at v3.14 39 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47 48#ifdef CONFIG_RCU_TORTURE_TEST 49extern int rcutorture_runnable; /* for sysctl */ 50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53void rcutorture_record_test_transition(void); 54void rcutorture_record_progress(unsigned long vernum); 55void do_trace_rcu_torture_read(const char *rcutorturename, 56 struct rcu_head *rhp, 57 unsigned long secs, 58 unsigned long c_old, 59 unsigned long c); 60#else 61static inline void rcutorture_record_test_transition(void) 62{ 63} 64static inline void rcutorture_record_progress(unsigned long vernum) 65{ 66} 67#ifdef CONFIG_RCU_TRACE 68void do_trace_rcu_torture_read(const char *rcutorturename, 69 struct rcu_head *rhp, 70 unsigned long secs, 71 unsigned long c_old, 72 unsigned long c); 73#else 74#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 75 do { } while (0) 76#endif 77#endif 78 79#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 80#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 81#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 82#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 83#define ulong2long(a) (*(long *)(&(a))) 84 85/* Exported common interfaces */ 86 87#ifdef CONFIG_PREEMPT_RCU 88 89/** 90 * call_rcu() - Queue an RCU callback for invocation after a grace period. 91 * @head: structure to be used for queueing the RCU updates. 92 * @func: actual callback function to be invoked after the grace period 93 * 94 * The callback function will be invoked some time after a full grace 95 * period elapses, in other words after all pre-existing RCU read-side 96 * critical sections have completed. However, the callback function 97 * might well execute concurrently with RCU read-side critical sections 98 * that started after call_rcu() was invoked. RCU read-side critical 99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 100 * and may be nested. 101 * 102 * Note that all CPUs must agree that the grace period extended beyond 103 * all pre-existing RCU read-side critical section. On systems with more 104 * than one CPU, this means that when "func()" is invoked, each CPU is 105 * guaranteed to have executed a full memory barrier since the end of its 106 * last RCU read-side critical section whose beginning preceded the call 107 * to call_rcu(). It also means that each CPU executing an RCU read-side 108 * critical section that continues beyond the start of "func()" must have 109 * executed a memory barrier after the call_rcu() but before the beginning 110 * of that RCU read-side critical section. Note that these guarantees 111 * include CPUs that are offline, idle, or executing in user mode, as 112 * well as CPUs that are executing in the kernel. 113 * 114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 115 * resulting RCU callback function "func()", then both CPU A and CPU B are 116 * guaranteed to execute a full memory barrier during the time interval 117 * between the call to call_rcu() and the invocation of "func()" -- even 118 * if CPU A and CPU B are the same CPU (but again only if the system has 119 * more than one CPU). 120 */ 121void call_rcu(struct rcu_head *head, 122 void (*func)(struct rcu_head *head)); 123 124#else /* #ifdef CONFIG_PREEMPT_RCU */ 125 126/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 127#define call_rcu call_rcu_sched 128 129#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 130 131/** 132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 133 * @head: structure to be used for queueing the RCU updates. 134 * @func: actual callback function to be invoked after the grace period 135 * 136 * The callback function will be invoked some time after a full grace 137 * period elapses, in other words after all currently executing RCU 138 * read-side critical sections have completed. call_rcu_bh() assumes 139 * that the read-side critical sections end on completion of a softirq 140 * handler. This means that read-side critical sections in process 141 * context must not be interrupted by softirqs. This interface is to be 142 * used when most of the read-side critical sections are in softirq context. 143 * RCU read-side critical sections are delimited by : 144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 145 * OR 146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 147 * These may be nested. 148 * 149 * See the description of call_rcu() for more detailed information on 150 * memory ordering guarantees. 151 */ 152void call_rcu_bh(struct rcu_head *head, 153 void (*func)(struct rcu_head *head)); 154 155/** 156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 157 * @head: structure to be used for queueing the RCU updates. 158 * @func: actual callback function to be invoked after the grace period 159 * 160 * The callback function will be invoked some time after a full grace 161 * period elapses, in other words after all currently executing RCU 162 * read-side critical sections have completed. call_rcu_sched() assumes 163 * that the read-side critical sections end on enabling of preemption 164 * or on voluntary preemption. 165 * RCU read-side critical sections are delimited by : 166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 167 * OR 168 * anything that disables preemption. 169 * These may be nested. 170 * 171 * See the description of call_rcu() for more detailed information on 172 * memory ordering guarantees. 173 */ 174void call_rcu_sched(struct rcu_head *head, 175 void (*func)(struct rcu_head *rcu)); 176 177void synchronize_sched(void); 178 179#ifdef CONFIG_PREEMPT_RCU 180 181void __rcu_read_lock(void); 182void __rcu_read_unlock(void); 183void rcu_read_unlock_special(struct task_struct *t); 184void synchronize_rcu(void); 185 186/* 187 * Defined as a macro as it is a very low level header included from 188 * areas that don't even know about current. This gives the rcu_read_lock() 189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 191 */ 192#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 193 194#else /* #ifdef CONFIG_PREEMPT_RCU */ 195 196static inline void __rcu_read_lock(void) 197{ 198 preempt_disable(); 199} 200 201static inline void __rcu_read_unlock(void) 202{ 203 preempt_enable(); 204} 205 206static inline void synchronize_rcu(void) 207{ 208 synchronize_sched(); 209} 210 211static inline int rcu_preempt_depth(void) 212{ 213 return 0; 214} 215 216#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 217 218/* Internal to kernel */ 219void rcu_init(void); 220void rcu_sched_qs(int cpu); 221void rcu_bh_qs(int cpu); 222void rcu_check_callbacks(int cpu, int user); 223struct notifier_block; 224void rcu_idle_enter(void); 225void rcu_idle_exit(void); 226void rcu_irq_enter(void); 227void rcu_irq_exit(void); 228 229#ifdef CONFIG_RCU_USER_QS 230void rcu_user_enter(void); 231void rcu_user_exit(void); 232#else 233static inline void rcu_user_enter(void) { } 234static inline void rcu_user_exit(void) { } 235static inline void rcu_user_hooks_switch(struct task_struct *prev, 236 struct task_struct *next) { } 237#endif /* CONFIG_RCU_USER_QS */ 238 239/** 240 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 241 * @a: Code that RCU needs to pay attention to. 242 * 243 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 244 * in the inner idle loop, that is, between the rcu_idle_enter() and 245 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 246 * critical sections. However, things like powertop need tracepoints 247 * in the inner idle loop. 248 * 249 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 250 * will tell RCU that it needs to pay attending, invoke its argument 251 * (in this example, a call to the do_something_with_RCU() function), 252 * and then tell RCU to go back to ignoring this CPU. It is permissible 253 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 254 * quite limited. If deeper nesting is required, it will be necessary 255 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 256 */ 257#define RCU_NONIDLE(a) \ 258 do { \ 259 rcu_irq_enter(); \ 260 do { a; } while (0); \ 261 rcu_irq_exit(); \ 262 } while (0) 263 264#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 265bool __rcu_is_watching(void); 266#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 267 268/* 269 * Infrastructure to implement the synchronize_() primitives in 270 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 271 */ 272 273typedef void call_rcu_func_t(struct rcu_head *head, 274 void (*func)(struct rcu_head *head)); 275void wait_rcu_gp(call_rcu_func_t crf); 276 277#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 278#include <linux/rcutree.h> 279#elif defined(CONFIG_TINY_RCU) 280#include <linux/rcutiny.h> 281#else 282#error "Unknown RCU implementation specified to kernel configuration" 283#endif 284 285/* 286 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 287 * initialization and destruction of rcu_head on the stack. rcu_head structures 288 * allocated dynamically in the heap or defined statically don't need any 289 * initialization. 290 */ 291#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 292void init_rcu_head_on_stack(struct rcu_head *head); 293void destroy_rcu_head_on_stack(struct rcu_head *head); 294#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 295static inline void init_rcu_head_on_stack(struct rcu_head *head) 296{ 297} 298 299static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 300{ 301} 302#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 303 304#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 305bool rcu_lockdep_current_cpu_online(void); 306#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 307static inline bool rcu_lockdep_current_cpu_online(void) 308{ 309 return 1; 310} 311#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 312 313#ifdef CONFIG_DEBUG_LOCK_ALLOC 314 315static inline void rcu_lock_acquire(struct lockdep_map *map) 316{ 317 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 318} 319 320static inline void rcu_lock_release(struct lockdep_map *map) 321{ 322 lock_release(map, 1, _THIS_IP_); 323} 324 325extern struct lockdep_map rcu_lock_map; 326extern struct lockdep_map rcu_bh_lock_map; 327extern struct lockdep_map rcu_sched_lock_map; 328extern struct lockdep_map rcu_callback_map; 329extern int debug_lockdep_rcu_enabled(void); 330 331/** 332 * rcu_read_lock_held() - might we be in RCU read-side critical section? 333 * 334 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 335 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 336 * this assumes we are in an RCU read-side critical section unless it can 337 * prove otherwise. This is useful for debug checks in functions that 338 * require that they be called within an RCU read-side critical section. 339 * 340 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 341 * and while lockdep is disabled. 342 * 343 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 344 * occur in the same context, for example, it is illegal to invoke 345 * rcu_read_unlock() in process context if the matching rcu_read_lock() 346 * was invoked from within an irq handler. 347 * 348 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 349 * offline from an RCU perspective, so check for those as well. 350 */ 351static inline int rcu_read_lock_held(void) 352{ 353 if (!debug_lockdep_rcu_enabled()) 354 return 1; 355 if (!rcu_is_watching()) 356 return 0; 357 if (!rcu_lockdep_current_cpu_online()) 358 return 0; 359 return lock_is_held(&rcu_lock_map); 360} 361 362/* 363 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 364 * hell. 365 */ 366int rcu_read_lock_bh_held(void); 367 368/** 369 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 370 * 371 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 372 * RCU-sched read-side critical section. In absence of 373 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 374 * critical section unless it can prove otherwise. Note that disabling 375 * of preemption (including disabling irqs) counts as an RCU-sched 376 * read-side critical section. This is useful for debug checks in functions 377 * that required that they be called within an RCU-sched read-side 378 * critical section. 379 * 380 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 381 * and while lockdep is disabled. 382 * 383 * Note that if the CPU is in the idle loop from an RCU point of 384 * view (ie: that we are in the section between rcu_idle_enter() and 385 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 386 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 387 * that are in such a section, considering these as in extended quiescent 388 * state, so such a CPU is effectively never in an RCU read-side critical 389 * section regardless of what RCU primitives it invokes. This state of 390 * affairs is required --- we need to keep an RCU-free window in idle 391 * where the CPU may possibly enter into low power mode. This way we can 392 * notice an extended quiescent state to other CPUs that started a grace 393 * period. Otherwise we would delay any grace period as long as we run in 394 * the idle task. 395 * 396 * Similarly, we avoid claiming an SRCU read lock held if the current 397 * CPU is offline. 398 */ 399#ifdef CONFIG_PREEMPT_COUNT 400static inline int rcu_read_lock_sched_held(void) 401{ 402 int lockdep_opinion = 0; 403 404 if (!debug_lockdep_rcu_enabled()) 405 return 1; 406 if (!rcu_is_watching()) 407 return 0; 408 if (!rcu_lockdep_current_cpu_online()) 409 return 0; 410 if (debug_locks) 411 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 412 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 413} 414#else /* #ifdef CONFIG_PREEMPT_COUNT */ 415static inline int rcu_read_lock_sched_held(void) 416{ 417 return 1; 418} 419#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 420 421#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 422 423# define rcu_lock_acquire(a) do { } while (0) 424# define rcu_lock_release(a) do { } while (0) 425 426static inline int rcu_read_lock_held(void) 427{ 428 return 1; 429} 430 431static inline int rcu_read_lock_bh_held(void) 432{ 433 return 1; 434} 435 436#ifdef CONFIG_PREEMPT_COUNT 437static inline int rcu_read_lock_sched_held(void) 438{ 439 return preempt_count() != 0 || irqs_disabled(); 440} 441#else /* #ifdef CONFIG_PREEMPT_COUNT */ 442static inline int rcu_read_lock_sched_held(void) 443{ 444 return 1; 445} 446#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 447 448#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 449 450#ifdef CONFIG_PROVE_RCU 451 452/** 453 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 454 * @c: condition to check 455 * @s: informative message 456 */ 457#define rcu_lockdep_assert(c, s) \ 458 do { \ 459 static bool __section(.data.unlikely) __warned; \ 460 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 461 __warned = true; \ 462 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 463 } \ 464 } while (0) 465 466#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 467static inline void rcu_preempt_sleep_check(void) 468{ 469 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 470 "Illegal context switch in RCU read-side critical section"); 471} 472#else /* #ifdef CONFIG_PROVE_RCU */ 473static inline void rcu_preempt_sleep_check(void) 474{ 475} 476#endif /* #else #ifdef CONFIG_PROVE_RCU */ 477 478#define rcu_sleep_check() \ 479 do { \ 480 rcu_preempt_sleep_check(); \ 481 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 482 "Illegal context switch in RCU-bh" \ 483 " read-side critical section"); \ 484 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 485 "Illegal context switch in RCU-sched"\ 486 " read-side critical section"); \ 487 } while (0) 488 489#else /* #ifdef CONFIG_PROVE_RCU */ 490 491#define rcu_lockdep_assert(c, s) do { } while (0) 492#define rcu_sleep_check() do { } while (0) 493 494#endif /* #else #ifdef CONFIG_PROVE_RCU */ 495 496/* 497 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 498 * and rcu_assign_pointer(). Some of these could be folded into their 499 * callers, but they are left separate in order to ease introduction of 500 * multiple flavors of pointers to match the multiple flavors of RCU 501 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 502 * the future. 503 */ 504 505#ifdef __CHECKER__ 506#define rcu_dereference_sparse(p, space) \ 507 ((void)(((typeof(*p) space *)p) == p)) 508#else /* #ifdef __CHECKER__ */ 509#define rcu_dereference_sparse(p, space) 510#endif /* #else #ifdef __CHECKER__ */ 511 512#define __rcu_access_pointer(p, space) \ 513 ({ \ 514 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 515 rcu_dereference_sparse(p, space); \ 516 ((typeof(*p) __force __kernel *)(_________p1)); \ 517 }) 518#define __rcu_dereference_check(p, c, space) \ 519 ({ \ 520 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 521 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 522 " usage"); \ 523 rcu_dereference_sparse(p, space); \ 524 smp_read_barrier_depends(); \ 525 ((typeof(*p) __force __kernel *)(_________p1)); \ 526 }) 527#define __rcu_dereference_protected(p, c, space) \ 528 ({ \ 529 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 530 " usage"); \ 531 rcu_dereference_sparse(p, space); \ 532 ((typeof(*p) __force __kernel *)(p)); \ 533 }) 534 535#define __rcu_access_index(p, space) \ 536 ({ \ 537 typeof(p) _________p1 = ACCESS_ONCE(p); \ 538 rcu_dereference_sparse(p, space); \ 539 (_________p1); \ 540 }) 541#define __rcu_dereference_index_check(p, c) \ 542 ({ \ 543 typeof(p) _________p1 = ACCESS_ONCE(p); \ 544 rcu_lockdep_assert(c, \ 545 "suspicious rcu_dereference_index_check()" \ 546 " usage"); \ 547 smp_read_barrier_depends(); \ 548 (_________p1); \ 549 }) 550 551/** 552 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 553 * @v: The value to statically initialize with. 554 */ 555#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 556 557/** 558 * rcu_assign_pointer() - assign to RCU-protected pointer 559 * @p: pointer to assign to 560 * @v: value to assign (publish) 561 * 562 * Assigns the specified value to the specified RCU-protected 563 * pointer, ensuring that any concurrent RCU readers will see 564 * any prior initialization. 565 * 566 * Inserts memory barriers on architectures that require them 567 * (which is most of them), and also prevents the compiler from 568 * reordering the code that initializes the structure after the pointer 569 * assignment. More importantly, this call documents which pointers 570 * will be dereferenced by RCU read-side code. 571 * 572 * In some special cases, you may use RCU_INIT_POINTER() instead 573 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 574 * to the fact that it does not constrain either the CPU or the compiler. 575 * That said, using RCU_INIT_POINTER() when you should have used 576 * rcu_assign_pointer() is a very bad thing that results in 577 * impossible-to-diagnose memory corruption. So please be careful. 578 * See the RCU_INIT_POINTER() comment header for details. 579 * 580 * Note that rcu_assign_pointer() evaluates each of its arguments only 581 * once, appearances notwithstanding. One of the "extra" evaluations 582 * is in typeof() and the other visible only to sparse (__CHECKER__), 583 * neither of which actually execute the argument. As with most cpp 584 * macros, this execute-arguments-only-once property is important, so 585 * please be careful when making changes to rcu_assign_pointer() and the 586 * other macros that it invokes. 587 */ 588#define rcu_assign_pointer(p, v) \ 589 do { \ 590 smp_wmb(); \ 591 ACCESS_ONCE(p) = RCU_INITIALIZER(v); \ 592 } while (0) 593 594 595/** 596 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 597 * @p: The pointer to read 598 * 599 * Return the value of the specified RCU-protected pointer, but omit the 600 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 601 * when the value of this pointer is accessed, but the pointer is not 602 * dereferenced, for example, when testing an RCU-protected pointer against 603 * NULL. Although rcu_access_pointer() may also be used in cases where 604 * update-side locks prevent the value of the pointer from changing, you 605 * should instead use rcu_dereference_protected() for this use case. 606 * 607 * It is also permissible to use rcu_access_pointer() when read-side 608 * access to the pointer was removed at least one grace period ago, as 609 * is the case in the context of the RCU callback that is freeing up 610 * the data, or after a synchronize_rcu() returns. This can be useful 611 * when tearing down multi-linked structures after a grace period 612 * has elapsed. 613 */ 614#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 615 616/** 617 * rcu_dereference_check() - rcu_dereference with debug checking 618 * @p: The pointer to read, prior to dereferencing 619 * @c: The conditions under which the dereference will take place 620 * 621 * Do an rcu_dereference(), but check that the conditions under which the 622 * dereference will take place are correct. Typically the conditions 623 * indicate the various locking conditions that should be held at that 624 * point. The check should return true if the conditions are satisfied. 625 * An implicit check for being in an RCU read-side critical section 626 * (rcu_read_lock()) is included. 627 * 628 * For example: 629 * 630 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 631 * 632 * could be used to indicate to lockdep that foo->bar may only be dereferenced 633 * if either rcu_read_lock() is held, or that the lock required to replace 634 * the bar struct at foo->bar is held. 635 * 636 * Note that the list of conditions may also include indications of when a lock 637 * need not be held, for example during initialisation or destruction of the 638 * target struct: 639 * 640 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 641 * atomic_read(&foo->usage) == 0); 642 * 643 * Inserts memory barriers on architectures that require them 644 * (currently only the Alpha), prevents the compiler from refetching 645 * (and from merging fetches), and, more importantly, documents exactly 646 * which pointers are protected by RCU and checks that the pointer is 647 * annotated as __rcu. 648 */ 649#define rcu_dereference_check(p, c) \ 650 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 651 652/** 653 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 654 * @p: The pointer to read, prior to dereferencing 655 * @c: The conditions under which the dereference will take place 656 * 657 * This is the RCU-bh counterpart to rcu_dereference_check(). 658 */ 659#define rcu_dereference_bh_check(p, c) \ 660 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 661 662/** 663 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 664 * @p: The pointer to read, prior to dereferencing 665 * @c: The conditions under which the dereference will take place 666 * 667 * This is the RCU-sched counterpart to rcu_dereference_check(). 668 */ 669#define rcu_dereference_sched_check(p, c) \ 670 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 671 __rcu) 672 673#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 674 675/* 676 * The tracing infrastructure traces RCU (we want that), but unfortunately 677 * some of the RCU checks causes tracing to lock up the system. 678 * 679 * The tracing version of rcu_dereference_raw() must not call 680 * rcu_read_lock_held(). 681 */ 682#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 683 684/** 685 * rcu_access_index() - fetch RCU index with no dereferencing 686 * @p: The index to read 687 * 688 * Return the value of the specified RCU-protected index, but omit the 689 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 690 * when the value of this index is accessed, but the index is not 691 * dereferenced, for example, when testing an RCU-protected index against 692 * -1. Although rcu_access_index() may also be used in cases where 693 * update-side locks prevent the value of the index from changing, you 694 * should instead use rcu_dereference_index_protected() for this use case. 695 */ 696#define rcu_access_index(p) __rcu_access_index((p), __rcu) 697 698/** 699 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 700 * @p: The pointer to read, prior to dereferencing 701 * @c: The conditions under which the dereference will take place 702 * 703 * Similar to rcu_dereference_check(), but omits the sparse checking. 704 * This allows rcu_dereference_index_check() to be used on integers, 705 * which can then be used as array indices. Attempting to use 706 * rcu_dereference_check() on an integer will give compiler warnings 707 * because the sparse address-space mechanism relies on dereferencing 708 * the RCU-protected pointer. Dereferencing integers is not something 709 * that even gcc will put up with. 710 * 711 * Note that this function does not implicitly check for RCU read-side 712 * critical sections. If this function gains lots of uses, it might 713 * make sense to provide versions for each flavor of RCU, but it does 714 * not make sense as of early 2010. 715 */ 716#define rcu_dereference_index_check(p, c) \ 717 __rcu_dereference_index_check((p), (c)) 718 719/** 720 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 721 * @p: The pointer to read, prior to dereferencing 722 * @c: The conditions under which the dereference will take place 723 * 724 * Return the value of the specified RCU-protected pointer, but omit 725 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 726 * is useful in cases where update-side locks prevent the value of the 727 * pointer from changing. Please note that this primitive does -not- 728 * prevent the compiler from repeating this reference or combining it 729 * with other references, so it should not be used without protection 730 * of appropriate locks. 731 * 732 * This function is only for update-side use. Using this function 733 * when protected only by rcu_read_lock() will result in infrequent 734 * but very ugly failures. 735 */ 736#define rcu_dereference_protected(p, c) \ 737 __rcu_dereference_protected((p), (c), __rcu) 738 739 740/** 741 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 742 * @p: The pointer to read, prior to dereferencing 743 * 744 * This is a simple wrapper around rcu_dereference_check(). 745 */ 746#define rcu_dereference(p) rcu_dereference_check(p, 0) 747 748/** 749 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 750 * @p: The pointer to read, prior to dereferencing 751 * 752 * Makes rcu_dereference_check() do the dirty work. 753 */ 754#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 755 756/** 757 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 758 * @p: The pointer to read, prior to dereferencing 759 * 760 * Makes rcu_dereference_check() do the dirty work. 761 */ 762#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 763 764/** 765 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 766 * 767 * When synchronize_rcu() is invoked on one CPU while other CPUs 768 * are within RCU read-side critical sections, then the 769 * synchronize_rcu() is guaranteed to block until after all the other 770 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 771 * on one CPU while other CPUs are within RCU read-side critical 772 * sections, invocation of the corresponding RCU callback is deferred 773 * until after the all the other CPUs exit their critical sections. 774 * 775 * Note, however, that RCU callbacks are permitted to run concurrently 776 * with new RCU read-side critical sections. One way that this can happen 777 * is via the following sequence of events: (1) CPU 0 enters an RCU 778 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 779 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 780 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 781 * callback is invoked. This is legal, because the RCU read-side critical 782 * section that was running concurrently with the call_rcu() (and which 783 * therefore might be referencing something that the corresponding RCU 784 * callback would free up) has completed before the corresponding 785 * RCU callback is invoked. 786 * 787 * RCU read-side critical sections may be nested. Any deferred actions 788 * will be deferred until the outermost RCU read-side critical section 789 * completes. 790 * 791 * You can avoid reading and understanding the next paragraph by 792 * following this rule: don't put anything in an rcu_read_lock() RCU 793 * read-side critical section that would block in a !PREEMPT kernel. 794 * But if you want the full story, read on! 795 * 796 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 797 * is illegal to block while in an RCU read-side critical section. In 798 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 799 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 800 * be preempted, but explicit blocking is illegal. Finally, in preemptible 801 * RCU implementations in real-time (with -rt patchset) kernel builds, 802 * RCU read-side critical sections may be preempted and they may also 803 * block, but only when acquiring spinlocks that are subject to priority 804 * inheritance. 805 */ 806static inline void rcu_read_lock(void) 807{ 808 __rcu_read_lock(); 809 __acquire(RCU); 810 rcu_lock_acquire(&rcu_lock_map); 811 rcu_lockdep_assert(rcu_is_watching(), 812 "rcu_read_lock() used illegally while idle"); 813} 814 815/* 816 * So where is rcu_write_lock()? It does not exist, as there is no 817 * way for writers to lock out RCU readers. This is a feature, not 818 * a bug -- this property is what provides RCU's performance benefits. 819 * Of course, writers must coordinate with each other. The normal 820 * spinlock primitives work well for this, but any other technique may be 821 * used as well. RCU does not care how the writers keep out of each 822 * others' way, as long as they do so. 823 */ 824 825/** 826 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 827 * 828 * See rcu_read_lock() for more information. 829 */ 830static inline void rcu_read_unlock(void) 831{ 832 rcu_lockdep_assert(rcu_is_watching(), 833 "rcu_read_unlock() used illegally while idle"); 834 rcu_lock_release(&rcu_lock_map); 835 __release(RCU); 836 __rcu_read_unlock(); 837} 838 839/** 840 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 841 * 842 * This is equivalent of rcu_read_lock(), but to be used when updates 843 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 844 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 845 * softirq handler to be a quiescent state, a process in RCU read-side 846 * critical section must be protected by disabling softirqs. Read-side 847 * critical sections in interrupt context can use just rcu_read_lock(), 848 * though this should at least be commented to avoid confusing people 849 * reading the code. 850 * 851 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 852 * must occur in the same context, for example, it is illegal to invoke 853 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 854 * was invoked from some other task. 855 */ 856static inline void rcu_read_lock_bh(void) 857{ 858 local_bh_disable(); 859 __acquire(RCU_BH); 860 rcu_lock_acquire(&rcu_bh_lock_map); 861 rcu_lockdep_assert(rcu_is_watching(), 862 "rcu_read_lock_bh() used illegally while idle"); 863} 864 865/* 866 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 867 * 868 * See rcu_read_lock_bh() for more information. 869 */ 870static inline void rcu_read_unlock_bh(void) 871{ 872 rcu_lockdep_assert(rcu_is_watching(), 873 "rcu_read_unlock_bh() used illegally while idle"); 874 rcu_lock_release(&rcu_bh_lock_map); 875 __release(RCU_BH); 876 local_bh_enable(); 877} 878 879/** 880 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 881 * 882 * This is equivalent of rcu_read_lock(), but to be used when updates 883 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 884 * Read-side critical sections can also be introduced by anything that 885 * disables preemption, including local_irq_disable() and friends. 886 * 887 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 888 * must occur in the same context, for example, it is illegal to invoke 889 * rcu_read_unlock_sched() from process context if the matching 890 * rcu_read_lock_sched() was invoked from an NMI handler. 891 */ 892static inline void rcu_read_lock_sched(void) 893{ 894 preempt_disable(); 895 __acquire(RCU_SCHED); 896 rcu_lock_acquire(&rcu_sched_lock_map); 897 rcu_lockdep_assert(rcu_is_watching(), 898 "rcu_read_lock_sched() used illegally while idle"); 899} 900 901/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 902static inline notrace void rcu_read_lock_sched_notrace(void) 903{ 904 preempt_disable_notrace(); 905 __acquire(RCU_SCHED); 906} 907 908/* 909 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 910 * 911 * See rcu_read_lock_sched for more information. 912 */ 913static inline void rcu_read_unlock_sched(void) 914{ 915 rcu_lockdep_assert(rcu_is_watching(), 916 "rcu_read_unlock_sched() used illegally while idle"); 917 rcu_lock_release(&rcu_sched_lock_map); 918 __release(RCU_SCHED); 919 preempt_enable(); 920} 921 922/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 923static inline notrace void rcu_read_unlock_sched_notrace(void) 924{ 925 __release(RCU_SCHED); 926 preempt_enable_notrace(); 927} 928 929/** 930 * RCU_INIT_POINTER() - initialize an RCU protected pointer 931 * 932 * Initialize an RCU-protected pointer in special cases where readers 933 * do not need ordering constraints on the CPU or the compiler. These 934 * special cases are: 935 * 936 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 937 * 2. The caller has taken whatever steps are required to prevent 938 * RCU readers from concurrently accessing this pointer -or- 939 * 3. The referenced data structure has already been exposed to 940 * readers either at compile time or via rcu_assign_pointer() -and- 941 * a. You have not made -any- reader-visible changes to 942 * this structure since then -or- 943 * b. It is OK for readers accessing this structure from its 944 * new location to see the old state of the structure. (For 945 * example, the changes were to statistical counters or to 946 * other state where exact synchronization is not required.) 947 * 948 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 949 * result in impossible-to-diagnose memory corruption. As in the structures 950 * will look OK in crash dumps, but any concurrent RCU readers might 951 * see pre-initialized values of the referenced data structure. So 952 * please be very careful how you use RCU_INIT_POINTER()!!! 953 * 954 * If you are creating an RCU-protected linked structure that is accessed 955 * by a single external-to-structure RCU-protected pointer, then you may 956 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 957 * pointers, but you must use rcu_assign_pointer() to initialize the 958 * external-to-structure pointer -after- you have completely initialized 959 * the reader-accessible portions of the linked structure. 960 */ 961#define RCU_INIT_POINTER(p, v) \ 962 do { \ 963 p = RCU_INITIALIZER(v); \ 964 } while (0) 965 966/** 967 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 968 * 969 * GCC-style initialization for an RCU-protected pointer in a structure field. 970 */ 971#define RCU_POINTER_INITIALIZER(p, v) \ 972 .p = RCU_INITIALIZER(v) 973 974/* 975 * Does the specified offset indicate that the corresponding rcu_head 976 * structure can be handled by kfree_rcu()? 977 */ 978#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 979 980/* 981 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 982 */ 983#define __kfree_rcu(head, offset) \ 984 do { \ 985 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 986 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 987 } while (0) 988 989/** 990 * kfree_rcu() - kfree an object after a grace period. 991 * @ptr: pointer to kfree 992 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 993 * 994 * Many rcu callbacks functions just call kfree() on the base structure. 995 * These functions are trivial, but their size adds up, and furthermore 996 * when they are used in a kernel module, that module must invoke the 997 * high-latency rcu_barrier() function at module-unload time. 998 * 999 * The kfree_rcu() function handles this issue. Rather than encoding a 1000 * function address in the embedded rcu_head structure, kfree_rcu() instead 1001 * encodes the offset of the rcu_head structure within the base structure. 1002 * Because the functions are not allowed in the low-order 4096 bytes of 1003 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1004 * If the offset is larger than 4095 bytes, a compile-time error will 1005 * be generated in __kfree_rcu(). If this error is triggered, you can 1006 * either fall back to use of call_rcu() or rearrange the structure to 1007 * position the rcu_head structure into the first 4096 bytes. 1008 * 1009 * Note that the allowable offset might decrease in the future, for example, 1010 * to allow something like kmem_cache_free_rcu(). 1011 * 1012 * The BUILD_BUG_ON check must not involve any function calls, hence the 1013 * checks are done in macros here. 1014 */ 1015#define kfree_rcu(ptr, rcu_head) \ 1016 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1017 1018#ifdef CONFIG_RCU_NOCB_CPU 1019bool rcu_is_nocb_cpu(int cpu); 1020#else 1021static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1022#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1023 1024 1025/* Only for use by adaptive-ticks code. */ 1026#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1027bool rcu_sys_is_idle(void); 1028void rcu_sysidle_force_exit(void); 1029#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1030 1031static inline bool rcu_sys_is_idle(void) 1032{ 1033 return false; 1034} 1035 1036static inline void rcu_sysidle_force_exit(void) 1037{ 1038} 1039 1040#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1041 1042 1043#endif /* __LINUX_RCUPDATE_H */