at v3.14 24 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <asm/local.h> 56 57struct perf_callchain_entry { 58 __u64 nr; 59 __u64 ip[PERF_MAX_STACK_DEPTH]; 60}; 61 62struct perf_raw_record { 63 u32 size; 64 void *data; 65}; 66 67/* 68 * branch stack layout: 69 * nr: number of taken branches stored in entries[] 70 * 71 * Note that nr can vary from sample to sample 72 * branches (to, from) are stored from most recent 73 * to least recent, i.e., entries[0] contains the most 74 * recent branch. 75 */ 76struct perf_branch_stack { 77 __u64 nr; 78 struct perf_branch_entry entries[0]; 79}; 80 81struct perf_regs_user { 82 __u64 abi; 83 struct pt_regs *regs; 84}; 85 86struct task_struct; 87 88/* 89 * extra PMU register associated with an event 90 */ 91struct hw_perf_event_extra { 92 u64 config; /* register value */ 93 unsigned int reg; /* register address or index */ 94 int alloc; /* extra register already allocated */ 95 int idx; /* index in shared_regs->regs[] */ 96}; 97 98struct event_constraint; 99 100/** 101 * struct hw_perf_event - performance event hardware details: 102 */ 103struct hw_perf_event { 104#ifdef CONFIG_PERF_EVENTS 105 union { 106 struct { /* hardware */ 107 u64 config; 108 u64 last_tag; 109 unsigned long config_base; 110 unsigned long event_base; 111 int event_base_rdpmc; 112 int idx; 113 int last_cpu; 114 int flags; 115 116 struct hw_perf_event_extra extra_reg; 117 struct hw_perf_event_extra branch_reg; 118 119 struct event_constraint *constraint; 120 }; 121 struct { /* software */ 122 struct hrtimer hrtimer; 123 }; 124 struct { /* tracepoint */ 125 struct task_struct *tp_target; 126 /* for tp_event->class */ 127 struct list_head tp_list; 128 }; 129#ifdef CONFIG_HAVE_HW_BREAKPOINT 130 struct { /* breakpoint */ 131 /* 132 * Crufty hack to avoid the chicken and egg 133 * problem hw_breakpoint has with context 134 * creation and event initalization. 135 */ 136 struct task_struct *bp_target; 137 struct arch_hw_breakpoint info; 138 struct list_head bp_list; 139 }; 140#endif 141 }; 142 int state; 143 local64_t prev_count; 144 u64 sample_period; 145 u64 last_period; 146 local64_t period_left; 147 u64 interrupts_seq; 148 u64 interrupts; 149 150 u64 freq_time_stamp; 151 u64 freq_count_stamp; 152#endif 153}; 154 155/* 156 * hw_perf_event::state flags 157 */ 158#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 159#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 160#define PERF_HES_ARCH 0x04 161 162struct perf_event; 163 164/* 165 * Common implementation detail of pmu::{start,commit,cancel}_txn 166 */ 167#define PERF_EVENT_TXN 0x1 168 169/** 170 * struct pmu - generic performance monitoring unit 171 */ 172struct pmu { 173 struct list_head entry; 174 175 struct device *dev; 176 const struct attribute_group **attr_groups; 177 const char *name; 178 int type; 179 180 int * __percpu pmu_disable_count; 181 struct perf_cpu_context * __percpu pmu_cpu_context; 182 int task_ctx_nr; 183 int hrtimer_interval_ms; 184 185 /* 186 * Fully disable/enable this PMU, can be used to protect from the PMI 187 * as well as for lazy/batch writing of the MSRs. 188 */ 189 void (*pmu_enable) (struct pmu *pmu); /* optional */ 190 void (*pmu_disable) (struct pmu *pmu); /* optional */ 191 192 /* 193 * Try and initialize the event for this PMU. 194 * Should return -ENOENT when the @event doesn't match this PMU. 195 */ 196 int (*event_init) (struct perf_event *event); 197 198#define PERF_EF_START 0x01 /* start the counter when adding */ 199#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 200#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 201 202 /* 203 * Adds/Removes a counter to/from the PMU, can be done inside 204 * a transaction, see the ->*_txn() methods. 205 */ 206 int (*add) (struct perf_event *event, int flags); 207 void (*del) (struct perf_event *event, int flags); 208 209 /* 210 * Starts/Stops a counter present on the PMU. The PMI handler 211 * should stop the counter when perf_event_overflow() returns 212 * !0. ->start() will be used to continue. 213 */ 214 void (*start) (struct perf_event *event, int flags); 215 void (*stop) (struct perf_event *event, int flags); 216 217 /* 218 * Updates the counter value of the event. 219 */ 220 void (*read) (struct perf_event *event); 221 222 /* 223 * Group events scheduling is treated as a transaction, add 224 * group events as a whole and perform one schedulability test. 225 * If the test fails, roll back the whole group 226 * 227 * Start the transaction, after this ->add() doesn't need to 228 * do schedulability tests. 229 */ 230 void (*start_txn) (struct pmu *pmu); /* optional */ 231 /* 232 * If ->start_txn() disabled the ->add() schedulability test 233 * then ->commit_txn() is required to perform one. On success 234 * the transaction is closed. On error the transaction is kept 235 * open until ->cancel_txn() is called. 236 */ 237 int (*commit_txn) (struct pmu *pmu); /* optional */ 238 /* 239 * Will cancel the transaction, assumes ->del() is called 240 * for each successful ->add() during the transaction. 241 */ 242 void (*cancel_txn) (struct pmu *pmu); /* optional */ 243 244 /* 245 * Will return the value for perf_event_mmap_page::index for this event, 246 * if no implementation is provided it will default to: event->hw.idx + 1. 247 */ 248 int (*event_idx) (struct perf_event *event); /*optional */ 249 250 /* 251 * flush branch stack on context-switches (needed in cpu-wide mode) 252 */ 253 void (*flush_branch_stack) (void); 254}; 255 256/** 257 * enum perf_event_active_state - the states of a event 258 */ 259enum perf_event_active_state { 260 PERF_EVENT_STATE_ERROR = -2, 261 PERF_EVENT_STATE_OFF = -1, 262 PERF_EVENT_STATE_INACTIVE = 0, 263 PERF_EVENT_STATE_ACTIVE = 1, 264}; 265 266struct file; 267struct perf_sample_data; 268 269typedef void (*perf_overflow_handler_t)(struct perf_event *, 270 struct perf_sample_data *, 271 struct pt_regs *regs); 272 273enum perf_group_flag { 274 PERF_GROUP_SOFTWARE = 0x1, 275}; 276 277#define SWEVENT_HLIST_BITS 8 278#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 279 280struct swevent_hlist { 281 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 282 struct rcu_head rcu_head; 283}; 284 285#define PERF_ATTACH_CONTEXT 0x01 286#define PERF_ATTACH_GROUP 0x02 287#define PERF_ATTACH_TASK 0x04 288 289struct perf_cgroup; 290struct ring_buffer; 291 292/** 293 * struct perf_event - performance event kernel representation: 294 */ 295struct perf_event { 296#ifdef CONFIG_PERF_EVENTS 297 /* 298 * entry onto perf_event_context::event_list; 299 * modifications require ctx->lock 300 * RCU safe iterations. 301 */ 302 struct list_head event_entry; 303 304 /* 305 * XXX: group_entry and sibling_list should be mutually exclusive; 306 * either you're a sibling on a group, or you're the group leader. 307 * Rework the code to always use the same list element. 308 * 309 * Locked for modification by both ctx->mutex and ctx->lock; holding 310 * either sufficies for read. 311 */ 312 struct list_head group_entry; 313 struct list_head sibling_list; 314 315 /* 316 * We need storage to track the entries in perf_pmu_migrate_context; we 317 * cannot use the event_entry because of RCU and we want to keep the 318 * group in tact which avoids us using the other two entries. 319 */ 320 struct list_head migrate_entry; 321 322 struct hlist_node hlist_entry; 323 struct list_head active_entry; 324 int nr_siblings; 325 int group_flags; 326 struct perf_event *group_leader; 327 struct pmu *pmu; 328 329 enum perf_event_active_state state; 330 unsigned int attach_state; 331 local64_t count; 332 atomic64_t child_count; 333 334 /* 335 * These are the total time in nanoseconds that the event 336 * has been enabled (i.e. eligible to run, and the task has 337 * been scheduled in, if this is a per-task event) 338 * and running (scheduled onto the CPU), respectively. 339 * 340 * They are computed from tstamp_enabled, tstamp_running and 341 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 342 */ 343 u64 total_time_enabled; 344 u64 total_time_running; 345 346 /* 347 * These are timestamps used for computing total_time_enabled 348 * and total_time_running when the event is in INACTIVE or 349 * ACTIVE state, measured in nanoseconds from an arbitrary point 350 * in time. 351 * tstamp_enabled: the notional time when the event was enabled 352 * tstamp_running: the notional time when the event was scheduled on 353 * tstamp_stopped: in INACTIVE state, the notional time when the 354 * event was scheduled off. 355 */ 356 u64 tstamp_enabled; 357 u64 tstamp_running; 358 u64 tstamp_stopped; 359 360 /* 361 * timestamp shadows the actual context timing but it can 362 * be safely used in NMI interrupt context. It reflects the 363 * context time as it was when the event was last scheduled in. 364 * 365 * ctx_time already accounts for ctx->timestamp. Therefore to 366 * compute ctx_time for a sample, simply add perf_clock(). 367 */ 368 u64 shadow_ctx_time; 369 370 struct perf_event_attr attr; 371 u16 header_size; 372 u16 id_header_size; 373 u16 read_size; 374 struct hw_perf_event hw; 375 376 struct perf_event_context *ctx; 377 atomic_long_t refcount; 378 379 /* 380 * These accumulate total time (in nanoseconds) that children 381 * events have been enabled and running, respectively. 382 */ 383 atomic64_t child_total_time_enabled; 384 atomic64_t child_total_time_running; 385 386 /* 387 * Protect attach/detach and child_list: 388 */ 389 struct mutex child_mutex; 390 struct list_head child_list; 391 struct perf_event *parent; 392 393 int oncpu; 394 int cpu; 395 396 struct list_head owner_entry; 397 struct task_struct *owner; 398 399 /* mmap bits */ 400 struct mutex mmap_mutex; 401 atomic_t mmap_count; 402 403 struct ring_buffer *rb; 404 struct list_head rb_entry; 405 406 /* poll related */ 407 wait_queue_head_t waitq; 408 struct fasync_struct *fasync; 409 410 /* delayed work for NMIs and such */ 411 int pending_wakeup; 412 int pending_kill; 413 int pending_disable; 414 struct irq_work pending; 415 416 atomic_t event_limit; 417 418 void (*destroy)(struct perf_event *); 419 struct rcu_head rcu_head; 420 421 struct pid_namespace *ns; 422 u64 id; 423 424 perf_overflow_handler_t overflow_handler; 425 void *overflow_handler_context; 426 427#ifdef CONFIG_EVENT_TRACING 428 struct ftrace_event_call *tp_event; 429 struct event_filter *filter; 430#ifdef CONFIG_FUNCTION_TRACER 431 struct ftrace_ops ftrace_ops; 432#endif 433#endif 434 435#ifdef CONFIG_CGROUP_PERF 436 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 437 int cgrp_defer_enabled; 438#endif 439 440#endif /* CONFIG_PERF_EVENTS */ 441}; 442 443enum perf_event_context_type { 444 task_context, 445 cpu_context, 446}; 447 448/** 449 * struct perf_event_context - event context structure 450 * 451 * Used as a container for task events and CPU events as well: 452 */ 453struct perf_event_context { 454 struct pmu *pmu; 455 enum perf_event_context_type type; 456 /* 457 * Protect the states of the events in the list, 458 * nr_active, and the list: 459 */ 460 raw_spinlock_t lock; 461 /* 462 * Protect the list of events. Locking either mutex or lock 463 * is sufficient to ensure the list doesn't change; to change 464 * the list you need to lock both the mutex and the spinlock. 465 */ 466 struct mutex mutex; 467 468 struct list_head pinned_groups; 469 struct list_head flexible_groups; 470 struct list_head event_list; 471 int nr_events; 472 int nr_active; 473 int is_active; 474 int nr_stat; 475 int nr_freq; 476 int rotate_disable; 477 atomic_t refcount; 478 struct task_struct *task; 479 480 /* 481 * Context clock, runs when context enabled. 482 */ 483 u64 time; 484 u64 timestamp; 485 486 /* 487 * These fields let us detect when two contexts have both 488 * been cloned (inherited) from a common ancestor. 489 */ 490 struct perf_event_context *parent_ctx; 491 u64 parent_gen; 492 u64 generation; 493 int pin_count; 494 int nr_cgroups; /* cgroup evts */ 495 int nr_branch_stack; /* branch_stack evt */ 496 struct rcu_head rcu_head; 497}; 498 499/* 500 * Number of contexts where an event can trigger: 501 * task, softirq, hardirq, nmi. 502 */ 503#define PERF_NR_CONTEXTS 4 504 505/** 506 * struct perf_event_cpu_context - per cpu event context structure 507 */ 508struct perf_cpu_context { 509 struct perf_event_context ctx; 510 struct perf_event_context *task_ctx; 511 int active_oncpu; 512 int exclusive; 513 struct hrtimer hrtimer; 514 ktime_t hrtimer_interval; 515 struct list_head rotation_list; 516 struct pmu *unique_pmu; 517 struct perf_cgroup *cgrp; 518}; 519 520struct perf_output_handle { 521 struct perf_event *event; 522 struct ring_buffer *rb; 523 unsigned long wakeup; 524 unsigned long size; 525 void *addr; 526 int page; 527}; 528 529#ifdef CONFIG_PERF_EVENTS 530 531extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 532extern void perf_pmu_unregister(struct pmu *pmu); 533 534extern int perf_num_counters(void); 535extern const char *perf_pmu_name(void); 536extern void __perf_event_task_sched_in(struct task_struct *prev, 537 struct task_struct *task); 538extern void __perf_event_task_sched_out(struct task_struct *prev, 539 struct task_struct *next); 540extern int perf_event_init_task(struct task_struct *child); 541extern void perf_event_exit_task(struct task_struct *child); 542extern void perf_event_free_task(struct task_struct *task); 543extern void perf_event_delayed_put(struct task_struct *task); 544extern void perf_event_print_debug(void); 545extern void perf_pmu_disable(struct pmu *pmu); 546extern void perf_pmu_enable(struct pmu *pmu); 547extern int perf_event_task_disable(void); 548extern int perf_event_task_enable(void); 549extern int perf_event_refresh(struct perf_event *event, int refresh); 550extern void perf_event_update_userpage(struct perf_event *event); 551extern int perf_event_release_kernel(struct perf_event *event); 552extern struct perf_event * 553perf_event_create_kernel_counter(struct perf_event_attr *attr, 554 int cpu, 555 struct task_struct *task, 556 perf_overflow_handler_t callback, 557 void *context); 558extern void perf_pmu_migrate_context(struct pmu *pmu, 559 int src_cpu, int dst_cpu); 560extern u64 perf_event_read_value(struct perf_event *event, 561 u64 *enabled, u64 *running); 562 563 564struct perf_sample_data { 565 u64 type; 566 567 u64 ip; 568 struct { 569 u32 pid; 570 u32 tid; 571 } tid_entry; 572 u64 time; 573 u64 addr; 574 u64 id; 575 u64 stream_id; 576 struct { 577 u32 cpu; 578 u32 reserved; 579 } cpu_entry; 580 u64 period; 581 union perf_mem_data_src data_src; 582 struct perf_callchain_entry *callchain; 583 struct perf_raw_record *raw; 584 struct perf_branch_stack *br_stack; 585 struct perf_regs_user regs_user; 586 u64 stack_user_size; 587 u64 weight; 588 /* 589 * Transaction flags for abort events: 590 */ 591 u64 txn; 592}; 593 594static inline void perf_sample_data_init(struct perf_sample_data *data, 595 u64 addr, u64 period) 596{ 597 /* remaining struct members initialized in perf_prepare_sample() */ 598 data->addr = addr; 599 data->raw = NULL; 600 data->br_stack = NULL; 601 data->period = period; 602 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 603 data->regs_user.regs = NULL; 604 data->stack_user_size = 0; 605 data->weight = 0; 606 data->data_src.val = 0; 607 data->txn = 0; 608} 609 610extern void perf_output_sample(struct perf_output_handle *handle, 611 struct perf_event_header *header, 612 struct perf_sample_data *data, 613 struct perf_event *event); 614extern void perf_prepare_sample(struct perf_event_header *header, 615 struct perf_sample_data *data, 616 struct perf_event *event, 617 struct pt_regs *regs); 618 619extern int perf_event_overflow(struct perf_event *event, 620 struct perf_sample_data *data, 621 struct pt_regs *regs); 622 623static inline bool is_sampling_event(struct perf_event *event) 624{ 625 return event->attr.sample_period != 0; 626} 627 628/* 629 * Return 1 for a software event, 0 for a hardware event 630 */ 631static inline int is_software_event(struct perf_event *event) 632{ 633 return event->pmu->task_ctx_nr == perf_sw_context; 634} 635 636extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 637 638extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 639 640#ifndef perf_arch_fetch_caller_regs 641static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 642#endif 643 644/* 645 * Take a snapshot of the regs. Skip ip and frame pointer to 646 * the nth caller. We only need a few of the regs: 647 * - ip for PERF_SAMPLE_IP 648 * - cs for user_mode() tests 649 * - bp for callchains 650 * - eflags, for future purposes, just in case 651 */ 652static inline void perf_fetch_caller_regs(struct pt_regs *regs) 653{ 654 memset(regs, 0, sizeof(*regs)); 655 656 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 657} 658 659static __always_inline void 660perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 661{ 662 struct pt_regs hot_regs; 663 664 if (static_key_false(&perf_swevent_enabled[event_id])) { 665 if (!regs) { 666 perf_fetch_caller_regs(&hot_regs); 667 regs = &hot_regs; 668 } 669 __perf_sw_event(event_id, nr, regs, addr); 670 } 671} 672 673extern struct static_key_deferred perf_sched_events; 674 675static inline void perf_event_task_sched_in(struct task_struct *prev, 676 struct task_struct *task) 677{ 678 if (static_key_false(&perf_sched_events.key)) 679 __perf_event_task_sched_in(prev, task); 680} 681 682static inline void perf_event_task_sched_out(struct task_struct *prev, 683 struct task_struct *next) 684{ 685 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 686 687 if (static_key_false(&perf_sched_events.key)) 688 __perf_event_task_sched_out(prev, next); 689} 690 691extern void perf_event_mmap(struct vm_area_struct *vma); 692extern struct perf_guest_info_callbacks *perf_guest_cbs; 693extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 694extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 695 696extern void perf_event_comm(struct task_struct *tsk); 697extern void perf_event_fork(struct task_struct *tsk); 698 699/* Callchains */ 700DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 701 702extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 703extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 704 705static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 706{ 707 if (entry->nr < PERF_MAX_STACK_DEPTH) 708 entry->ip[entry->nr++] = ip; 709} 710 711extern int sysctl_perf_event_paranoid; 712extern int sysctl_perf_event_mlock; 713extern int sysctl_perf_event_sample_rate; 714extern int sysctl_perf_cpu_time_max_percent; 715 716extern void perf_sample_event_took(u64 sample_len_ns); 717 718extern int perf_proc_update_handler(struct ctl_table *table, int write, 719 void __user *buffer, size_t *lenp, 720 loff_t *ppos); 721extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 722 void __user *buffer, size_t *lenp, 723 loff_t *ppos); 724 725 726static inline bool perf_paranoid_tracepoint_raw(void) 727{ 728 return sysctl_perf_event_paranoid > -1; 729} 730 731static inline bool perf_paranoid_cpu(void) 732{ 733 return sysctl_perf_event_paranoid > 0; 734} 735 736static inline bool perf_paranoid_kernel(void) 737{ 738 return sysctl_perf_event_paranoid > 1; 739} 740 741extern void perf_event_init(void); 742extern void perf_tp_event(u64 addr, u64 count, void *record, 743 int entry_size, struct pt_regs *regs, 744 struct hlist_head *head, int rctx, 745 struct task_struct *task); 746extern void perf_bp_event(struct perf_event *event, void *data); 747 748#ifndef perf_misc_flags 749# define perf_misc_flags(regs) \ 750 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 751# define perf_instruction_pointer(regs) instruction_pointer(regs) 752#endif 753 754static inline bool has_branch_stack(struct perf_event *event) 755{ 756 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 757} 758 759extern int perf_output_begin(struct perf_output_handle *handle, 760 struct perf_event *event, unsigned int size); 761extern void perf_output_end(struct perf_output_handle *handle); 762extern unsigned int perf_output_copy(struct perf_output_handle *handle, 763 const void *buf, unsigned int len); 764extern unsigned int perf_output_skip(struct perf_output_handle *handle, 765 unsigned int len); 766extern int perf_swevent_get_recursion_context(void); 767extern void perf_swevent_put_recursion_context(int rctx); 768extern u64 perf_swevent_set_period(struct perf_event *event); 769extern void perf_event_enable(struct perf_event *event); 770extern void perf_event_disable(struct perf_event *event); 771extern int __perf_event_disable(void *info); 772extern void perf_event_task_tick(void); 773#else 774static inline void 775perf_event_task_sched_in(struct task_struct *prev, 776 struct task_struct *task) { } 777static inline void 778perf_event_task_sched_out(struct task_struct *prev, 779 struct task_struct *next) { } 780static inline int perf_event_init_task(struct task_struct *child) { return 0; } 781static inline void perf_event_exit_task(struct task_struct *child) { } 782static inline void perf_event_free_task(struct task_struct *task) { } 783static inline void perf_event_delayed_put(struct task_struct *task) { } 784static inline void perf_event_print_debug(void) { } 785static inline int perf_event_task_disable(void) { return -EINVAL; } 786static inline int perf_event_task_enable(void) { return -EINVAL; } 787static inline int perf_event_refresh(struct perf_event *event, int refresh) 788{ 789 return -EINVAL; 790} 791 792static inline void 793perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 794static inline void 795perf_bp_event(struct perf_event *event, void *data) { } 796 797static inline int perf_register_guest_info_callbacks 798(struct perf_guest_info_callbacks *callbacks) { return 0; } 799static inline int perf_unregister_guest_info_callbacks 800(struct perf_guest_info_callbacks *callbacks) { return 0; } 801 802static inline void perf_event_mmap(struct vm_area_struct *vma) { } 803static inline void perf_event_comm(struct task_struct *tsk) { } 804static inline void perf_event_fork(struct task_struct *tsk) { } 805static inline void perf_event_init(void) { } 806static inline int perf_swevent_get_recursion_context(void) { return -1; } 807static inline void perf_swevent_put_recursion_context(int rctx) { } 808static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 809static inline void perf_event_enable(struct perf_event *event) { } 810static inline void perf_event_disable(struct perf_event *event) { } 811static inline int __perf_event_disable(void *info) { return -1; } 812static inline void perf_event_task_tick(void) { } 813#endif 814 815#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 816extern bool perf_event_can_stop_tick(void); 817#else 818static inline bool perf_event_can_stop_tick(void) { return true; } 819#endif 820 821#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 822extern void perf_restore_debug_store(void); 823#else 824static inline void perf_restore_debug_store(void) { } 825#endif 826 827#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 828 829/* 830 * This has to have a higher priority than migration_notifier in sched/core.c. 831 */ 832#define perf_cpu_notifier(fn) \ 833do { \ 834 static struct notifier_block fn##_nb = \ 835 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 836 unsigned long cpu = smp_processor_id(); \ 837 unsigned long flags; \ 838 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 839 (void *)(unsigned long)cpu); \ 840 local_irq_save(flags); \ 841 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 842 (void *)(unsigned long)cpu); \ 843 local_irq_restore(flags); \ 844 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 845 (void *)(unsigned long)cpu); \ 846 register_cpu_notifier(&fn##_nb); \ 847} while (0) 848 849 850struct perf_pmu_events_attr { 851 struct device_attribute attr; 852 u64 id; 853 const char *event_str; 854}; 855 856#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 857static struct perf_pmu_events_attr _var = { \ 858 .attr = __ATTR(_name, 0444, _show, NULL), \ 859 .id = _id, \ 860}; 861 862#define PMU_FORMAT_ATTR(_name, _format) \ 863static ssize_t \ 864_name##_show(struct device *dev, \ 865 struct device_attribute *attr, \ 866 char *page) \ 867{ \ 868 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 869 return sprintf(page, _format "\n"); \ 870} \ 871 \ 872static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 873 874#endif /* _LINUX_PERF_EVENT_H */