at v3.14 103 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/pm_qos.h> 29#include <linux/timer.h> 30#include <linux/bug.h> 31#include <linux/delay.h> 32#include <linux/atomic.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53 54struct netpoll_info; 55struct device; 56struct phy_device; 57/* 802.11 specific */ 58struct wireless_dev; 59 /* source back-compat hooks */ 60#define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63void netdev_set_default_ethtool_ops(struct net_device *dev, 64 const struct ethtool_ops *ops); 65 66/* hardware address assignment types */ 67#define NET_ADDR_PERM 0 /* address is permanent (default) */ 68#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70#define NET_ADDR_SET 3 /* address is set using 71 * dev_set_mac_address() */ 72 73/* Backlog congestion levels */ 74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75#define NET_RX_DROP 1 /* packet dropped */ 76 77/* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously, in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), all 91 * others are propagated to higher layers. 92 */ 93 94/* qdisc ->enqueue() return codes. */ 95#define NET_XMIT_SUCCESS 0x00 96#define NET_XMIT_DROP 0x01 /* skb dropped */ 97#define NET_XMIT_CN 0x02 /* congestion notification */ 98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107/* Driver transmit return codes */ 108#define NETDEV_TX_MASK 0xf0 109 110enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 115}; 116typedef enum netdev_tx netdev_tx_t; 117 118/* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122static inline bool dev_xmit_complete(int rc) 123{ 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134} 135 136/* 137 * Compute the worst case header length according to the protocols 138 * used. 139 */ 140 141#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142# if defined(CONFIG_MAC80211_MESH) 143# define LL_MAX_HEADER 128 144# else 145# define LL_MAX_HEADER 96 146# endif 147#else 148# define LL_MAX_HEADER 32 149#endif 150 151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 153#define MAX_HEADER LL_MAX_HEADER 154#else 155#define MAX_HEADER (LL_MAX_HEADER + 48) 156#endif 157 158/* 159 * Old network device statistics. Fields are native words 160 * (unsigned long) so they can be read and written atomically. 161 */ 162 163struct net_device_stats { 164 unsigned long rx_packets; 165 unsigned long tx_packets; 166 unsigned long rx_bytes; 167 unsigned long tx_bytes; 168 unsigned long rx_errors; 169 unsigned long tx_errors; 170 unsigned long rx_dropped; 171 unsigned long tx_dropped; 172 unsigned long multicast; 173 unsigned long collisions; 174 unsigned long rx_length_errors; 175 unsigned long rx_over_errors; 176 unsigned long rx_crc_errors; 177 unsigned long rx_frame_errors; 178 unsigned long rx_fifo_errors; 179 unsigned long rx_missed_errors; 180 unsigned long tx_aborted_errors; 181 unsigned long tx_carrier_errors; 182 unsigned long tx_fifo_errors; 183 unsigned long tx_heartbeat_errors; 184 unsigned long tx_window_errors; 185 unsigned long rx_compressed; 186 unsigned long tx_compressed; 187}; 188 189 190#include <linux/cache.h> 191#include <linux/skbuff.h> 192 193#ifdef CONFIG_RPS 194#include <linux/static_key.h> 195extern struct static_key rps_needed; 196#endif 197 198struct neighbour; 199struct neigh_parms; 200struct sk_buff; 201 202struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206#define NETDEV_HW_ADDR_T_LAN 1 207#define NETDEV_HW_ADDR_T_SAN 2 208#define NETDEV_HW_ADDR_T_SLAVE 3 209#define NETDEV_HW_ADDR_T_UNICAST 4 210#define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216}; 217 218struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221}; 222 223#define netdev_hw_addr_list_count(l) ((l)->count) 224#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225#define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230#define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235#define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244#define HH_DATA_MOD 16 245#define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247#define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250}; 251 252/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260#define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*rebuild)(struct sk_buff *skb); 271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 272 void (*cache_update)(struct hh_cache *hh, 273 const struct net_device *dev, 274 const unsigned char *haddr); 275}; 276 277/* These flag bits are private to the generic network queueing 278 * layer, they may not be explicitly referenced by any other 279 * code. 280 */ 281 282enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288}; 289 290 291/* 292 * This structure holds at boot time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298}; 299#define NETDEV_BOOT_SETUP_MAX 8 300 301int __init netdev_boot_setup(char *str); 302 303/* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-cpu poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319#ifdef CONFIG_NETPOLL 320 spinlock_t poll_lock; 321 int poll_owner; 322#endif 323 struct net_device *dev; 324 struct sk_buff *gro_list; 325 struct sk_buff *skb; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329}; 330 331enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_DISABLE, /* Disable pending */ 334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 335 NAPI_STATE_HASHED, /* In NAPI hash */ 336}; 337 338enum gro_result { 339 GRO_MERGED, 340 GRO_MERGED_FREE, 341 GRO_HELD, 342 GRO_NORMAL, 343 GRO_DROP, 344}; 345typedef enum gro_result gro_result_t; 346 347/* 348 * enum rx_handler_result - Possible return values for rx_handlers. 349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 350 * further. 351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 352 * case skb->dev was changed by rx_handler. 353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 355 * 356 * rx_handlers are functions called from inside __netif_receive_skb(), to do 357 * special processing of the skb, prior to delivery to protocol handlers. 358 * 359 * Currently, a net_device can only have a single rx_handler registered. Trying 360 * to register a second rx_handler will return -EBUSY. 361 * 362 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 363 * To unregister a rx_handler on a net_device, use 364 * netdev_rx_handler_unregister(). 365 * 366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 367 * do with the skb. 368 * 369 * If the rx_handler consumed to skb in some way, it should return 370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 371 * the skb to be delivered in some other ways. 372 * 373 * If the rx_handler changed skb->dev, to divert the skb to another 374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 375 * new device will be called if it exists. 376 * 377 * If the rx_handler consider the skb should be ignored, it should return 378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 379 * are registered on exact device (ptype->dev == skb->dev). 380 * 381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 382 * delivered, it should return RX_HANDLER_PASS. 383 * 384 * A device without a registered rx_handler will behave as if rx_handler 385 * returned RX_HANDLER_PASS. 386 */ 387 388enum rx_handler_result { 389 RX_HANDLER_CONSUMED, 390 RX_HANDLER_ANOTHER, 391 RX_HANDLER_EXACT, 392 RX_HANDLER_PASS, 393}; 394typedef enum rx_handler_result rx_handler_result_t; 395typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 396 397void __napi_schedule(struct napi_struct *n); 398 399static inline bool napi_disable_pending(struct napi_struct *n) 400{ 401 return test_bit(NAPI_STATE_DISABLE, &n->state); 402} 403 404/** 405 * napi_schedule_prep - check if napi can be scheduled 406 * @n: napi context 407 * 408 * Test if NAPI routine is already running, and if not mark 409 * it as running. This is used as a condition variable 410 * insure only one NAPI poll instance runs. We also make 411 * sure there is no pending NAPI disable. 412 */ 413static inline bool napi_schedule_prep(struct napi_struct *n) 414{ 415 return !napi_disable_pending(n) && 416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 417} 418 419/** 420 * napi_schedule - schedule NAPI poll 421 * @n: napi context 422 * 423 * Schedule NAPI poll routine to be called if it is not already 424 * running. 425 */ 426static inline void napi_schedule(struct napi_struct *n) 427{ 428 if (napi_schedule_prep(n)) 429 __napi_schedule(n); 430} 431 432/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 433static inline bool napi_reschedule(struct napi_struct *napi) 434{ 435 if (napi_schedule_prep(napi)) { 436 __napi_schedule(napi); 437 return true; 438 } 439 return false; 440} 441 442/** 443 * napi_complete - NAPI processing complete 444 * @n: napi context 445 * 446 * Mark NAPI processing as complete. 447 */ 448void __napi_complete(struct napi_struct *n); 449void napi_complete(struct napi_struct *n); 450 451/** 452 * napi_by_id - lookup a NAPI by napi_id 453 * @napi_id: hashed napi_id 454 * 455 * lookup @napi_id in napi_hash table 456 * must be called under rcu_read_lock() 457 */ 458struct napi_struct *napi_by_id(unsigned int napi_id); 459 460/** 461 * napi_hash_add - add a NAPI to global hashtable 462 * @napi: napi context 463 * 464 * generate a new napi_id and store a @napi under it in napi_hash 465 */ 466void napi_hash_add(struct napi_struct *napi); 467 468/** 469 * napi_hash_del - remove a NAPI from global table 470 * @napi: napi context 471 * 472 * Warning: caller must observe rcu grace period 473 * before freeing memory containing @napi 474 */ 475void napi_hash_del(struct napi_struct *napi); 476 477/** 478 * napi_disable - prevent NAPI from scheduling 479 * @n: napi context 480 * 481 * Stop NAPI from being scheduled on this context. 482 * Waits till any outstanding processing completes. 483 */ 484static inline void napi_disable(struct napi_struct *n) 485{ 486 might_sleep(); 487 set_bit(NAPI_STATE_DISABLE, &n->state); 488 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 489 msleep(1); 490 clear_bit(NAPI_STATE_DISABLE, &n->state); 491} 492 493/** 494 * napi_enable - enable NAPI scheduling 495 * @n: napi context 496 * 497 * Resume NAPI from being scheduled on this context. 498 * Must be paired with napi_disable. 499 */ 500static inline void napi_enable(struct napi_struct *n) 501{ 502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 503 smp_mb__before_clear_bit(); 504 clear_bit(NAPI_STATE_SCHED, &n->state); 505} 506 507#ifdef CONFIG_SMP 508/** 509 * napi_synchronize - wait until NAPI is not running 510 * @n: napi context 511 * 512 * Wait until NAPI is done being scheduled on this context. 513 * Waits till any outstanding processing completes but 514 * does not disable future activations. 515 */ 516static inline void napi_synchronize(const struct napi_struct *n) 517{ 518 while (test_bit(NAPI_STATE_SCHED, &n->state)) 519 msleep(1); 520} 521#else 522# define napi_synchronize(n) barrier() 523#endif 524 525enum netdev_queue_state_t { 526 __QUEUE_STATE_DRV_XOFF, 527 __QUEUE_STATE_STACK_XOFF, 528 __QUEUE_STATE_FROZEN, 529#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 530 (1 << __QUEUE_STATE_STACK_XOFF)) 531#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 532 (1 << __QUEUE_STATE_FROZEN)) 533}; 534/* 535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 536 * netif_tx_* functions below are used to manipulate this flag. The 537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 538 * queue independently. The netif_xmit_*stopped functions below are called 539 * to check if the queue has been stopped by the driver or stack (either 540 * of the XOFF bits are set in the state). Drivers should not need to call 541 * netif_xmit*stopped functions, they should only be using netif_tx_*. 542 */ 543 544struct netdev_queue { 545/* 546 * read mostly part 547 */ 548 struct net_device *dev; 549 struct Qdisc *qdisc; 550 struct Qdisc *qdisc_sleeping; 551#ifdef CONFIG_SYSFS 552 struct kobject kobj; 553#endif 554#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 555 int numa_node; 556#endif 557/* 558 * write mostly part 559 */ 560 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 561 int xmit_lock_owner; 562 /* 563 * please use this field instead of dev->trans_start 564 */ 565 unsigned long trans_start; 566 567 /* 568 * Number of TX timeouts for this queue 569 * (/sys/class/net/DEV/Q/trans_timeout) 570 */ 571 unsigned long trans_timeout; 572 573 unsigned long state; 574 575#ifdef CONFIG_BQL 576 struct dql dql; 577#endif 578} ____cacheline_aligned_in_smp; 579 580static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 581{ 582#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 583 return q->numa_node; 584#else 585 return NUMA_NO_NODE; 586#endif 587} 588 589static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 590{ 591#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 592 q->numa_node = node; 593#endif 594} 595 596#ifdef CONFIG_RPS 597/* 598 * This structure holds an RPS map which can be of variable length. The 599 * map is an array of CPUs. 600 */ 601struct rps_map { 602 unsigned int len; 603 struct rcu_head rcu; 604 u16 cpus[0]; 605}; 606#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 607 608/* 609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 610 * tail pointer for that CPU's input queue at the time of last enqueue, and 611 * a hardware filter index. 612 */ 613struct rps_dev_flow { 614 u16 cpu; 615 u16 filter; 616 unsigned int last_qtail; 617}; 618#define RPS_NO_FILTER 0xffff 619 620/* 621 * The rps_dev_flow_table structure contains a table of flow mappings. 622 */ 623struct rps_dev_flow_table { 624 unsigned int mask; 625 struct rcu_head rcu; 626 struct rps_dev_flow flows[0]; 627}; 628#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 629 ((_num) * sizeof(struct rps_dev_flow))) 630 631/* 632 * The rps_sock_flow_table contains mappings of flows to the last CPU 633 * on which they were processed by the application (set in recvmsg). 634 */ 635struct rps_sock_flow_table { 636 unsigned int mask; 637 u16 ents[0]; 638}; 639#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 640 ((_num) * sizeof(u16))) 641 642#define RPS_NO_CPU 0xffff 643 644static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 645 u32 hash) 646{ 647 if (table && hash) { 648 unsigned int cpu, index = hash & table->mask; 649 650 /* We only give a hint, preemption can change cpu under us */ 651 cpu = raw_smp_processor_id(); 652 653 if (table->ents[index] != cpu) 654 table->ents[index] = cpu; 655 } 656} 657 658static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 659 u32 hash) 660{ 661 if (table && hash) 662 table->ents[hash & table->mask] = RPS_NO_CPU; 663} 664 665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 666 667#ifdef CONFIG_RFS_ACCEL 668bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 669 u16 filter_id); 670#endif 671#endif /* CONFIG_RPS */ 672 673/* This structure contains an instance of an RX queue. */ 674struct netdev_rx_queue { 675#ifdef CONFIG_RPS 676 struct rps_map __rcu *rps_map; 677 struct rps_dev_flow_table __rcu *rps_flow_table; 678#endif 679 struct kobject kobj; 680 struct net_device *dev; 681} ____cacheline_aligned_in_smp; 682 683/* 684 * RX queue sysfs structures and functions. 685 */ 686struct rx_queue_attribute { 687 struct attribute attr; 688 ssize_t (*show)(struct netdev_rx_queue *queue, 689 struct rx_queue_attribute *attr, char *buf); 690 ssize_t (*store)(struct netdev_rx_queue *queue, 691 struct rx_queue_attribute *attr, const char *buf, size_t len); 692}; 693 694#ifdef CONFIG_XPS 695/* 696 * This structure holds an XPS map which can be of variable length. The 697 * map is an array of queues. 698 */ 699struct xps_map { 700 unsigned int len; 701 unsigned int alloc_len; 702 struct rcu_head rcu; 703 u16 queues[0]; 704}; 705#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 706#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 707 / sizeof(u16)) 708 709/* 710 * This structure holds all XPS maps for device. Maps are indexed by CPU. 711 */ 712struct xps_dev_maps { 713 struct rcu_head rcu; 714 struct xps_map __rcu *cpu_map[0]; 715}; 716#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 717 (nr_cpu_ids * sizeof(struct xps_map *))) 718#endif /* CONFIG_XPS */ 719 720#define TC_MAX_QUEUE 16 721#define TC_BITMASK 15 722/* HW offloaded queuing disciplines txq count and offset maps */ 723struct netdev_tc_txq { 724 u16 count; 725 u16 offset; 726}; 727 728#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 729/* 730 * This structure is to hold information about the device 731 * configured to run FCoE protocol stack. 732 */ 733struct netdev_fcoe_hbainfo { 734 char manufacturer[64]; 735 char serial_number[64]; 736 char hardware_version[64]; 737 char driver_version[64]; 738 char optionrom_version[64]; 739 char firmware_version[64]; 740 char model[256]; 741 char model_description[256]; 742}; 743#endif 744 745#define MAX_PHYS_PORT_ID_LEN 32 746 747/* This structure holds a unique identifier to identify the 748 * physical port used by a netdevice. 749 */ 750struct netdev_phys_port_id { 751 unsigned char id[MAX_PHYS_PORT_ID_LEN]; 752 unsigned char id_len; 753}; 754 755typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 756 struct sk_buff *skb); 757 758/* 759 * This structure defines the management hooks for network devices. 760 * The following hooks can be defined; unless noted otherwise, they are 761 * optional and can be filled with a null pointer. 762 * 763 * int (*ndo_init)(struct net_device *dev); 764 * This function is called once when network device is registered. 765 * The network device can use this to any late stage initializaton 766 * or semantic validattion. It can fail with an error code which will 767 * be propogated back to register_netdev 768 * 769 * void (*ndo_uninit)(struct net_device *dev); 770 * This function is called when device is unregistered or when registration 771 * fails. It is not called if init fails. 772 * 773 * int (*ndo_open)(struct net_device *dev); 774 * This function is called when network device transistions to the up 775 * state. 776 * 777 * int (*ndo_stop)(struct net_device *dev); 778 * This function is called when network device transistions to the down 779 * state. 780 * 781 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 782 * struct net_device *dev); 783 * Called when a packet needs to be transmitted. 784 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 785 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 786 * Required can not be NULL. 787 * 788 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 789 * void *accel_priv, select_queue_fallback_t fallback); 790 * Called to decide which queue to when device supports multiple 791 * transmit queues. 792 * 793 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 794 * This function is called to allow device receiver to make 795 * changes to configuration when multicast or promiscious is enabled. 796 * 797 * void (*ndo_set_rx_mode)(struct net_device *dev); 798 * This function is called device changes address list filtering. 799 * If driver handles unicast address filtering, it should set 800 * IFF_UNICAST_FLT to its priv_flags. 801 * 802 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 803 * This function is called when the Media Access Control address 804 * needs to be changed. If this interface is not defined, the 805 * mac address can not be changed. 806 * 807 * int (*ndo_validate_addr)(struct net_device *dev); 808 * Test if Media Access Control address is valid for the device. 809 * 810 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 811 * Called when a user request an ioctl which can't be handled by 812 * the generic interface code. If not defined ioctl's return 813 * not supported error code. 814 * 815 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 816 * Used to set network devices bus interface parameters. This interface 817 * is retained for legacy reason, new devices should use the bus 818 * interface (PCI) for low level management. 819 * 820 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 821 * Called when a user wants to change the Maximum Transfer Unit 822 * of a device. If not defined, any request to change MTU will 823 * will return an error. 824 * 825 * void (*ndo_tx_timeout)(struct net_device *dev); 826 * Callback uses when the transmitter has not made any progress 827 * for dev->watchdog ticks. 828 * 829 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 830 * struct rtnl_link_stats64 *storage); 831 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 832 * Called when a user wants to get the network device usage 833 * statistics. Drivers must do one of the following: 834 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 835 * rtnl_link_stats64 structure passed by the caller. 836 * 2. Define @ndo_get_stats to update a net_device_stats structure 837 * (which should normally be dev->stats) and return a pointer to 838 * it. The structure may be changed asynchronously only if each 839 * field is written atomically. 840 * 3. Update dev->stats asynchronously and atomically, and define 841 * neither operation. 842 * 843 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid); 844 * If device support VLAN filtering this function is called when a 845 * VLAN id is registered. 846 * 847 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 848 * If device support VLAN filtering this function is called when a 849 * VLAN id is unregistered. 850 * 851 * void (*ndo_poll_controller)(struct net_device *dev); 852 * 853 * SR-IOV management functions. 854 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 855 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 856 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 857 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 858 * int (*ndo_get_vf_config)(struct net_device *dev, 859 * int vf, struct ifla_vf_info *ivf); 860 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 861 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 862 * struct nlattr *port[]); 863 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 864 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 865 * Called to setup 'tc' number of traffic classes in the net device. This 866 * is always called from the stack with the rtnl lock held and netif tx 867 * queues stopped. This allows the netdevice to perform queue management 868 * safely. 869 * 870 * Fiber Channel over Ethernet (FCoE) offload functions. 871 * int (*ndo_fcoe_enable)(struct net_device *dev); 872 * Called when the FCoE protocol stack wants to start using LLD for FCoE 873 * so the underlying device can perform whatever needed configuration or 874 * initialization to support acceleration of FCoE traffic. 875 * 876 * int (*ndo_fcoe_disable)(struct net_device *dev); 877 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 878 * so the underlying device can perform whatever needed clean-ups to 879 * stop supporting acceleration of FCoE traffic. 880 * 881 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 882 * struct scatterlist *sgl, unsigned int sgc); 883 * Called when the FCoE Initiator wants to initialize an I/O that 884 * is a possible candidate for Direct Data Placement (DDP). The LLD can 885 * perform necessary setup and returns 1 to indicate the device is set up 886 * successfully to perform DDP on this I/O, otherwise this returns 0. 887 * 888 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 889 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 890 * indicated by the FC exchange id 'xid', so the underlying device can 891 * clean up and reuse resources for later DDP requests. 892 * 893 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 894 * struct scatterlist *sgl, unsigned int sgc); 895 * Called when the FCoE Target wants to initialize an I/O that 896 * is a possible candidate for Direct Data Placement (DDP). The LLD can 897 * perform necessary setup and returns 1 to indicate the device is set up 898 * successfully to perform DDP on this I/O, otherwise this returns 0. 899 * 900 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 901 * struct netdev_fcoe_hbainfo *hbainfo); 902 * Called when the FCoE Protocol stack wants information on the underlying 903 * device. This information is utilized by the FCoE protocol stack to 904 * register attributes with Fiber Channel management service as per the 905 * FC-GS Fabric Device Management Information(FDMI) specification. 906 * 907 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 908 * Called when the underlying device wants to override default World Wide 909 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 910 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 911 * protocol stack to use. 912 * 913 * RFS acceleration. 914 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 915 * u16 rxq_index, u32 flow_id); 916 * Set hardware filter for RFS. rxq_index is the target queue index; 917 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 918 * Return the filter ID on success, or a negative error code. 919 * 920 * Slave management functions (for bridge, bonding, etc). 921 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 922 * Called to make another netdev an underling. 923 * 924 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 925 * Called to release previously enslaved netdev. 926 * 927 * Feature/offload setting functions. 928 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 929 * netdev_features_t features); 930 * Adjusts the requested feature flags according to device-specific 931 * constraints, and returns the resulting flags. Must not modify 932 * the device state. 933 * 934 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 935 * Called to update device configuration to new features. Passed 936 * feature set might be less than what was returned by ndo_fix_features()). 937 * Must return >0 or -errno if it changed dev->features itself. 938 * 939 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 940 * struct net_device *dev, 941 * const unsigned char *addr, u16 flags) 942 * Adds an FDB entry to dev for addr. 943 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 944 * struct net_device *dev, 945 * const unsigned char *addr) 946 * Deletes the FDB entry from dev coresponding to addr. 947 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 948 * struct net_device *dev, int idx) 949 * Used to add FDB entries to dump requests. Implementers should add 950 * entries to skb and update idx with the number of entries. 951 * 952 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 953 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 954 * struct net_device *dev, u32 filter_mask) 955 * 956 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 957 * Called to change device carrier. Soft-devices (like dummy, team, etc) 958 * which do not represent real hardware may define this to allow their 959 * userspace components to manage their virtual carrier state. Devices 960 * that determine carrier state from physical hardware properties (eg 961 * network cables) or protocol-dependent mechanisms (eg 962 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 963 * 964 * int (*ndo_get_phys_port_id)(struct net_device *dev, 965 * struct netdev_phys_port_id *ppid); 966 * Called to get ID of physical port of this device. If driver does 967 * not implement this, it is assumed that the hw is not able to have 968 * multiple net devices on single physical port. 969 * 970 * void (*ndo_add_vxlan_port)(struct net_device *dev, 971 * sa_family_t sa_family, __be16 port); 972 * Called by vxlan to notiy a driver about the UDP port and socket 973 * address family that vxlan is listnening to. It is called only when 974 * a new port starts listening. The operation is protected by the 975 * vxlan_net->sock_lock. 976 * 977 * void (*ndo_del_vxlan_port)(struct net_device *dev, 978 * sa_family_t sa_family, __be16 port); 979 * Called by vxlan to notify the driver about a UDP port and socket 980 * address family that vxlan is not listening to anymore. The operation 981 * is protected by the vxlan_net->sock_lock. 982 * 983 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 984 * struct net_device *dev) 985 * Called by upper layer devices to accelerate switching or other 986 * station functionality into hardware. 'pdev is the lowerdev 987 * to use for the offload and 'dev' is the net device that will 988 * back the offload. Returns a pointer to the private structure 989 * the upper layer will maintain. 990 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 991 * Called by upper layer device to delete the station created 992 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 993 * the station and priv is the structure returned by the add 994 * operation. 995 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 996 * struct net_device *dev, 997 * void *priv); 998 * Callback to use for xmit over the accelerated station. This 999 * is used in place of ndo_start_xmit on accelerated net 1000 * devices. 1001 */ 1002struct net_device_ops { 1003 int (*ndo_init)(struct net_device *dev); 1004 void (*ndo_uninit)(struct net_device *dev); 1005 int (*ndo_open)(struct net_device *dev); 1006 int (*ndo_stop)(struct net_device *dev); 1007 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1008 struct net_device *dev); 1009 u16 (*ndo_select_queue)(struct net_device *dev, 1010 struct sk_buff *skb, 1011 void *accel_priv, 1012 select_queue_fallback_t fallback); 1013 void (*ndo_change_rx_flags)(struct net_device *dev, 1014 int flags); 1015 void (*ndo_set_rx_mode)(struct net_device *dev); 1016 int (*ndo_set_mac_address)(struct net_device *dev, 1017 void *addr); 1018 int (*ndo_validate_addr)(struct net_device *dev); 1019 int (*ndo_do_ioctl)(struct net_device *dev, 1020 struct ifreq *ifr, int cmd); 1021 int (*ndo_set_config)(struct net_device *dev, 1022 struct ifmap *map); 1023 int (*ndo_change_mtu)(struct net_device *dev, 1024 int new_mtu); 1025 int (*ndo_neigh_setup)(struct net_device *dev, 1026 struct neigh_parms *); 1027 void (*ndo_tx_timeout) (struct net_device *dev); 1028 1029 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1030 struct rtnl_link_stats64 *storage); 1031 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1032 1033 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1034 __be16 proto, u16 vid); 1035 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1036 __be16 proto, u16 vid); 1037#ifdef CONFIG_NET_POLL_CONTROLLER 1038 void (*ndo_poll_controller)(struct net_device *dev); 1039 int (*ndo_netpoll_setup)(struct net_device *dev, 1040 struct netpoll_info *info, 1041 gfp_t gfp); 1042 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1043#endif 1044#ifdef CONFIG_NET_RX_BUSY_POLL 1045 int (*ndo_busy_poll)(struct napi_struct *dev); 1046#endif 1047 int (*ndo_set_vf_mac)(struct net_device *dev, 1048 int queue, u8 *mac); 1049 int (*ndo_set_vf_vlan)(struct net_device *dev, 1050 int queue, u16 vlan, u8 qos); 1051 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 1052 int vf, int rate); 1053 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1054 int vf, bool setting); 1055 int (*ndo_get_vf_config)(struct net_device *dev, 1056 int vf, 1057 struct ifla_vf_info *ivf); 1058 int (*ndo_set_vf_link_state)(struct net_device *dev, 1059 int vf, int link_state); 1060 int (*ndo_set_vf_port)(struct net_device *dev, 1061 int vf, 1062 struct nlattr *port[]); 1063 int (*ndo_get_vf_port)(struct net_device *dev, 1064 int vf, struct sk_buff *skb); 1065 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1066#if IS_ENABLED(CONFIG_FCOE) 1067 int (*ndo_fcoe_enable)(struct net_device *dev); 1068 int (*ndo_fcoe_disable)(struct net_device *dev); 1069 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1070 u16 xid, 1071 struct scatterlist *sgl, 1072 unsigned int sgc); 1073 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1074 u16 xid); 1075 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1076 u16 xid, 1077 struct scatterlist *sgl, 1078 unsigned int sgc); 1079 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1080 struct netdev_fcoe_hbainfo *hbainfo); 1081#endif 1082 1083#if IS_ENABLED(CONFIG_LIBFCOE) 1084#define NETDEV_FCOE_WWNN 0 1085#define NETDEV_FCOE_WWPN 1 1086 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1087 u64 *wwn, int type); 1088#endif 1089 1090#ifdef CONFIG_RFS_ACCEL 1091 int (*ndo_rx_flow_steer)(struct net_device *dev, 1092 const struct sk_buff *skb, 1093 u16 rxq_index, 1094 u32 flow_id); 1095#endif 1096 int (*ndo_add_slave)(struct net_device *dev, 1097 struct net_device *slave_dev); 1098 int (*ndo_del_slave)(struct net_device *dev, 1099 struct net_device *slave_dev); 1100 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1101 netdev_features_t features); 1102 int (*ndo_set_features)(struct net_device *dev, 1103 netdev_features_t features); 1104 int (*ndo_neigh_construct)(struct neighbour *n); 1105 void (*ndo_neigh_destroy)(struct neighbour *n); 1106 1107 int (*ndo_fdb_add)(struct ndmsg *ndm, 1108 struct nlattr *tb[], 1109 struct net_device *dev, 1110 const unsigned char *addr, 1111 u16 flags); 1112 int (*ndo_fdb_del)(struct ndmsg *ndm, 1113 struct nlattr *tb[], 1114 struct net_device *dev, 1115 const unsigned char *addr); 1116 int (*ndo_fdb_dump)(struct sk_buff *skb, 1117 struct netlink_callback *cb, 1118 struct net_device *dev, 1119 int idx); 1120 1121 int (*ndo_bridge_setlink)(struct net_device *dev, 1122 struct nlmsghdr *nlh); 1123 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1124 u32 pid, u32 seq, 1125 struct net_device *dev, 1126 u32 filter_mask); 1127 int (*ndo_bridge_dellink)(struct net_device *dev, 1128 struct nlmsghdr *nlh); 1129 int (*ndo_change_carrier)(struct net_device *dev, 1130 bool new_carrier); 1131 int (*ndo_get_phys_port_id)(struct net_device *dev, 1132 struct netdev_phys_port_id *ppid); 1133 void (*ndo_add_vxlan_port)(struct net_device *dev, 1134 sa_family_t sa_family, 1135 __be16 port); 1136 void (*ndo_del_vxlan_port)(struct net_device *dev, 1137 sa_family_t sa_family, 1138 __be16 port); 1139 1140 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1141 struct net_device *dev); 1142 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1143 void *priv); 1144 1145 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1146 struct net_device *dev, 1147 void *priv); 1148}; 1149 1150/* 1151 * The DEVICE structure. 1152 * Actually, this whole structure is a big mistake. It mixes I/O 1153 * data with strictly "high-level" data, and it has to know about 1154 * almost every data structure used in the INET module. 1155 * 1156 * FIXME: cleanup struct net_device such that network protocol info 1157 * moves out. 1158 */ 1159 1160struct net_device { 1161 1162 /* 1163 * This is the first field of the "visible" part of this structure 1164 * (i.e. as seen by users in the "Space.c" file). It is the name 1165 * of the interface. 1166 */ 1167 char name[IFNAMSIZ]; 1168 1169 /* device name hash chain, please keep it close to name[] */ 1170 struct hlist_node name_hlist; 1171 1172 /* snmp alias */ 1173 char *ifalias; 1174 1175 /* 1176 * I/O specific fields 1177 * FIXME: Merge these and struct ifmap into one 1178 */ 1179 unsigned long mem_end; /* shared mem end */ 1180 unsigned long mem_start; /* shared mem start */ 1181 unsigned long base_addr; /* device I/O address */ 1182 int irq; /* device IRQ number */ 1183 1184 /* 1185 * Some hardware also needs these fields, but they are not 1186 * part of the usual set specified in Space.c. 1187 */ 1188 1189 unsigned long state; 1190 1191 struct list_head dev_list; 1192 struct list_head napi_list; 1193 struct list_head unreg_list; 1194 struct list_head close_list; 1195 1196 /* directly linked devices, like slaves for bonding */ 1197 struct { 1198 struct list_head upper; 1199 struct list_head lower; 1200 } adj_list; 1201 1202 /* all linked devices, *including* neighbours */ 1203 struct { 1204 struct list_head upper; 1205 struct list_head lower; 1206 } all_adj_list; 1207 1208 1209 /* currently active device features */ 1210 netdev_features_t features; 1211 /* user-changeable features */ 1212 netdev_features_t hw_features; 1213 /* user-requested features */ 1214 netdev_features_t wanted_features; 1215 /* mask of features inheritable by VLAN devices */ 1216 netdev_features_t vlan_features; 1217 /* mask of features inherited by encapsulating devices 1218 * This field indicates what encapsulation offloads 1219 * the hardware is capable of doing, and drivers will 1220 * need to set them appropriately. 1221 */ 1222 netdev_features_t hw_enc_features; 1223 /* mask of fetures inheritable by MPLS */ 1224 netdev_features_t mpls_features; 1225 1226 /* Interface index. Unique device identifier */ 1227 int ifindex; 1228 int iflink; 1229 1230 struct net_device_stats stats; 1231 atomic_long_t rx_dropped; /* dropped packets by core network 1232 * Do not use this in drivers. 1233 */ 1234 1235#ifdef CONFIG_WIRELESS_EXT 1236 /* List of functions to handle Wireless Extensions (instead of ioctl). 1237 * See <net/iw_handler.h> for details. Jean II */ 1238 const struct iw_handler_def * wireless_handlers; 1239 /* Instance data managed by the core of Wireless Extensions. */ 1240 struct iw_public_data * wireless_data; 1241#endif 1242 /* Management operations */ 1243 const struct net_device_ops *netdev_ops; 1244 const struct ethtool_ops *ethtool_ops; 1245 const struct forwarding_accel_ops *fwd_ops; 1246 1247 /* Hardware header description */ 1248 const struct header_ops *header_ops; 1249 1250 unsigned int flags; /* interface flags (a la BSD) */ 1251 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1252 * See if.h for definitions. */ 1253 unsigned short gflags; 1254 unsigned short padded; /* How much padding added by alloc_netdev() */ 1255 1256 unsigned char operstate; /* RFC2863 operstate */ 1257 unsigned char link_mode; /* mapping policy to operstate */ 1258 1259 unsigned char if_port; /* Selectable AUI, TP,..*/ 1260 unsigned char dma; /* DMA channel */ 1261 1262 unsigned int mtu; /* interface MTU value */ 1263 unsigned short type; /* interface hardware type */ 1264 unsigned short hard_header_len; /* hardware hdr length */ 1265 1266 /* extra head- and tailroom the hardware may need, but not in all cases 1267 * can this be guaranteed, especially tailroom. Some cases also use 1268 * LL_MAX_HEADER instead to allocate the skb. 1269 */ 1270 unsigned short needed_headroom; 1271 unsigned short needed_tailroom; 1272 1273 /* Interface address info. */ 1274 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1275 unsigned char addr_assign_type; /* hw address assignment type */ 1276 unsigned char addr_len; /* hardware address length */ 1277 unsigned short neigh_priv_len; 1278 unsigned short dev_id; /* Used to differentiate devices 1279 * that share the same link 1280 * layer address 1281 */ 1282 spinlock_t addr_list_lock; 1283 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1284 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1285 struct netdev_hw_addr_list dev_addrs; /* list of device 1286 * hw addresses 1287 */ 1288#ifdef CONFIG_SYSFS 1289 struct kset *queues_kset; 1290#endif 1291 1292 bool uc_promisc; 1293 unsigned int promiscuity; 1294 unsigned int allmulti; 1295 1296 1297 /* Protocol specific pointers */ 1298 1299#if IS_ENABLED(CONFIG_VLAN_8021Q) 1300 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1301#endif 1302#if IS_ENABLED(CONFIG_NET_DSA) 1303 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1304#endif 1305#if IS_ENABLED(CONFIG_TIPC) 1306 struct tipc_bearer __rcu *tipc_ptr; /* TIPC specific data */ 1307#endif 1308 void *atalk_ptr; /* AppleTalk link */ 1309 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1310 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1311 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1312 void *ax25_ptr; /* AX.25 specific data */ 1313 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1314 assign before registering */ 1315 1316/* 1317 * Cache lines mostly used on receive path (including eth_type_trans()) 1318 */ 1319 unsigned long last_rx; /* Time of last Rx 1320 * This should not be set in 1321 * drivers, unless really needed, 1322 * because network stack (bonding) 1323 * use it if/when necessary, to 1324 * avoid dirtying this cache line. 1325 */ 1326 1327 /* Interface address info used in eth_type_trans() */ 1328 unsigned char *dev_addr; /* hw address, (before bcast 1329 because most packets are 1330 unicast) */ 1331 1332 1333#ifdef CONFIG_SYSFS 1334 struct netdev_rx_queue *_rx; 1335 1336 /* Number of RX queues allocated at register_netdev() time */ 1337 unsigned int num_rx_queues; 1338 1339 /* Number of RX queues currently active in device */ 1340 unsigned int real_num_rx_queues; 1341 1342#endif 1343 1344 rx_handler_func_t __rcu *rx_handler; 1345 void __rcu *rx_handler_data; 1346 1347 struct netdev_queue __rcu *ingress_queue; 1348 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1349 1350 1351/* 1352 * Cache lines mostly used on transmit path 1353 */ 1354 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1355 1356 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1357 unsigned int num_tx_queues; 1358 1359 /* Number of TX queues currently active in device */ 1360 unsigned int real_num_tx_queues; 1361 1362 /* root qdisc from userspace point of view */ 1363 struct Qdisc *qdisc; 1364 1365 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1366 spinlock_t tx_global_lock; 1367 1368#ifdef CONFIG_XPS 1369 struct xps_dev_maps __rcu *xps_maps; 1370#endif 1371#ifdef CONFIG_RFS_ACCEL 1372 /* CPU reverse-mapping for RX completion interrupts, indexed 1373 * by RX queue number. Assigned by driver. This must only be 1374 * set if the ndo_rx_flow_steer operation is defined. */ 1375 struct cpu_rmap *rx_cpu_rmap; 1376#endif 1377 1378 /* These may be needed for future network-power-down code. */ 1379 1380 /* 1381 * trans_start here is expensive for high speed devices on SMP, 1382 * please use netdev_queue->trans_start instead. 1383 */ 1384 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1385 1386 int watchdog_timeo; /* used by dev_watchdog() */ 1387 struct timer_list watchdog_timer; 1388 1389 /* Number of references to this device */ 1390 int __percpu *pcpu_refcnt; 1391 1392 /* delayed register/unregister */ 1393 struct list_head todo_list; 1394 /* device index hash chain */ 1395 struct hlist_node index_hlist; 1396 1397 struct list_head link_watch_list; 1398 1399 /* register/unregister state machine */ 1400 enum { NETREG_UNINITIALIZED=0, 1401 NETREG_REGISTERED, /* completed register_netdevice */ 1402 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1403 NETREG_UNREGISTERED, /* completed unregister todo */ 1404 NETREG_RELEASED, /* called free_netdev */ 1405 NETREG_DUMMY, /* dummy device for NAPI poll */ 1406 } reg_state:8; 1407 1408 bool dismantle; /* device is going do be freed */ 1409 1410 enum { 1411 RTNL_LINK_INITIALIZED, 1412 RTNL_LINK_INITIALIZING, 1413 } rtnl_link_state:16; 1414 1415 /* Called from unregister, can be used to call free_netdev */ 1416 void (*destructor)(struct net_device *dev); 1417 1418#ifdef CONFIG_NETPOLL 1419 struct netpoll_info __rcu *npinfo; 1420#endif 1421 1422#ifdef CONFIG_NET_NS 1423 /* Network namespace this network device is inside */ 1424 struct net *nd_net; 1425#endif 1426 1427 /* mid-layer private */ 1428 union { 1429 void *ml_priv; 1430 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1431 struct pcpu_sw_netstats __percpu *tstats; 1432 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1433 struct pcpu_vstats __percpu *vstats; /* veth stats */ 1434 }; 1435 /* GARP */ 1436 struct garp_port __rcu *garp_port; 1437 /* MRP */ 1438 struct mrp_port __rcu *mrp_port; 1439 1440 /* class/net/name entry */ 1441 struct device dev; 1442 /* space for optional device, statistics, and wireless sysfs groups */ 1443 const struct attribute_group *sysfs_groups[4]; 1444 /* space for optional per-rx queue attributes */ 1445 const struct attribute_group *sysfs_rx_queue_group; 1446 1447 /* rtnetlink link ops */ 1448 const struct rtnl_link_ops *rtnl_link_ops; 1449 1450 /* for setting kernel sock attribute on TCP connection setup */ 1451#define GSO_MAX_SIZE 65536 1452 unsigned int gso_max_size; 1453#define GSO_MAX_SEGS 65535 1454 u16 gso_max_segs; 1455 1456#ifdef CONFIG_DCB 1457 /* Data Center Bridging netlink ops */ 1458 const struct dcbnl_rtnl_ops *dcbnl_ops; 1459#endif 1460 u8 num_tc; 1461 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1462 u8 prio_tc_map[TC_BITMASK + 1]; 1463 1464#if IS_ENABLED(CONFIG_FCOE) 1465 /* max exchange id for FCoE LRO by ddp */ 1466 unsigned int fcoe_ddp_xid; 1467#endif 1468#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1469 struct netprio_map __rcu *priomap; 1470#endif 1471 /* phy device may attach itself for hardware timestamping */ 1472 struct phy_device *phydev; 1473 1474 struct lock_class_key *qdisc_tx_busylock; 1475 1476 /* group the device belongs to */ 1477 int group; 1478 1479 struct pm_qos_request pm_qos_req; 1480}; 1481#define to_net_dev(d) container_of(d, struct net_device, dev) 1482 1483#define NETDEV_ALIGN 32 1484 1485static inline 1486int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1487{ 1488 return dev->prio_tc_map[prio & TC_BITMASK]; 1489} 1490 1491static inline 1492int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1493{ 1494 if (tc >= dev->num_tc) 1495 return -EINVAL; 1496 1497 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1498 return 0; 1499} 1500 1501static inline 1502void netdev_reset_tc(struct net_device *dev) 1503{ 1504 dev->num_tc = 0; 1505 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1506 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1507} 1508 1509static inline 1510int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1511{ 1512 if (tc >= dev->num_tc) 1513 return -EINVAL; 1514 1515 dev->tc_to_txq[tc].count = count; 1516 dev->tc_to_txq[tc].offset = offset; 1517 return 0; 1518} 1519 1520static inline 1521int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1522{ 1523 if (num_tc > TC_MAX_QUEUE) 1524 return -EINVAL; 1525 1526 dev->num_tc = num_tc; 1527 return 0; 1528} 1529 1530static inline 1531int netdev_get_num_tc(struct net_device *dev) 1532{ 1533 return dev->num_tc; 1534} 1535 1536static inline 1537struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1538 unsigned int index) 1539{ 1540 return &dev->_tx[index]; 1541} 1542 1543static inline void netdev_for_each_tx_queue(struct net_device *dev, 1544 void (*f)(struct net_device *, 1545 struct netdev_queue *, 1546 void *), 1547 void *arg) 1548{ 1549 unsigned int i; 1550 1551 for (i = 0; i < dev->num_tx_queues; i++) 1552 f(dev, &dev->_tx[i], arg); 1553} 1554 1555struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1556 struct sk_buff *skb, 1557 void *accel_priv); 1558 1559/* 1560 * Net namespace inlines 1561 */ 1562static inline 1563struct net *dev_net(const struct net_device *dev) 1564{ 1565 return read_pnet(&dev->nd_net); 1566} 1567 1568static inline 1569void dev_net_set(struct net_device *dev, struct net *net) 1570{ 1571#ifdef CONFIG_NET_NS 1572 release_net(dev->nd_net); 1573 dev->nd_net = hold_net(net); 1574#endif 1575} 1576 1577static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1578{ 1579#ifdef CONFIG_NET_DSA_TAG_DSA 1580 if (dev->dsa_ptr != NULL) 1581 return dsa_uses_dsa_tags(dev->dsa_ptr); 1582#endif 1583 1584 return 0; 1585} 1586 1587static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1588{ 1589#ifdef CONFIG_NET_DSA_TAG_TRAILER 1590 if (dev->dsa_ptr != NULL) 1591 return dsa_uses_trailer_tags(dev->dsa_ptr); 1592#endif 1593 1594 return 0; 1595} 1596 1597/** 1598 * netdev_priv - access network device private data 1599 * @dev: network device 1600 * 1601 * Get network device private data 1602 */ 1603static inline void *netdev_priv(const struct net_device *dev) 1604{ 1605 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1606} 1607 1608/* Set the sysfs physical device reference for the network logical device 1609 * if set prior to registration will cause a symlink during initialization. 1610 */ 1611#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1612 1613/* Set the sysfs device type for the network logical device to allow 1614 * fine-grained identification of different network device types. For 1615 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1616 */ 1617#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1618 1619/* Default NAPI poll() weight 1620 * Device drivers are strongly advised to not use bigger value 1621 */ 1622#define NAPI_POLL_WEIGHT 64 1623 1624/** 1625 * netif_napi_add - initialize a napi context 1626 * @dev: network device 1627 * @napi: napi context 1628 * @poll: polling function 1629 * @weight: default weight 1630 * 1631 * netif_napi_add() must be used to initialize a napi context prior to calling 1632 * *any* of the other napi related functions. 1633 */ 1634void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1635 int (*poll)(struct napi_struct *, int), int weight); 1636 1637/** 1638 * netif_napi_del - remove a napi context 1639 * @napi: napi context 1640 * 1641 * netif_napi_del() removes a napi context from the network device napi list 1642 */ 1643void netif_napi_del(struct napi_struct *napi); 1644 1645struct napi_gro_cb { 1646 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1647 void *frag0; 1648 1649 /* Length of frag0. */ 1650 unsigned int frag0_len; 1651 1652 /* This indicates where we are processing relative to skb->data. */ 1653 int data_offset; 1654 1655 /* This is non-zero if the packet cannot be merged with the new skb. */ 1656 u16 flush; 1657 1658 /* Save the IP ID here and check when we get to the transport layer */ 1659 u16 flush_id; 1660 1661 /* Number of segments aggregated. */ 1662 u16 count; 1663 1664 /* This is non-zero if the packet may be of the same flow. */ 1665 u8 same_flow; 1666 1667 /* Free the skb? */ 1668 u8 free; 1669#define NAPI_GRO_FREE 1 1670#define NAPI_GRO_FREE_STOLEN_HEAD 2 1671 1672 /* jiffies when first packet was created/queued */ 1673 unsigned long age; 1674 1675 /* Used in ipv6_gro_receive() */ 1676 u16 proto; 1677 1678 /* Used in udp_gro_receive */ 1679 u16 udp_mark; 1680 1681 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1682 __wsum csum; 1683 1684 /* used in skb_gro_receive() slow path */ 1685 struct sk_buff *last; 1686}; 1687 1688#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1689 1690struct packet_type { 1691 __be16 type; /* This is really htons(ether_type). */ 1692 struct net_device *dev; /* NULL is wildcarded here */ 1693 int (*func) (struct sk_buff *, 1694 struct net_device *, 1695 struct packet_type *, 1696 struct net_device *); 1697 bool (*id_match)(struct packet_type *ptype, 1698 struct sock *sk); 1699 void *af_packet_priv; 1700 struct list_head list; 1701}; 1702 1703struct offload_callbacks { 1704 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1705 netdev_features_t features); 1706 int (*gso_send_check)(struct sk_buff *skb); 1707 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1708 struct sk_buff *skb); 1709 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1710}; 1711 1712struct packet_offload { 1713 __be16 type; /* This is really htons(ether_type). */ 1714 struct offload_callbacks callbacks; 1715 struct list_head list; 1716}; 1717 1718struct udp_offload { 1719 __be16 port; 1720 struct offload_callbacks callbacks; 1721}; 1722 1723/* often modified stats are per cpu, other are shared (netdev->stats) */ 1724struct pcpu_sw_netstats { 1725 u64 rx_packets; 1726 u64 rx_bytes; 1727 u64 tx_packets; 1728 u64 tx_bytes; 1729 struct u64_stats_sync syncp; 1730}; 1731 1732#include <linux/notifier.h> 1733 1734/* netdevice notifier chain. Please remember to update the rtnetlink 1735 * notification exclusion list in rtnetlink_event() when adding new 1736 * types. 1737 */ 1738#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1739#define NETDEV_DOWN 0x0002 1740#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1741 detected a hardware crash and restarted 1742 - we can use this eg to kick tcp sessions 1743 once done */ 1744#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1745#define NETDEV_REGISTER 0x0005 1746#define NETDEV_UNREGISTER 0x0006 1747#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 1748#define NETDEV_CHANGEADDR 0x0008 1749#define NETDEV_GOING_DOWN 0x0009 1750#define NETDEV_CHANGENAME 0x000A 1751#define NETDEV_FEAT_CHANGE 0x000B 1752#define NETDEV_BONDING_FAILOVER 0x000C 1753#define NETDEV_PRE_UP 0x000D 1754#define NETDEV_PRE_TYPE_CHANGE 0x000E 1755#define NETDEV_POST_TYPE_CHANGE 0x000F 1756#define NETDEV_POST_INIT 0x0010 1757#define NETDEV_UNREGISTER_FINAL 0x0011 1758#define NETDEV_RELEASE 0x0012 1759#define NETDEV_NOTIFY_PEERS 0x0013 1760#define NETDEV_JOIN 0x0014 1761#define NETDEV_CHANGEUPPER 0x0015 1762#define NETDEV_RESEND_IGMP 0x0016 1763#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 1764 1765int register_netdevice_notifier(struct notifier_block *nb); 1766int unregister_netdevice_notifier(struct notifier_block *nb); 1767 1768struct netdev_notifier_info { 1769 struct net_device *dev; 1770}; 1771 1772struct netdev_notifier_change_info { 1773 struct netdev_notifier_info info; /* must be first */ 1774 unsigned int flags_changed; 1775}; 1776 1777static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 1778 struct net_device *dev) 1779{ 1780 info->dev = dev; 1781} 1782 1783static inline struct net_device * 1784netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 1785{ 1786 return info->dev; 1787} 1788 1789int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1790 1791 1792extern rwlock_t dev_base_lock; /* Device list lock */ 1793 1794#define for_each_netdev(net, d) \ 1795 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1796#define for_each_netdev_reverse(net, d) \ 1797 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1798#define for_each_netdev_rcu(net, d) \ 1799 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1800#define for_each_netdev_safe(net, d, n) \ 1801 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1802#define for_each_netdev_continue(net, d) \ 1803 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1804#define for_each_netdev_continue_rcu(net, d) \ 1805 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1806#define for_each_netdev_in_bond_rcu(bond, slave) \ 1807 for_each_netdev_rcu(&init_net, slave) \ 1808 if (netdev_master_upper_dev_get_rcu(slave) == bond) 1809#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1810 1811static inline struct net_device *next_net_device(struct net_device *dev) 1812{ 1813 struct list_head *lh; 1814 struct net *net; 1815 1816 net = dev_net(dev); 1817 lh = dev->dev_list.next; 1818 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1819} 1820 1821static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1822{ 1823 struct list_head *lh; 1824 struct net *net; 1825 1826 net = dev_net(dev); 1827 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1828 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1829} 1830 1831static inline struct net_device *first_net_device(struct net *net) 1832{ 1833 return list_empty(&net->dev_base_head) ? NULL : 1834 net_device_entry(net->dev_base_head.next); 1835} 1836 1837static inline struct net_device *first_net_device_rcu(struct net *net) 1838{ 1839 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1840 1841 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1842} 1843 1844int netdev_boot_setup_check(struct net_device *dev); 1845unsigned long netdev_boot_base(const char *prefix, int unit); 1846struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1847 const char *hwaddr); 1848struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1849struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1850void dev_add_pack(struct packet_type *pt); 1851void dev_remove_pack(struct packet_type *pt); 1852void __dev_remove_pack(struct packet_type *pt); 1853void dev_add_offload(struct packet_offload *po); 1854void dev_remove_offload(struct packet_offload *po); 1855 1856struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1857 unsigned short mask); 1858struct net_device *dev_get_by_name(struct net *net, const char *name); 1859struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1860struct net_device *__dev_get_by_name(struct net *net, const char *name); 1861int dev_alloc_name(struct net_device *dev, const char *name); 1862int dev_open(struct net_device *dev); 1863int dev_close(struct net_device *dev); 1864void dev_disable_lro(struct net_device *dev); 1865int dev_loopback_xmit(struct sk_buff *newskb); 1866int dev_queue_xmit(struct sk_buff *skb); 1867int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 1868int register_netdevice(struct net_device *dev); 1869void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 1870void unregister_netdevice_many(struct list_head *head); 1871static inline void unregister_netdevice(struct net_device *dev) 1872{ 1873 unregister_netdevice_queue(dev, NULL); 1874} 1875 1876int netdev_refcnt_read(const struct net_device *dev); 1877void free_netdev(struct net_device *dev); 1878void netdev_freemem(struct net_device *dev); 1879void synchronize_net(void); 1880int init_dummy_netdev(struct net_device *dev); 1881 1882struct net_device *dev_get_by_index(struct net *net, int ifindex); 1883struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1884struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1885int netdev_get_name(struct net *net, char *name, int ifindex); 1886int dev_restart(struct net_device *dev); 1887#ifdef CONFIG_NETPOLL_TRAP 1888int netpoll_trap(void); 1889#endif 1890int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 1891 1892static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1893{ 1894 return NAPI_GRO_CB(skb)->data_offset; 1895} 1896 1897static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1898{ 1899 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1900} 1901 1902static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1903{ 1904 NAPI_GRO_CB(skb)->data_offset += len; 1905} 1906 1907static inline void *skb_gro_header_fast(struct sk_buff *skb, 1908 unsigned int offset) 1909{ 1910 return NAPI_GRO_CB(skb)->frag0 + offset; 1911} 1912 1913static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1914{ 1915 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1916} 1917 1918static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1919 unsigned int offset) 1920{ 1921 if (!pskb_may_pull(skb, hlen)) 1922 return NULL; 1923 1924 NAPI_GRO_CB(skb)->frag0 = NULL; 1925 NAPI_GRO_CB(skb)->frag0_len = 0; 1926 return skb->data + offset; 1927} 1928 1929static inline void *skb_gro_mac_header(struct sk_buff *skb) 1930{ 1931 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1932} 1933 1934static inline void *skb_gro_network_header(struct sk_buff *skb) 1935{ 1936 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1937 skb_network_offset(skb); 1938} 1939 1940static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 1941 const void *start, unsigned int len) 1942{ 1943 if (skb->ip_summed == CHECKSUM_COMPLETE) 1944 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 1945 csum_partial(start, len, 0)); 1946} 1947 1948static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1949 unsigned short type, 1950 const void *daddr, const void *saddr, 1951 unsigned int len) 1952{ 1953 if (!dev->header_ops || !dev->header_ops->create) 1954 return 0; 1955 1956 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1957} 1958 1959static inline int dev_parse_header(const struct sk_buff *skb, 1960 unsigned char *haddr) 1961{ 1962 const struct net_device *dev = skb->dev; 1963 1964 if (!dev->header_ops || !dev->header_ops->parse) 1965 return 0; 1966 return dev->header_ops->parse(skb, haddr); 1967} 1968 1969static inline int dev_rebuild_header(struct sk_buff *skb) 1970{ 1971 const struct net_device *dev = skb->dev; 1972 1973 if (!dev->header_ops || !dev->header_ops->rebuild) 1974 return 0; 1975 return dev->header_ops->rebuild(skb); 1976} 1977 1978typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1979int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 1980static inline int unregister_gifconf(unsigned int family) 1981{ 1982 return register_gifconf(family, NULL); 1983} 1984 1985#ifdef CONFIG_NET_FLOW_LIMIT 1986#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 1987struct sd_flow_limit { 1988 u64 count; 1989 unsigned int num_buckets; 1990 unsigned int history_head; 1991 u16 history[FLOW_LIMIT_HISTORY]; 1992 u8 buckets[]; 1993}; 1994 1995extern int netdev_flow_limit_table_len; 1996#endif /* CONFIG_NET_FLOW_LIMIT */ 1997 1998/* 1999 * Incoming packets are placed on per-cpu queues 2000 */ 2001struct softnet_data { 2002 struct Qdisc *output_queue; 2003 struct Qdisc **output_queue_tailp; 2004 struct list_head poll_list; 2005 struct sk_buff *completion_queue; 2006 struct sk_buff_head process_queue; 2007 2008 /* stats */ 2009 unsigned int processed; 2010 unsigned int time_squeeze; 2011 unsigned int cpu_collision; 2012 unsigned int received_rps; 2013 2014#ifdef CONFIG_RPS 2015 struct softnet_data *rps_ipi_list; 2016 2017 /* Elements below can be accessed between CPUs for RPS */ 2018 struct call_single_data csd ____cacheline_aligned_in_smp; 2019 struct softnet_data *rps_ipi_next; 2020 unsigned int cpu; 2021 unsigned int input_queue_head; 2022 unsigned int input_queue_tail; 2023#endif 2024 unsigned int dropped; 2025 struct sk_buff_head input_pkt_queue; 2026 struct napi_struct backlog; 2027 2028#ifdef CONFIG_NET_FLOW_LIMIT 2029 struct sd_flow_limit __rcu *flow_limit; 2030#endif 2031}; 2032 2033static inline void input_queue_head_incr(struct softnet_data *sd) 2034{ 2035#ifdef CONFIG_RPS 2036 sd->input_queue_head++; 2037#endif 2038} 2039 2040static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2041 unsigned int *qtail) 2042{ 2043#ifdef CONFIG_RPS 2044 *qtail = ++sd->input_queue_tail; 2045#endif 2046} 2047 2048DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2049 2050void __netif_schedule(struct Qdisc *q); 2051 2052static inline void netif_schedule_queue(struct netdev_queue *txq) 2053{ 2054 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 2055 __netif_schedule(txq->qdisc); 2056} 2057 2058static inline void netif_tx_schedule_all(struct net_device *dev) 2059{ 2060 unsigned int i; 2061 2062 for (i = 0; i < dev->num_tx_queues; i++) 2063 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2064} 2065 2066static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2067{ 2068 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2069} 2070 2071/** 2072 * netif_start_queue - allow transmit 2073 * @dev: network device 2074 * 2075 * Allow upper layers to call the device hard_start_xmit routine. 2076 */ 2077static inline void netif_start_queue(struct net_device *dev) 2078{ 2079 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2080} 2081 2082static inline void netif_tx_start_all_queues(struct net_device *dev) 2083{ 2084 unsigned int i; 2085 2086 for (i = 0; i < dev->num_tx_queues; i++) { 2087 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2088 netif_tx_start_queue(txq); 2089 } 2090} 2091 2092static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2093{ 2094#ifdef CONFIG_NETPOLL_TRAP 2095 if (netpoll_trap()) { 2096 netif_tx_start_queue(dev_queue); 2097 return; 2098 } 2099#endif 2100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 2101 __netif_schedule(dev_queue->qdisc); 2102} 2103 2104/** 2105 * netif_wake_queue - restart transmit 2106 * @dev: network device 2107 * 2108 * Allow upper layers to call the device hard_start_xmit routine. 2109 * Used for flow control when transmit resources are available. 2110 */ 2111static inline void netif_wake_queue(struct net_device *dev) 2112{ 2113 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2114} 2115 2116static inline void netif_tx_wake_all_queues(struct net_device *dev) 2117{ 2118 unsigned int i; 2119 2120 for (i = 0; i < dev->num_tx_queues; i++) { 2121 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2122 netif_tx_wake_queue(txq); 2123 } 2124} 2125 2126static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2127{ 2128 if (WARN_ON(!dev_queue)) { 2129 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2130 return; 2131 } 2132 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2133} 2134 2135/** 2136 * netif_stop_queue - stop transmitted packets 2137 * @dev: network device 2138 * 2139 * Stop upper layers calling the device hard_start_xmit routine. 2140 * Used for flow control when transmit resources are unavailable. 2141 */ 2142static inline void netif_stop_queue(struct net_device *dev) 2143{ 2144 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2145} 2146 2147static inline void netif_tx_stop_all_queues(struct net_device *dev) 2148{ 2149 unsigned int i; 2150 2151 for (i = 0; i < dev->num_tx_queues; i++) { 2152 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2153 netif_tx_stop_queue(txq); 2154 } 2155} 2156 2157static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2158{ 2159 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2160} 2161 2162/** 2163 * netif_queue_stopped - test if transmit queue is flowblocked 2164 * @dev: network device 2165 * 2166 * Test if transmit queue on device is currently unable to send. 2167 */ 2168static inline bool netif_queue_stopped(const struct net_device *dev) 2169{ 2170 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2171} 2172 2173static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2174{ 2175 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2176} 2177 2178static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2179{ 2180 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2181} 2182 2183static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2184 unsigned int bytes) 2185{ 2186#ifdef CONFIG_BQL 2187 dql_queued(&dev_queue->dql, bytes); 2188 2189 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2190 return; 2191 2192 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2193 2194 /* 2195 * The XOFF flag must be set before checking the dql_avail below, 2196 * because in netdev_tx_completed_queue we update the dql_completed 2197 * before checking the XOFF flag. 2198 */ 2199 smp_mb(); 2200 2201 /* check again in case another CPU has just made room avail */ 2202 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2203 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2204#endif 2205} 2206 2207/** 2208 * netdev_sent_queue - report the number of bytes queued to hardware 2209 * @dev: network device 2210 * @bytes: number of bytes queued to the hardware device queue 2211 * 2212 * Report the number of bytes queued for sending/completion to the network 2213 * device hardware queue. @bytes should be a good approximation and should 2214 * exactly match netdev_completed_queue() @bytes 2215 */ 2216static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2217{ 2218 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2219} 2220 2221static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2222 unsigned int pkts, unsigned int bytes) 2223{ 2224#ifdef CONFIG_BQL 2225 if (unlikely(!bytes)) 2226 return; 2227 2228 dql_completed(&dev_queue->dql, bytes); 2229 2230 /* 2231 * Without the memory barrier there is a small possiblity that 2232 * netdev_tx_sent_queue will miss the update and cause the queue to 2233 * be stopped forever 2234 */ 2235 smp_mb(); 2236 2237 if (dql_avail(&dev_queue->dql) < 0) 2238 return; 2239 2240 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2241 netif_schedule_queue(dev_queue); 2242#endif 2243} 2244 2245/** 2246 * netdev_completed_queue - report bytes and packets completed by device 2247 * @dev: network device 2248 * @pkts: actual number of packets sent over the medium 2249 * @bytes: actual number of bytes sent over the medium 2250 * 2251 * Report the number of bytes and packets transmitted by the network device 2252 * hardware queue over the physical medium, @bytes must exactly match the 2253 * @bytes amount passed to netdev_sent_queue() 2254 */ 2255static inline void netdev_completed_queue(struct net_device *dev, 2256 unsigned int pkts, unsigned int bytes) 2257{ 2258 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2259} 2260 2261static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2262{ 2263#ifdef CONFIG_BQL 2264 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2265 dql_reset(&q->dql); 2266#endif 2267} 2268 2269/** 2270 * netdev_reset_queue - reset the packets and bytes count of a network device 2271 * @dev_queue: network device 2272 * 2273 * Reset the bytes and packet count of a network device and clear the 2274 * software flow control OFF bit for this network device 2275 */ 2276static inline void netdev_reset_queue(struct net_device *dev_queue) 2277{ 2278 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2279} 2280 2281/** 2282 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2283 * @dev: network device 2284 * @queue_index: given tx queue index 2285 * 2286 * Returns 0 if given tx queue index >= number of device tx queues, 2287 * otherwise returns the originally passed tx queue index. 2288 */ 2289static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2290{ 2291 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2292 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2293 dev->name, queue_index, 2294 dev->real_num_tx_queues); 2295 return 0; 2296 } 2297 2298 return queue_index; 2299} 2300 2301/** 2302 * netif_running - test if up 2303 * @dev: network device 2304 * 2305 * Test if the device has been brought up. 2306 */ 2307static inline bool netif_running(const struct net_device *dev) 2308{ 2309 return test_bit(__LINK_STATE_START, &dev->state); 2310} 2311 2312/* 2313 * Routines to manage the subqueues on a device. We only need start 2314 * stop, and a check if it's stopped. All other device management is 2315 * done at the overall netdevice level. 2316 * Also test the device if we're multiqueue. 2317 */ 2318 2319/** 2320 * netif_start_subqueue - allow sending packets on subqueue 2321 * @dev: network device 2322 * @queue_index: sub queue index 2323 * 2324 * Start individual transmit queue of a device with multiple transmit queues. 2325 */ 2326static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2327{ 2328 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2329 2330 netif_tx_start_queue(txq); 2331} 2332 2333/** 2334 * netif_stop_subqueue - stop sending packets on subqueue 2335 * @dev: network device 2336 * @queue_index: sub queue index 2337 * 2338 * Stop individual transmit queue of a device with multiple transmit queues. 2339 */ 2340static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2341{ 2342 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2343#ifdef CONFIG_NETPOLL_TRAP 2344 if (netpoll_trap()) 2345 return; 2346#endif 2347 netif_tx_stop_queue(txq); 2348} 2349 2350/** 2351 * netif_subqueue_stopped - test status of subqueue 2352 * @dev: network device 2353 * @queue_index: sub queue index 2354 * 2355 * Check individual transmit queue of a device with multiple transmit queues. 2356 */ 2357static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2358 u16 queue_index) 2359{ 2360 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2361 2362 return netif_tx_queue_stopped(txq); 2363} 2364 2365static inline bool netif_subqueue_stopped(const struct net_device *dev, 2366 struct sk_buff *skb) 2367{ 2368 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2369} 2370 2371/** 2372 * netif_wake_subqueue - allow sending packets on subqueue 2373 * @dev: network device 2374 * @queue_index: sub queue index 2375 * 2376 * Resume individual transmit queue of a device with multiple transmit queues. 2377 */ 2378static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2379{ 2380 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2381#ifdef CONFIG_NETPOLL_TRAP 2382 if (netpoll_trap()) 2383 return; 2384#endif 2385 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2386 __netif_schedule(txq->qdisc); 2387} 2388 2389#ifdef CONFIG_XPS 2390int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2391 u16 index); 2392#else 2393static inline int netif_set_xps_queue(struct net_device *dev, 2394 const struct cpumask *mask, 2395 u16 index) 2396{ 2397 return 0; 2398} 2399#endif 2400 2401/* 2402 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2403 * as a distribution range limit for the returned value. 2404 */ 2405static inline u16 skb_tx_hash(const struct net_device *dev, 2406 const struct sk_buff *skb) 2407{ 2408 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2409} 2410 2411/** 2412 * netif_is_multiqueue - test if device has multiple transmit queues 2413 * @dev: network device 2414 * 2415 * Check if device has multiple transmit queues 2416 */ 2417static inline bool netif_is_multiqueue(const struct net_device *dev) 2418{ 2419 return dev->num_tx_queues > 1; 2420} 2421 2422int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2423 2424#ifdef CONFIG_SYSFS 2425int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2426#else 2427static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2428 unsigned int rxq) 2429{ 2430 return 0; 2431} 2432#endif 2433 2434static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2435 const struct net_device *from_dev) 2436{ 2437 int err; 2438 2439 err = netif_set_real_num_tx_queues(to_dev, 2440 from_dev->real_num_tx_queues); 2441 if (err) 2442 return err; 2443#ifdef CONFIG_SYSFS 2444 return netif_set_real_num_rx_queues(to_dev, 2445 from_dev->real_num_rx_queues); 2446#else 2447 return 0; 2448#endif 2449} 2450 2451#ifdef CONFIG_SYSFS 2452static inline unsigned int get_netdev_rx_queue_index( 2453 struct netdev_rx_queue *queue) 2454{ 2455 struct net_device *dev = queue->dev; 2456 int index = queue - dev->_rx; 2457 2458 BUG_ON(index >= dev->num_rx_queues); 2459 return index; 2460} 2461#endif 2462 2463#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2464int netif_get_num_default_rss_queues(void); 2465 2466enum skb_free_reason { 2467 SKB_REASON_CONSUMED, 2468 SKB_REASON_DROPPED, 2469}; 2470 2471void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2472void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2473 2474/* 2475 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2476 * interrupt context or with hardware interrupts being disabled. 2477 * (in_irq() || irqs_disabled()) 2478 * 2479 * We provide four helpers that can be used in following contexts : 2480 * 2481 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2482 * replacing kfree_skb(skb) 2483 * 2484 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2485 * Typically used in place of consume_skb(skb) in TX completion path 2486 * 2487 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2488 * replacing kfree_skb(skb) 2489 * 2490 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2491 * and consumed a packet. Used in place of consume_skb(skb) 2492 */ 2493static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2494{ 2495 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2496} 2497 2498static inline void dev_consume_skb_irq(struct sk_buff *skb) 2499{ 2500 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2501} 2502 2503static inline void dev_kfree_skb_any(struct sk_buff *skb) 2504{ 2505 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2506} 2507 2508static inline void dev_consume_skb_any(struct sk_buff *skb) 2509{ 2510 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2511} 2512 2513int netif_rx(struct sk_buff *skb); 2514int netif_rx_ni(struct sk_buff *skb); 2515int netif_receive_skb(struct sk_buff *skb); 2516gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2517void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2518struct sk_buff *napi_get_frags(struct napi_struct *napi); 2519gro_result_t napi_gro_frags(struct napi_struct *napi); 2520struct packet_offload *gro_find_receive_by_type(__be16 type); 2521struct packet_offload *gro_find_complete_by_type(__be16 type); 2522 2523static inline void napi_free_frags(struct napi_struct *napi) 2524{ 2525 kfree_skb(napi->skb); 2526 napi->skb = NULL; 2527} 2528 2529int netdev_rx_handler_register(struct net_device *dev, 2530 rx_handler_func_t *rx_handler, 2531 void *rx_handler_data); 2532void netdev_rx_handler_unregister(struct net_device *dev); 2533 2534bool dev_valid_name(const char *name); 2535int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2536int dev_ethtool(struct net *net, struct ifreq *); 2537unsigned int dev_get_flags(const struct net_device *); 2538int __dev_change_flags(struct net_device *, unsigned int flags); 2539int dev_change_flags(struct net_device *, unsigned int); 2540void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2541 unsigned int gchanges); 2542int dev_change_name(struct net_device *, const char *); 2543int dev_set_alias(struct net_device *, const char *, size_t); 2544int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2545int dev_set_mtu(struct net_device *, int); 2546void dev_set_group(struct net_device *, int); 2547int dev_set_mac_address(struct net_device *, struct sockaddr *); 2548int dev_change_carrier(struct net_device *, bool new_carrier); 2549int dev_get_phys_port_id(struct net_device *dev, 2550 struct netdev_phys_port_id *ppid); 2551int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2552 struct netdev_queue *txq); 2553int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2554 2555extern int netdev_budget; 2556 2557/* Called by rtnetlink.c:rtnl_unlock() */ 2558void netdev_run_todo(void); 2559 2560/** 2561 * dev_put - release reference to device 2562 * @dev: network device 2563 * 2564 * Release reference to device to allow it to be freed. 2565 */ 2566static inline void dev_put(struct net_device *dev) 2567{ 2568 this_cpu_dec(*dev->pcpu_refcnt); 2569} 2570 2571/** 2572 * dev_hold - get reference to device 2573 * @dev: network device 2574 * 2575 * Hold reference to device to keep it from being freed. 2576 */ 2577static inline void dev_hold(struct net_device *dev) 2578{ 2579 this_cpu_inc(*dev->pcpu_refcnt); 2580} 2581 2582/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2583 * and _off may be called from IRQ context, but it is caller 2584 * who is responsible for serialization of these calls. 2585 * 2586 * The name carrier is inappropriate, these functions should really be 2587 * called netif_lowerlayer_*() because they represent the state of any 2588 * kind of lower layer not just hardware media. 2589 */ 2590 2591void linkwatch_init_dev(struct net_device *dev); 2592void linkwatch_fire_event(struct net_device *dev); 2593void linkwatch_forget_dev(struct net_device *dev); 2594 2595/** 2596 * netif_carrier_ok - test if carrier present 2597 * @dev: network device 2598 * 2599 * Check if carrier is present on device 2600 */ 2601static inline bool netif_carrier_ok(const struct net_device *dev) 2602{ 2603 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2604} 2605 2606unsigned long dev_trans_start(struct net_device *dev); 2607 2608void __netdev_watchdog_up(struct net_device *dev); 2609 2610void netif_carrier_on(struct net_device *dev); 2611 2612void netif_carrier_off(struct net_device *dev); 2613 2614/** 2615 * netif_dormant_on - mark device as dormant. 2616 * @dev: network device 2617 * 2618 * Mark device as dormant (as per RFC2863). 2619 * 2620 * The dormant state indicates that the relevant interface is not 2621 * actually in a condition to pass packets (i.e., it is not 'up') but is 2622 * in a "pending" state, waiting for some external event. For "on- 2623 * demand" interfaces, this new state identifies the situation where the 2624 * interface is waiting for events to place it in the up state. 2625 * 2626 */ 2627static inline void netif_dormant_on(struct net_device *dev) 2628{ 2629 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2630 linkwatch_fire_event(dev); 2631} 2632 2633/** 2634 * netif_dormant_off - set device as not dormant. 2635 * @dev: network device 2636 * 2637 * Device is not in dormant state. 2638 */ 2639static inline void netif_dormant_off(struct net_device *dev) 2640{ 2641 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2642 linkwatch_fire_event(dev); 2643} 2644 2645/** 2646 * netif_dormant - test if carrier present 2647 * @dev: network device 2648 * 2649 * Check if carrier is present on device 2650 */ 2651static inline bool netif_dormant(const struct net_device *dev) 2652{ 2653 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2654} 2655 2656 2657/** 2658 * netif_oper_up - test if device is operational 2659 * @dev: network device 2660 * 2661 * Check if carrier is operational 2662 */ 2663static inline bool netif_oper_up(const struct net_device *dev) 2664{ 2665 return (dev->operstate == IF_OPER_UP || 2666 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2667} 2668 2669/** 2670 * netif_device_present - is device available or removed 2671 * @dev: network device 2672 * 2673 * Check if device has not been removed from system. 2674 */ 2675static inline bool netif_device_present(struct net_device *dev) 2676{ 2677 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2678} 2679 2680void netif_device_detach(struct net_device *dev); 2681 2682void netif_device_attach(struct net_device *dev); 2683 2684/* 2685 * Network interface message level settings 2686 */ 2687 2688enum { 2689 NETIF_MSG_DRV = 0x0001, 2690 NETIF_MSG_PROBE = 0x0002, 2691 NETIF_MSG_LINK = 0x0004, 2692 NETIF_MSG_TIMER = 0x0008, 2693 NETIF_MSG_IFDOWN = 0x0010, 2694 NETIF_MSG_IFUP = 0x0020, 2695 NETIF_MSG_RX_ERR = 0x0040, 2696 NETIF_MSG_TX_ERR = 0x0080, 2697 NETIF_MSG_TX_QUEUED = 0x0100, 2698 NETIF_MSG_INTR = 0x0200, 2699 NETIF_MSG_TX_DONE = 0x0400, 2700 NETIF_MSG_RX_STATUS = 0x0800, 2701 NETIF_MSG_PKTDATA = 0x1000, 2702 NETIF_MSG_HW = 0x2000, 2703 NETIF_MSG_WOL = 0x4000, 2704}; 2705 2706#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2707#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2708#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2709#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2710#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2711#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2712#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2713#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2714#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2715#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2716#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2717#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2718#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2719#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2720#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2721 2722static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2723{ 2724 /* use default */ 2725 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2726 return default_msg_enable_bits; 2727 if (debug_value == 0) /* no output */ 2728 return 0; 2729 /* set low N bits */ 2730 return (1 << debug_value) - 1; 2731} 2732 2733static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2734{ 2735 spin_lock(&txq->_xmit_lock); 2736 txq->xmit_lock_owner = cpu; 2737} 2738 2739static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2740{ 2741 spin_lock_bh(&txq->_xmit_lock); 2742 txq->xmit_lock_owner = smp_processor_id(); 2743} 2744 2745static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2746{ 2747 bool ok = spin_trylock(&txq->_xmit_lock); 2748 if (likely(ok)) 2749 txq->xmit_lock_owner = smp_processor_id(); 2750 return ok; 2751} 2752 2753static inline void __netif_tx_unlock(struct netdev_queue *txq) 2754{ 2755 txq->xmit_lock_owner = -1; 2756 spin_unlock(&txq->_xmit_lock); 2757} 2758 2759static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2760{ 2761 txq->xmit_lock_owner = -1; 2762 spin_unlock_bh(&txq->_xmit_lock); 2763} 2764 2765static inline void txq_trans_update(struct netdev_queue *txq) 2766{ 2767 if (txq->xmit_lock_owner != -1) 2768 txq->trans_start = jiffies; 2769} 2770 2771/** 2772 * netif_tx_lock - grab network device transmit lock 2773 * @dev: network device 2774 * 2775 * Get network device transmit lock 2776 */ 2777static inline void netif_tx_lock(struct net_device *dev) 2778{ 2779 unsigned int i; 2780 int cpu; 2781 2782 spin_lock(&dev->tx_global_lock); 2783 cpu = smp_processor_id(); 2784 for (i = 0; i < dev->num_tx_queues; i++) { 2785 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2786 2787 /* We are the only thread of execution doing a 2788 * freeze, but we have to grab the _xmit_lock in 2789 * order to synchronize with threads which are in 2790 * the ->hard_start_xmit() handler and already 2791 * checked the frozen bit. 2792 */ 2793 __netif_tx_lock(txq, cpu); 2794 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2795 __netif_tx_unlock(txq); 2796 } 2797} 2798 2799static inline void netif_tx_lock_bh(struct net_device *dev) 2800{ 2801 local_bh_disable(); 2802 netif_tx_lock(dev); 2803} 2804 2805static inline void netif_tx_unlock(struct net_device *dev) 2806{ 2807 unsigned int i; 2808 2809 for (i = 0; i < dev->num_tx_queues; i++) { 2810 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2811 2812 /* No need to grab the _xmit_lock here. If the 2813 * queue is not stopped for another reason, we 2814 * force a schedule. 2815 */ 2816 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2817 netif_schedule_queue(txq); 2818 } 2819 spin_unlock(&dev->tx_global_lock); 2820} 2821 2822static inline void netif_tx_unlock_bh(struct net_device *dev) 2823{ 2824 netif_tx_unlock(dev); 2825 local_bh_enable(); 2826} 2827 2828#define HARD_TX_LOCK(dev, txq, cpu) { \ 2829 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2830 __netif_tx_lock(txq, cpu); \ 2831 } \ 2832} 2833 2834#define HARD_TX_UNLOCK(dev, txq) { \ 2835 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2836 __netif_tx_unlock(txq); \ 2837 } \ 2838} 2839 2840static inline void netif_tx_disable(struct net_device *dev) 2841{ 2842 unsigned int i; 2843 int cpu; 2844 2845 local_bh_disable(); 2846 cpu = smp_processor_id(); 2847 for (i = 0; i < dev->num_tx_queues; i++) { 2848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2849 2850 __netif_tx_lock(txq, cpu); 2851 netif_tx_stop_queue(txq); 2852 __netif_tx_unlock(txq); 2853 } 2854 local_bh_enable(); 2855} 2856 2857static inline void netif_addr_lock(struct net_device *dev) 2858{ 2859 spin_lock(&dev->addr_list_lock); 2860} 2861 2862static inline void netif_addr_lock_nested(struct net_device *dev) 2863{ 2864 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2865} 2866 2867static inline void netif_addr_lock_bh(struct net_device *dev) 2868{ 2869 spin_lock_bh(&dev->addr_list_lock); 2870} 2871 2872static inline void netif_addr_unlock(struct net_device *dev) 2873{ 2874 spin_unlock(&dev->addr_list_lock); 2875} 2876 2877static inline void netif_addr_unlock_bh(struct net_device *dev) 2878{ 2879 spin_unlock_bh(&dev->addr_list_lock); 2880} 2881 2882/* 2883 * dev_addrs walker. Should be used only for read access. Call with 2884 * rcu_read_lock held. 2885 */ 2886#define for_each_dev_addr(dev, ha) \ 2887 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2888 2889/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2890 2891void ether_setup(struct net_device *dev); 2892 2893/* Support for loadable net-drivers */ 2894struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2895 void (*setup)(struct net_device *), 2896 unsigned int txqs, unsigned int rxqs); 2897#define alloc_netdev(sizeof_priv, name, setup) \ 2898 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2899 2900#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2901 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2902 2903int register_netdev(struct net_device *dev); 2904void unregister_netdev(struct net_device *dev); 2905 2906/* General hardware address lists handling functions */ 2907int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2908 struct netdev_hw_addr_list *from_list, int addr_len); 2909void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2910 struct netdev_hw_addr_list *from_list, int addr_len); 2911void __hw_addr_init(struct netdev_hw_addr_list *list); 2912 2913/* Functions used for device addresses handling */ 2914int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2915 unsigned char addr_type); 2916int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2917 unsigned char addr_type); 2918void dev_addr_flush(struct net_device *dev); 2919int dev_addr_init(struct net_device *dev); 2920 2921/* Functions used for unicast addresses handling */ 2922int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2923int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2924int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2925int dev_uc_sync(struct net_device *to, struct net_device *from); 2926int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 2927void dev_uc_unsync(struct net_device *to, struct net_device *from); 2928void dev_uc_flush(struct net_device *dev); 2929void dev_uc_init(struct net_device *dev); 2930 2931/* Functions used for multicast addresses handling */ 2932int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2933int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2934int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2935int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2936int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2937int dev_mc_sync(struct net_device *to, struct net_device *from); 2938int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 2939void dev_mc_unsync(struct net_device *to, struct net_device *from); 2940void dev_mc_flush(struct net_device *dev); 2941void dev_mc_init(struct net_device *dev); 2942 2943/* Functions used for secondary unicast and multicast support */ 2944void dev_set_rx_mode(struct net_device *dev); 2945void __dev_set_rx_mode(struct net_device *dev); 2946int dev_set_promiscuity(struct net_device *dev, int inc); 2947int dev_set_allmulti(struct net_device *dev, int inc); 2948void netdev_state_change(struct net_device *dev); 2949void netdev_notify_peers(struct net_device *dev); 2950void netdev_features_change(struct net_device *dev); 2951/* Load a device via the kmod */ 2952void dev_load(struct net *net, const char *name); 2953struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2954 struct rtnl_link_stats64 *storage); 2955void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2956 const struct net_device_stats *netdev_stats); 2957 2958extern int netdev_max_backlog; 2959extern int netdev_tstamp_prequeue; 2960extern int weight_p; 2961extern int bpf_jit_enable; 2962 2963bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 2964struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 2965 struct list_head **iter); 2966 2967/* iterate through upper list, must be called under RCU read lock */ 2968#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 2969 for (iter = &(dev)->all_adj_list.upper, \ 2970 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 2971 updev; \ 2972 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 2973 2974void *netdev_lower_get_next_private(struct net_device *dev, 2975 struct list_head **iter); 2976void *netdev_lower_get_next_private_rcu(struct net_device *dev, 2977 struct list_head **iter); 2978 2979#define netdev_for_each_lower_private(dev, priv, iter) \ 2980 for (iter = (dev)->adj_list.lower.next, \ 2981 priv = netdev_lower_get_next_private(dev, &(iter)); \ 2982 priv; \ 2983 priv = netdev_lower_get_next_private(dev, &(iter))) 2984 2985#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 2986 for (iter = &(dev)->adj_list.lower, \ 2987 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 2988 priv; \ 2989 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 2990 2991void *netdev_adjacent_get_private(struct list_head *adj_list); 2992void *netdev_lower_get_first_private_rcu(struct net_device *dev); 2993struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 2994struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 2995int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 2996int netdev_master_upper_dev_link(struct net_device *dev, 2997 struct net_device *upper_dev); 2998int netdev_master_upper_dev_link_private(struct net_device *dev, 2999 struct net_device *upper_dev, 3000 void *private); 3001void netdev_upper_dev_unlink(struct net_device *dev, 3002 struct net_device *upper_dev); 3003void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3004void *netdev_lower_dev_get_private(struct net_device *dev, 3005 struct net_device *lower_dev); 3006int skb_checksum_help(struct sk_buff *skb); 3007struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3008 netdev_features_t features, bool tx_path); 3009struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3010 netdev_features_t features); 3011 3012static inline 3013struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3014{ 3015 return __skb_gso_segment(skb, features, true); 3016} 3017__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3018 3019static inline bool can_checksum_protocol(netdev_features_t features, 3020 __be16 protocol) 3021{ 3022 return ((features & NETIF_F_GEN_CSUM) || 3023 ((features & NETIF_F_V4_CSUM) && 3024 protocol == htons(ETH_P_IP)) || 3025 ((features & NETIF_F_V6_CSUM) && 3026 protocol == htons(ETH_P_IPV6)) || 3027 ((features & NETIF_F_FCOE_CRC) && 3028 protocol == htons(ETH_P_FCOE))); 3029} 3030 3031#ifdef CONFIG_BUG 3032void netdev_rx_csum_fault(struct net_device *dev); 3033#else 3034static inline void netdev_rx_csum_fault(struct net_device *dev) 3035{ 3036} 3037#endif 3038/* rx skb timestamps */ 3039void net_enable_timestamp(void); 3040void net_disable_timestamp(void); 3041 3042#ifdef CONFIG_PROC_FS 3043int __init dev_proc_init(void); 3044#else 3045#define dev_proc_init() 0 3046#endif 3047 3048int netdev_class_create_file_ns(struct class_attribute *class_attr, 3049 const void *ns); 3050void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3051 const void *ns); 3052 3053static inline int netdev_class_create_file(struct class_attribute *class_attr) 3054{ 3055 return netdev_class_create_file_ns(class_attr, NULL); 3056} 3057 3058static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3059{ 3060 netdev_class_remove_file_ns(class_attr, NULL); 3061} 3062 3063extern struct kobj_ns_type_operations net_ns_type_operations; 3064 3065const char *netdev_drivername(const struct net_device *dev); 3066 3067void linkwatch_run_queue(void); 3068 3069static inline netdev_features_t netdev_get_wanted_features( 3070 struct net_device *dev) 3071{ 3072 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3073} 3074netdev_features_t netdev_increment_features(netdev_features_t all, 3075 netdev_features_t one, netdev_features_t mask); 3076 3077/* Allow TSO being used on stacked device : 3078 * Performing the GSO segmentation before last device 3079 * is a performance improvement. 3080 */ 3081static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3082 netdev_features_t mask) 3083{ 3084 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3085} 3086 3087int __netdev_update_features(struct net_device *dev); 3088void netdev_update_features(struct net_device *dev); 3089void netdev_change_features(struct net_device *dev); 3090 3091void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3092 struct net_device *dev); 3093 3094netdev_features_t netif_skb_dev_features(struct sk_buff *skb, 3095 const struct net_device *dev); 3096static inline netdev_features_t netif_skb_features(struct sk_buff *skb) 3097{ 3098 return netif_skb_dev_features(skb, skb->dev); 3099} 3100 3101static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3102{ 3103 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3104 3105 /* check flags correspondence */ 3106 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3107 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3108 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3109 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3110 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3111 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3112 3113 return (features & feature) == feature; 3114} 3115 3116static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3117{ 3118 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3119 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3120} 3121 3122static inline bool netif_needs_gso(struct sk_buff *skb, 3123 netdev_features_t features) 3124{ 3125 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3126 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3127 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3128} 3129 3130static inline void netif_set_gso_max_size(struct net_device *dev, 3131 unsigned int size) 3132{ 3133 dev->gso_max_size = size; 3134} 3135 3136static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3137 int pulled_hlen, u16 mac_offset, 3138 int mac_len) 3139{ 3140 skb->protocol = protocol; 3141 skb->encapsulation = 1; 3142 skb_push(skb, pulled_hlen); 3143 skb_reset_transport_header(skb); 3144 skb->mac_header = mac_offset; 3145 skb->network_header = skb->mac_header + mac_len; 3146 skb->mac_len = mac_len; 3147} 3148 3149static inline bool netif_is_macvlan(struct net_device *dev) 3150{ 3151 return dev->priv_flags & IFF_MACVLAN; 3152} 3153 3154static inline bool netif_is_bond_master(struct net_device *dev) 3155{ 3156 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3157} 3158 3159static inline bool netif_is_bond_slave(struct net_device *dev) 3160{ 3161 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3162} 3163 3164static inline bool netif_supports_nofcs(struct net_device *dev) 3165{ 3166 return dev->priv_flags & IFF_SUPP_NOFCS; 3167} 3168 3169extern struct pernet_operations __net_initdata loopback_net_ops; 3170 3171/* Logging, debugging and troubleshooting/diagnostic helpers. */ 3172 3173/* netdev_printk helpers, similar to dev_printk */ 3174 3175static inline const char *netdev_name(const struct net_device *dev) 3176{ 3177 if (dev->reg_state != NETREG_REGISTERED) 3178 return "(unregistered net_device)"; 3179 return dev->name; 3180} 3181 3182__printf(3, 4) 3183int netdev_printk(const char *level, const struct net_device *dev, 3184 const char *format, ...); 3185__printf(2, 3) 3186int netdev_emerg(const struct net_device *dev, const char *format, ...); 3187__printf(2, 3) 3188int netdev_alert(const struct net_device *dev, const char *format, ...); 3189__printf(2, 3) 3190int netdev_crit(const struct net_device *dev, const char *format, ...); 3191__printf(2, 3) 3192int netdev_err(const struct net_device *dev, const char *format, ...); 3193__printf(2, 3) 3194int netdev_warn(const struct net_device *dev, const char *format, ...); 3195__printf(2, 3) 3196int netdev_notice(const struct net_device *dev, const char *format, ...); 3197__printf(2, 3) 3198int netdev_info(const struct net_device *dev, const char *format, ...); 3199 3200#define MODULE_ALIAS_NETDEV(device) \ 3201 MODULE_ALIAS("netdev-" device) 3202 3203#if defined(CONFIG_DYNAMIC_DEBUG) 3204#define netdev_dbg(__dev, format, args...) \ 3205do { \ 3206 dynamic_netdev_dbg(__dev, format, ##args); \ 3207} while (0) 3208#elif defined(DEBUG) 3209#define netdev_dbg(__dev, format, args...) \ 3210 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3211#else 3212#define netdev_dbg(__dev, format, args...) \ 3213({ \ 3214 if (0) \ 3215 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3216 0; \ 3217}) 3218#endif 3219 3220#if defined(VERBOSE_DEBUG) 3221#define netdev_vdbg netdev_dbg 3222#else 3223 3224#define netdev_vdbg(dev, format, args...) \ 3225({ \ 3226 if (0) \ 3227 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3228 0; \ 3229}) 3230#endif 3231 3232/* 3233 * netdev_WARN() acts like dev_printk(), but with the key difference 3234 * of using a WARN/WARN_ON to get the message out, including the 3235 * file/line information and a backtrace. 3236 */ 3237#define netdev_WARN(dev, format, args...) \ 3238 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args) 3239 3240/* netif printk helpers, similar to netdev_printk */ 3241 3242#define netif_printk(priv, type, level, dev, fmt, args...) \ 3243do { \ 3244 if (netif_msg_##type(priv)) \ 3245 netdev_printk(level, (dev), fmt, ##args); \ 3246} while (0) 3247 3248#define netif_level(level, priv, type, dev, fmt, args...) \ 3249do { \ 3250 if (netif_msg_##type(priv)) \ 3251 netdev_##level(dev, fmt, ##args); \ 3252} while (0) 3253 3254#define netif_emerg(priv, type, dev, fmt, args...) \ 3255 netif_level(emerg, priv, type, dev, fmt, ##args) 3256#define netif_alert(priv, type, dev, fmt, args...) \ 3257 netif_level(alert, priv, type, dev, fmt, ##args) 3258#define netif_crit(priv, type, dev, fmt, args...) \ 3259 netif_level(crit, priv, type, dev, fmt, ##args) 3260#define netif_err(priv, type, dev, fmt, args...) \ 3261 netif_level(err, priv, type, dev, fmt, ##args) 3262#define netif_warn(priv, type, dev, fmt, args...) \ 3263 netif_level(warn, priv, type, dev, fmt, ##args) 3264#define netif_notice(priv, type, dev, fmt, args...) \ 3265 netif_level(notice, priv, type, dev, fmt, ##args) 3266#define netif_info(priv, type, dev, fmt, args...) \ 3267 netif_level(info, priv, type, dev, fmt, ##args) 3268 3269#if defined(CONFIG_DYNAMIC_DEBUG) 3270#define netif_dbg(priv, type, netdev, format, args...) \ 3271do { \ 3272 if (netif_msg_##type(priv)) \ 3273 dynamic_netdev_dbg(netdev, format, ##args); \ 3274} while (0) 3275#elif defined(DEBUG) 3276#define netif_dbg(priv, type, dev, format, args...) \ 3277 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3278#else 3279#define netif_dbg(priv, type, dev, format, args...) \ 3280({ \ 3281 if (0) \ 3282 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3283 0; \ 3284}) 3285#endif 3286 3287#if defined(VERBOSE_DEBUG) 3288#define netif_vdbg netif_dbg 3289#else 3290#define netif_vdbg(priv, type, dev, format, args...) \ 3291({ \ 3292 if (0) \ 3293 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3294 0; \ 3295}) 3296#endif 3297 3298/* 3299 * The list of packet types we will receive (as opposed to discard) 3300 * and the routines to invoke. 3301 * 3302 * Why 16. Because with 16 the only overlap we get on a hash of the 3303 * low nibble of the protocol value is RARP/SNAP/X.25. 3304 * 3305 * NOTE: That is no longer true with the addition of VLAN tags. Not 3306 * sure which should go first, but I bet it won't make much 3307 * difference if we are running VLANs. The good news is that 3308 * this protocol won't be in the list unless compiled in, so 3309 * the average user (w/out VLANs) will not be adversely affected. 3310 * --BLG 3311 * 3312 * 0800 IP 3313 * 8100 802.1Q VLAN 3314 * 0001 802.3 3315 * 0002 AX.25 3316 * 0004 802.2 3317 * 8035 RARP 3318 * 0005 SNAP 3319 * 0805 X.25 3320 * 0806 ARP 3321 * 8137 IPX 3322 * 0009 Localtalk 3323 * 86DD IPv6 3324 */ 3325#define PTYPE_HASH_SIZE (16) 3326#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3327 3328#endif /* _LINUX_NETDEVICE_H */