Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8 int sched_priority;
9};
10
11#include <asm/param.h> /* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/plist.h>
20#include <linux/rbtree.h>
21#include <linux/thread_info.h>
22#include <linux/cpumask.h>
23#include <linux/errno.h>
24#include <linux/nodemask.h>
25#include <linux/mm_types.h>
26#include <linux/preempt_mask.h>
27
28#include <asm/page.h>
29#include <asm/ptrace.h>
30#include <asm/cputime.h>
31
32#include <linux/smp.h>
33#include <linux/sem.h>
34#include <linux/signal.h>
35#include <linux/compiler.h>
36#include <linux/completion.h>
37#include <linux/pid.h>
38#include <linux/percpu.h>
39#include <linux/topology.h>
40#include <linux/proportions.h>
41#include <linux/seccomp.h>
42#include <linux/rcupdate.h>
43#include <linux/rculist.h>
44#include <linux/rtmutex.h>
45
46#include <linux/time.h>
47#include <linux/param.h>
48#include <linux/resource.h>
49#include <linux/timer.h>
50#include <linux/hrtimer.h>
51#include <linux/task_io_accounting.h>
52#include <linux/latencytop.h>
53#include <linux/cred.h>
54#include <linux/llist.h>
55#include <linux/uidgid.h>
56#include <linux/gfp.h>
57
58#include <asm/processor.h>
59
60#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
61
62/*
63 * Extended scheduling parameters data structure.
64 *
65 * This is needed because the original struct sched_param can not be
66 * altered without introducing ABI issues with legacy applications
67 * (e.g., in sched_getparam()).
68 *
69 * However, the possibility of specifying more than just a priority for
70 * the tasks may be useful for a wide variety of application fields, e.g.,
71 * multimedia, streaming, automation and control, and many others.
72 *
73 * This variant (sched_attr) is meant at describing a so-called
74 * sporadic time-constrained task. In such model a task is specified by:
75 * - the activation period or minimum instance inter-arrival time;
76 * - the maximum (or average, depending on the actual scheduling
77 * discipline) computation time of all instances, a.k.a. runtime;
78 * - the deadline (relative to the actual activation time) of each
79 * instance.
80 * Very briefly, a periodic (sporadic) task asks for the execution of
81 * some specific computation --which is typically called an instance--
82 * (at most) every period. Moreover, each instance typically lasts no more
83 * than the runtime and must be completed by time instant t equal to
84 * the instance activation time + the deadline.
85 *
86 * This is reflected by the actual fields of the sched_attr structure:
87 *
88 * @size size of the structure, for fwd/bwd compat.
89 *
90 * @sched_policy task's scheduling policy
91 * @sched_flags for customizing the scheduler behaviour
92 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
93 * @sched_priority task's static priority (SCHED_FIFO/RR)
94 * @sched_deadline representative of the task's deadline
95 * @sched_runtime representative of the task's runtime
96 * @sched_period representative of the task's period
97 *
98 * Given this task model, there are a multiplicity of scheduling algorithms
99 * and policies, that can be used to ensure all the tasks will make their
100 * timing constraints.
101 *
102 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
103 * only user of this new interface. More information about the algorithm
104 * available in the scheduling class file or in Documentation/.
105 */
106struct sched_attr {
107 u32 size;
108
109 u32 sched_policy;
110 u64 sched_flags;
111
112 /* SCHED_NORMAL, SCHED_BATCH */
113 s32 sched_nice;
114
115 /* SCHED_FIFO, SCHED_RR */
116 u32 sched_priority;
117
118 /* SCHED_DEADLINE */
119 u64 sched_runtime;
120 u64 sched_deadline;
121 u64 sched_period;
122};
123
124struct exec_domain;
125struct futex_pi_state;
126struct robust_list_head;
127struct bio_list;
128struct fs_struct;
129struct perf_event_context;
130struct blk_plug;
131struct filename;
132
133/*
134 * List of flags we want to share for kernel threads,
135 * if only because they are not used by them anyway.
136 */
137#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
138
139/*
140 * These are the constant used to fake the fixed-point load-average
141 * counting. Some notes:
142 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
143 * a load-average precision of 10 bits integer + 11 bits fractional
144 * - if you want to count load-averages more often, you need more
145 * precision, or rounding will get you. With 2-second counting freq,
146 * the EXP_n values would be 1981, 2034 and 2043 if still using only
147 * 11 bit fractions.
148 */
149extern unsigned long avenrun[]; /* Load averages */
150extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
151
152#define FSHIFT 11 /* nr of bits of precision */
153#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
154#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
155#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
156#define EXP_5 2014 /* 1/exp(5sec/5min) */
157#define EXP_15 2037 /* 1/exp(5sec/15min) */
158
159#define CALC_LOAD(load,exp,n) \
160 load *= exp; \
161 load += n*(FIXED_1-exp); \
162 load >>= FSHIFT;
163
164extern unsigned long total_forks;
165extern int nr_threads;
166DECLARE_PER_CPU(unsigned long, process_counts);
167extern int nr_processes(void);
168extern unsigned long nr_running(void);
169extern unsigned long nr_iowait(void);
170extern unsigned long nr_iowait_cpu(int cpu);
171extern unsigned long this_cpu_load(void);
172
173
174extern void calc_global_load(unsigned long ticks);
175extern void update_cpu_load_nohz(void);
176
177extern unsigned long get_parent_ip(unsigned long addr);
178
179extern void dump_cpu_task(int cpu);
180
181struct seq_file;
182struct cfs_rq;
183struct task_group;
184#ifdef CONFIG_SCHED_DEBUG
185extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
186extern void proc_sched_set_task(struct task_struct *p);
187extern void
188print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
189#endif
190
191/*
192 * Task state bitmask. NOTE! These bits are also
193 * encoded in fs/proc/array.c: get_task_state().
194 *
195 * We have two separate sets of flags: task->state
196 * is about runnability, while task->exit_state are
197 * about the task exiting. Confusing, but this way
198 * modifying one set can't modify the other one by
199 * mistake.
200 */
201#define TASK_RUNNING 0
202#define TASK_INTERRUPTIBLE 1
203#define TASK_UNINTERRUPTIBLE 2
204#define __TASK_STOPPED 4
205#define __TASK_TRACED 8
206/* in tsk->exit_state */
207#define EXIT_ZOMBIE 16
208#define EXIT_DEAD 32
209/* in tsk->state again */
210#define TASK_DEAD 64
211#define TASK_WAKEKILL 128
212#define TASK_WAKING 256
213#define TASK_PARKED 512
214#define TASK_STATE_MAX 1024
215
216#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
217
218extern char ___assert_task_state[1 - 2*!!(
219 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
220
221/* Convenience macros for the sake of set_task_state */
222#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
223#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
224#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
225
226/* Convenience macros for the sake of wake_up */
227#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
228#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
229
230/* get_task_state() */
231#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
232 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
233 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
234
235#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
236#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
237#define task_is_stopped_or_traced(task) \
238 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
239#define task_contributes_to_load(task) \
240 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
241 (task->flags & PF_FROZEN) == 0)
242
243#define __set_task_state(tsk, state_value) \
244 do { (tsk)->state = (state_value); } while (0)
245#define set_task_state(tsk, state_value) \
246 set_mb((tsk)->state, (state_value))
247
248/*
249 * set_current_state() includes a barrier so that the write of current->state
250 * is correctly serialised wrt the caller's subsequent test of whether to
251 * actually sleep:
252 *
253 * set_current_state(TASK_UNINTERRUPTIBLE);
254 * if (do_i_need_to_sleep())
255 * schedule();
256 *
257 * If the caller does not need such serialisation then use __set_current_state()
258 */
259#define __set_current_state(state_value) \
260 do { current->state = (state_value); } while (0)
261#define set_current_state(state_value) \
262 set_mb(current->state, (state_value))
263
264/* Task command name length */
265#define TASK_COMM_LEN 16
266
267#include <linux/spinlock.h>
268
269/*
270 * This serializes "schedule()" and also protects
271 * the run-queue from deletions/modifications (but
272 * _adding_ to the beginning of the run-queue has
273 * a separate lock).
274 */
275extern rwlock_t tasklist_lock;
276extern spinlock_t mmlist_lock;
277
278struct task_struct;
279
280#ifdef CONFIG_PROVE_RCU
281extern int lockdep_tasklist_lock_is_held(void);
282#endif /* #ifdef CONFIG_PROVE_RCU */
283
284extern void sched_init(void);
285extern void sched_init_smp(void);
286extern asmlinkage void schedule_tail(struct task_struct *prev);
287extern void init_idle(struct task_struct *idle, int cpu);
288extern void init_idle_bootup_task(struct task_struct *idle);
289
290extern int runqueue_is_locked(int cpu);
291
292#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
293extern void nohz_balance_enter_idle(int cpu);
294extern void set_cpu_sd_state_idle(void);
295extern int get_nohz_timer_target(void);
296#else
297static inline void nohz_balance_enter_idle(int cpu) { }
298static inline void set_cpu_sd_state_idle(void) { }
299#endif
300
301/*
302 * Only dump TASK_* tasks. (0 for all tasks)
303 */
304extern void show_state_filter(unsigned long state_filter);
305
306static inline void show_state(void)
307{
308 show_state_filter(0);
309}
310
311extern void show_regs(struct pt_regs *);
312
313/*
314 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
315 * task), SP is the stack pointer of the first frame that should be shown in the back
316 * trace (or NULL if the entire call-chain of the task should be shown).
317 */
318extern void show_stack(struct task_struct *task, unsigned long *sp);
319
320void io_schedule(void);
321long io_schedule_timeout(long timeout);
322
323extern void cpu_init (void);
324extern void trap_init(void);
325extern void update_process_times(int user);
326extern void scheduler_tick(void);
327
328extern void sched_show_task(struct task_struct *p);
329
330#ifdef CONFIG_LOCKUP_DETECTOR
331extern void touch_softlockup_watchdog(void);
332extern void touch_softlockup_watchdog_sync(void);
333extern void touch_all_softlockup_watchdogs(void);
334extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
335 void __user *buffer,
336 size_t *lenp, loff_t *ppos);
337extern unsigned int softlockup_panic;
338void lockup_detector_init(void);
339#else
340static inline void touch_softlockup_watchdog(void)
341{
342}
343static inline void touch_softlockup_watchdog_sync(void)
344{
345}
346static inline void touch_all_softlockup_watchdogs(void)
347{
348}
349static inline void lockup_detector_init(void)
350{
351}
352#endif
353
354#ifdef CONFIG_DETECT_HUNG_TASK
355void reset_hung_task_detector(void);
356#else
357static inline void reset_hung_task_detector(void)
358{
359}
360#endif
361
362/* Attach to any functions which should be ignored in wchan output. */
363#define __sched __attribute__((__section__(".sched.text")))
364
365/* Linker adds these: start and end of __sched functions */
366extern char __sched_text_start[], __sched_text_end[];
367
368/* Is this address in the __sched functions? */
369extern int in_sched_functions(unsigned long addr);
370
371#define MAX_SCHEDULE_TIMEOUT LONG_MAX
372extern signed long schedule_timeout(signed long timeout);
373extern signed long schedule_timeout_interruptible(signed long timeout);
374extern signed long schedule_timeout_killable(signed long timeout);
375extern signed long schedule_timeout_uninterruptible(signed long timeout);
376asmlinkage void schedule(void);
377extern void schedule_preempt_disabled(void);
378
379struct nsproxy;
380struct user_namespace;
381
382#ifdef CONFIG_MMU
383extern void arch_pick_mmap_layout(struct mm_struct *mm);
384extern unsigned long
385arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
386 unsigned long, unsigned long);
387extern unsigned long
388arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
389 unsigned long len, unsigned long pgoff,
390 unsigned long flags);
391#else
392static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393#endif
394
395#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
396#define SUID_DUMP_USER 1 /* Dump as user of process */
397#define SUID_DUMP_ROOT 2 /* Dump as root */
398
399/* mm flags */
400
401/* for SUID_DUMP_* above */
402#define MMF_DUMPABLE_BITS 2
403#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
404
405extern void set_dumpable(struct mm_struct *mm, int value);
406/*
407 * This returns the actual value of the suid_dumpable flag. For things
408 * that are using this for checking for privilege transitions, it must
409 * test against SUID_DUMP_USER rather than treating it as a boolean
410 * value.
411 */
412static inline int __get_dumpable(unsigned long mm_flags)
413{
414 return mm_flags & MMF_DUMPABLE_MASK;
415}
416
417static inline int get_dumpable(struct mm_struct *mm)
418{
419 return __get_dumpable(mm->flags);
420}
421
422/* coredump filter bits */
423#define MMF_DUMP_ANON_PRIVATE 2
424#define MMF_DUMP_ANON_SHARED 3
425#define MMF_DUMP_MAPPED_PRIVATE 4
426#define MMF_DUMP_MAPPED_SHARED 5
427#define MMF_DUMP_ELF_HEADERS 6
428#define MMF_DUMP_HUGETLB_PRIVATE 7
429#define MMF_DUMP_HUGETLB_SHARED 8
430
431#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
432#define MMF_DUMP_FILTER_BITS 7
433#define MMF_DUMP_FILTER_MASK \
434 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
435#define MMF_DUMP_FILTER_DEFAULT \
436 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
437 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
438
439#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
440# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
441#else
442# define MMF_DUMP_MASK_DEFAULT_ELF 0
443#endif
444 /* leave room for more dump flags */
445#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
446#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
447#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
448
449#define MMF_HAS_UPROBES 19 /* has uprobes */
450#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
451
452#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
453
454struct sighand_struct {
455 atomic_t count;
456 struct k_sigaction action[_NSIG];
457 spinlock_t siglock;
458 wait_queue_head_t signalfd_wqh;
459};
460
461struct pacct_struct {
462 int ac_flag;
463 long ac_exitcode;
464 unsigned long ac_mem;
465 cputime_t ac_utime, ac_stime;
466 unsigned long ac_minflt, ac_majflt;
467};
468
469struct cpu_itimer {
470 cputime_t expires;
471 cputime_t incr;
472 u32 error;
473 u32 incr_error;
474};
475
476/**
477 * struct cputime - snaphsot of system and user cputime
478 * @utime: time spent in user mode
479 * @stime: time spent in system mode
480 *
481 * Gathers a generic snapshot of user and system time.
482 */
483struct cputime {
484 cputime_t utime;
485 cputime_t stime;
486};
487
488/**
489 * struct task_cputime - collected CPU time counts
490 * @utime: time spent in user mode, in &cputime_t units
491 * @stime: time spent in kernel mode, in &cputime_t units
492 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
493 *
494 * This is an extension of struct cputime that includes the total runtime
495 * spent by the task from the scheduler point of view.
496 *
497 * As a result, this structure groups together three kinds of CPU time
498 * that are tracked for threads and thread groups. Most things considering
499 * CPU time want to group these counts together and treat all three
500 * of them in parallel.
501 */
502struct task_cputime {
503 cputime_t utime;
504 cputime_t stime;
505 unsigned long long sum_exec_runtime;
506};
507/* Alternate field names when used to cache expirations. */
508#define prof_exp stime
509#define virt_exp utime
510#define sched_exp sum_exec_runtime
511
512#define INIT_CPUTIME \
513 (struct task_cputime) { \
514 .utime = 0, \
515 .stime = 0, \
516 .sum_exec_runtime = 0, \
517 }
518
519#ifdef CONFIG_PREEMPT_COUNT
520#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
521#else
522#define PREEMPT_DISABLED PREEMPT_ENABLED
523#endif
524
525/*
526 * Disable preemption until the scheduler is running.
527 * Reset by start_kernel()->sched_init()->init_idle().
528 *
529 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
530 * before the scheduler is active -- see should_resched().
531 */
532#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
533
534/**
535 * struct thread_group_cputimer - thread group interval timer counts
536 * @cputime: thread group interval timers.
537 * @running: non-zero when there are timers running and
538 * @cputime receives updates.
539 * @lock: lock for fields in this struct.
540 *
541 * This structure contains the version of task_cputime, above, that is
542 * used for thread group CPU timer calculations.
543 */
544struct thread_group_cputimer {
545 struct task_cputime cputime;
546 int running;
547 raw_spinlock_t lock;
548};
549
550#include <linux/rwsem.h>
551struct autogroup;
552
553/*
554 * NOTE! "signal_struct" does not have its own
555 * locking, because a shared signal_struct always
556 * implies a shared sighand_struct, so locking
557 * sighand_struct is always a proper superset of
558 * the locking of signal_struct.
559 */
560struct signal_struct {
561 atomic_t sigcnt;
562 atomic_t live;
563 int nr_threads;
564 struct list_head thread_head;
565
566 wait_queue_head_t wait_chldexit; /* for wait4() */
567
568 /* current thread group signal load-balancing target: */
569 struct task_struct *curr_target;
570
571 /* shared signal handling: */
572 struct sigpending shared_pending;
573
574 /* thread group exit support */
575 int group_exit_code;
576 /* overloaded:
577 * - notify group_exit_task when ->count is equal to notify_count
578 * - everyone except group_exit_task is stopped during signal delivery
579 * of fatal signals, group_exit_task processes the signal.
580 */
581 int notify_count;
582 struct task_struct *group_exit_task;
583
584 /* thread group stop support, overloads group_exit_code too */
585 int group_stop_count;
586 unsigned int flags; /* see SIGNAL_* flags below */
587
588 /*
589 * PR_SET_CHILD_SUBREAPER marks a process, like a service
590 * manager, to re-parent orphan (double-forking) child processes
591 * to this process instead of 'init'. The service manager is
592 * able to receive SIGCHLD signals and is able to investigate
593 * the process until it calls wait(). All children of this
594 * process will inherit a flag if they should look for a
595 * child_subreaper process at exit.
596 */
597 unsigned int is_child_subreaper:1;
598 unsigned int has_child_subreaper:1;
599
600 /* POSIX.1b Interval Timers */
601 int posix_timer_id;
602 struct list_head posix_timers;
603
604 /* ITIMER_REAL timer for the process */
605 struct hrtimer real_timer;
606 struct pid *leader_pid;
607 ktime_t it_real_incr;
608
609 /*
610 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
611 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
612 * values are defined to 0 and 1 respectively
613 */
614 struct cpu_itimer it[2];
615
616 /*
617 * Thread group totals for process CPU timers.
618 * See thread_group_cputimer(), et al, for details.
619 */
620 struct thread_group_cputimer cputimer;
621
622 /* Earliest-expiration cache. */
623 struct task_cputime cputime_expires;
624
625 struct list_head cpu_timers[3];
626
627 struct pid *tty_old_pgrp;
628
629 /* boolean value for session group leader */
630 int leader;
631
632 struct tty_struct *tty; /* NULL if no tty */
633
634#ifdef CONFIG_SCHED_AUTOGROUP
635 struct autogroup *autogroup;
636#endif
637 /*
638 * Cumulative resource counters for dead threads in the group,
639 * and for reaped dead child processes forked by this group.
640 * Live threads maintain their own counters and add to these
641 * in __exit_signal, except for the group leader.
642 */
643 cputime_t utime, stime, cutime, cstime;
644 cputime_t gtime;
645 cputime_t cgtime;
646#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
647 struct cputime prev_cputime;
648#endif
649 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
650 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
651 unsigned long inblock, oublock, cinblock, coublock;
652 unsigned long maxrss, cmaxrss;
653 struct task_io_accounting ioac;
654
655 /*
656 * Cumulative ns of schedule CPU time fo dead threads in the
657 * group, not including a zombie group leader, (This only differs
658 * from jiffies_to_ns(utime + stime) if sched_clock uses something
659 * other than jiffies.)
660 */
661 unsigned long long sum_sched_runtime;
662
663 /*
664 * We don't bother to synchronize most readers of this at all,
665 * because there is no reader checking a limit that actually needs
666 * to get both rlim_cur and rlim_max atomically, and either one
667 * alone is a single word that can safely be read normally.
668 * getrlimit/setrlimit use task_lock(current->group_leader) to
669 * protect this instead of the siglock, because they really
670 * have no need to disable irqs.
671 */
672 struct rlimit rlim[RLIM_NLIMITS];
673
674#ifdef CONFIG_BSD_PROCESS_ACCT
675 struct pacct_struct pacct; /* per-process accounting information */
676#endif
677#ifdef CONFIG_TASKSTATS
678 struct taskstats *stats;
679#endif
680#ifdef CONFIG_AUDIT
681 unsigned audit_tty;
682 unsigned audit_tty_log_passwd;
683 struct tty_audit_buf *tty_audit_buf;
684#endif
685#ifdef CONFIG_CGROUPS
686 /*
687 * group_rwsem prevents new tasks from entering the threadgroup and
688 * member tasks from exiting,a more specifically, setting of
689 * PF_EXITING. fork and exit paths are protected with this rwsem
690 * using threadgroup_change_begin/end(). Users which require
691 * threadgroup to remain stable should use threadgroup_[un]lock()
692 * which also takes care of exec path. Currently, cgroup is the
693 * only user.
694 */
695 struct rw_semaphore group_rwsem;
696#endif
697
698 oom_flags_t oom_flags;
699 short oom_score_adj; /* OOM kill score adjustment */
700 short oom_score_adj_min; /* OOM kill score adjustment min value.
701 * Only settable by CAP_SYS_RESOURCE. */
702
703 struct mutex cred_guard_mutex; /* guard against foreign influences on
704 * credential calculations
705 * (notably. ptrace) */
706};
707
708/*
709 * Bits in flags field of signal_struct.
710 */
711#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
712#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
713#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
714#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
715/*
716 * Pending notifications to parent.
717 */
718#define SIGNAL_CLD_STOPPED 0x00000010
719#define SIGNAL_CLD_CONTINUED 0x00000020
720#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
721
722#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
723
724/* If true, all threads except ->group_exit_task have pending SIGKILL */
725static inline int signal_group_exit(const struct signal_struct *sig)
726{
727 return (sig->flags & SIGNAL_GROUP_EXIT) ||
728 (sig->group_exit_task != NULL);
729}
730
731/*
732 * Some day this will be a full-fledged user tracking system..
733 */
734struct user_struct {
735 atomic_t __count; /* reference count */
736 atomic_t processes; /* How many processes does this user have? */
737 atomic_t files; /* How many open files does this user have? */
738 atomic_t sigpending; /* How many pending signals does this user have? */
739#ifdef CONFIG_INOTIFY_USER
740 atomic_t inotify_watches; /* How many inotify watches does this user have? */
741 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
742#endif
743#ifdef CONFIG_FANOTIFY
744 atomic_t fanotify_listeners;
745#endif
746#ifdef CONFIG_EPOLL
747 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
748#endif
749#ifdef CONFIG_POSIX_MQUEUE
750 /* protected by mq_lock */
751 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
752#endif
753 unsigned long locked_shm; /* How many pages of mlocked shm ? */
754
755#ifdef CONFIG_KEYS
756 struct key *uid_keyring; /* UID specific keyring */
757 struct key *session_keyring; /* UID's default session keyring */
758#endif
759
760 /* Hash table maintenance information */
761 struct hlist_node uidhash_node;
762 kuid_t uid;
763
764#ifdef CONFIG_PERF_EVENTS
765 atomic_long_t locked_vm;
766#endif
767};
768
769extern int uids_sysfs_init(void);
770
771extern struct user_struct *find_user(kuid_t);
772
773extern struct user_struct root_user;
774#define INIT_USER (&root_user)
775
776
777struct backing_dev_info;
778struct reclaim_state;
779
780#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
781struct sched_info {
782 /* cumulative counters */
783 unsigned long pcount; /* # of times run on this cpu */
784 unsigned long long run_delay; /* time spent waiting on a runqueue */
785
786 /* timestamps */
787 unsigned long long last_arrival,/* when we last ran on a cpu */
788 last_queued; /* when we were last queued to run */
789};
790#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
791
792#ifdef CONFIG_TASK_DELAY_ACCT
793struct task_delay_info {
794 spinlock_t lock;
795 unsigned int flags; /* Private per-task flags */
796
797 /* For each stat XXX, add following, aligned appropriately
798 *
799 * struct timespec XXX_start, XXX_end;
800 * u64 XXX_delay;
801 * u32 XXX_count;
802 *
803 * Atomicity of updates to XXX_delay, XXX_count protected by
804 * single lock above (split into XXX_lock if contention is an issue).
805 */
806
807 /*
808 * XXX_count is incremented on every XXX operation, the delay
809 * associated with the operation is added to XXX_delay.
810 * XXX_delay contains the accumulated delay time in nanoseconds.
811 */
812 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
813 u64 blkio_delay; /* wait for sync block io completion */
814 u64 swapin_delay; /* wait for swapin block io completion */
815 u32 blkio_count; /* total count of the number of sync block */
816 /* io operations performed */
817 u32 swapin_count; /* total count of the number of swapin block */
818 /* io operations performed */
819
820 struct timespec freepages_start, freepages_end;
821 u64 freepages_delay; /* wait for memory reclaim */
822 u32 freepages_count; /* total count of memory reclaim */
823};
824#endif /* CONFIG_TASK_DELAY_ACCT */
825
826static inline int sched_info_on(void)
827{
828#ifdef CONFIG_SCHEDSTATS
829 return 1;
830#elif defined(CONFIG_TASK_DELAY_ACCT)
831 extern int delayacct_on;
832 return delayacct_on;
833#else
834 return 0;
835#endif
836}
837
838enum cpu_idle_type {
839 CPU_IDLE,
840 CPU_NOT_IDLE,
841 CPU_NEWLY_IDLE,
842 CPU_MAX_IDLE_TYPES
843};
844
845/*
846 * Increase resolution of cpu_power calculations
847 */
848#define SCHED_POWER_SHIFT 10
849#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
850
851/*
852 * sched-domains (multiprocessor balancing) declarations:
853 */
854#ifdef CONFIG_SMP
855#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
856#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
857#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
858#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
859#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
860#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
861#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
862#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
863#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
864#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
865#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
866#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
867#define SD_NUMA 0x4000 /* cross-node balancing */
868
869extern int __weak arch_sd_sibiling_asym_packing(void);
870
871struct sched_domain_attr {
872 int relax_domain_level;
873};
874
875#define SD_ATTR_INIT (struct sched_domain_attr) { \
876 .relax_domain_level = -1, \
877}
878
879extern int sched_domain_level_max;
880
881struct sched_group;
882
883struct sched_domain {
884 /* These fields must be setup */
885 struct sched_domain *parent; /* top domain must be null terminated */
886 struct sched_domain *child; /* bottom domain must be null terminated */
887 struct sched_group *groups; /* the balancing groups of the domain */
888 unsigned long min_interval; /* Minimum balance interval ms */
889 unsigned long max_interval; /* Maximum balance interval ms */
890 unsigned int busy_factor; /* less balancing by factor if busy */
891 unsigned int imbalance_pct; /* No balance until over watermark */
892 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
893 unsigned int busy_idx;
894 unsigned int idle_idx;
895 unsigned int newidle_idx;
896 unsigned int wake_idx;
897 unsigned int forkexec_idx;
898 unsigned int smt_gain;
899
900 int nohz_idle; /* NOHZ IDLE status */
901 int flags; /* See SD_* */
902 int level;
903
904 /* Runtime fields. */
905 unsigned long last_balance; /* init to jiffies. units in jiffies */
906 unsigned int balance_interval; /* initialise to 1. units in ms. */
907 unsigned int nr_balance_failed; /* initialise to 0 */
908
909 /* idle_balance() stats */
910 u64 max_newidle_lb_cost;
911 unsigned long next_decay_max_lb_cost;
912
913#ifdef CONFIG_SCHEDSTATS
914 /* load_balance() stats */
915 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
916 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
917 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
918 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
919 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
920 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
923
924 /* Active load balancing */
925 unsigned int alb_count;
926 unsigned int alb_failed;
927 unsigned int alb_pushed;
928
929 /* SD_BALANCE_EXEC stats */
930 unsigned int sbe_count;
931 unsigned int sbe_balanced;
932 unsigned int sbe_pushed;
933
934 /* SD_BALANCE_FORK stats */
935 unsigned int sbf_count;
936 unsigned int sbf_balanced;
937 unsigned int sbf_pushed;
938
939 /* try_to_wake_up() stats */
940 unsigned int ttwu_wake_remote;
941 unsigned int ttwu_move_affine;
942 unsigned int ttwu_move_balance;
943#endif
944#ifdef CONFIG_SCHED_DEBUG
945 char *name;
946#endif
947 union {
948 void *private; /* used during construction */
949 struct rcu_head rcu; /* used during destruction */
950 };
951
952 unsigned int span_weight;
953 /*
954 * Span of all CPUs in this domain.
955 *
956 * NOTE: this field is variable length. (Allocated dynamically
957 * by attaching extra space to the end of the structure,
958 * depending on how many CPUs the kernel has booted up with)
959 */
960 unsigned long span[0];
961};
962
963static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
964{
965 return to_cpumask(sd->span);
966}
967
968extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
969 struct sched_domain_attr *dattr_new);
970
971/* Allocate an array of sched domains, for partition_sched_domains(). */
972cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
973void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
974
975bool cpus_share_cache(int this_cpu, int that_cpu);
976
977#else /* CONFIG_SMP */
978
979struct sched_domain_attr;
980
981static inline void
982partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
983 struct sched_domain_attr *dattr_new)
984{
985}
986
987static inline bool cpus_share_cache(int this_cpu, int that_cpu)
988{
989 return true;
990}
991
992#endif /* !CONFIG_SMP */
993
994
995struct io_context; /* See blkdev.h */
996
997
998#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
999extern void prefetch_stack(struct task_struct *t);
1000#else
1001static inline void prefetch_stack(struct task_struct *t) { }
1002#endif
1003
1004struct audit_context; /* See audit.c */
1005struct mempolicy;
1006struct pipe_inode_info;
1007struct uts_namespace;
1008
1009struct load_weight {
1010 unsigned long weight;
1011 u32 inv_weight;
1012};
1013
1014struct sched_avg {
1015 /*
1016 * These sums represent an infinite geometric series and so are bound
1017 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1018 * choices of y < 1-2^(-32)*1024.
1019 */
1020 u32 runnable_avg_sum, runnable_avg_period;
1021 u64 last_runnable_update;
1022 s64 decay_count;
1023 unsigned long load_avg_contrib;
1024};
1025
1026#ifdef CONFIG_SCHEDSTATS
1027struct sched_statistics {
1028 u64 wait_start;
1029 u64 wait_max;
1030 u64 wait_count;
1031 u64 wait_sum;
1032 u64 iowait_count;
1033 u64 iowait_sum;
1034
1035 u64 sleep_start;
1036 u64 sleep_max;
1037 s64 sum_sleep_runtime;
1038
1039 u64 block_start;
1040 u64 block_max;
1041 u64 exec_max;
1042 u64 slice_max;
1043
1044 u64 nr_migrations_cold;
1045 u64 nr_failed_migrations_affine;
1046 u64 nr_failed_migrations_running;
1047 u64 nr_failed_migrations_hot;
1048 u64 nr_forced_migrations;
1049
1050 u64 nr_wakeups;
1051 u64 nr_wakeups_sync;
1052 u64 nr_wakeups_migrate;
1053 u64 nr_wakeups_local;
1054 u64 nr_wakeups_remote;
1055 u64 nr_wakeups_affine;
1056 u64 nr_wakeups_affine_attempts;
1057 u64 nr_wakeups_passive;
1058 u64 nr_wakeups_idle;
1059};
1060#endif
1061
1062struct sched_entity {
1063 struct load_weight load; /* for load-balancing */
1064 struct rb_node run_node;
1065 struct list_head group_node;
1066 unsigned int on_rq;
1067
1068 u64 exec_start;
1069 u64 sum_exec_runtime;
1070 u64 vruntime;
1071 u64 prev_sum_exec_runtime;
1072
1073 u64 nr_migrations;
1074
1075#ifdef CONFIG_SCHEDSTATS
1076 struct sched_statistics statistics;
1077#endif
1078
1079#ifdef CONFIG_FAIR_GROUP_SCHED
1080 struct sched_entity *parent;
1081 /* rq on which this entity is (to be) queued: */
1082 struct cfs_rq *cfs_rq;
1083 /* rq "owned" by this entity/group: */
1084 struct cfs_rq *my_q;
1085#endif
1086
1087#ifdef CONFIG_SMP
1088 /* Per-entity load-tracking */
1089 struct sched_avg avg;
1090#endif
1091};
1092
1093struct sched_rt_entity {
1094 struct list_head run_list;
1095 unsigned long timeout;
1096 unsigned long watchdog_stamp;
1097 unsigned int time_slice;
1098
1099 struct sched_rt_entity *back;
1100#ifdef CONFIG_RT_GROUP_SCHED
1101 struct sched_rt_entity *parent;
1102 /* rq on which this entity is (to be) queued: */
1103 struct rt_rq *rt_rq;
1104 /* rq "owned" by this entity/group: */
1105 struct rt_rq *my_q;
1106#endif
1107};
1108
1109struct sched_dl_entity {
1110 struct rb_node rb_node;
1111
1112 /*
1113 * Original scheduling parameters. Copied here from sched_attr
1114 * during sched_setscheduler2(), they will remain the same until
1115 * the next sched_setscheduler2().
1116 */
1117 u64 dl_runtime; /* maximum runtime for each instance */
1118 u64 dl_deadline; /* relative deadline of each instance */
1119 u64 dl_period; /* separation of two instances (period) */
1120 u64 dl_bw; /* dl_runtime / dl_deadline */
1121
1122 /*
1123 * Actual scheduling parameters. Initialized with the values above,
1124 * they are continously updated during task execution. Note that
1125 * the remaining runtime could be < 0 in case we are in overrun.
1126 */
1127 s64 runtime; /* remaining runtime for this instance */
1128 u64 deadline; /* absolute deadline for this instance */
1129 unsigned int flags; /* specifying the scheduler behaviour */
1130
1131 /*
1132 * Some bool flags:
1133 *
1134 * @dl_throttled tells if we exhausted the runtime. If so, the
1135 * task has to wait for a replenishment to be performed at the
1136 * next firing of dl_timer.
1137 *
1138 * @dl_new tells if a new instance arrived. If so we must
1139 * start executing it with full runtime and reset its absolute
1140 * deadline;
1141 *
1142 * @dl_boosted tells if we are boosted due to DI. If so we are
1143 * outside bandwidth enforcement mechanism (but only until we
1144 * exit the critical section).
1145 */
1146 int dl_throttled, dl_new, dl_boosted;
1147
1148 /*
1149 * Bandwidth enforcement timer. Each -deadline task has its
1150 * own bandwidth to be enforced, thus we need one timer per task.
1151 */
1152 struct hrtimer dl_timer;
1153};
1154
1155struct rcu_node;
1156
1157enum perf_event_task_context {
1158 perf_invalid_context = -1,
1159 perf_hw_context = 0,
1160 perf_sw_context,
1161 perf_nr_task_contexts,
1162};
1163
1164struct task_struct {
1165 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1166 void *stack;
1167 atomic_t usage;
1168 unsigned int flags; /* per process flags, defined below */
1169 unsigned int ptrace;
1170
1171#ifdef CONFIG_SMP
1172 struct llist_node wake_entry;
1173 int on_cpu;
1174 struct task_struct *last_wakee;
1175 unsigned long wakee_flips;
1176 unsigned long wakee_flip_decay_ts;
1177
1178 int wake_cpu;
1179#endif
1180 int on_rq;
1181
1182 int prio, static_prio, normal_prio;
1183 unsigned int rt_priority;
1184 const struct sched_class *sched_class;
1185 struct sched_entity se;
1186 struct sched_rt_entity rt;
1187#ifdef CONFIG_CGROUP_SCHED
1188 struct task_group *sched_task_group;
1189#endif
1190 struct sched_dl_entity dl;
1191
1192#ifdef CONFIG_PREEMPT_NOTIFIERS
1193 /* list of struct preempt_notifier: */
1194 struct hlist_head preempt_notifiers;
1195#endif
1196
1197#ifdef CONFIG_BLK_DEV_IO_TRACE
1198 unsigned int btrace_seq;
1199#endif
1200
1201 unsigned int policy;
1202 int nr_cpus_allowed;
1203 cpumask_t cpus_allowed;
1204
1205#ifdef CONFIG_PREEMPT_RCU
1206 int rcu_read_lock_nesting;
1207 char rcu_read_unlock_special;
1208 struct list_head rcu_node_entry;
1209#endif /* #ifdef CONFIG_PREEMPT_RCU */
1210#ifdef CONFIG_TREE_PREEMPT_RCU
1211 struct rcu_node *rcu_blocked_node;
1212#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1213#ifdef CONFIG_RCU_BOOST
1214 struct rt_mutex *rcu_boost_mutex;
1215#endif /* #ifdef CONFIG_RCU_BOOST */
1216
1217#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1218 struct sched_info sched_info;
1219#endif
1220
1221 struct list_head tasks;
1222#ifdef CONFIG_SMP
1223 struct plist_node pushable_tasks;
1224 struct rb_node pushable_dl_tasks;
1225#endif
1226
1227 struct mm_struct *mm, *active_mm;
1228#ifdef CONFIG_COMPAT_BRK
1229 unsigned brk_randomized:1;
1230#endif
1231#if defined(SPLIT_RSS_COUNTING)
1232 struct task_rss_stat rss_stat;
1233#endif
1234/* task state */
1235 int exit_state;
1236 int exit_code, exit_signal;
1237 int pdeath_signal; /* The signal sent when the parent dies */
1238 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1239
1240 /* Used for emulating ABI behavior of previous Linux versions */
1241 unsigned int personality;
1242
1243 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1244 * execve */
1245 unsigned in_iowait:1;
1246
1247 /* task may not gain privileges */
1248 unsigned no_new_privs:1;
1249
1250 /* Revert to default priority/policy when forking */
1251 unsigned sched_reset_on_fork:1;
1252 unsigned sched_contributes_to_load:1;
1253
1254 pid_t pid;
1255 pid_t tgid;
1256
1257#ifdef CONFIG_CC_STACKPROTECTOR
1258 /* Canary value for the -fstack-protector gcc feature */
1259 unsigned long stack_canary;
1260#endif
1261 /*
1262 * pointers to (original) parent process, youngest child, younger sibling,
1263 * older sibling, respectively. (p->father can be replaced with
1264 * p->real_parent->pid)
1265 */
1266 struct task_struct __rcu *real_parent; /* real parent process */
1267 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1268 /*
1269 * children/sibling forms the list of my natural children
1270 */
1271 struct list_head children; /* list of my children */
1272 struct list_head sibling; /* linkage in my parent's children list */
1273 struct task_struct *group_leader; /* threadgroup leader */
1274
1275 /*
1276 * ptraced is the list of tasks this task is using ptrace on.
1277 * This includes both natural children and PTRACE_ATTACH targets.
1278 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1279 */
1280 struct list_head ptraced;
1281 struct list_head ptrace_entry;
1282
1283 /* PID/PID hash table linkage. */
1284 struct pid_link pids[PIDTYPE_MAX];
1285 struct list_head thread_group;
1286 struct list_head thread_node;
1287
1288 struct completion *vfork_done; /* for vfork() */
1289 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1290 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1291
1292 cputime_t utime, stime, utimescaled, stimescaled;
1293 cputime_t gtime;
1294#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1295 struct cputime prev_cputime;
1296#endif
1297#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1298 seqlock_t vtime_seqlock;
1299 unsigned long long vtime_snap;
1300 enum {
1301 VTIME_SLEEPING = 0,
1302 VTIME_USER,
1303 VTIME_SYS,
1304 } vtime_snap_whence;
1305#endif
1306 unsigned long nvcsw, nivcsw; /* context switch counts */
1307 struct timespec start_time; /* monotonic time */
1308 struct timespec real_start_time; /* boot based time */
1309/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1310 unsigned long min_flt, maj_flt;
1311
1312 struct task_cputime cputime_expires;
1313 struct list_head cpu_timers[3];
1314
1315/* process credentials */
1316 const struct cred __rcu *real_cred; /* objective and real subjective task
1317 * credentials (COW) */
1318 const struct cred __rcu *cred; /* effective (overridable) subjective task
1319 * credentials (COW) */
1320 char comm[TASK_COMM_LEN]; /* executable name excluding path
1321 - access with [gs]et_task_comm (which lock
1322 it with task_lock())
1323 - initialized normally by setup_new_exec */
1324/* file system info */
1325 int link_count, total_link_count;
1326#ifdef CONFIG_SYSVIPC
1327/* ipc stuff */
1328 struct sysv_sem sysvsem;
1329#endif
1330#ifdef CONFIG_DETECT_HUNG_TASK
1331/* hung task detection */
1332 unsigned long last_switch_count;
1333#endif
1334/* CPU-specific state of this task */
1335 struct thread_struct thread;
1336/* filesystem information */
1337 struct fs_struct *fs;
1338/* open file information */
1339 struct files_struct *files;
1340/* namespaces */
1341 struct nsproxy *nsproxy;
1342/* signal handlers */
1343 struct signal_struct *signal;
1344 struct sighand_struct *sighand;
1345
1346 sigset_t blocked, real_blocked;
1347 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1348 struct sigpending pending;
1349
1350 unsigned long sas_ss_sp;
1351 size_t sas_ss_size;
1352 int (*notifier)(void *priv);
1353 void *notifier_data;
1354 sigset_t *notifier_mask;
1355 struct callback_head *task_works;
1356
1357 struct audit_context *audit_context;
1358#ifdef CONFIG_AUDITSYSCALL
1359 kuid_t loginuid;
1360 unsigned int sessionid;
1361#endif
1362 struct seccomp seccomp;
1363
1364/* Thread group tracking */
1365 u32 parent_exec_id;
1366 u32 self_exec_id;
1367/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1368 * mempolicy */
1369 spinlock_t alloc_lock;
1370
1371 /* Protection of the PI data structures: */
1372 raw_spinlock_t pi_lock;
1373
1374#ifdef CONFIG_RT_MUTEXES
1375 /* PI waiters blocked on a rt_mutex held by this task */
1376 struct rb_root pi_waiters;
1377 struct rb_node *pi_waiters_leftmost;
1378 /* Deadlock detection and priority inheritance handling */
1379 struct rt_mutex_waiter *pi_blocked_on;
1380 /* Top pi_waiters task */
1381 struct task_struct *pi_top_task;
1382#endif
1383
1384#ifdef CONFIG_DEBUG_MUTEXES
1385 /* mutex deadlock detection */
1386 struct mutex_waiter *blocked_on;
1387#endif
1388#ifdef CONFIG_TRACE_IRQFLAGS
1389 unsigned int irq_events;
1390 unsigned long hardirq_enable_ip;
1391 unsigned long hardirq_disable_ip;
1392 unsigned int hardirq_enable_event;
1393 unsigned int hardirq_disable_event;
1394 int hardirqs_enabled;
1395 int hardirq_context;
1396 unsigned long softirq_disable_ip;
1397 unsigned long softirq_enable_ip;
1398 unsigned int softirq_disable_event;
1399 unsigned int softirq_enable_event;
1400 int softirqs_enabled;
1401 int softirq_context;
1402#endif
1403#ifdef CONFIG_LOCKDEP
1404# define MAX_LOCK_DEPTH 48UL
1405 u64 curr_chain_key;
1406 int lockdep_depth;
1407 unsigned int lockdep_recursion;
1408 struct held_lock held_locks[MAX_LOCK_DEPTH];
1409 gfp_t lockdep_reclaim_gfp;
1410#endif
1411
1412/* journalling filesystem info */
1413 void *journal_info;
1414
1415/* stacked block device info */
1416 struct bio_list *bio_list;
1417
1418#ifdef CONFIG_BLOCK
1419/* stack plugging */
1420 struct blk_plug *plug;
1421#endif
1422
1423/* VM state */
1424 struct reclaim_state *reclaim_state;
1425
1426 struct backing_dev_info *backing_dev_info;
1427
1428 struct io_context *io_context;
1429
1430 unsigned long ptrace_message;
1431 siginfo_t *last_siginfo; /* For ptrace use. */
1432 struct task_io_accounting ioac;
1433#if defined(CONFIG_TASK_XACCT)
1434 u64 acct_rss_mem1; /* accumulated rss usage */
1435 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1436 cputime_t acct_timexpd; /* stime + utime since last update */
1437#endif
1438#ifdef CONFIG_CPUSETS
1439 nodemask_t mems_allowed; /* Protected by alloc_lock */
1440 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1441 int cpuset_mem_spread_rotor;
1442 int cpuset_slab_spread_rotor;
1443#endif
1444#ifdef CONFIG_CGROUPS
1445 /* Control Group info protected by css_set_lock */
1446 struct css_set __rcu *cgroups;
1447 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1448 struct list_head cg_list;
1449#endif
1450#ifdef CONFIG_FUTEX
1451 struct robust_list_head __user *robust_list;
1452#ifdef CONFIG_COMPAT
1453 struct compat_robust_list_head __user *compat_robust_list;
1454#endif
1455 struct list_head pi_state_list;
1456 struct futex_pi_state *pi_state_cache;
1457#endif
1458#ifdef CONFIG_PERF_EVENTS
1459 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1460 struct mutex perf_event_mutex;
1461 struct list_head perf_event_list;
1462#endif
1463#ifdef CONFIG_NUMA
1464 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1465 short il_next;
1466 short pref_node_fork;
1467#endif
1468#ifdef CONFIG_NUMA_BALANCING
1469 int numa_scan_seq;
1470 unsigned int numa_scan_period;
1471 unsigned int numa_scan_period_max;
1472 int numa_preferred_nid;
1473 int numa_migrate_deferred;
1474 unsigned long numa_migrate_retry;
1475 u64 node_stamp; /* migration stamp */
1476 struct callback_head numa_work;
1477
1478 struct list_head numa_entry;
1479 struct numa_group *numa_group;
1480
1481 /*
1482 * Exponential decaying average of faults on a per-node basis.
1483 * Scheduling placement decisions are made based on the these counts.
1484 * The values remain static for the duration of a PTE scan
1485 */
1486 unsigned long *numa_faults;
1487 unsigned long total_numa_faults;
1488
1489 /*
1490 * numa_faults_buffer records faults per node during the current
1491 * scan window. When the scan completes, the counts in numa_faults
1492 * decay and these values are copied.
1493 */
1494 unsigned long *numa_faults_buffer;
1495
1496 /*
1497 * numa_faults_locality tracks if faults recorded during the last
1498 * scan window were remote/local. The task scan period is adapted
1499 * based on the locality of the faults with different weights
1500 * depending on whether they were shared or private faults
1501 */
1502 unsigned long numa_faults_locality[2];
1503
1504 unsigned long numa_pages_migrated;
1505#endif /* CONFIG_NUMA_BALANCING */
1506
1507 struct rcu_head rcu;
1508
1509 /*
1510 * cache last used pipe for splice
1511 */
1512 struct pipe_inode_info *splice_pipe;
1513
1514 struct page_frag task_frag;
1515
1516#ifdef CONFIG_TASK_DELAY_ACCT
1517 struct task_delay_info *delays;
1518#endif
1519#ifdef CONFIG_FAULT_INJECTION
1520 int make_it_fail;
1521#endif
1522 /*
1523 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1524 * balance_dirty_pages() for some dirty throttling pause
1525 */
1526 int nr_dirtied;
1527 int nr_dirtied_pause;
1528 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1529
1530#ifdef CONFIG_LATENCYTOP
1531 int latency_record_count;
1532 struct latency_record latency_record[LT_SAVECOUNT];
1533#endif
1534 /*
1535 * time slack values; these are used to round up poll() and
1536 * select() etc timeout values. These are in nanoseconds.
1537 */
1538 unsigned long timer_slack_ns;
1539 unsigned long default_timer_slack_ns;
1540
1541#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1542 /* Index of current stored address in ret_stack */
1543 int curr_ret_stack;
1544 /* Stack of return addresses for return function tracing */
1545 struct ftrace_ret_stack *ret_stack;
1546 /* time stamp for last schedule */
1547 unsigned long long ftrace_timestamp;
1548 /*
1549 * Number of functions that haven't been traced
1550 * because of depth overrun.
1551 */
1552 atomic_t trace_overrun;
1553 /* Pause for the tracing */
1554 atomic_t tracing_graph_pause;
1555#endif
1556#ifdef CONFIG_TRACING
1557 /* state flags for use by tracers */
1558 unsigned long trace;
1559 /* bitmask and counter of trace recursion */
1560 unsigned long trace_recursion;
1561#endif /* CONFIG_TRACING */
1562#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1563 struct memcg_batch_info {
1564 int do_batch; /* incremented when batch uncharge started */
1565 struct mem_cgroup *memcg; /* target memcg of uncharge */
1566 unsigned long nr_pages; /* uncharged usage */
1567 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1568 } memcg_batch;
1569 unsigned int memcg_kmem_skip_account;
1570 struct memcg_oom_info {
1571 struct mem_cgroup *memcg;
1572 gfp_t gfp_mask;
1573 int order;
1574 unsigned int may_oom:1;
1575 } memcg_oom;
1576#endif
1577#ifdef CONFIG_UPROBES
1578 struct uprobe_task *utask;
1579#endif
1580#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1581 unsigned int sequential_io;
1582 unsigned int sequential_io_avg;
1583#endif
1584};
1585
1586/* Future-safe accessor for struct task_struct's cpus_allowed. */
1587#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1588
1589#define TNF_MIGRATED 0x01
1590#define TNF_NO_GROUP 0x02
1591#define TNF_SHARED 0x04
1592#define TNF_FAULT_LOCAL 0x08
1593
1594#ifdef CONFIG_NUMA_BALANCING
1595extern void task_numa_fault(int last_node, int node, int pages, int flags);
1596extern pid_t task_numa_group_id(struct task_struct *p);
1597extern void set_numabalancing_state(bool enabled);
1598extern void task_numa_free(struct task_struct *p);
1599
1600extern unsigned int sysctl_numa_balancing_migrate_deferred;
1601#else
1602static inline void task_numa_fault(int last_node, int node, int pages,
1603 int flags)
1604{
1605}
1606static inline pid_t task_numa_group_id(struct task_struct *p)
1607{
1608 return 0;
1609}
1610static inline void set_numabalancing_state(bool enabled)
1611{
1612}
1613static inline void task_numa_free(struct task_struct *p)
1614{
1615}
1616#endif
1617
1618static inline struct pid *task_pid(struct task_struct *task)
1619{
1620 return task->pids[PIDTYPE_PID].pid;
1621}
1622
1623static inline struct pid *task_tgid(struct task_struct *task)
1624{
1625 return task->group_leader->pids[PIDTYPE_PID].pid;
1626}
1627
1628/*
1629 * Without tasklist or rcu lock it is not safe to dereference
1630 * the result of task_pgrp/task_session even if task == current,
1631 * we can race with another thread doing sys_setsid/sys_setpgid.
1632 */
1633static inline struct pid *task_pgrp(struct task_struct *task)
1634{
1635 return task->group_leader->pids[PIDTYPE_PGID].pid;
1636}
1637
1638static inline struct pid *task_session(struct task_struct *task)
1639{
1640 return task->group_leader->pids[PIDTYPE_SID].pid;
1641}
1642
1643struct pid_namespace;
1644
1645/*
1646 * the helpers to get the task's different pids as they are seen
1647 * from various namespaces
1648 *
1649 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1650 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1651 * current.
1652 * task_xid_nr_ns() : id seen from the ns specified;
1653 *
1654 * set_task_vxid() : assigns a virtual id to a task;
1655 *
1656 * see also pid_nr() etc in include/linux/pid.h
1657 */
1658pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1659 struct pid_namespace *ns);
1660
1661static inline pid_t task_pid_nr(struct task_struct *tsk)
1662{
1663 return tsk->pid;
1664}
1665
1666static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1667 struct pid_namespace *ns)
1668{
1669 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1670}
1671
1672static inline pid_t task_pid_vnr(struct task_struct *tsk)
1673{
1674 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1675}
1676
1677
1678static inline pid_t task_tgid_nr(struct task_struct *tsk)
1679{
1680 return tsk->tgid;
1681}
1682
1683pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1684
1685static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1686{
1687 return pid_vnr(task_tgid(tsk));
1688}
1689
1690
1691static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1692 struct pid_namespace *ns)
1693{
1694 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1695}
1696
1697static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1698{
1699 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1700}
1701
1702
1703static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1704 struct pid_namespace *ns)
1705{
1706 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1707}
1708
1709static inline pid_t task_session_vnr(struct task_struct *tsk)
1710{
1711 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1712}
1713
1714/* obsolete, do not use */
1715static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1716{
1717 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1718}
1719
1720/**
1721 * pid_alive - check that a task structure is not stale
1722 * @p: Task structure to be checked.
1723 *
1724 * Test if a process is not yet dead (at most zombie state)
1725 * If pid_alive fails, then pointers within the task structure
1726 * can be stale and must not be dereferenced.
1727 *
1728 * Return: 1 if the process is alive. 0 otherwise.
1729 */
1730static inline int pid_alive(struct task_struct *p)
1731{
1732 return p->pids[PIDTYPE_PID].pid != NULL;
1733}
1734
1735/**
1736 * is_global_init - check if a task structure is init
1737 * @tsk: Task structure to be checked.
1738 *
1739 * Check if a task structure is the first user space task the kernel created.
1740 *
1741 * Return: 1 if the task structure is init. 0 otherwise.
1742 */
1743static inline int is_global_init(struct task_struct *tsk)
1744{
1745 return tsk->pid == 1;
1746}
1747
1748extern struct pid *cad_pid;
1749
1750extern void free_task(struct task_struct *tsk);
1751#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1752
1753extern void __put_task_struct(struct task_struct *t);
1754
1755static inline void put_task_struct(struct task_struct *t)
1756{
1757 if (atomic_dec_and_test(&t->usage))
1758 __put_task_struct(t);
1759}
1760
1761#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1762extern void task_cputime(struct task_struct *t,
1763 cputime_t *utime, cputime_t *stime);
1764extern void task_cputime_scaled(struct task_struct *t,
1765 cputime_t *utimescaled, cputime_t *stimescaled);
1766extern cputime_t task_gtime(struct task_struct *t);
1767#else
1768static inline void task_cputime(struct task_struct *t,
1769 cputime_t *utime, cputime_t *stime)
1770{
1771 if (utime)
1772 *utime = t->utime;
1773 if (stime)
1774 *stime = t->stime;
1775}
1776
1777static inline void task_cputime_scaled(struct task_struct *t,
1778 cputime_t *utimescaled,
1779 cputime_t *stimescaled)
1780{
1781 if (utimescaled)
1782 *utimescaled = t->utimescaled;
1783 if (stimescaled)
1784 *stimescaled = t->stimescaled;
1785}
1786
1787static inline cputime_t task_gtime(struct task_struct *t)
1788{
1789 return t->gtime;
1790}
1791#endif
1792extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1793extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1794
1795/*
1796 * Per process flags
1797 */
1798#define PF_EXITING 0x00000004 /* getting shut down */
1799#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1800#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1801#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1802#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1803#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1804#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1805#define PF_DUMPCORE 0x00000200 /* dumped core */
1806#define PF_SIGNALED 0x00000400 /* killed by a signal */
1807#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1808#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1809#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1810#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1811#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1812#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1813#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1814#define PF_KSWAPD 0x00040000 /* I am kswapd */
1815#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1816#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1817#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1818#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1819#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1820#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1821#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1822#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1823#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1824#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1825#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1826#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1827#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1828
1829/*
1830 * Only the _current_ task can read/write to tsk->flags, but other
1831 * tasks can access tsk->flags in readonly mode for example
1832 * with tsk_used_math (like during threaded core dumping).
1833 * There is however an exception to this rule during ptrace
1834 * or during fork: the ptracer task is allowed to write to the
1835 * child->flags of its traced child (same goes for fork, the parent
1836 * can write to the child->flags), because we're guaranteed the
1837 * child is not running and in turn not changing child->flags
1838 * at the same time the parent does it.
1839 */
1840#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1841#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1842#define clear_used_math() clear_stopped_child_used_math(current)
1843#define set_used_math() set_stopped_child_used_math(current)
1844#define conditional_stopped_child_used_math(condition, child) \
1845 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1846#define conditional_used_math(condition) \
1847 conditional_stopped_child_used_math(condition, current)
1848#define copy_to_stopped_child_used_math(child) \
1849 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1850/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1851#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1852#define used_math() tsk_used_math(current)
1853
1854/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1855static inline gfp_t memalloc_noio_flags(gfp_t flags)
1856{
1857 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1858 flags &= ~__GFP_IO;
1859 return flags;
1860}
1861
1862static inline unsigned int memalloc_noio_save(void)
1863{
1864 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1865 current->flags |= PF_MEMALLOC_NOIO;
1866 return flags;
1867}
1868
1869static inline void memalloc_noio_restore(unsigned int flags)
1870{
1871 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1872}
1873
1874/*
1875 * task->jobctl flags
1876 */
1877#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1878
1879#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1880#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1881#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1882#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1883#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1884#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1885#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1886
1887#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1888#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1889#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1890#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1891#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1892#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1893#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1894
1895#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1896#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1897
1898extern bool task_set_jobctl_pending(struct task_struct *task,
1899 unsigned int mask);
1900extern void task_clear_jobctl_trapping(struct task_struct *task);
1901extern void task_clear_jobctl_pending(struct task_struct *task,
1902 unsigned int mask);
1903
1904#ifdef CONFIG_PREEMPT_RCU
1905
1906#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1907#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1908
1909static inline void rcu_copy_process(struct task_struct *p)
1910{
1911 p->rcu_read_lock_nesting = 0;
1912 p->rcu_read_unlock_special = 0;
1913#ifdef CONFIG_TREE_PREEMPT_RCU
1914 p->rcu_blocked_node = NULL;
1915#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1916#ifdef CONFIG_RCU_BOOST
1917 p->rcu_boost_mutex = NULL;
1918#endif /* #ifdef CONFIG_RCU_BOOST */
1919 INIT_LIST_HEAD(&p->rcu_node_entry);
1920}
1921
1922#else
1923
1924static inline void rcu_copy_process(struct task_struct *p)
1925{
1926}
1927
1928#endif
1929
1930static inline void tsk_restore_flags(struct task_struct *task,
1931 unsigned long orig_flags, unsigned long flags)
1932{
1933 task->flags &= ~flags;
1934 task->flags |= orig_flags & flags;
1935}
1936
1937#ifdef CONFIG_SMP
1938extern void do_set_cpus_allowed(struct task_struct *p,
1939 const struct cpumask *new_mask);
1940
1941extern int set_cpus_allowed_ptr(struct task_struct *p,
1942 const struct cpumask *new_mask);
1943#else
1944static inline void do_set_cpus_allowed(struct task_struct *p,
1945 const struct cpumask *new_mask)
1946{
1947}
1948static inline int set_cpus_allowed_ptr(struct task_struct *p,
1949 const struct cpumask *new_mask)
1950{
1951 if (!cpumask_test_cpu(0, new_mask))
1952 return -EINVAL;
1953 return 0;
1954}
1955#endif
1956
1957#ifdef CONFIG_NO_HZ_COMMON
1958void calc_load_enter_idle(void);
1959void calc_load_exit_idle(void);
1960#else
1961static inline void calc_load_enter_idle(void) { }
1962static inline void calc_load_exit_idle(void) { }
1963#endif /* CONFIG_NO_HZ_COMMON */
1964
1965#ifndef CONFIG_CPUMASK_OFFSTACK
1966static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1967{
1968 return set_cpus_allowed_ptr(p, &new_mask);
1969}
1970#endif
1971
1972/*
1973 * Do not use outside of architecture code which knows its limitations.
1974 *
1975 * sched_clock() has no promise of monotonicity or bounded drift between
1976 * CPUs, use (which you should not) requires disabling IRQs.
1977 *
1978 * Please use one of the three interfaces below.
1979 */
1980extern unsigned long long notrace sched_clock(void);
1981/*
1982 * See the comment in kernel/sched/clock.c
1983 */
1984extern u64 cpu_clock(int cpu);
1985extern u64 local_clock(void);
1986extern u64 sched_clock_cpu(int cpu);
1987
1988
1989extern void sched_clock_init(void);
1990
1991#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1992static inline void sched_clock_tick(void)
1993{
1994}
1995
1996static inline void sched_clock_idle_sleep_event(void)
1997{
1998}
1999
2000static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2001{
2002}
2003#else
2004/*
2005 * Architectures can set this to 1 if they have specified
2006 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2007 * but then during bootup it turns out that sched_clock()
2008 * is reliable after all:
2009 */
2010extern int sched_clock_stable(void);
2011extern void set_sched_clock_stable(void);
2012extern void clear_sched_clock_stable(void);
2013
2014extern void sched_clock_tick(void);
2015extern void sched_clock_idle_sleep_event(void);
2016extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2017#endif
2018
2019#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2020/*
2021 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2022 * The reason for this explicit opt-in is not to have perf penalty with
2023 * slow sched_clocks.
2024 */
2025extern void enable_sched_clock_irqtime(void);
2026extern void disable_sched_clock_irqtime(void);
2027#else
2028static inline void enable_sched_clock_irqtime(void) {}
2029static inline void disable_sched_clock_irqtime(void) {}
2030#endif
2031
2032extern unsigned long long
2033task_sched_runtime(struct task_struct *task);
2034
2035/* sched_exec is called by processes performing an exec */
2036#ifdef CONFIG_SMP
2037extern void sched_exec(void);
2038#else
2039#define sched_exec() {}
2040#endif
2041
2042extern void sched_clock_idle_sleep_event(void);
2043extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2044
2045#ifdef CONFIG_HOTPLUG_CPU
2046extern void idle_task_exit(void);
2047#else
2048static inline void idle_task_exit(void) {}
2049#endif
2050
2051#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2052extern void wake_up_nohz_cpu(int cpu);
2053#else
2054static inline void wake_up_nohz_cpu(int cpu) { }
2055#endif
2056
2057#ifdef CONFIG_NO_HZ_FULL
2058extern bool sched_can_stop_tick(void);
2059extern u64 scheduler_tick_max_deferment(void);
2060#else
2061static inline bool sched_can_stop_tick(void) { return false; }
2062#endif
2063
2064#ifdef CONFIG_SCHED_AUTOGROUP
2065extern void sched_autogroup_create_attach(struct task_struct *p);
2066extern void sched_autogroup_detach(struct task_struct *p);
2067extern void sched_autogroup_fork(struct signal_struct *sig);
2068extern void sched_autogroup_exit(struct signal_struct *sig);
2069#ifdef CONFIG_PROC_FS
2070extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2071extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2072#endif
2073#else
2074static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2075static inline void sched_autogroup_detach(struct task_struct *p) { }
2076static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2077static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2078#endif
2079
2080extern bool yield_to(struct task_struct *p, bool preempt);
2081extern void set_user_nice(struct task_struct *p, long nice);
2082extern int task_prio(const struct task_struct *p);
2083extern int task_nice(const struct task_struct *p);
2084extern int can_nice(const struct task_struct *p, const int nice);
2085extern int task_curr(const struct task_struct *p);
2086extern int idle_cpu(int cpu);
2087extern int sched_setscheduler(struct task_struct *, int,
2088 const struct sched_param *);
2089extern int sched_setscheduler_nocheck(struct task_struct *, int,
2090 const struct sched_param *);
2091extern int sched_setattr(struct task_struct *,
2092 const struct sched_attr *);
2093extern struct task_struct *idle_task(int cpu);
2094/**
2095 * is_idle_task - is the specified task an idle task?
2096 * @p: the task in question.
2097 *
2098 * Return: 1 if @p is an idle task. 0 otherwise.
2099 */
2100static inline bool is_idle_task(const struct task_struct *p)
2101{
2102 return p->pid == 0;
2103}
2104extern struct task_struct *curr_task(int cpu);
2105extern void set_curr_task(int cpu, struct task_struct *p);
2106
2107void yield(void);
2108
2109/*
2110 * The default (Linux) execution domain.
2111 */
2112extern struct exec_domain default_exec_domain;
2113
2114union thread_union {
2115 struct thread_info thread_info;
2116 unsigned long stack[THREAD_SIZE/sizeof(long)];
2117};
2118
2119#ifndef __HAVE_ARCH_KSTACK_END
2120static inline int kstack_end(void *addr)
2121{
2122 /* Reliable end of stack detection:
2123 * Some APM bios versions misalign the stack
2124 */
2125 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2126}
2127#endif
2128
2129extern union thread_union init_thread_union;
2130extern struct task_struct init_task;
2131
2132extern struct mm_struct init_mm;
2133
2134extern struct pid_namespace init_pid_ns;
2135
2136/*
2137 * find a task by one of its numerical ids
2138 *
2139 * find_task_by_pid_ns():
2140 * finds a task by its pid in the specified namespace
2141 * find_task_by_vpid():
2142 * finds a task by its virtual pid
2143 *
2144 * see also find_vpid() etc in include/linux/pid.h
2145 */
2146
2147extern struct task_struct *find_task_by_vpid(pid_t nr);
2148extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2149 struct pid_namespace *ns);
2150
2151/* per-UID process charging. */
2152extern struct user_struct * alloc_uid(kuid_t);
2153static inline struct user_struct *get_uid(struct user_struct *u)
2154{
2155 atomic_inc(&u->__count);
2156 return u;
2157}
2158extern void free_uid(struct user_struct *);
2159
2160#include <asm/current.h>
2161
2162extern void xtime_update(unsigned long ticks);
2163
2164extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2165extern int wake_up_process(struct task_struct *tsk);
2166extern void wake_up_new_task(struct task_struct *tsk);
2167#ifdef CONFIG_SMP
2168 extern void kick_process(struct task_struct *tsk);
2169#else
2170 static inline void kick_process(struct task_struct *tsk) { }
2171#endif
2172extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2173extern void sched_dead(struct task_struct *p);
2174
2175extern void proc_caches_init(void);
2176extern void flush_signals(struct task_struct *);
2177extern void __flush_signals(struct task_struct *);
2178extern void ignore_signals(struct task_struct *);
2179extern void flush_signal_handlers(struct task_struct *, int force_default);
2180extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2181
2182static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2183{
2184 unsigned long flags;
2185 int ret;
2186
2187 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2188 ret = dequeue_signal(tsk, mask, info);
2189 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2190
2191 return ret;
2192}
2193
2194extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2195 sigset_t *mask);
2196extern void unblock_all_signals(void);
2197extern void release_task(struct task_struct * p);
2198extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2199extern int force_sigsegv(int, struct task_struct *);
2200extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2201extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2202extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2203extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2204 const struct cred *, u32);
2205extern int kill_pgrp(struct pid *pid, int sig, int priv);
2206extern int kill_pid(struct pid *pid, int sig, int priv);
2207extern int kill_proc_info(int, struct siginfo *, pid_t);
2208extern __must_check bool do_notify_parent(struct task_struct *, int);
2209extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2210extern void force_sig(int, struct task_struct *);
2211extern int send_sig(int, struct task_struct *, int);
2212extern int zap_other_threads(struct task_struct *p);
2213extern struct sigqueue *sigqueue_alloc(void);
2214extern void sigqueue_free(struct sigqueue *);
2215extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2216extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2217
2218static inline void restore_saved_sigmask(void)
2219{
2220 if (test_and_clear_restore_sigmask())
2221 __set_current_blocked(¤t->saved_sigmask);
2222}
2223
2224static inline sigset_t *sigmask_to_save(void)
2225{
2226 sigset_t *res = ¤t->blocked;
2227 if (unlikely(test_restore_sigmask()))
2228 res = ¤t->saved_sigmask;
2229 return res;
2230}
2231
2232static inline int kill_cad_pid(int sig, int priv)
2233{
2234 return kill_pid(cad_pid, sig, priv);
2235}
2236
2237/* These can be the second arg to send_sig_info/send_group_sig_info. */
2238#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2239#define SEND_SIG_PRIV ((struct siginfo *) 1)
2240#define SEND_SIG_FORCED ((struct siginfo *) 2)
2241
2242/*
2243 * True if we are on the alternate signal stack.
2244 */
2245static inline int on_sig_stack(unsigned long sp)
2246{
2247#ifdef CONFIG_STACK_GROWSUP
2248 return sp >= current->sas_ss_sp &&
2249 sp - current->sas_ss_sp < current->sas_ss_size;
2250#else
2251 return sp > current->sas_ss_sp &&
2252 sp - current->sas_ss_sp <= current->sas_ss_size;
2253#endif
2254}
2255
2256static inline int sas_ss_flags(unsigned long sp)
2257{
2258 return (current->sas_ss_size == 0 ? SS_DISABLE
2259 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2260}
2261
2262static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2263{
2264 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2265#ifdef CONFIG_STACK_GROWSUP
2266 return current->sas_ss_sp;
2267#else
2268 return current->sas_ss_sp + current->sas_ss_size;
2269#endif
2270 return sp;
2271}
2272
2273/*
2274 * Routines for handling mm_structs
2275 */
2276extern struct mm_struct * mm_alloc(void);
2277
2278/* mmdrop drops the mm and the page tables */
2279extern void __mmdrop(struct mm_struct *);
2280static inline void mmdrop(struct mm_struct * mm)
2281{
2282 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2283 __mmdrop(mm);
2284}
2285
2286/* mmput gets rid of the mappings and all user-space */
2287extern void mmput(struct mm_struct *);
2288/* Grab a reference to a task's mm, if it is not already going away */
2289extern struct mm_struct *get_task_mm(struct task_struct *task);
2290/*
2291 * Grab a reference to a task's mm, if it is not already going away
2292 * and ptrace_may_access with the mode parameter passed to it
2293 * succeeds.
2294 */
2295extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2296/* Remove the current tasks stale references to the old mm_struct */
2297extern void mm_release(struct task_struct *, struct mm_struct *);
2298
2299extern int copy_thread(unsigned long, unsigned long, unsigned long,
2300 struct task_struct *);
2301extern void flush_thread(void);
2302extern void exit_thread(void);
2303
2304extern void exit_files(struct task_struct *);
2305extern void __cleanup_sighand(struct sighand_struct *);
2306
2307extern void exit_itimers(struct signal_struct *);
2308extern void flush_itimer_signals(void);
2309
2310extern void do_group_exit(int);
2311
2312extern int allow_signal(int);
2313extern int disallow_signal(int);
2314
2315extern int do_execve(struct filename *,
2316 const char __user * const __user *,
2317 const char __user * const __user *);
2318extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2319struct task_struct *fork_idle(int);
2320extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2321
2322extern void set_task_comm(struct task_struct *tsk, char *from);
2323extern char *get_task_comm(char *to, struct task_struct *tsk);
2324
2325#ifdef CONFIG_SMP
2326void scheduler_ipi(void);
2327extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2328#else
2329static inline void scheduler_ipi(void) { }
2330static inline unsigned long wait_task_inactive(struct task_struct *p,
2331 long match_state)
2332{
2333 return 1;
2334}
2335#endif
2336
2337#define next_task(p) \
2338 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2339
2340#define for_each_process(p) \
2341 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2342
2343extern bool current_is_single_threaded(void);
2344
2345/*
2346 * Careful: do_each_thread/while_each_thread is a double loop so
2347 * 'break' will not work as expected - use goto instead.
2348 */
2349#define do_each_thread(g, t) \
2350 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2351
2352#define while_each_thread(g, t) \
2353 while ((t = next_thread(t)) != g)
2354
2355#define __for_each_thread(signal, t) \
2356 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2357
2358#define for_each_thread(p, t) \
2359 __for_each_thread((p)->signal, t)
2360
2361/* Careful: this is a double loop, 'break' won't work as expected. */
2362#define for_each_process_thread(p, t) \
2363 for_each_process(p) for_each_thread(p, t)
2364
2365static inline int get_nr_threads(struct task_struct *tsk)
2366{
2367 return tsk->signal->nr_threads;
2368}
2369
2370static inline bool thread_group_leader(struct task_struct *p)
2371{
2372 return p->exit_signal >= 0;
2373}
2374
2375/* Do to the insanities of de_thread it is possible for a process
2376 * to have the pid of the thread group leader without actually being
2377 * the thread group leader. For iteration through the pids in proc
2378 * all we care about is that we have a task with the appropriate
2379 * pid, we don't actually care if we have the right task.
2380 */
2381static inline bool has_group_leader_pid(struct task_struct *p)
2382{
2383 return task_pid(p) == p->signal->leader_pid;
2384}
2385
2386static inline
2387bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2388{
2389 return p1->signal == p2->signal;
2390}
2391
2392static inline struct task_struct *next_thread(const struct task_struct *p)
2393{
2394 return list_entry_rcu(p->thread_group.next,
2395 struct task_struct, thread_group);
2396}
2397
2398static inline int thread_group_empty(struct task_struct *p)
2399{
2400 return list_empty(&p->thread_group);
2401}
2402
2403#define delay_group_leader(p) \
2404 (thread_group_leader(p) && !thread_group_empty(p))
2405
2406/*
2407 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2408 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2409 * pins the final release of task.io_context. Also protects ->cpuset and
2410 * ->cgroup.subsys[]. And ->vfork_done.
2411 *
2412 * Nests both inside and outside of read_lock(&tasklist_lock).
2413 * It must not be nested with write_lock_irq(&tasklist_lock),
2414 * neither inside nor outside.
2415 */
2416static inline void task_lock(struct task_struct *p)
2417{
2418 spin_lock(&p->alloc_lock);
2419}
2420
2421static inline void task_unlock(struct task_struct *p)
2422{
2423 spin_unlock(&p->alloc_lock);
2424}
2425
2426extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2427 unsigned long *flags);
2428
2429static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2430 unsigned long *flags)
2431{
2432 struct sighand_struct *ret;
2433
2434 ret = __lock_task_sighand(tsk, flags);
2435 (void)__cond_lock(&tsk->sighand->siglock, ret);
2436 return ret;
2437}
2438
2439static inline void unlock_task_sighand(struct task_struct *tsk,
2440 unsigned long *flags)
2441{
2442 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2443}
2444
2445#ifdef CONFIG_CGROUPS
2446static inline void threadgroup_change_begin(struct task_struct *tsk)
2447{
2448 down_read(&tsk->signal->group_rwsem);
2449}
2450static inline void threadgroup_change_end(struct task_struct *tsk)
2451{
2452 up_read(&tsk->signal->group_rwsem);
2453}
2454
2455/**
2456 * threadgroup_lock - lock threadgroup
2457 * @tsk: member task of the threadgroup to lock
2458 *
2459 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2460 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2461 * change ->group_leader/pid. This is useful for cases where the threadgroup
2462 * needs to stay stable across blockable operations.
2463 *
2464 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2465 * synchronization. While held, no new task will be added to threadgroup
2466 * and no existing live task will have its PF_EXITING set.
2467 *
2468 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2469 * sub-thread becomes a new leader.
2470 */
2471static inline void threadgroup_lock(struct task_struct *tsk)
2472{
2473 down_write(&tsk->signal->group_rwsem);
2474}
2475
2476/**
2477 * threadgroup_unlock - unlock threadgroup
2478 * @tsk: member task of the threadgroup to unlock
2479 *
2480 * Reverse threadgroup_lock().
2481 */
2482static inline void threadgroup_unlock(struct task_struct *tsk)
2483{
2484 up_write(&tsk->signal->group_rwsem);
2485}
2486#else
2487static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2488static inline void threadgroup_change_end(struct task_struct *tsk) {}
2489static inline void threadgroup_lock(struct task_struct *tsk) {}
2490static inline void threadgroup_unlock(struct task_struct *tsk) {}
2491#endif
2492
2493#ifndef __HAVE_THREAD_FUNCTIONS
2494
2495#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2496#define task_stack_page(task) ((task)->stack)
2497
2498static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2499{
2500 *task_thread_info(p) = *task_thread_info(org);
2501 task_thread_info(p)->task = p;
2502}
2503
2504static inline unsigned long *end_of_stack(struct task_struct *p)
2505{
2506 return (unsigned long *)(task_thread_info(p) + 1);
2507}
2508
2509#endif
2510
2511static inline int object_is_on_stack(void *obj)
2512{
2513 void *stack = task_stack_page(current);
2514
2515 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2516}
2517
2518extern void thread_info_cache_init(void);
2519
2520#ifdef CONFIG_DEBUG_STACK_USAGE
2521static inline unsigned long stack_not_used(struct task_struct *p)
2522{
2523 unsigned long *n = end_of_stack(p);
2524
2525 do { /* Skip over canary */
2526 n++;
2527 } while (!*n);
2528
2529 return (unsigned long)n - (unsigned long)end_of_stack(p);
2530}
2531#endif
2532
2533/* set thread flags in other task's structures
2534 * - see asm/thread_info.h for TIF_xxxx flags available
2535 */
2536static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2537{
2538 set_ti_thread_flag(task_thread_info(tsk), flag);
2539}
2540
2541static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2542{
2543 clear_ti_thread_flag(task_thread_info(tsk), flag);
2544}
2545
2546static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2547{
2548 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2549}
2550
2551static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2552{
2553 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2554}
2555
2556static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2557{
2558 return test_ti_thread_flag(task_thread_info(tsk), flag);
2559}
2560
2561static inline void set_tsk_need_resched(struct task_struct *tsk)
2562{
2563 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2564}
2565
2566static inline void clear_tsk_need_resched(struct task_struct *tsk)
2567{
2568 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2569}
2570
2571static inline int test_tsk_need_resched(struct task_struct *tsk)
2572{
2573 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2574}
2575
2576static inline int restart_syscall(void)
2577{
2578 set_tsk_thread_flag(current, TIF_SIGPENDING);
2579 return -ERESTARTNOINTR;
2580}
2581
2582static inline int signal_pending(struct task_struct *p)
2583{
2584 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2585}
2586
2587static inline int __fatal_signal_pending(struct task_struct *p)
2588{
2589 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2590}
2591
2592static inline int fatal_signal_pending(struct task_struct *p)
2593{
2594 return signal_pending(p) && __fatal_signal_pending(p);
2595}
2596
2597static inline int signal_pending_state(long state, struct task_struct *p)
2598{
2599 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2600 return 0;
2601 if (!signal_pending(p))
2602 return 0;
2603
2604 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2605}
2606
2607/*
2608 * cond_resched() and cond_resched_lock(): latency reduction via
2609 * explicit rescheduling in places that are safe. The return
2610 * value indicates whether a reschedule was done in fact.
2611 * cond_resched_lock() will drop the spinlock before scheduling,
2612 * cond_resched_softirq() will enable bhs before scheduling.
2613 */
2614extern int _cond_resched(void);
2615
2616#define cond_resched() ({ \
2617 __might_sleep(__FILE__, __LINE__, 0); \
2618 _cond_resched(); \
2619})
2620
2621extern int __cond_resched_lock(spinlock_t *lock);
2622
2623#ifdef CONFIG_PREEMPT_COUNT
2624#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2625#else
2626#define PREEMPT_LOCK_OFFSET 0
2627#endif
2628
2629#define cond_resched_lock(lock) ({ \
2630 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2631 __cond_resched_lock(lock); \
2632})
2633
2634extern int __cond_resched_softirq(void);
2635
2636#define cond_resched_softirq() ({ \
2637 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2638 __cond_resched_softirq(); \
2639})
2640
2641static inline void cond_resched_rcu(void)
2642{
2643#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2644 rcu_read_unlock();
2645 cond_resched();
2646 rcu_read_lock();
2647#endif
2648}
2649
2650/*
2651 * Does a critical section need to be broken due to another
2652 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2653 * but a general need for low latency)
2654 */
2655static inline int spin_needbreak(spinlock_t *lock)
2656{
2657#ifdef CONFIG_PREEMPT
2658 return spin_is_contended(lock);
2659#else
2660 return 0;
2661#endif
2662}
2663
2664/*
2665 * Idle thread specific functions to determine the need_resched
2666 * polling state. We have two versions, one based on TS_POLLING in
2667 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2668 * thread_info.flags
2669 */
2670#ifdef TS_POLLING
2671static inline int tsk_is_polling(struct task_struct *p)
2672{
2673 return task_thread_info(p)->status & TS_POLLING;
2674}
2675static inline void __current_set_polling(void)
2676{
2677 current_thread_info()->status |= TS_POLLING;
2678}
2679
2680static inline bool __must_check current_set_polling_and_test(void)
2681{
2682 __current_set_polling();
2683
2684 /*
2685 * Polling state must be visible before we test NEED_RESCHED,
2686 * paired by resched_task()
2687 */
2688 smp_mb();
2689
2690 return unlikely(tif_need_resched());
2691}
2692
2693static inline void __current_clr_polling(void)
2694{
2695 current_thread_info()->status &= ~TS_POLLING;
2696}
2697
2698static inline bool __must_check current_clr_polling_and_test(void)
2699{
2700 __current_clr_polling();
2701
2702 /*
2703 * Polling state must be visible before we test NEED_RESCHED,
2704 * paired by resched_task()
2705 */
2706 smp_mb();
2707
2708 return unlikely(tif_need_resched());
2709}
2710#elif defined(TIF_POLLING_NRFLAG)
2711static inline int tsk_is_polling(struct task_struct *p)
2712{
2713 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2714}
2715
2716static inline void __current_set_polling(void)
2717{
2718 set_thread_flag(TIF_POLLING_NRFLAG);
2719}
2720
2721static inline bool __must_check current_set_polling_and_test(void)
2722{
2723 __current_set_polling();
2724
2725 /*
2726 * Polling state must be visible before we test NEED_RESCHED,
2727 * paired by resched_task()
2728 *
2729 * XXX: assumes set/clear bit are identical barrier wise.
2730 */
2731 smp_mb__after_clear_bit();
2732
2733 return unlikely(tif_need_resched());
2734}
2735
2736static inline void __current_clr_polling(void)
2737{
2738 clear_thread_flag(TIF_POLLING_NRFLAG);
2739}
2740
2741static inline bool __must_check current_clr_polling_and_test(void)
2742{
2743 __current_clr_polling();
2744
2745 /*
2746 * Polling state must be visible before we test NEED_RESCHED,
2747 * paired by resched_task()
2748 */
2749 smp_mb__after_clear_bit();
2750
2751 return unlikely(tif_need_resched());
2752}
2753
2754#else
2755static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2756static inline void __current_set_polling(void) { }
2757static inline void __current_clr_polling(void) { }
2758
2759static inline bool __must_check current_set_polling_and_test(void)
2760{
2761 return unlikely(tif_need_resched());
2762}
2763static inline bool __must_check current_clr_polling_and_test(void)
2764{
2765 return unlikely(tif_need_resched());
2766}
2767#endif
2768
2769static inline void current_clr_polling(void)
2770{
2771 __current_clr_polling();
2772
2773 /*
2774 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2775 * Once the bit is cleared, we'll get IPIs with every new
2776 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2777 * fold.
2778 */
2779 smp_mb(); /* paired with resched_task() */
2780
2781 preempt_fold_need_resched();
2782}
2783
2784static __always_inline bool need_resched(void)
2785{
2786 return unlikely(tif_need_resched());
2787}
2788
2789/*
2790 * Thread group CPU time accounting.
2791 */
2792void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2793void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2794
2795static inline void thread_group_cputime_init(struct signal_struct *sig)
2796{
2797 raw_spin_lock_init(&sig->cputimer.lock);
2798}
2799
2800/*
2801 * Reevaluate whether the task has signals pending delivery.
2802 * Wake the task if so.
2803 * This is required every time the blocked sigset_t changes.
2804 * callers must hold sighand->siglock.
2805 */
2806extern void recalc_sigpending_and_wake(struct task_struct *t);
2807extern void recalc_sigpending(void);
2808
2809extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2810
2811static inline void signal_wake_up(struct task_struct *t, bool resume)
2812{
2813 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2814}
2815static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2816{
2817 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2818}
2819
2820/*
2821 * Wrappers for p->thread_info->cpu access. No-op on UP.
2822 */
2823#ifdef CONFIG_SMP
2824
2825static inline unsigned int task_cpu(const struct task_struct *p)
2826{
2827 return task_thread_info(p)->cpu;
2828}
2829
2830static inline int task_node(const struct task_struct *p)
2831{
2832 return cpu_to_node(task_cpu(p));
2833}
2834
2835extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2836
2837#else
2838
2839static inline unsigned int task_cpu(const struct task_struct *p)
2840{
2841 return 0;
2842}
2843
2844static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2845{
2846}
2847
2848#endif /* CONFIG_SMP */
2849
2850extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2851extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2852
2853#ifdef CONFIG_CGROUP_SCHED
2854extern struct task_group root_task_group;
2855#endif /* CONFIG_CGROUP_SCHED */
2856
2857extern int task_can_switch_user(struct user_struct *up,
2858 struct task_struct *tsk);
2859
2860#ifdef CONFIG_TASK_XACCT
2861static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2862{
2863 tsk->ioac.rchar += amt;
2864}
2865
2866static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2867{
2868 tsk->ioac.wchar += amt;
2869}
2870
2871static inline void inc_syscr(struct task_struct *tsk)
2872{
2873 tsk->ioac.syscr++;
2874}
2875
2876static inline void inc_syscw(struct task_struct *tsk)
2877{
2878 tsk->ioac.syscw++;
2879}
2880#else
2881static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2882{
2883}
2884
2885static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2886{
2887}
2888
2889static inline void inc_syscr(struct task_struct *tsk)
2890{
2891}
2892
2893static inline void inc_syscw(struct task_struct *tsk)
2894{
2895}
2896#endif
2897
2898#ifndef TASK_SIZE_OF
2899#define TASK_SIZE_OF(tsk) TASK_SIZE
2900#endif
2901
2902#ifdef CONFIG_MM_OWNER
2903extern void mm_update_next_owner(struct mm_struct *mm);
2904extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2905#else
2906static inline void mm_update_next_owner(struct mm_struct *mm)
2907{
2908}
2909
2910static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2911{
2912}
2913#endif /* CONFIG_MM_OWNER */
2914
2915static inline unsigned long task_rlimit(const struct task_struct *tsk,
2916 unsigned int limit)
2917{
2918 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2919}
2920
2921static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2922 unsigned int limit)
2923{
2924 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2925}
2926
2927static inline unsigned long rlimit(unsigned int limit)
2928{
2929 return task_rlimit(current, limit);
2930}
2931
2932static inline unsigned long rlimit_max(unsigned int limit)
2933{
2934 return task_rlimit_max(current, limit);
2935}
2936
2937#endif