 1205 unsigned int actual_length; 1206 int status; 1207}; 1208 1209struct urb; 1210 1211struct usb_anchor { 1212 struct list_head urb_list; 1213 wait_queue_head_t wait; 1214 spinlock_t lock; 1215 atomic_t suspend_wakeups; 1216 unsigned int poisoned:1; 1217}; 1218 1219static inline void init_usb_anchor(struct usb_anchor *anchor) 1220{ 1221 memset(anchor, 0, sizeof(*anchor)); 1222 INIT_LIST_HEAD(&anchor->urb_list); 1223 init_waitqueue_head(&anchor->wait); 1224 spin_lock_init(&anchor->lock); 1225} 1226 1227typedef void (*usb_complete_t)(struct urb *); 1228 1229/** 1230 * struct urb - USB Request Block 1231 * @urb_list: For use by current owner of the URB. 1232 * @anchor_list: membership in the list of an anchor 1233 * @anchor: to anchor URBs to a common mooring 1234 * @ep: Points to the endpoint's data structure. Will eventually 1235 * replace @pipe. 1236 * @pipe: Holds endpoint number, direction, type, and more. 1237 * Create these values with the eight macros available; 1238 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1239 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1240 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1241 * numbers range from zero to fifteen. Note that "in" endpoint two 1242 * is a different endpoint (and pipe) from "out" endpoint two. 1243 * The current configuration controls the existence, type, and 1244 * maximum packet size of any given endpoint. 1245 * @stream_id: the endpoint's stream ID for bulk streams 1246 * @dev: Identifies the USB device to perform the request. 1247 * @status: This is read in non-iso completion functions to get the 1248 * status of the particular request. ISO requests only use it 1249 * to tell whether the URB was unlinked; detailed status for 1250 * each frame is in the fields of the iso_frame-desc. 1251 * @transfer_flags: A variety of flags may be used to affect how URB 1252 * submission, unlinking, or operation are handled. Different 1253 * kinds of URB can use different flags. 1254 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1255 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1256 * (however, do not leave garbage in transfer_buffer even then). 1257 * This buffer must be suitable for DMA; allocate it with 1258 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1259 * of this buffer will be modified. This buffer is used for the data 1260 * stage of control transfers. 1261 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1262 * the device driver is saying that it provided this DMA address, 1263 * which the host controller driver should use in preference to the 1264 * transfer_buffer. 1265 * @sg: scatter gather buffer list, the buffer size of each element in 1266 * the list (except the last) must be divisible by the endpoint's 1267 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1268 * @num_mapped_sgs: (internal) number of mapped sg entries 1269 * @num_sgs: number of entries in the sg list 1270 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1271 * be broken up into chunks according to the current maximum packet 1272 * size for the endpoint, which is a function of the configuration 1273 * and is encoded in the pipe. When the length is zero, neither 1274 * transfer_buffer nor transfer_dma is used. 1275 * @actual_length: This is read in non-iso completion functions, and 1276 * it tells how many bytes (out of transfer_buffer_length) were 1277 * transferred. It will normally be the same as requested, unless 1278 * either an error was reported or a short read was performed. 1279 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1280 * short reads be reported as errors. 1281 * @setup_packet: Only used for control transfers, this points to eight bytes 1282 * of setup data. Control transfers always start by sending this data 1283 * to the device. Then transfer_buffer is read or written, if needed. 1284 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1285 * this field; setup_packet must point to a valid buffer. 1286 * @start_frame: Returns the initial frame for isochronous transfers. 1287 * @number_of_packets: Lists the number of ISO transfer buffers. 1288 * @interval: Specifies the polling interval for interrupt or isochronous 1289 * transfers. The units are frames (milliseconds) for full and low 1290 * speed devices, and microframes (1/8 millisecond) for highspeed 1291 * and SuperSpeed devices. 1292 * @error_count: Returns the number of ISO transfers that reported errors. 1293 * @context: For use in completion functions. This normally points to 1294 * request-specific driver context. 1295 * @complete: Completion handler. This URB is passed as the parameter to the 1296 * completion function. The completion function may then do what 1297 * it likes with the URB, including resubmitting or freeing it. 1298 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1299 * collect the transfer status for each buffer. 1300 * 1301 * This structure identifies USB transfer requests. URBs must be allocated by 1302 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1303 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1304 * are submitted using usb_submit_urb(), and pending requests may be canceled 1305 * using usb_unlink_urb() or usb_kill_urb(). 1306 * 1307 * Data Transfer Buffers: 1308 * 1309 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1310 * taken from the general page pool. That is provided by transfer_buffer 1311 * (control requests also use setup_packet), and host controller drivers 1312 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1313 * mapping operations can be expensive on some platforms (perhaps using a dma 1314 * bounce buffer or talking to an IOMMU), 1315 * although they're cheap on commodity x86 and ppc hardware. 1316 * 1317 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1318 * which tells the host controller driver that no such mapping is needed for 1319 * the transfer_buffer since 1320 * the device driver is DMA-aware. For example, a device driver might 1321 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1322 * When this transfer flag is provided, host controller drivers will 1323 * attempt to use the dma address found in the transfer_dma 1324 * field rather than determining a dma address themselves. 1325 * 1326 * Note that transfer_buffer must still be set if the controller 1327 * does not support DMA (as indicated by bus.uses_dma) and when talking 1328 * to root hub. If you have to trasfer between highmem zone and the device 1329 * on such controller, create a bounce buffer or bail out with an error. 1330 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1331 * capable, assign NULL to it, so that usbmon knows not to use the value. 1332 * The setup_packet must always be set, so it cannot be located in highmem. 1333 * 1334 * Initialization: 1335 * 1336 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1337 * zero), and complete fields. All URBs must also initialize 1338 * transfer_buffer and transfer_buffer_length. They may provide the 1339 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1340 * to be treated as errors; that flag is invalid for write requests. 1341 * 1342 * Bulk URBs may 1343 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1344 * should always terminate with a short packet, even if it means adding an 1345 * extra zero length packet. 1346 * 1347 * Control URBs must provide a valid pointer in the setup_packet field. 1348 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1349 * beforehand. 1350 * 1351 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1352 * or, for highspeed devices, 125 microsecond units) 1353 * to poll for transfers. After the URB has been submitted, the interval 1354 * field reflects how the transfer was actually scheduled. 1355 * The polling interval may be more frequent than requested. 1356 * For example, some controllers have a maximum interval of 32 milliseconds, 1357 * while others support intervals of up to 1024 milliseconds. 1358 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1359 * endpoints, as well as high speed interrupt endpoints, the encoding of 1360 * the transfer interval in the endpoint descriptor is logarithmic. 1361 * Device drivers must convert that value to linear units themselves.) 1362 * 1363 * If an isochronous endpoint queue isn't already running, the host 1364 * controller will schedule a new URB to start as soon as bandwidth 1365 * utilization allows. If the queue is running then a new URB will be 1366 * scheduled to start in the first transfer slot following the end of the 1367 * preceding URB, if that slot has not already expired. If the slot has 1368 * expired (which can happen when IRQ delivery is delayed for a long time), 1369 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1370 * is clear then the URB will be scheduled to start in the expired slot, 1371 * implying that some of its packets will not be transferred; if the flag 1372 * is set then the URB will be scheduled in the first unexpired slot, 1373 * breaking the queue's synchronization. Upon URB completion, the 1374 * start_frame field will be set to the (micro)frame number in which the 1375 * transfer was scheduled. Ranges for frame counter values are HC-specific 1376 * and can go from as low as 256 to as high as 65536 frames. 1377 * 1378 * Isochronous URBs have a different data transfer model, in part because 1379 * the quality of service is only "best effort". Callers provide specially 1380 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1381 * at the end. Each such packet is an individual ISO transfer. Isochronous 1382 * URBs are normally queued, submitted by drivers to arrange that 1383 * transfers are at least double buffered, and then explicitly resubmitted 1384 * in completion handlers, so 1385 * that data (such as audio or video) streams at as constant a rate as the 1386 * host controller scheduler can support. 1387 * 1388 * Completion Callbacks: 1389 * 1390 * The completion callback is made in_interrupt(), and one of the first 1391 * things that a completion handler should do is check the status field. 1392 * The status field is provided for all URBs. It is used to report 1393 * unlinked URBs, and status for all non-ISO transfers. It should not 1394 * be examined before the URB is returned to the completion handler. 1395 * 1396 * The context field is normally used to link URBs back to the relevant 1397 * driver or request state. 1398 * 1399 * When the completion callback is invoked for non-isochronous URBs, the 1400 * actual_length field tells how many bytes were transferred. This field 1401 * is updated even when the URB terminated with an error or was unlinked. 1402 * 1403 * ISO transfer status is reported in the status and actual_length fields 1404 * of the iso_frame_desc array, and the number of errors is reported in 1405 * error_count. Completion callbacks for ISO transfers will normally 1406 * (re)submit URBs to ensure a constant transfer rate. 1407 * 1408 * Note that even fields marked "public" should not be touched by the driver 1409 * when the urb is owned by the hcd, that is, since the call to 1410 * usb_submit_urb() till the entry into the completion routine. 1411 */ 1412struct urb { 1413 /* private: usb core and host controller only fields in the urb */ 1414 struct kref kref; /* reference count of the URB */ 1415 void *hcpriv; /* private data for host controller */ 1416 atomic_t use_count; /* concurrent submissions counter */ 1417 atomic_t reject; /* submissions will fail */ 1418 int unlinked; /* unlink error code */ 1419 1420 /* public: documented fields in the urb that can be used by drivers */ 1421 struct list_head urb_list; /* list head for use by the urb's 1422 * current owner */ 1423 struct list_head anchor_list; /* the URB may be anchored */ 1424 struct usb_anchor *anchor; 1425 struct usb_device *dev; /* (in) pointer to associated device */ 1426 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1427 unsigned int pipe; /* (in) pipe information */ 1428 unsigned int stream_id; /* (in) stream ID */ 1429 int status; /* (return) non-ISO status */ 1430 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1431 void *transfer_buffer; /* (in) associated data buffer */ 1432 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1433 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1434 int num_mapped_sgs; /* (internal) mapped sg entries */ 1435 int num_sgs; /* (in) number of entries in the sg list */ 1436 u32 transfer_buffer_length; /* (in) data buffer length */ 1437 u32 actual_length; /* (return) actual transfer length */ 1438 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1439 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1440 int start_frame; /* (modify) start frame (ISO) */ 1441 int number_of_packets; /* (in) number of ISO packets */ 1442 int interval; /* (modify) transfer interval 1443 * (INT/ISO) */ 1444 int error_count; /* (return) number of ISO errors */ 1445 void *context; /* (in) context for completion */ 1446 usb_complete_t complete; /* (in) completion routine */ 1447 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1448 /* (in) ISO ONLY */ 1449}; 1450 1451/* ----------------------------------------------------------------------- */ 1452 1453/** 1454 * usb_fill_control_urb - initializes a control urb 1455 * @urb: pointer to the urb to initialize. 1456 * @dev: pointer to the struct usb_device for this urb. 1457 * @pipe: the endpoint pipe 1458 * @setup_packet: pointer to the setup_packet buffer 1459 * @transfer_buffer: pointer to the transfer buffer 1460 * @buffer_length: length of the transfer buffer 1461 * @complete_fn: pointer to the usb_complete_t function 1462 * @context: what to set the urb context to. 1463 * 1464 * Initializes a control urb with the proper information needed to submit 1465 * it to a device. 1466 */ 1467static inline void usb_fill_control_urb(struct urb *urb, 1468 struct usb_device *dev, 1469 unsigned int pipe, 1470 unsigned char *setup_packet, 1471 void *transfer_buffer, 1472 int buffer_length, 1473 usb_complete_t complete_fn, 1474 void *context) 1475{ 1476 urb->dev = dev; 1477 urb->pipe = pipe; 1478 urb->setup_packet = setup_packet; 1479 urb->transfer_buffer = transfer_buffer; 1480 urb->transfer_buffer_length = buffer_length; 1481 urb->complete = complete_fn; 1482 urb->context = context; 1483} 1484 1485/** 1486 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1487 * @urb: pointer to the urb to initialize. 1488 * @dev: pointer to the struct usb_device for this urb. 1489 * @pipe: the endpoint pipe 1490 * @transfer_buffer: pointer to the transfer buffer 1491 * @buffer_length: length of the transfer buffer 1492 * @complete_fn: pointer to the usb_complete_t function 1493 * @context: what to set the urb context to. 1494 * 1495 * Initializes a bulk urb with the proper information needed to submit it 1496 * to a device. 1497 */ 1498static inline void usb_fill_bulk_urb(struct urb *urb, 1499 struct usb_device *dev, 1500 unsigned int pipe, 1501 void *transfer_buffer, 1502 int buffer_length, 1503 usb_complete_t complete_fn, 1504 void *context) 1505{ 1506 urb->dev = dev; 1507 urb->pipe = pipe; 1508 urb->transfer_buffer = transfer_buffer; 1509 urb->transfer_buffer_length = buffer_length; 1510 urb->complete = complete_fn; 1511 urb->context = context; 1512} 1513 1514/** 1515 * usb_fill_int_urb - macro to help initialize a interrupt urb 1516 * @urb: pointer to the urb to initialize. 1517 * @dev: pointer to the struct usb_device for this urb. 1518 * @pipe: the endpoint pipe 1519 * @transfer_buffer: pointer to the transfer buffer 1520 * @buffer_length: length of the transfer buffer 1521 * @complete_fn: pointer to the usb_complete_t function 1522 * @context: what to set the urb context to. 1523 * @interval: what to set the urb interval to, encoded like 1524 * the endpoint descriptor's bInterval value. 1525 * 1526 * Initializes a interrupt urb with the proper information needed to submit 1527 * it to a device. 1528 * 1529 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1530 * encoding of the endpoint interval, and express polling intervals in 1531 * microframes (eight per millisecond) rather than in frames (one per 1532 * millisecond). 1533 * 1534 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1535 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1536 * through to the host controller, rather than being translated into microframe 1537 * units. 1538 */ 1539static inline void usb_fill_int_urb(struct urb *urb, 1540 struct usb_device *dev, 1541 unsigned int pipe, 1542 void *transfer_buffer, 1543 int buffer_length, 1544 usb_complete_t complete_fn, 1545 void *context, 1546 int interval) 1547{ 1548 urb->dev = dev; 1549 urb->pipe = pipe; 1550 urb->transfer_buffer = transfer_buffer; 1551 urb->transfer_buffer_length = buffer_length; 1552 urb->complete = complete_fn; 1553 urb->context = context; 1554 1555 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) { 1556 /* make sure interval is within allowed range */ 1557 interval = clamp(interval, 1, 16); 1558 1559 urb->interval = 1 << (interval - 1); 1560 } else { 1561 urb->interval = interval; 1562 } 1563 1564 urb->start_frame = -1; 1565} 1566 1567extern void usb_init_urb(struct urb *urb); 1568extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1569extern void usb_free_urb(struct urb *urb); 1570#define usb_put_urb usb_free_urb 1571extern struct urb *usb_get_urb(struct urb *urb); 1572extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1573extern int usb_unlink_urb(struct urb *urb); 1574extern void usb_kill_urb(struct urb *urb); 1575extern void usb_poison_urb(struct urb *urb); 1576extern void usb_unpoison_urb(struct urb *urb); 1577extern void usb_block_urb(struct urb *urb); 1578extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1579extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1580extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1581extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1582extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1583extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1584extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1585extern void usb_unanchor_urb(struct urb *urb); 1586extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1587 unsigned int timeout); 1588extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1589extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1590extern int usb_anchor_empty(struct usb_anchor *anchor); 1591 1592#define usb_unblock_urb usb_unpoison_urb 1593 1594/** 1595 * usb_urb_dir_in - check if an URB describes an IN transfer 1596 * @urb: URB to be checked 1597 * 1598 * Return: 1 if @urb describes an IN transfer (device-to-host), 1599 * otherwise 0. 1600 */ 1601static inline int usb_urb_dir_in(struct urb *urb) 1602{ 1603 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1604} 1605 1606/** 1607 * usb_urb_dir_out - check if an URB describes an OUT transfer 1608 * @urb: URB to be checked 1609 * 1610 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1611 * otherwise 0. 1612 */ 1613static inline int usb_urb_dir_out(struct urb *urb) 1614{ 1615 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1616} 1617 1618void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1619 gfp_t mem_flags, dma_addr_t *dma); 1620void usb_free_coherent(struct usb_device *dev, size_t size, 1621 void *addr, dma_addr_t dma); 1622 1623#if 0 1624struct urb *usb_buffer_map(struct urb *urb); 1625void usb_buffer_dmasync(struct urb *urb); 1626void usb_buffer_unmap(struct urb *urb); 1627#endif 1628 1629struct scatterlist; 1630int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1631 struct scatterlist *sg, int nents); 1632#if 0 1633void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1634 struct scatterlist *sg, int n_hw_ents); 1635#endif 1636void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1637 struct scatterlist *sg, int n_hw_ents); 1638 1639/*-------------------------------------------------------------------* 1640 * SYNCHRONOUS CALL SUPPORT * 1641 *-------------------------------------------------------------------*/ 1642 1643extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1644 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1645 void *data, __u16 size, int timeout); 1646extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1647 void *data, int len, int *actual_length, int timeout); 1648extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1649 void *data, int len, int *actual_length, 1650 int timeout); 1651 1652/* wrappers around usb_control_msg() for the most common standard requests */ 1653extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1654 unsigned char descindex, void *buf, int size); 1655extern int usb_get_status(struct usb_device *dev, 1656 int type, int target, void *data); 1657extern int usb_string(struct usb_device *dev, int index, 1658 char *buf, size_t size); 1659 1660/* wrappers that also update important state inside usbcore */ 1661extern int usb_clear_halt(struct usb_device *dev, int pipe); 1662extern int usb_reset_configuration(struct usb_device *dev); 1663extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1664extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1665 1666/* this request isn't really synchronous, but it belongs with the others */ 1667extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1668 1669/* 1670 * timeouts, in milliseconds, used for sending/receiving control messages 1671 * they typically complete within a few frames (msec) after they're issued 1672 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1673 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1674 */ 1675#define USB_CTRL_GET_TIMEOUT 5000 1676#define USB_CTRL_SET_TIMEOUT 5000 1677 1678 1679/** 1680 * struct usb_sg_request - support for scatter/gather I/O 1681 * @status: zero indicates success, else negative errno 1682 * @bytes: counts bytes transferred. 1683 * 1684 * These requests are initialized using usb_sg_init(), and then are used 1685 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1686 * members of the request object aren't for driver access. 1687 * 1688 * The status and bytecount values are valid only after usb_sg_wait() 1689 * returns. If the status is zero, then the bytecount matches the total 1690 * from the request. 1691 * 1692 * After an error completion, drivers may need to clear a halt condition 1693 * on the endpoint. 1694 */ 1695struct usb_sg_request { 1696 int status; 1697 size_t bytes; 1698 1699 /* private: 1700 * members below are private to usbcore, 1701 * and are not provided for driver access! 1702 */ 1703 spinlock_t lock; 1704 1705 struct usb_device *dev; 1706 int pipe; 1707 1708 int entries; 1709 struct urb **urbs; 1710 1711 int count; 1712 struct completion complete; 1713}; 1714 1715int usb_sg_init( 1716 struct usb_sg_request *io, 1717 struct usb_device *dev, 1718 unsigned pipe, 1719 unsigned period, 1720 struct scatterlist *sg, 1721 int nents, 1722 size_t length, 1723 gfp_t mem_flags 1724); 1725void usb_sg_cancel(struct usb_sg_request *io); 1726void usb_sg_wait(struct usb_sg_request *io); 1727 1728 1729/* ----------------------------------------------------------------------- */ 1730 1731/* 1732 * For various legacy reasons, Linux has a small cookie that's paired with 1733 * a struct usb_device to identify an endpoint queue. Queue characteristics 1734 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1735 * an unsigned int encoded as: 1736 * 1737 * - direction: bit 7 (0 = Host-to-Device [Out], 1738 * 1 = Device-to-Host [In] ... 1739 * like endpoint bEndpointAddress) 1740 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1741 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1742 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1743 * 10 = control, 11 = bulk) 1744 * 1745 * Given the device address and endpoint descriptor, pipes are redundant. 1746 */ 1747 1748/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1749/* (yet ... they're the values used by usbfs) */ 1750#define PIPE_ISOCHRONOUS 0 1751#define PIPE_INTERRUPT 1 1752#define PIPE_CONTROL 2 1753#define PIPE_BULK 3 1754 1755#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1756#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1757 1758#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1759#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1760 1761#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1762#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1763#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1764#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1765#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1766 1767static inline unsigned int __create_pipe(struct usb_device *dev, 1768 unsigned int endpoint) 1769{ 1770 return (dev->devnum << 8) | (endpoint << 15); 1771} 1772 1773/* Create various pipes... */ 1774#define usb_sndctrlpipe(dev, endpoint) \ 1775 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1776#define usb_rcvctrlpipe(dev, endpoint) \ 1777 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1778#define usb_sndisocpipe(dev, endpoint) \ 1779 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1780#define usb_rcvisocpipe(dev, endpoint) \ 1781 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1782#define usb_sndbulkpipe(dev, endpoint) \ 1783 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1784#define usb_rcvbulkpipe(dev, endpoint) \ 1785 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1786#define usb_sndintpipe(dev, endpoint) \ 1787 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1788#define usb_rcvintpipe(dev, endpoint) \ 1789 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1790 1791static inline struct usb_host_endpoint * 1792usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1793{ 1794 struct usb_host_endpoint **eps; 1795 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1796 return eps[usb_pipeendpoint(pipe)]; 1797} 1798 1799/*-------------------------------------------------------------------------*/ 1800 1801static inline __u16 1802usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1803{ 1804 struct usb_host_endpoint *ep; 1805 unsigned epnum = usb_pipeendpoint(pipe); 1806 1807 if (is_out) { 1808 WARN_ON(usb_pipein(pipe)); 1809 ep = udev->ep_out[epnum]; 1810 } else { 1811 WARN_ON(usb_pipeout(pipe)); 1812 ep = udev->ep_in[epnum]; 1813 } 1814 if (!ep) 1815 return 0; 1816 1817 /* NOTE: only 0x07ff bits are for packet size... */ 1818 return usb_endpoint_maxp(&ep->desc); 1819} 1820 1821/* ----------------------------------------------------------------------- */ 1822 1823/* translate USB error codes to codes user space understands */ 1824static inline int usb_translate_errors(int error_code) 1825{ 1826 switch (error_code) { 1827 case 0: 1828 case -ENOMEM: 1829 case -ENODEV: 1830 case -EOPNOTSUPP: 1831 return error_code; 1832 default: 1833 return -EIO; 1834 } 1835} 1836 1837/* Events from the usb core */ 1838#define USB_DEVICE_ADD 0x0001 1839#define USB_DEVICE_REMOVE 0x0002 1840#define USB_BUS_ADD 0x0003 1841#define USB_BUS_REMOVE 0x0004 1842extern void usb_register_notify(struct notifier_block *nb); 1843extern void usb_unregister_notify(struct notifier_block *nb); 1844 1845/* debugfs stuff */ 1846extern struct dentry *usb_debug_root; 1847 1848#endif /* __KERNEL__ */ 1849 1850#endif