Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53
54struct netpoll_info;
55struct device;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66/* hardware address assignment types */
67#define NET_ADDR_PERM 0 /* address is permanent (default) */
68#define NET_ADDR_RANDOM 1 /* address is generated randomly */
69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70#define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107/* Driver transmit return codes */
108#define NETDEV_TX_MASK 0xf0
109
110enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136/*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142# if defined(CONFIG_MAC80211_MESH)
143# define LL_MAX_HEADER 128
144# else
145# define LL_MAX_HEADER 96
146# endif
147#else
148# define LL_MAX_HEADER 32
149#endif
150
151#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153#define MAX_HEADER LL_MAX_HEADER
154#else
155#define MAX_HEADER (LL_MAX_HEADER + 48)
156#endif
157
158/*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187};
188
189
190#include <linux/cache.h>
191#include <linux/skbuff.h>
192
193#ifdef CONFIG_RPS
194#include <linux/static_key.h>
195extern struct static_key rps_needed;
196#endif
197
198struct neighbour;
199struct neigh_parms;
200struct sk_buff;
201
202struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206#define NETDEV_HW_ADDR_T_LAN 1
207#define NETDEV_HW_ADDR_T_SAN 2
208#define NETDEV_HW_ADDR_T_SLAVE 3
209#define NETDEV_HW_ADDR_T_UNICAST 4
210#define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216};
217
218struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221};
222
223#define netdev_hw_addr_list_count(l) ((l)->count)
224#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225#define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230#define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235#define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244#define HH_DATA_MOD 16
245#define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247#define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250};
251
252/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260#define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275};
276
277/* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288};
289
290
291/*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298};
299#define NETDEV_BOOT_SETUP_MAX 8
300
301int __init netdev_boot_setup(char *str);
302
303/*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319#ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322#endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329};
330
331enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336};
337
338enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344};
345typedef enum gro_result gro_result_t;
346
347/*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393};
394typedef enum rx_handler_result rx_handler_result_t;
395typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397void __napi_schedule(struct napi_struct *n);
398
399static inline bool napi_disable_pending(struct napi_struct *n)
400{
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402}
403
404/**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413static inline bool napi_schedule_prep(struct napi_struct *n)
414{
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417}
418
419/**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426static inline void napi_schedule(struct napi_struct *n)
427{
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430}
431
432/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433static inline bool napi_reschedule(struct napi_struct *napi)
434{
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440}
441
442/**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448void __napi_complete(struct napi_struct *n);
449void napi_complete(struct napi_struct *n);
450
451/**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458struct napi_struct *napi_by_id(unsigned int napi_id);
459
460/**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466void napi_hash_add(struct napi_struct *napi);
467
468/**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475void napi_hash_del(struct napi_struct *napi);
476
477/**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484static inline void napi_disable(struct napi_struct *n)
485{
486 might_sleep();
487 set_bit(NAPI_STATE_DISABLE, &n->state);
488 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489 msleep(1);
490 clear_bit(NAPI_STATE_DISABLE, &n->state);
491}
492
493/**
494 * napi_enable - enable NAPI scheduling
495 * @n: napi context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500static inline void napi_enable(struct napi_struct *n)
501{
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_clear_bit();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505}
506
507#ifdef CONFIG_SMP
508/**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: napi context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516static inline void napi_synchronize(const struct napi_struct *n)
517{
518 while (test_bit(NAPI_STATE_SCHED, &n->state))
519 msleep(1);
520}
521#else
522# define napi_synchronize(n) barrier()
523#endif
524
525enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
530 (1 << __QUEUE_STATE_STACK_XOFF))
531#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
532 (1 << __QUEUE_STATE_FROZEN))
533};
534/*
535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
536 * netif_tx_* functions below are used to manipulate this flag. The
537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538 * queue independently. The netif_xmit_*stopped functions below are called
539 * to check if the queue has been stopped by the driver or stack (either
540 * of the XOFF bits are set in the state). Drivers should not need to call
541 * netif_xmit*stopped functions, they should only be using netif_tx_*.
542 */
543
544struct netdev_queue {
545/*
546 * read mostly part
547 */
548 struct net_device *dev;
549 struct Qdisc *qdisc;
550 struct Qdisc *qdisc_sleeping;
551#ifdef CONFIG_SYSFS
552 struct kobject kobj;
553#endif
554#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 int numa_node;
556#endif
557/*
558 * write mostly part
559 */
560 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
561 int xmit_lock_owner;
562 /*
563 * please use this field instead of dev->trans_start
564 */
565 unsigned long trans_start;
566
567 /*
568 * Number of TX timeouts for this queue
569 * (/sys/class/net/DEV/Q/trans_timeout)
570 */
571 unsigned long trans_timeout;
572
573 unsigned long state;
574
575#ifdef CONFIG_BQL
576 struct dql dql;
577#endif
578} ____cacheline_aligned_in_smp;
579
580static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581{
582#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 return q->numa_node;
584#else
585 return NUMA_NO_NODE;
586#endif
587}
588
589static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590{
591#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592 q->numa_node = node;
593#endif
594}
595
596#ifdef CONFIG_RPS
597/*
598 * This structure holds an RPS map which can be of variable length. The
599 * map is an array of CPUs.
600 */
601struct rps_map {
602 unsigned int len;
603 struct rcu_head rcu;
604 u16 cpus[0];
605};
606#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607
608/*
609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610 * tail pointer for that CPU's input queue at the time of last enqueue, and
611 * a hardware filter index.
612 */
613struct rps_dev_flow {
614 u16 cpu;
615 u16 filter;
616 unsigned int last_qtail;
617};
618#define RPS_NO_FILTER 0xffff
619
620/*
621 * The rps_dev_flow_table structure contains a table of flow mappings.
622 */
623struct rps_dev_flow_table {
624 unsigned int mask;
625 struct rcu_head rcu;
626 struct rps_dev_flow flows[0];
627};
628#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629 ((_num) * sizeof(struct rps_dev_flow)))
630
631/*
632 * The rps_sock_flow_table contains mappings of flows to the last CPU
633 * on which they were processed by the application (set in recvmsg).
634 */
635struct rps_sock_flow_table {
636 unsigned int mask;
637 u16 ents[0];
638};
639#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640 ((_num) * sizeof(u16)))
641
642#define RPS_NO_CPU 0xffff
643
644static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645 u32 hash)
646{
647 if (table && hash) {
648 unsigned int cpu, index = hash & table->mask;
649
650 /* We only give a hint, preemption can change cpu under us */
651 cpu = raw_smp_processor_id();
652
653 if (table->ents[index] != cpu)
654 table->ents[index] = cpu;
655 }
656}
657
658static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659 u32 hash)
660{
661 if (table && hash)
662 table->ents[hash & table->mask] = RPS_NO_CPU;
663}
664
665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667#ifdef CONFIG_RFS_ACCEL
668bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669 u16 filter_id);
670#endif
671#endif /* CONFIG_RPS */
672
673/* This structure contains an instance of an RX queue. */
674struct netdev_rx_queue {
675#ifdef CONFIG_RPS
676 struct rps_map __rcu *rps_map;
677 struct rps_dev_flow_table __rcu *rps_flow_table;
678#endif
679 struct kobject kobj;
680 struct net_device *dev;
681} ____cacheline_aligned_in_smp;
682
683/*
684 * RX queue sysfs structures and functions.
685 */
686struct rx_queue_attribute {
687 struct attribute attr;
688 ssize_t (*show)(struct netdev_rx_queue *queue,
689 struct rx_queue_attribute *attr, char *buf);
690 ssize_t (*store)(struct netdev_rx_queue *queue,
691 struct rx_queue_attribute *attr, const char *buf, size_t len);
692};
693
694#ifdef CONFIG_XPS
695/*
696 * This structure holds an XPS map which can be of variable length. The
697 * map is an array of queues.
698 */
699struct xps_map {
700 unsigned int len;
701 unsigned int alloc_len;
702 struct rcu_head rcu;
703 u16 queues[0];
704};
705#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
707 / sizeof(u16))
708
709/*
710 * This structure holds all XPS maps for device. Maps are indexed by CPU.
711 */
712struct xps_dev_maps {
713 struct rcu_head rcu;
714 struct xps_map __rcu *cpu_map[0];
715};
716#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
717 (nr_cpu_ids * sizeof(struct xps_map *)))
718#endif /* CONFIG_XPS */
719
720#define TC_MAX_QUEUE 16
721#define TC_BITMASK 15
722/* HW offloaded queuing disciplines txq count and offset maps */
723struct netdev_tc_txq {
724 u16 count;
725 u16 offset;
726};
727
728#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729/*
730 * This structure is to hold information about the device
731 * configured to run FCoE protocol stack.
732 */
733struct netdev_fcoe_hbainfo {
734 char manufacturer[64];
735 char serial_number[64];
736 char hardware_version[64];
737 char driver_version[64];
738 char optionrom_version[64];
739 char firmware_version[64];
740 char model[256];
741 char model_description[256];
742};
743#endif
744
745#define MAX_PHYS_PORT_ID_LEN 32
746
747/* This structure holds a unique identifier to identify the
748 * physical port used by a netdevice.
749 */
750struct netdev_phys_port_id {
751 unsigned char id[MAX_PHYS_PORT_ID_LEN];
752 unsigned char id_len;
753};
754
755typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756 struct sk_buff *skb);
757
758/*
759 * This structure defines the management hooks for network devices.
760 * The following hooks can be defined; unless noted otherwise, they are
761 * optional and can be filled with a null pointer.
762 *
763 * int (*ndo_init)(struct net_device *dev);
764 * This function is called once when network device is registered.
765 * The network device can use this to any late stage initializaton
766 * or semantic validattion. It can fail with an error code which will
767 * be propogated back to register_netdev
768 *
769 * void (*ndo_uninit)(struct net_device *dev);
770 * This function is called when device is unregistered or when registration
771 * fails. It is not called if init fails.
772 *
773 * int (*ndo_open)(struct net_device *dev);
774 * This function is called when network device transistions to the up
775 * state.
776 *
777 * int (*ndo_stop)(struct net_device *dev);
778 * This function is called when network device transistions to the down
779 * state.
780 *
781 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782 * struct net_device *dev);
783 * Called when a packet needs to be transmitted.
784 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786 * Required can not be NULL.
787 *
788 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789 * void *accel_priv, select_queue_fallback_t fallback);
790 * Called to decide which queue to when device supports multiple
791 * transmit queues.
792 *
793 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794 * This function is called to allow device receiver to make
795 * changes to configuration when multicast or promiscious is enabled.
796 *
797 * void (*ndo_set_rx_mode)(struct net_device *dev);
798 * This function is called device changes address list filtering.
799 * If driver handles unicast address filtering, it should set
800 * IFF_UNICAST_FLT to its priv_flags.
801 *
802 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803 * This function is called when the Media Access Control address
804 * needs to be changed. If this interface is not defined, the
805 * mac address can not be changed.
806 *
807 * int (*ndo_validate_addr)(struct net_device *dev);
808 * Test if Media Access Control address is valid for the device.
809 *
810 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811 * Called when a user request an ioctl which can't be handled by
812 * the generic interface code. If not defined ioctl's return
813 * not supported error code.
814 *
815 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816 * Used to set network devices bus interface parameters. This interface
817 * is retained for legacy reason, new devices should use the bus
818 * interface (PCI) for low level management.
819 *
820 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821 * Called when a user wants to change the Maximum Transfer Unit
822 * of a device. If not defined, any request to change MTU will
823 * will return an error.
824 *
825 * void (*ndo_tx_timeout)(struct net_device *dev);
826 * Callback uses when the transmitter has not made any progress
827 * for dev->watchdog ticks.
828 *
829 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830 * struct rtnl_link_stats64 *storage);
831 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832 * Called when a user wants to get the network device usage
833 * statistics. Drivers must do one of the following:
834 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
835 * rtnl_link_stats64 structure passed by the caller.
836 * 2. Define @ndo_get_stats to update a net_device_stats structure
837 * (which should normally be dev->stats) and return a pointer to
838 * it. The structure may be changed asynchronously only if each
839 * field is written atomically.
840 * 3. Update dev->stats asynchronously and atomically, and define
841 * neither operation.
842 *
843 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844 * If device support VLAN filtering this function is called when a
845 * VLAN id is registered.
846 *
847 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848 * If device support VLAN filtering this function is called when a
849 * VLAN id is unregistered.
850 *
851 * void (*ndo_poll_controller)(struct net_device *dev);
852 *
853 * SR-IOV management functions.
854 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858 * int (*ndo_get_vf_config)(struct net_device *dev,
859 * int vf, struct ifla_vf_info *ivf);
860 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862 * struct nlattr *port[]);
863 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865 * Called to setup 'tc' number of traffic classes in the net device. This
866 * is always called from the stack with the rtnl lock held and netif tx
867 * queues stopped. This allows the netdevice to perform queue management
868 * safely.
869 *
870 * Fiber Channel over Ethernet (FCoE) offload functions.
871 * int (*ndo_fcoe_enable)(struct net_device *dev);
872 * Called when the FCoE protocol stack wants to start using LLD for FCoE
873 * so the underlying device can perform whatever needed configuration or
874 * initialization to support acceleration of FCoE traffic.
875 *
876 * int (*ndo_fcoe_disable)(struct net_device *dev);
877 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
878 * so the underlying device can perform whatever needed clean-ups to
879 * stop supporting acceleration of FCoE traffic.
880 *
881 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882 * struct scatterlist *sgl, unsigned int sgc);
883 * Called when the FCoE Initiator wants to initialize an I/O that
884 * is a possible candidate for Direct Data Placement (DDP). The LLD can
885 * perform necessary setup and returns 1 to indicate the device is set up
886 * successfully to perform DDP on this I/O, otherwise this returns 0.
887 *
888 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
889 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
890 * indicated by the FC exchange id 'xid', so the underlying device can
891 * clean up and reuse resources for later DDP requests.
892 *
893 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894 * struct scatterlist *sgl, unsigned int sgc);
895 * Called when the FCoE Target wants to initialize an I/O that
896 * is a possible candidate for Direct Data Placement (DDP). The LLD can
897 * perform necessary setup and returns 1 to indicate the device is set up
898 * successfully to perform DDP on this I/O, otherwise this returns 0.
899 *
900 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901 * struct netdev_fcoe_hbainfo *hbainfo);
902 * Called when the FCoE Protocol stack wants information on the underlying
903 * device. This information is utilized by the FCoE protocol stack to
904 * register attributes with Fiber Channel management service as per the
905 * FC-GS Fabric Device Management Information(FDMI) specification.
906 *
907 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908 * Called when the underlying device wants to override default World Wide
909 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911 * protocol stack to use.
912 *
913 * RFS acceleration.
914 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915 * u16 rxq_index, u32 flow_id);
916 * Set hardware filter for RFS. rxq_index is the target queue index;
917 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918 * Return the filter ID on success, or a negative error code.
919 *
920 * Slave management functions (for bridge, bonding, etc).
921 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922 * Called to make another netdev an underling.
923 *
924 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925 * Called to release previously enslaved netdev.
926 *
927 * Feature/offload setting functions.
928 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929 * netdev_features_t features);
930 * Adjusts the requested feature flags according to device-specific
931 * constraints, and returns the resulting flags. Must not modify
932 * the device state.
933 *
934 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935 * Called to update device configuration to new features. Passed
936 * feature set might be less than what was returned by ndo_fix_features()).
937 * Must return >0 or -errno if it changed dev->features itself.
938 *
939 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940 * struct net_device *dev,
941 * const unsigned char *addr, u16 flags)
942 * Adds an FDB entry to dev for addr.
943 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944 * struct net_device *dev,
945 * const unsigned char *addr)
946 * Deletes the FDB entry from dev coresponding to addr.
947 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948 * struct net_device *dev, int idx)
949 * Used to add FDB entries to dump requests. Implementers should add
950 * entries to skb and update idx with the number of entries.
951 *
952 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954 * struct net_device *dev, u32 filter_mask)
955 *
956 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957 * Called to change device carrier. Soft-devices (like dummy, team, etc)
958 * which do not represent real hardware may define this to allow their
959 * userspace components to manage their virtual carrier state. Devices
960 * that determine carrier state from physical hardware properties (eg
961 * network cables) or protocol-dependent mechanisms (eg
962 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963 *
964 * int (*ndo_get_phys_port_id)(struct net_device *dev,
965 * struct netdev_phys_port_id *ppid);
966 * Called to get ID of physical port of this device. If driver does
967 * not implement this, it is assumed that the hw is not able to have
968 * multiple net devices on single physical port.
969 *
970 * void (*ndo_add_vxlan_port)(struct net_device *dev,
971 * sa_family_t sa_family, __be16 port);
972 * Called by vxlan to notiy a driver about the UDP port and socket
973 * address family that vxlan is listnening to. It is called only when
974 * a new port starts listening. The operation is protected by the
975 * vxlan_net->sock_lock.
976 *
977 * void (*ndo_del_vxlan_port)(struct net_device *dev,
978 * sa_family_t sa_family, __be16 port);
979 * Called by vxlan to notify the driver about a UDP port and socket
980 * address family that vxlan is not listening to anymore. The operation
981 * is protected by the vxlan_net->sock_lock.
982 *
983 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984 * struct net_device *dev)
985 * Called by upper layer devices to accelerate switching or other
986 * station functionality into hardware. 'pdev is the lowerdev
987 * to use for the offload and 'dev' is the net device that will
988 * back the offload. Returns a pointer to the private structure
989 * the upper layer will maintain.
990 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991 * Called by upper layer device to delete the station created
992 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993 * the station and priv is the structure returned by the add
994 * operation.
995 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996 * struct net_device *dev,
997 * void *priv);
998 * Callback to use for xmit over the accelerated station. This
999 * is used in place of ndo_start_xmit on accelerated net
1000 * devices.
1001 */
1002struct net_device_ops {
1003 int (*ndo_init)(struct net_device *dev);
1004 void (*ndo_uninit)(struct net_device *dev);
1005 int (*ndo_open)(struct net_device *dev);
1006 int (*ndo_stop)(struct net_device *dev);
1007 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1008 struct net_device *dev);
1009 u16 (*ndo_select_queue)(struct net_device *dev,
1010 struct sk_buff *skb,
1011 void *accel_priv,
1012 select_queue_fallback_t fallback);
1013 void (*ndo_change_rx_flags)(struct net_device *dev,
1014 int flags);
1015 void (*ndo_set_rx_mode)(struct net_device *dev);
1016 int (*ndo_set_mac_address)(struct net_device *dev,
1017 void *addr);
1018 int (*ndo_validate_addr)(struct net_device *dev);
1019 int (*ndo_do_ioctl)(struct net_device *dev,
1020 struct ifreq *ifr, int cmd);
1021 int (*ndo_set_config)(struct net_device *dev,
1022 struct ifmap *map);
1023 int (*ndo_change_mtu)(struct net_device *dev,
1024 int new_mtu);
1025 int (*ndo_neigh_setup)(struct net_device *dev,
1026 struct neigh_parms *);
1027 void (*ndo_tx_timeout) (struct net_device *dev);
1028
1029 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030 struct rtnl_link_stats64 *storage);
1031 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032
1033 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034 __be16 proto, u16 vid);
1035 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036 __be16 proto, u16 vid);
1037#ifdef CONFIG_NET_POLL_CONTROLLER
1038 void (*ndo_poll_controller)(struct net_device *dev);
1039 int (*ndo_netpoll_setup)(struct net_device *dev,
1040 struct netpoll_info *info,
1041 gfp_t gfp);
1042 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1043#endif
1044#ifdef CONFIG_NET_RX_BUSY_POLL
1045 int (*ndo_busy_poll)(struct napi_struct *dev);
1046#endif
1047 int (*ndo_set_vf_mac)(struct net_device *dev,
1048 int queue, u8 *mac);
1049 int (*ndo_set_vf_vlan)(struct net_device *dev,
1050 int queue, u16 vlan, u8 qos);
1051 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
1052 int vf, int rate);
1053 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1054 int vf, bool setting);
1055 int (*ndo_get_vf_config)(struct net_device *dev,
1056 int vf,
1057 struct ifla_vf_info *ivf);
1058 int (*ndo_set_vf_link_state)(struct net_device *dev,
1059 int vf, int link_state);
1060 int (*ndo_set_vf_port)(struct net_device *dev,
1061 int vf,
1062 struct nlattr *port[]);
1063 int (*ndo_get_vf_port)(struct net_device *dev,
1064 int vf, struct sk_buff *skb);
1065 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1066#if IS_ENABLED(CONFIG_FCOE)
1067 int (*ndo_fcoe_enable)(struct net_device *dev);
1068 int (*ndo_fcoe_disable)(struct net_device *dev);
1069 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1070 u16 xid,
1071 struct scatterlist *sgl,
1072 unsigned int sgc);
1073 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1074 u16 xid);
1075 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1076 u16 xid,
1077 struct scatterlist *sgl,
1078 unsigned int sgc);
1079 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1080 struct netdev_fcoe_hbainfo *hbainfo);
1081#endif
1082
1083#if IS_ENABLED(CONFIG_LIBFCOE)
1084#define NETDEV_FCOE_WWNN 0
1085#define NETDEV_FCOE_WWPN 1
1086 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1087 u64 *wwn, int type);
1088#endif
1089
1090#ifdef CONFIG_RFS_ACCEL
1091 int (*ndo_rx_flow_steer)(struct net_device *dev,
1092 const struct sk_buff *skb,
1093 u16 rxq_index,
1094 u32 flow_id);
1095#endif
1096 int (*ndo_add_slave)(struct net_device *dev,
1097 struct net_device *slave_dev);
1098 int (*ndo_del_slave)(struct net_device *dev,
1099 struct net_device *slave_dev);
1100 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1101 netdev_features_t features);
1102 int (*ndo_set_features)(struct net_device *dev,
1103 netdev_features_t features);
1104 int (*ndo_neigh_construct)(struct neighbour *n);
1105 void (*ndo_neigh_destroy)(struct neighbour *n);
1106
1107 int (*ndo_fdb_add)(struct ndmsg *ndm,
1108 struct nlattr *tb[],
1109 struct net_device *dev,
1110 const unsigned char *addr,
1111 u16 flags);
1112 int (*ndo_fdb_del)(struct ndmsg *ndm,
1113 struct nlattr *tb[],
1114 struct net_device *dev,
1115 const unsigned char *addr);
1116 int (*ndo_fdb_dump)(struct sk_buff *skb,
1117 struct netlink_callback *cb,
1118 struct net_device *dev,
1119 int idx);
1120
1121 int (*ndo_bridge_setlink)(struct net_device *dev,
1122 struct nlmsghdr *nlh);
1123 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1124 u32 pid, u32 seq,
1125 struct net_device *dev,
1126 u32 filter_mask);
1127 int (*ndo_bridge_dellink)(struct net_device *dev,
1128 struct nlmsghdr *nlh);
1129 int (*ndo_change_carrier)(struct net_device *dev,
1130 bool new_carrier);
1131 int (*ndo_get_phys_port_id)(struct net_device *dev,
1132 struct netdev_phys_port_id *ppid);
1133 void (*ndo_add_vxlan_port)(struct net_device *dev,
1134 sa_family_t sa_family,
1135 __be16 port);
1136 void (*ndo_del_vxlan_port)(struct net_device *dev,
1137 sa_family_t sa_family,
1138 __be16 port);
1139
1140 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1141 struct net_device *dev);
1142 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1143 void *priv);
1144
1145 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1146 struct net_device *dev,
1147 void *priv);
1148};
1149
1150/*
1151 * The DEVICE structure.
1152 * Actually, this whole structure is a big mistake. It mixes I/O
1153 * data with strictly "high-level" data, and it has to know about
1154 * almost every data structure used in the INET module.
1155 *
1156 * FIXME: cleanup struct net_device such that network protocol info
1157 * moves out.
1158 */
1159
1160struct net_device {
1161
1162 /*
1163 * This is the first field of the "visible" part of this structure
1164 * (i.e. as seen by users in the "Space.c" file). It is the name
1165 * of the interface.
1166 */
1167 char name[IFNAMSIZ];
1168
1169 /* device name hash chain, please keep it close to name[] */
1170 struct hlist_node name_hlist;
1171
1172 /* snmp alias */
1173 char *ifalias;
1174
1175 /*
1176 * I/O specific fields
1177 * FIXME: Merge these and struct ifmap into one
1178 */
1179 unsigned long mem_end; /* shared mem end */
1180 unsigned long mem_start; /* shared mem start */
1181 unsigned long base_addr; /* device I/O address */
1182 int irq; /* device IRQ number */
1183
1184 /*
1185 * Some hardware also needs these fields, but they are not
1186 * part of the usual set specified in Space.c.
1187 */
1188
1189 unsigned long state;
1190
1191 struct list_head dev_list;
1192 struct list_head napi_list;
1193 struct list_head unreg_list;
1194 struct list_head close_list;
1195
1196 /* directly linked devices, like slaves for bonding */
1197 struct {
1198 struct list_head upper;
1199 struct list_head lower;
1200 } adj_list;
1201
1202 /* all linked devices, *including* neighbours */
1203 struct {
1204 struct list_head upper;
1205 struct list_head lower;
1206 } all_adj_list;
1207
1208
1209 /* currently active device features */
1210 netdev_features_t features;
1211 /* user-changeable features */
1212 netdev_features_t hw_features;
1213 /* user-requested features */
1214 netdev_features_t wanted_features;
1215 /* mask of features inheritable by VLAN devices */
1216 netdev_features_t vlan_features;
1217 /* mask of features inherited by encapsulating devices
1218 * This field indicates what encapsulation offloads
1219 * the hardware is capable of doing, and drivers will
1220 * need to set them appropriately.
1221 */
1222 netdev_features_t hw_enc_features;
1223 /* mask of fetures inheritable by MPLS */
1224 netdev_features_t mpls_features;
1225
1226 /* Interface index. Unique device identifier */
1227 int ifindex;
1228 int iflink;
1229
1230 struct net_device_stats stats;
1231 atomic_long_t rx_dropped; /* dropped packets by core network
1232 * Do not use this in drivers.
1233 */
1234
1235#ifdef CONFIG_WIRELESS_EXT
1236 /* List of functions to handle Wireless Extensions (instead of ioctl).
1237 * See <net/iw_handler.h> for details. Jean II */
1238 const struct iw_handler_def * wireless_handlers;
1239 /* Instance data managed by the core of Wireless Extensions. */
1240 struct iw_public_data * wireless_data;
1241#endif
1242 /* Management operations */
1243 const struct net_device_ops *netdev_ops;
1244 const struct ethtool_ops *ethtool_ops;
1245 const struct forwarding_accel_ops *fwd_ops;
1246
1247 /* Hardware header description */
1248 const struct header_ops *header_ops;
1249
1250 unsigned int flags; /* interface flags (a la BSD) */
1251 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1252 * See if.h for definitions. */
1253 unsigned short gflags;
1254 unsigned short padded; /* How much padding added by alloc_netdev() */
1255
1256 unsigned char operstate; /* RFC2863 operstate */
1257 unsigned char link_mode; /* mapping policy to operstate */
1258
1259 unsigned char if_port; /* Selectable AUI, TP,..*/
1260 unsigned char dma; /* DMA channel */
1261
1262 unsigned int mtu; /* interface MTU value */
1263 unsigned short type; /* interface hardware type */
1264 unsigned short hard_header_len; /* hardware hdr length */
1265
1266 /* extra head- and tailroom the hardware may need, but not in all cases
1267 * can this be guaranteed, especially tailroom. Some cases also use
1268 * LL_MAX_HEADER instead to allocate the skb.
1269 */
1270 unsigned short needed_headroom;
1271 unsigned short needed_tailroom;
1272
1273 /* Interface address info. */
1274 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1275 unsigned char addr_assign_type; /* hw address assignment type */
1276 unsigned char addr_len; /* hardware address length */
1277 unsigned short neigh_priv_len;
1278 unsigned short dev_id; /* Used to differentiate devices
1279 * that share the same link
1280 * layer address
1281 */
1282 spinlock_t addr_list_lock;
1283 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1284 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1285 struct netdev_hw_addr_list dev_addrs; /* list of device
1286 * hw addresses
1287 */
1288#ifdef CONFIG_SYSFS
1289 struct kset *queues_kset;
1290#endif
1291
1292 bool uc_promisc;
1293 unsigned int promiscuity;
1294 unsigned int allmulti;
1295
1296
1297 /* Protocol specific pointers */
1298
1299#if IS_ENABLED(CONFIG_VLAN_8021Q)
1300 struct vlan_info __rcu *vlan_info; /* VLAN info */
1301#endif
1302#if IS_ENABLED(CONFIG_NET_DSA)
1303 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1304#endif
1305#if IS_ENABLED(CONFIG_TIPC)
1306 struct tipc_bearer __rcu *tipc_ptr; /* TIPC specific data */
1307#endif
1308 void *atalk_ptr; /* AppleTalk link */
1309 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1310 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1311 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1312 void *ax25_ptr; /* AX.25 specific data */
1313 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1314 assign before registering */
1315
1316/*
1317 * Cache lines mostly used on receive path (including eth_type_trans())
1318 */
1319 unsigned long last_rx; /* Time of last Rx
1320 * This should not be set in
1321 * drivers, unless really needed,
1322 * because network stack (bonding)
1323 * use it if/when necessary, to
1324 * avoid dirtying this cache line.
1325 */
1326
1327 /* Interface address info used in eth_type_trans() */
1328 unsigned char *dev_addr; /* hw address, (before bcast
1329 because most packets are
1330 unicast) */
1331
1332
1333#ifdef CONFIG_SYSFS
1334 struct netdev_rx_queue *_rx;
1335
1336 /* Number of RX queues allocated at register_netdev() time */
1337 unsigned int num_rx_queues;
1338
1339 /* Number of RX queues currently active in device */
1340 unsigned int real_num_rx_queues;
1341
1342#endif
1343
1344 rx_handler_func_t __rcu *rx_handler;
1345 void __rcu *rx_handler_data;
1346
1347 struct netdev_queue __rcu *ingress_queue;
1348 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1349
1350
1351/*
1352 * Cache lines mostly used on transmit path
1353 */
1354 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1355
1356 /* Number of TX queues allocated at alloc_netdev_mq() time */
1357 unsigned int num_tx_queues;
1358
1359 /* Number of TX queues currently active in device */
1360 unsigned int real_num_tx_queues;
1361
1362 /* root qdisc from userspace point of view */
1363 struct Qdisc *qdisc;
1364
1365 unsigned long tx_queue_len; /* Max frames per queue allowed */
1366 spinlock_t tx_global_lock;
1367
1368#ifdef CONFIG_XPS
1369 struct xps_dev_maps __rcu *xps_maps;
1370#endif
1371#ifdef CONFIG_RFS_ACCEL
1372 /* CPU reverse-mapping for RX completion interrupts, indexed
1373 * by RX queue number. Assigned by driver. This must only be
1374 * set if the ndo_rx_flow_steer operation is defined. */
1375 struct cpu_rmap *rx_cpu_rmap;
1376#endif
1377
1378 /* These may be needed for future network-power-down code. */
1379
1380 /*
1381 * trans_start here is expensive for high speed devices on SMP,
1382 * please use netdev_queue->trans_start instead.
1383 */
1384 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1385
1386 int watchdog_timeo; /* used by dev_watchdog() */
1387 struct timer_list watchdog_timer;
1388
1389 /* Number of references to this device */
1390 int __percpu *pcpu_refcnt;
1391
1392 /* delayed register/unregister */
1393 struct list_head todo_list;
1394 /* device index hash chain */
1395 struct hlist_node index_hlist;
1396
1397 struct list_head link_watch_list;
1398
1399 /* register/unregister state machine */
1400 enum { NETREG_UNINITIALIZED=0,
1401 NETREG_REGISTERED, /* completed register_netdevice */
1402 NETREG_UNREGISTERING, /* called unregister_netdevice */
1403 NETREG_UNREGISTERED, /* completed unregister todo */
1404 NETREG_RELEASED, /* called free_netdev */
1405 NETREG_DUMMY, /* dummy device for NAPI poll */
1406 } reg_state:8;
1407
1408 bool dismantle; /* device is going do be freed */
1409
1410 enum {
1411 RTNL_LINK_INITIALIZED,
1412 RTNL_LINK_INITIALIZING,
1413 } rtnl_link_state:16;
1414
1415 /* Called from unregister, can be used to call free_netdev */
1416 void (*destructor)(struct net_device *dev);
1417
1418#ifdef CONFIG_NETPOLL
1419 struct netpoll_info __rcu *npinfo;
1420#endif
1421
1422#ifdef CONFIG_NET_NS
1423 /* Network namespace this network device is inside */
1424 struct net *nd_net;
1425#endif
1426
1427 /* mid-layer private */
1428 union {
1429 void *ml_priv;
1430 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1431 struct pcpu_sw_netstats __percpu *tstats;
1432 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1433 struct pcpu_vstats __percpu *vstats; /* veth stats */
1434 };
1435 /* GARP */
1436 struct garp_port __rcu *garp_port;
1437 /* MRP */
1438 struct mrp_port __rcu *mrp_port;
1439
1440 /* class/net/name entry */
1441 struct device dev;
1442 /* space for optional device, statistics, and wireless sysfs groups */
1443 const struct attribute_group *sysfs_groups[4];
1444 /* space for optional per-rx queue attributes */
1445 const struct attribute_group *sysfs_rx_queue_group;
1446
1447 /* rtnetlink link ops */
1448 const struct rtnl_link_ops *rtnl_link_ops;
1449
1450 /* for setting kernel sock attribute on TCP connection setup */
1451#define GSO_MAX_SIZE 65536
1452 unsigned int gso_max_size;
1453#define GSO_MAX_SEGS 65535
1454 u16 gso_max_segs;
1455
1456#ifdef CONFIG_DCB
1457 /* Data Center Bridging netlink ops */
1458 const struct dcbnl_rtnl_ops *dcbnl_ops;
1459#endif
1460 u8 num_tc;
1461 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1462 u8 prio_tc_map[TC_BITMASK + 1];
1463
1464#if IS_ENABLED(CONFIG_FCOE)
1465 /* max exchange id for FCoE LRO by ddp */
1466 unsigned int fcoe_ddp_xid;
1467#endif
1468#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1469 struct netprio_map __rcu *priomap;
1470#endif
1471 /* phy device may attach itself for hardware timestamping */
1472 struct phy_device *phydev;
1473
1474 struct lock_class_key *qdisc_tx_busylock;
1475
1476 /* group the device belongs to */
1477 int group;
1478
1479 struct pm_qos_request pm_qos_req;
1480};
1481#define to_net_dev(d) container_of(d, struct net_device, dev)
1482
1483#define NETDEV_ALIGN 32
1484
1485static inline
1486int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1487{
1488 return dev->prio_tc_map[prio & TC_BITMASK];
1489}
1490
1491static inline
1492int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1493{
1494 if (tc >= dev->num_tc)
1495 return -EINVAL;
1496
1497 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1498 return 0;
1499}
1500
1501static inline
1502void netdev_reset_tc(struct net_device *dev)
1503{
1504 dev->num_tc = 0;
1505 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1506 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1507}
1508
1509static inline
1510int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1511{
1512 if (tc >= dev->num_tc)
1513 return -EINVAL;
1514
1515 dev->tc_to_txq[tc].count = count;
1516 dev->tc_to_txq[tc].offset = offset;
1517 return 0;
1518}
1519
1520static inline
1521int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1522{
1523 if (num_tc > TC_MAX_QUEUE)
1524 return -EINVAL;
1525
1526 dev->num_tc = num_tc;
1527 return 0;
1528}
1529
1530static inline
1531int netdev_get_num_tc(struct net_device *dev)
1532{
1533 return dev->num_tc;
1534}
1535
1536static inline
1537struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1538 unsigned int index)
1539{
1540 return &dev->_tx[index];
1541}
1542
1543static inline void netdev_for_each_tx_queue(struct net_device *dev,
1544 void (*f)(struct net_device *,
1545 struct netdev_queue *,
1546 void *),
1547 void *arg)
1548{
1549 unsigned int i;
1550
1551 for (i = 0; i < dev->num_tx_queues; i++)
1552 f(dev, &dev->_tx[i], arg);
1553}
1554
1555struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1556 struct sk_buff *skb,
1557 void *accel_priv);
1558
1559/*
1560 * Net namespace inlines
1561 */
1562static inline
1563struct net *dev_net(const struct net_device *dev)
1564{
1565 return read_pnet(&dev->nd_net);
1566}
1567
1568static inline
1569void dev_net_set(struct net_device *dev, struct net *net)
1570{
1571#ifdef CONFIG_NET_NS
1572 release_net(dev->nd_net);
1573 dev->nd_net = hold_net(net);
1574#endif
1575}
1576
1577static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1578{
1579#ifdef CONFIG_NET_DSA_TAG_DSA
1580 if (dev->dsa_ptr != NULL)
1581 return dsa_uses_dsa_tags(dev->dsa_ptr);
1582#endif
1583
1584 return 0;
1585}
1586
1587static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1588{
1589#ifdef CONFIG_NET_DSA_TAG_TRAILER
1590 if (dev->dsa_ptr != NULL)
1591 return dsa_uses_trailer_tags(dev->dsa_ptr);
1592#endif
1593
1594 return 0;
1595}
1596
1597/**
1598 * netdev_priv - access network device private data
1599 * @dev: network device
1600 *
1601 * Get network device private data
1602 */
1603static inline void *netdev_priv(const struct net_device *dev)
1604{
1605 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1606}
1607
1608/* Set the sysfs physical device reference for the network logical device
1609 * if set prior to registration will cause a symlink during initialization.
1610 */
1611#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1612
1613/* Set the sysfs device type for the network logical device to allow
1614 * fine-grained identification of different network device types. For
1615 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1616 */
1617#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1618
1619/* Default NAPI poll() weight
1620 * Device drivers are strongly advised to not use bigger value
1621 */
1622#define NAPI_POLL_WEIGHT 64
1623
1624/**
1625 * netif_napi_add - initialize a napi context
1626 * @dev: network device
1627 * @napi: napi context
1628 * @poll: polling function
1629 * @weight: default weight
1630 *
1631 * netif_napi_add() must be used to initialize a napi context prior to calling
1632 * *any* of the other napi related functions.
1633 */
1634void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1635 int (*poll)(struct napi_struct *, int), int weight);
1636
1637/**
1638 * netif_napi_del - remove a napi context
1639 * @napi: napi context
1640 *
1641 * netif_napi_del() removes a napi context from the network device napi list
1642 */
1643void netif_napi_del(struct napi_struct *napi);
1644
1645struct napi_gro_cb {
1646 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1647 void *frag0;
1648
1649 /* Length of frag0. */
1650 unsigned int frag0_len;
1651
1652 /* This indicates where we are processing relative to skb->data. */
1653 int data_offset;
1654
1655 /* This is non-zero if the packet cannot be merged with the new skb. */
1656 u16 flush;
1657
1658 /* Save the IP ID here and check when we get to the transport layer */
1659 u16 flush_id;
1660
1661 /* Number of segments aggregated. */
1662 u16 count;
1663
1664 /* This is non-zero if the packet may be of the same flow. */
1665 u8 same_flow;
1666
1667 /* Free the skb? */
1668 u8 free;
1669#define NAPI_GRO_FREE 1
1670#define NAPI_GRO_FREE_STOLEN_HEAD 2
1671
1672 /* jiffies when first packet was created/queued */
1673 unsigned long age;
1674
1675 /* Used in ipv6_gro_receive() */
1676 u16 proto;
1677
1678 /* Used in udp_gro_receive */
1679 u16 udp_mark;
1680
1681 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1682 __wsum csum;
1683
1684 /* used in skb_gro_receive() slow path */
1685 struct sk_buff *last;
1686};
1687
1688#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1689
1690struct packet_type {
1691 __be16 type; /* This is really htons(ether_type). */
1692 struct net_device *dev; /* NULL is wildcarded here */
1693 int (*func) (struct sk_buff *,
1694 struct net_device *,
1695 struct packet_type *,
1696 struct net_device *);
1697 bool (*id_match)(struct packet_type *ptype,
1698 struct sock *sk);
1699 void *af_packet_priv;
1700 struct list_head list;
1701};
1702
1703struct offload_callbacks {
1704 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1705 netdev_features_t features);
1706 int (*gso_send_check)(struct sk_buff *skb);
1707 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1708 struct sk_buff *skb);
1709 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1710};
1711
1712struct packet_offload {
1713 __be16 type; /* This is really htons(ether_type). */
1714 struct offload_callbacks callbacks;
1715 struct list_head list;
1716};
1717
1718struct udp_offload {
1719 __be16 port;
1720 struct offload_callbacks callbacks;
1721};
1722
1723/* often modified stats are per cpu, other are shared (netdev->stats) */
1724struct pcpu_sw_netstats {
1725 u64 rx_packets;
1726 u64 rx_bytes;
1727 u64 tx_packets;
1728 u64 tx_bytes;
1729 struct u64_stats_sync syncp;
1730};
1731
1732#include <linux/notifier.h>
1733
1734/* netdevice notifier chain. Please remember to update the rtnetlink
1735 * notification exclusion list in rtnetlink_event() when adding new
1736 * types.
1737 */
1738#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1739#define NETDEV_DOWN 0x0002
1740#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1741 detected a hardware crash and restarted
1742 - we can use this eg to kick tcp sessions
1743 once done */
1744#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1745#define NETDEV_REGISTER 0x0005
1746#define NETDEV_UNREGISTER 0x0006
1747#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
1748#define NETDEV_CHANGEADDR 0x0008
1749#define NETDEV_GOING_DOWN 0x0009
1750#define NETDEV_CHANGENAME 0x000A
1751#define NETDEV_FEAT_CHANGE 0x000B
1752#define NETDEV_BONDING_FAILOVER 0x000C
1753#define NETDEV_PRE_UP 0x000D
1754#define NETDEV_PRE_TYPE_CHANGE 0x000E
1755#define NETDEV_POST_TYPE_CHANGE 0x000F
1756#define NETDEV_POST_INIT 0x0010
1757#define NETDEV_UNREGISTER_FINAL 0x0011
1758#define NETDEV_RELEASE 0x0012
1759#define NETDEV_NOTIFY_PEERS 0x0013
1760#define NETDEV_JOIN 0x0014
1761#define NETDEV_CHANGEUPPER 0x0015
1762#define NETDEV_RESEND_IGMP 0x0016
1763#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
1764
1765int register_netdevice_notifier(struct notifier_block *nb);
1766int unregister_netdevice_notifier(struct notifier_block *nb);
1767
1768struct netdev_notifier_info {
1769 struct net_device *dev;
1770};
1771
1772struct netdev_notifier_change_info {
1773 struct netdev_notifier_info info; /* must be first */
1774 unsigned int flags_changed;
1775};
1776
1777static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1778 struct net_device *dev)
1779{
1780 info->dev = dev;
1781}
1782
1783static inline struct net_device *
1784netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1785{
1786 return info->dev;
1787}
1788
1789int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1790
1791
1792extern rwlock_t dev_base_lock; /* Device list lock */
1793
1794#define for_each_netdev(net, d) \
1795 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1796#define for_each_netdev_reverse(net, d) \
1797 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1798#define for_each_netdev_rcu(net, d) \
1799 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1800#define for_each_netdev_safe(net, d, n) \
1801 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1802#define for_each_netdev_continue(net, d) \
1803 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1804#define for_each_netdev_continue_rcu(net, d) \
1805 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1806#define for_each_netdev_in_bond_rcu(bond, slave) \
1807 for_each_netdev_rcu(&init_net, slave) \
1808 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1809#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1810
1811static inline struct net_device *next_net_device(struct net_device *dev)
1812{
1813 struct list_head *lh;
1814 struct net *net;
1815
1816 net = dev_net(dev);
1817 lh = dev->dev_list.next;
1818 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1819}
1820
1821static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1822{
1823 struct list_head *lh;
1824 struct net *net;
1825
1826 net = dev_net(dev);
1827 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1828 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1829}
1830
1831static inline struct net_device *first_net_device(struct net *net)
1832{
1833 return list_empty(&net->dev_base_head) ? NULL :
1834 net_device_entry(net->dev_base_head.next);
1835}
1836
1837static inline struct net_device *first_net_device_rcu(struct net *net)
1838{
1839 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1840
1841 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1842}
1843
1844int netdev_boot_setup_check(struct net_device *dev);
1845unsigned long netdev_boot_base(const char *prefix, int unit);
1846struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1847 const char *hwaddr);
1848struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1849struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1850void dev_add_pack(struct packet_type *pt);
1851void dev_remove_pack(struct packet_type *pt);
1852void __dev_remove_pack(struct packet_type *pt);
1853void dev_add_offload(struct packet_offload *po);
1854void dev_remove_offload(struct packet_offload *po);
1855
1856struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1857 unsigned short mask);
1858struct net_device *dev_get_by_name(struct net *net, const char *name);
1859struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1860struct net_device *__dev_get_by_name(struct net *net, const char *name);
1861int dev_alloc_name(struct net_device *dev, const char *name);
1862int dev_open(struct net_device *dev);
1863int dev_close(struct net_device *dev);
1864void dev_disable_lro(struct net_device *dev);
1865int dev_loopback_xmit(struct sk_buff *newskb);
1866int dev_queue_xmit(struct sk_buff *skb);
1867int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1868int register_netdevice(struct net_device *dev);
1869void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1870void unregister_netdevice_many(struct list_head *head);
1871static inline void unregister_netdevice(struct net_device *dev)
1872{
1873 unregister_netdevice_queue(dev, NULL);
1874}
1875
1876int netdev_refcnt_read(const struct net_device *dev);
1877void free_netdev(struct net_device *dev);
1878void netdev_freemem(struct net_device *dev);
1879void synchronize_net(void);
1880int init_dummy_netdev(struct net_device *dev);
1881
1882struct net_device *dev_get_by_index(struct net *net, int ifindex);
1883struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1884struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1885int netdev_get_name(struct net *net, char *name, int ifindex);
1886int dev_restart(struct net_device *dev);
1887#ifdef CONFIG_NETPOLL_TRAP
1888int netpoll_trap(void);
1889#endif
1890int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1891
1892static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1893{
1894 return NAPI_GRO_CB(skb)->data_offset;
1895}
1896
1897static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1898{
1899 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1900}
1901
1902static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1903{
1904 NAPI_GRO_CB(skb)->data_offset += len;
1905}
1906
1907static inline void *skb_gro_header_fast(struct sk_buff *skb,
1908 unsigned int offset)
1909{
1910 return NAPI_GRO_CB(skb)->frag0 + offset;
1911}
1912
1913static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1914{
1915 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1916}
1917
1918static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1919 unsigned int offset)
1920{
1921 if (!pskb_may_pull(skb, hlen))
1922 return NULL;
1923
1924 NAPI_GRO_CB(skb)->frag0 = NULL;
1925 NAPI_GRO_CB(skb)->frag0_len = 0;
1926 return skb->data + offset;
1927}
1928
1929static inline void *skb_gro_mac_header(struct sk_buff *skb)
1930{
1931 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1932}
1933
1934static inline void *skb_gro_network_header(struct sk_buff *skb)
1935{
1936 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1937 skb_network_offset(skb);
1938}
1939
1940static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
1941 const void *start, unsigned int len)
1942{
1943 if (skb->ip_summed == CHECKSUM_COMPLETE)
1944 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
1945 csum_partial(start, len, 0));
1946}
1947
1948static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1949 unsigned short type,
1950 const void *daddr, const void *saddr,
1951 unsigned int len)
1952{
1953 if (!dev->header_ops || !dev->header_ops->create)
1954 return 0;
1955
1956 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1957}
1958
1959static inline int dev_parse_header(const struct sk_buff *skb,
1960 unsigned char *haddr)
1961{
1962 const struct net_device *dev = skb->dev;
1963
1964 if (!dev->header_ops || !dev->header_ops->parse)
1965 return 0;
1966 return dev->header_ops->parse(skb, haddr);
1967}
1968
1969static inline int dev_rebuild_header(struct sk_buff *skb)
1970{
1971 const struct net_device *dev = skb->dev;
1972
1973 if (!dev->header_ops || !dev->header_ops->rebuild)
1974 return 0;
1975 return dev->header_ops->rebuild(skb);
1976}
1977
1978typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1979int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1980static inline int unregister_gifconf(unsigned int family)
1981{
1982 return register_gifconf(family, NULL);
1983}
1984
1985#ifdef CONFIG_NET_FLOW_LIMIT
1986#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1987struct sd_flow_limit {
1988 u64 count;
1989 unsigned int num_buckets;
1990 unsigned int history_head;
1991 u16 history[FLOW_LIMIT_HISTORY];
1992 u8 buckets[];
1993};
1994
1995extern int netdev_flow_limit_table_len;
1996#endif /* CONFIG_NET_FLOW_LIMIT */
1997
1998/*
1999 * Incoming packets are placed on per-cpu queues
2000 */
2001struct softnet_data {
2002 struct Qdisc *output_queue;
2003 struct Qdisc **output_queue_tailp;
2004 struct list_head poll_list;
2005 struct sk_buff *completion_queue;
2006 struct sk_buff_head process_queue;
2007
2008 /* stats */
2009 unsigned int processed;
2010 unsigned int time_squeeze;
2011 unsigned int cpu_collision;
2012 unsigned int received_rps;
2013
2014#ifdef CONFIG_RPS
2015 struct softnet_data *rps_ipi_list;
2016
2017 /* Elements below can be accessed between CPUs for RPS */
2018 struct call_single_data csd ____cacheline_aligned_in_smp;
2019 struct softnet_data *rps_ipi_next;
2020 unsigned int cpu;
2021 unsigned int input_queue_head;
2022 unsigned int input_queue_tail;
2023#endif
2024 unsigned int dropped;
2025 struct sk_buff_head input_pkt_queue;
2026 struct napi_struct backlog;
2027
2028#ifdef CONFIG_NET_FLOW_LIMIT
2029 struct sd_flow_limit __rcu *flow_limit;
2030#endif
2031};
2032
2033static inline void input_queue_head_incr(struct softnet_data *sd)
2034{
2035#ifdef CONFIG_RPS
2036 sd->input_queue_head++;
2037#endif
2038}
2039
2040static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2041 unsigned int *qtail)
2042{
2043#ifdef CONFIG_RPS
2044 *qtail = ++sd->input_queue_tail;
2045#endif
2046}
2047
2048DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2049
2050void __netif_schedule(struct Qdisc *q);
2051
2052static inline void netif_schedule_queue(struct netdev_queue *txq)
2053{
2054 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2055 __netif_schedule(txq->qdisc);
2056}
2057
2058static inline void netif_tx_schedule_all(struct net_device *dev)
2059{
2060 unsigned int i;
2061
2062 for (i = 0; i < dev->num_tx_queues; i++)
2063 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2064}
2065
2066static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2067{
2068 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2069}
2070
2071/**
2072 * netif_start_queue - allow transmit
2073 * @dev: network device
2074 *
2075 * Allow upper layers to call the device hard_start_xmit routine.
2076 */
2077static inline void netif_start_queue(struct net_device *dev)
2078{
2079 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2080}
2081
2082static inline void netif_tx_start_all_queues(struct net_device *dev)
2083{
2084 unsigned int i;
2085
2086 for (i = 0; i < dev->num_tx_queues; i++) {
2087 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2088 netif_tx_start_queue(txq);
2089 }
2090}
2091
2092static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2093{
2094#ifdef CONFIG_NETPOLL_TRAP
2095 if (netpoll_trap()) {
2096 netif_tx_start_queue(dev_queue);
2097 return;
2098 }
2099#endif
2100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2101 __netif_schedule(dev_queue->qdisc);
2102}
2103
2104/**
2105 * netif_wake_queue - restart transmit
2106 * @dev: network device
2107 *
2108 * Allow upper layers to call the device hard_start_xmit routine.
2109 * Used for flow control when transmit resources are available.
2110 */
2111static inline void netif_wake_queue(struct net_device *dev)
2112{
2113 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2114}
2115
2116static inline void netif_tx_wake_all_queues(struct net_device *dev)
2117{
2118 unsigned int i;
2119
2120 for (i = 0; i < dev->num_tx_queues; i++) {
2121 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2122 netif_tx_wake_queue(txq);
2123 }
2124}
2125
2126static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2127{
2128 if (WARN_ON(!dev_queue)) {
2129 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2130 return;
2131 }
2132 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2133}
2134
2135/**
2136 * netif_stop_queue - stop transmitted packets
2137 * @dev: network device
2138 *
2139 * Stop upper layers calling the device hard_start_xmit routine.
2140 * Used for flow control when transmit resources are unavailable.
2141 */
2142static inline void netif_stop_queue(struct net_device *dev)
2143{
2144 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2145}
2146
2147static inline void netif_tx_stop_all_queues(struct net_device *dev)
2148{
2149 unsigned int i;
2150
2151 for (i = 0; i < dev->num_tx_queues; i++) {
2152 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2153 netif_tx_stop_queue(txq);
2154 }
2155}
2156
2157static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2158{
2159 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2160}
2161
2162/**
2163 * netif_queue_stopped - test if transmit queue is flowblocked
2164 * @dev: network device
2165 *
2166 * Test if transmit queue on device is currently unable to send.
2167 */
2168static inline bool netif_queue_stopped(const struct net_device *dev)
2169{
2170 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2171}
2172
2173static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2174{
2175 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2176}
2177
2178static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2179{
2180 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2181}
2182
2183static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2184 unsigned int bytes)
2185{
2186#ifdef CONFIG_BQL
2187 dql_queued(&dev_queue->dql, bytes);
2188
2189 if (likely(dql_avail(&dev_queue->dql) >= 0))
2190 return;
2191
2192 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2193
2194 /*
2195 * The XOFF flag must be set before checking the dql_avail below,
2196 * because in netdev_tx_completed_queue we update the dql_completed
2197 * before checking the XOFF flag.
2198 */
2199 smp_mb();
2200
2201 /* check again in case another CPU has just made room avail */
2202 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2203 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2204#endif
2205}
2206
2207/**
2208 * netdev_sent_queue - report the number of bytes queued to hardware
2209 * @dev: network device
2210 * @bytes: number of bytes queued to the hardware device queue
2211 *
2212 * Report the number of bytes queued for sending/completion to the network
2213 * device hardware queue. @bytes should be a good approximation and should
2214 * exactly match netdev_completed_queue() @bytes
2215 */
2216static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2217{
2218 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2219}
2220
2221static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2222 unsigned int pkts, unsigned int bytes)
2223{
2224#ifdef CONFIG_BQL
2225 if (unlikely(!bytes))
2226 return;
2227
2228 dql_completed(&dev_queue->dql, bytes);
2229
2230 /*
2231 * Without the memory barrier there is a small possiblity that
2232 * netdev_tx_sent_queue will miss the update and cause the queue to
2233 * be stopped forever
2234 */
2235 smp_mb();
2236
2237 if (dql_avail(&dev_queue->dql) < 0)
2238 return;
2239
2240 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2241 netif_schedule_queue(dev_queue);
2242#endif
2243}
2244
2245/**
2246 * netdev_completed_queue - report bytes and packets completed by device
2247 * @dev: network device
2248 * @pkts: actual number of packets sent over the medium
2249 * @bytes: actual number of bytes sent over the medium
2250 *
2251 * Report the number of bytes and packets transmitted by the network device
2252 * hardware queue over the physical medium, @bytes must exactly match the
2253 * @bytes amount passed to netdev_sent_queue()
2254 */
2255static inline void netdev_completed_queue(struct net_device *dev,
2256 unsigned int pkts, unsigned int bytes)
2257{
2258 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2259}
2260
2261static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2262{
2263#ifdef CONFIG_BQL
2264 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2265 dql_reset(&q->dql);
2266#endif
2267}
2268
2269/**
2270 * netdev_reset_queue - reset the packets and bytes count of a network device
2271 * @dev_queue: network device
2272 *
2273 * Reset the bytes and packet count of a network device and clear the
2274 * software flow control OFF bit for this network device
2275 */
2276static inline void netdev_reset_queue(struct net_device *dev_queue)
2277{
2278 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2279}
2280
2281/**
2282 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2283 * @dev: network device
2284 * @queue_index: given tx queue index
2285 *
2286 * Returns 0 if given tx queue index >= number of device tx queues,
2287 * otherwise returns the originally passed tx queue index.
2288 */
2289static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2290{
2291 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2292 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2293 dev->name, queue_index,
2294 dev->real_num_tx_queues);
2295 return 0;
2296 }
2297
2298 return queue_index;
2299}
2300
2301/**
2302 * netif_running - test if up
2303 * @dev: network device
2304 *
2305 * Test if the device has been brought up.
2306 */
2307static inline bool netif_running(const struct net_device *dev)
2308{
2309 return test_bit(__LINK_STATE_START, &dev->state);
2310}
2311
2312/*
2313 * Routines to manage the subqueues on a device. We only need start
2314 * stop, and a check if it's stopped. All other device management is
2315 * done at the overall netdevice level.
2316 * Also test the device if we're multiqueue.
2317 */
2318
2319/**
2320 * netif_start_subqueue - allow sending packets on subqueue
2321 * @dev: network device
2322 * @queue_index: sub queue index
2323 *
2324 * Start individual transmit queue of a device with multiple transmit queues.
2325 */
2326static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2327{
2328 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2329
2330 netif_tx_start_queue(txq);
2331}
2332
2333/**
2334 * netif_stop_subqueue - stop sending packets on subqueue
2335 * @dev: network device
2336 * @queue_index: sub queue index
2337 *
2338 * Stop individual transmit queue of a device with multiple transmit queues.
2339 */
2340static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2341{
2342 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2343#ifdef CONFIG_NETPOLL_TRAP
2344 if (netpoll_trap())
2345 return;
2346#endif
2347 netif_tx_stop_queue(txq);
2348}
2349
2350/**
2351 * netif_subqueue_stopped - test status of subqueue
2352 * @dev: network device
2353 * @queue_index: sub queue index
2354 *
2355 * Check individual transmit queue of a device with multiple transmit queues.
2356 */
2357static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2358 u16 queue_index)
2359{
2360 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2361
2362 return netif_tx_queue_stopped(txq);
2363}
2364
2365static inline bool netif_subqueue_stopped(const struct net_device *dev,
2366 struct sk_buff *skb)
2367{
2368 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2369}
2370
2371/**
2372 * netif_wake_subqueue - allow sending packets on subqueue
2373 * @dev: network device
2374 * @queue_index: sub queue index
2375 *
2376 * Resume individual transmit queue of a device with multiple transmit queues.
2377 */
2378static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2379{
2380 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2381#ifdef CONFIG_NETPOLL_TRAP
2382 if (netpoll_trap())
2383 return;
2384#endif
2385 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2386 __netif_schedule(txq->qdisc);
2387}
2388
2389#ifdef CONFIG_XPS
2390int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2391 u16 index);
2392#else
2393static inline int netif_set_xps_queue(struct net_device *dev,
2394 const struct cpumask *mask,
2395 u16 index)
2396{
2397 return 0;
2398}
2399#endif
2400
2401/*
2402 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2403 * as a distribution range limit for the returned value.
2404 */
2405static inline u16 skb_tx_hash(const struct net_device *dev,
2406 const struct sk_buff *skb)
2407{
2408 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2409}
2410
2411/**
2412 * netif_is_multiqueue - test if device has multiple transmit queues
2413 * @dev: network device
2414 *
2415 * Check if device has multiple transmit queues
2416 */
2417static inline bool netif_is_multiqueue(const struct net_device *dev)
2418{
2419 return dev->num_tx_queues > 1;
2420}
2421
2422int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2423
2424#ifdef CONFIG_SYSFS
2425int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2426#else
2427static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2428 unsigned int rxq)
2429{
2430 return 0;
2431}
2432#endif
2433
2434static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2435 const struct net_device *from_dev)
2436{
2437 int err;
2438
2439 err = netif_set_real_num_tx_queues(to_dev,
2440 from_dev->real_num_tx_queues);
2441 if (err)
2442 return err;
2443#ifdef CONFIG_SYSFS
2444 return netif_set_real_num_rx_queues(to_dev,
2445 from_dev->real_num_rx_queues);
2446#else
2447 return 0;
2448#endif
2449}
2450
2451#ifdef CONFIG_SYSFS
2452static inline unsigned int get_netdev_rx_queue_index(
2453 struct netdev_rx_queue *queue)
2454{
2455 struct net_device *dev = queue->dev;
2456 int index = queue - dev->_rx;
2457
2458 BUG_ON(index >= dev->num_rx_queues);
2459 return index;
2460}
2461#endif
2462
2463#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2464int netif_get_num_default_rss_queues(void);
2465
2466enum skb_free_reason {
2467 SKB_REASON_CONSUMED,
2468 SKB_REASON_DROPPED,
2469};
2470
2471void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2472void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2473
2474/*
2475 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2476 * interrupt context or with hardware interrupts being disabled.
2477 * (in_irq() || irqs_disabled())
2478 *
2479 * We provide four helpers that can be used in following contexts :
2480 *
2481 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2482 * replacing kfree_skb(skb)
2483 *
2484 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2485 * Typically used in place of consume_skb(skb) in TX completion path
2486 *
2487 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2488 * replacing kfree_skb(skb)
2489 *
2490 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2491 * and consumed a packet. Used in place of consume_skb(skb)
2492 */
2493static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2494{
2495 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2496}
2497
2498static inline void dev_consume_skb_irq(struct sk_buff *skb)
2499{
2500 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2501}
2502
2503static inline void dev_kfree_skb_any(struct sk_buff *skb)
2504{
2505 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2506}
2507
2508static inline void dev_consume_skb_any(struct sk_buff *skb)
2509{
2510 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2511}
2512
2513int netif_rx(struct sk_buff *skb);
2514int netif_rx_ni(struct sk_buff *skb);
2515int netif_receive_skb(struct sk_buff *skb);
2516gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2517void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2518struct sk_buff *napi_get_frags(struct napi_struct *napi);
2519gro_result_t napi_gro_frags(struct napi_struct *napi);
2520struct packet_offload *gro_find_receive_by_type(__be16 type);
2521struct packet_offload *gro_find_complete_by_type(__be16 type);
2522
2523static inline void napi_free_frags(struct napi_struct *napi)
2524{
2525 kfree_skb(napi->skb);
2526 napi->skb = NULL;
2527}
2528
2529int netdev_rx_handler_register(struct net_device *dev,
2530 rx_handler_func_t *rx_handler,
2531 void *rx_handler_data);
2532void netdev_rx_handler_unregister(struct net_device *dev);
2533
2534bool dev_valid_name(const char *name);
2535int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2536int dev_ethtool(struct net *net, struct ifreq *);
2537unsigned int dev_get_flags(const struct net_device *);
2538int __dev_change_flags(struct net_device *, unsigned int flags);
2539int dev_change_flags(struct net_device *, unsigned int);
2540void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2541 unsigned int gchanges);
2542int dev_change_name(struct net_device *, const char *);
2543int dev_set_alias(struct net_device *, const char *, size_t);
2544int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2545int dev_set_mtu(struct net_device *, int);
2546void dev_set_group(struct net_device *, int);
2547int dev_set_mac_address(struct net_device *, struct sockaddr *);
2548int dev_change_carrier(struct net_device *, bool new_carrier);
2549int dev_get_phys_port_id(struct net_device *dev,
2550 struct netdev_phys_port_id *ppid);
2551int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2552 struct netdev_queue *txq);
2553int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2554
2555extern int netdev_budget;
2556
2557/* Called by rtnetlink.c:rtnl_unlock() */
2558void netdev_run_todo(void);
2559
2560/**
2561 * dev_put - release reference to device
2562 * @dev: network device
2563 *
2564 * Release reference to device to allow it to be freed.
2565 */
2566static inline void dev_put(struct net_device *dev)
2567{
2568 this_cpu_dec(*dev->pcpu_refcnt);
2569}
2570
2571/**
2572 * dev_hold - get reference to device
2573 * @dev: network device
2574 *
2575 * Hold reference to device to keep it from being freed.
2576 */
2577static inline void dev_hold(struct net_device *dev)
2578{
2579 this_cpu_inc(*dev->pcpu_refcnt);
2580}
2581
2582/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2583 * and _off may be called from IRQ context, but it is caller
2584 * who is responsible for serialization of these calls.
2585 *
2586 * The name carrier is inappropriate, these functions should really be
2587 * called netif_lowerlayer_*() because they represent the state of any
2588 * kind of lower layer not just hardware media.
2589 */
2590
2591void linkwatch_init_dev(struct net_device *dev);
2592void linkwatch_fire_event(struct net_device *dev);
2593void linkwatch_forget_dev(struct net_device *dev);
2594
2595/**
2596 * netif_carrier_ok - test if carrier present
2597 * @dev: network device
2598 *
2599 * Check if carrier is present on device
2600 */
2601static inline bool netif_carrier_ok(const struct net_device *dev)
2602{
2603 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2604}
2605
2606unsigned long dev_trans_start(struct net_device *dev);
2607
2608void __netdev_watchdog_up(struct net_device *dev);
2609
2610void netif_carrier_on(struct net_device *dev);
2611
2612void netif_carrier_off(struct net_device *dev);
2613
2614/**
2615 * netif_dormant_on - mark device as dormant.
2616 * @dev: network device
2617 *
2618 * Mark device as dormant (as per RFC2863).
2619 *
2620 * The dormant state indicates that the relevant interface is not
2621 * actually in a condition to pass packets (i.e., it is not 'up') but is
2622 * in a "pending" state, waiting for some external event. For "on-
2623 * demand" interfaces, this new state identifies the situation where the
2624 * interface is waiting for events to place it in the up state.
2625 *
2626 */
2627static inline void netif_dormant_on(struct net_device *dev)
2628{
2629 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2630 linkwatch_fire_event(dev);
2631}
2632
2633/**
2634 * netif_dormant_off - set device as not dormant.
2635 * @dev: network device
2636 *
2637 * Device is not in dormant state.
2638 */
2639static inline void netif_dormant_off(struct net_device *dev)
2640{
2641 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2642 linkwatch_fire_event(dev);
2643}
2644
2645/**
2646 * netif_dormant - test if carrier present
2647 * @dev: network device
2648 *
2649 * Check if carrier is present on device
2650 */
2651static inline bool netif_dormant(const struct net_device *dev)
2652{
2653 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2654}
2655
2656
2657/**
2658 * netif_oper_up - test if device is operational
2659 * @dev: network device
2660 *
2661 * Check if carrier is operational
2662 */
2663static inline bool netif_oper_up(const struct net_device *dev)
2664{
2665 return (dev->operstate == IF_OPER_UP ||
2666 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2667}
2668
2669/**
2670 * netif_device_present - is device available or removed
2671 * @dev: network device
2672 *
2673 * Check if device has not been removed from system.
2674 */
2675static inline bool netif_device_present(struct net_device *dev)
2676{
2677 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2678}
2679
2680void netif_device_detach(struct net_device *dev);
2681
2682void netif_device_attach(struct net_device *dev);
2683
2684/*
2685 * Network interface message level settings
2686 */
2687
2688enum {
2689 NETIF_MSG_DRV = 0x0001,
2690 NETIF_MSG_PROBE = 0x0002,
2691 NETIF_MSG_LINK = 0x0004,
2692 NETIF_MSG_TIMER = 0x0008,
2693 NETIF_MSG_IFDOWN = 0x0010,
2694 NETIF_MSG_IFUP = 0x0020,
2695 NETIF_MSG_RX_ERR = 0x0040,
2696 NETIF_MSG_TX_ERR = 0x0080,
2697 NETIF_MSG_TX_QUEUED = 0x0100,
2698 NETIF_MSG_INTR = 0x0200,
2699 NETIF_MSG_TX_DONE = 0x0400,
2700 NETIF_MSG_RX_STATUS = 0x0800,
2701 NETIF_MSG_PKTDATA = 0x1000,
2702 NETIF_MSG_HW = 0x2000,
2703 NETIF_MSG_WOL = 0x4000,
2704};
2705
2706#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2707#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2708#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2709#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2710#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2711#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2712#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2713#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2714#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2715#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2716#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2717#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2718#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2719#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2720#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2721
2722static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2723{
2724 /* use default */
2725 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2726 return default_msg_enable_bits;
2727 if (debug_value == 0) /* no output */
2728 return 0;
2729 /* set low N bits */
2730 return (1 << debug_value) - 1;
2731}
2732
2733static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2734{
2735 spin_lock(&txq->_xmit_lock);
2736 txq->xmit_lock_owner = cpu;
2737}
2738
2739static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2740{
2741 spin_lock_bh(&txq->_xmit_lock);
2742 txq->xmit_lock_owner = smp_processor_id();
2743}
2744
2745static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2746{
2747 bool ok = spin_trylock(&txq->_xmit_lock);
2748 if (likely(ok))
2749 txq->xmit_lock_owner = smp_processor_id();
2750 return ok;
2751}
2752
2753static inline void __netif_tx_unlock(struct netdev_queue *txq)
2754{
2755 txq->xmit_lock_owner = -1;
2756 spin_unlock(&txq->_xmit_lock);
2757}
2758
2759static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2760{
2761 txq->xmit_lock_owner = -1;
2762 spin_unlock_bh(&txq->_xmit_lock);
2763}
2764
2765static inline void txq_trans_update(struct netdev_queue *txq)
2766{
2767 if (txq->xmit_lock_owner != -1)
2768 txq->trans_start = jiffies;
2769}
2770
2771/**
2772 * netif_tx_lock - grab network device transmit lock
2773 * @dev: network device
2774 *
2775 * Get network device transmit lock
2776 */
2777static inline void netif_tx_lock(struct net_device *dev)
2778{
2779 unsigned int i;
2780 int cpu;
2781
2782 spin_lock(&dev->tx_global_lock);
2783 cpu = smp_processor_id();
2784 for (i = 0; i < dev->num_tx_queues; i++) {
2785 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2786
2787 /* We are the only thread of execution doing a
2788 * freeze, but we have to grab the _xmit_lock in
2789 * order to synchronize with threads which are in
2790 * the ->hard_start_xmit() handler and already
2791 * checked the frozen bit.
2792 */
2793 __netif_tx_lock(txq, cpu);
2794 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2795 __netif_tx_unlock(txq);
2796 }
2797}
2798
2799static inline void netif_tx_lock_bh(struct net_device *dev)
2800{
2801 local_bh_disable();
2802 netif_tx_lock(dev);
2803}
2804
2805static inline void netif_tx_unlock(struct net_device *dev)
2806{
2807 unsigned int i;
2808
2809 for (i = 0; i < dev->num_tx_queues; i++) {
2810 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2811
2812 /* No need to grab the _xmit_lock here. If the
2813 * queue is not stopped for another reason, we
2814 * force a schedule.
2815 */
2816 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2817 netif_schedule_queue(txq);
2818 }
2819 spin_unlock(&dev->tx_global_lock);
2820}
2821
2822static inline void netif_tx_unlock_bh(struct net_device *dev)
2823{
2824 netif_tx_unlock(dev);
2825 local_bh_enable();
2826}
2827
2828#define HARD_TX_LOCK(dev, txq, cpu) { \
2829 if ((dev->features & NETIF_F_LLTX) == 0) { \
2830 __netif_tx_lock(txq, cpu); \
2831 } \
2832}
2833
2834#define HARD_TX_UNLOCK(dev, txq) { \
2835 if ((dev->features & NETIF_F_LLTX) == 0) { \
2836 __netif_tx_unlock(txq); \
2837 } \
2838}
2839
2840static inline void netif_tx_disable(struct net_device *dev)
2841{
2842 unsigned int i;
2843 int cpu;
2844
2845 local_bh_disable();
2846 cpu = smp_processor_id();
2847 for (i = 0; i < dev->num_tx_queues; i++) {
2848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2849
2850 __netif_tx_lock(txq, cpu);
2851 netif_tx_stop_queue(txq);
2852 __netif_tx_unlock(txq);
2853 }
2854 local_bh_enable();
2855}
2856
2857static inline void netif_addr_lock(struct net_device *dev)
2858{
2859 spin_lock(&dev->addr_list_lock);
2860}
2861
2862static inline void netif_addr_lock_nested(struct net_device *dev)
2863{
2864 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2865}
2866
2867static inline void netif_addr_lock_bh(struct net_device *dev)
2868{
2869 spin_lock_bh(&dev->addr_list_lock);
2870}
2871
2872static inline void netif_addr_unlock(struct net_device *dev)
2873{
2874 spin_unlock(&dev->addr_list_lock);
2875}
2876
2877static inline void netif_addr_unlock_bh(struct net_device *dev)
2878{
2879 spin_unlock_bh(&dev->addr_list_lock);
2880}
2881
2882/*
2883 * dev_addrs walker. Should be used only for read access. Call with
2884 * rcu_read_lock held.
2885 */
2886#define for_each_dev_addr(dev, ha) \
2887 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2888
2889/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2890
2891void ether_setup(struct net_device *dev);
2892
2893/* Support for loadable net-drivers */
2894struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2895 void (*setup)(struct net_device *),
2896 unsigned int txqs, unsigned int rxqs);
2897#define alloc_netdev(sizeof_priv, name, setup) \
2898 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2899
2900#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2901 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2902
2903int register_netdev(struct net_device *dev);
2904void unregister_netdev(struct net_device *dev);
2905
2906/* General hardware address lists handling functions */
2907int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2908 struct netdev_hw_addr_list *from_list, int addr_len);
2909void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2910 struct netdev_hw_addr_list *from_list, int addr_len);
2911void __hw_addr_init(struct netdev_hw_addr_list *list);
2912
2913/* Functions used for device addresses handling */
2914int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2915 unsigned char addr_type);
2916int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2917 unsigned char addr_type);
2918void dev_addr_flush(struct net_device *dev);
2919int dev_addr_init(struct net_device *dev);
2920
2921/* Functions used for unicast addresses handling */
2922int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2923int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2924int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2925int dev_uc_sync(struct net_device *to, struct net_device *from);
2926int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2927void dev_uc_unsync(struct net_device *to, struct net_device *from);
2928void dev_uc_flush(struct net_device *dev);
2929void dev_uc_init(struct net_device *dev);
2930
2931/* Functions used for multicast addresses handling */
2932int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2933int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2934int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2935int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2936int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2937int dev_mc_sync(struct net_device *to, struct net_device *from);
2938int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2939void dev_mc_unsync(struct net_device *to, struct net_device *from);
2940void dev_mc_flush(struct net_device *dev);
2941void dev_mc_init(struct net_device *dev);
2942
2943/* Functions used for secondary unicast and multicast support */
2944void dev_set_rx_mode(struct net_device *dev);
2945void __dev_set_rx_mode(struct net_device *dev);
2946int dev_set_promiscuity(struct net_device *dev, int inc);
2947int dev_set_allmulti(struct net_device *dev, int inc);
2948void netdev_state_change(struct net_device *dev);
2949void netdev_notify_peers(struct net_device *dev);
2950void netdev_features_change(struct net_device *dev);
2951/* Load a device via the kmod */
2952void dev_load(struct net *net, const char *name);
2953struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2954 struct rtnl_link_stats64 *storage);
2955void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2956 const struct net_device_stats *netdev_stats);
2957
2958extern int netdev_max_backlog;
2959extern int netdev_tstamp_prequeue;
2960extern int weight_p;
2961extern int bpf_jit_enable;
2962
2963bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2964struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2965 struct list_head **iter);
2966
2967/* iterate through upper list, must be called under RCU read lock */
2968#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2969 for (iter = &(dev)->all_adj_list.upper, \
2970 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2971 updev; \
2972 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2973
2974void *netdev_lower_get_next_private(struct net_device *dev,
2975 struct list_head **iter);
2976void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2977 struct list_head **iter);
2978
2979#define netdev_for_each_lower_private(dev, priv, iter) \
2980 for (iter = (dev)->adj_list.lower.next, \
2981 priv = netdev_lower_get_next_private(dev, &(iter)); \
2982 priv; \
2983 priv = netdev_lower_get_next_private(dev, &(iter)))
2984
2985#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2986 for (iter = &(dev)->adj_list.lower, \
2987 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2988 priv; \
2989 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2990
2991void *netdev_adjacent_get_private(struct list_head *adj_list);
2992void *netdev_lower_get_first_private_rcu(struct net_device *dev);
2993struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2994struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2995int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2996int netdev_master_upper_dev_link(struct net_device *dev,
2997 struct net_device *upper_dev);
2998int netdev_master_upper_dev_link_private(struct net_device *dev,
2999 struct net_device *upper_dev,
3000 void *private);
3001void netdev_upper_dev_unlink(struct net_device *dev,
3002 struct net_device *upper_dev);
3003void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3004void *netdev_lower_dev_get_private(struct net_device *dev,
3005 struct net_device *lower_dev);
3006int skb_checksum_help(struct sk_buff *skb);
3007struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3008 netdev_features_t features, bool tx_path);
3009struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3010 netdev_features_t features);
3011
3012static inline
3013struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3014{
3015 return __skb_gso_segment(skb, features, true);
3016}
3017__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3018
3019static inline bool can_checksum_protocol(netdev_features_t features,
3020 __be16 protocol)
3021{
3022 return ((features & NETIF_F_GEN_CSUM) ||
3023 ((features & NETIF_F_V4_CSUM) &&
3024 protocol == htons(ETH_P_IP)) ||
3025 ((features & NETIF_F_V6_CSUM) &&
3026 protocol == htons(ETH_P_IPV6)) ||
3027 ((features & NETIF_F_FCOE_CRC) &&
3028 protocol == htons(ETH_P_FCOE)));
3029}
3030
3031#ifdef CONFIG_BUG
3032void netdev_rx_csum_fault(struct net_device *dev);
3033#else
3034static inline void netdev_rx_csum_fault(struct net_device *dev)
3035{
3036}
3037#endif
3038/* rx skb timestamps */
3039void net_enable_timestamp(void);
3040void net_disable_timestamp(void);
3041
3042#ifdef CONFIG_PROC_FS
3043int __init dev_proc_init(void);
3044#else
3045#define dev_proc_init() 0
3046#endif
3047
3048int netdev_class_create_file_ns(struct class_attribute *class_attr,
3049 const void *ns);
3050void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3051 const void *ns);
3052
3053static inline int netdev_class_create_file(struct class_attribute *class_attr)
3054{
3055 return netdev_class_create_file_ns(class_attr, NULL);
3056}
3057
3058static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3059{
3060 netdev_class_remove_file_ns(class_attr, NULL);
3061}
3062
3063extern struct kobj_ns_type_operations net_ns_type_operations;
3064
3065const char *netdev_drivername(const struct net_device *dev);
3066
3067void linkwatch_run_queue(void);
3068
3069static inline netdev_features_t netdev_get_wanted_features(
3070 struct net_device *dev)
3071{
3072 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3073}
3074netdev_features_t netdev_increment_features(netdev_features_t all,
3075 netdev_features_t one, netdev_features_t mask);
3076
3077/* Allow TSO being used on stacked device :
3078 * Performing the GSO segmentation before last device
3079 * is a performance improvement.
3080 */
3081static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3082 netdev_features_t mask)
3083{
3084 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3085}
3086
3087int __netdev_update_features(struct net_device *dev);
3088void netdev_update_features(struct net_device *dev);
3089void netdev_change_features(struct net_device *dev);
3090
3091void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3092 struct net_device *dev);
3093
3094netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
3095 const struct net_device *dev);
3096static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
3097{
3098 return netif_skb_dev_features(skb, skb->dev);
3099}
3100
3101static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3102{
3103 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3104
3105 /* check flags correspondence */
3106 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3107 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3108 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3109 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3110 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3111 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3112
3113 return (features & feature) == feature;
3114}
3115
3116static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3117{
3118 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3119 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3120}
3121
3122static inline bool netif_needs_gso(struct sk_buff *skb,
3123 netdev_features_t features)
3124{
3125 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3126 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3127 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3128}
3129
3130static inline void netif_set_gso_max_size(struct net_device *dev,
3131 unsigned int size)
3132{
3133 dev->gso_max_size = size;
3134}
3135
3136static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3137 int pulled_hlen, u16 mac_offset,
3138 int mac_len)
3139{
3140 skb->protocol = protocol;
3141 skb->encapsulation = 1;
3142 skb_push(skb, pulled_hlen);
3143 skb_reset_transport_header(skb);
3144 skb->mac_header = mac_offset;
3145 skb->network_header = skb->mac_header + mac_len;
3146 skb->mac_len = mac_len;
3147}
3148
3149static inline bool netif_is_macvlan(struct net_device *dev)
3150{
3151 return dev->priv_flags & IFF_MACVLAN;
3152}
3153
3154static inline bool netif_is_bond_master(struct net_device *dev)
3155{
3156 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3157}
3158
3159static inline bool netif_is_bond_slave(struct net_device *dev)
3160{
3161 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3162}
3163
3164static inline bool netif_supports_nofcs(struct net_device *dev)
3165{
3166 return dev->priv_flags & IFF_SUPP_NOFCS;
3167}
3168
3169extern struct pernet_operations __net_initdata loopback_net_ops;
3170
3171/* Logging, debugging and troubleshooting/diagnostic helpers. */
3172
3173/* netdev_printk helpers, similar to dev_printk */
3174
3175static inline const char *netdev_name(const struct net_device *dev)
3176{
3177 if (dev->reg_state != NETREG_REGISTERED)
3178 return "(unregistered net_device)";
3179 return dev->name;
3180}
3181
3182__printf(3, 4)
3183int netdev_printk(const char *level, const struct net_device *dev,
3184 const char *format, ...);
3185__printf(2, 3)
3186int netdev_emerg(const struct net_device *dev, const char *format, ...);
3187__printf(2, 3)
3188int netdev_alert(const struct net_device *dev, const char *format, ...);
3189__printf(2, 3)
3190int netdev_crit(const struct net_device *dev, const char *format, ...);
3191__printf(2, 3)
3192int netdev_err(const struct net_device *dev, const char *format, ...);
3193__printf(2, 3)
3194int netdev_warn(const struct net_device *dev, const char *format, ...);
3195__printf(2, 3)
3196int netdev_notice(const struct net_device *dev, const char *format, ...);
3197__printf(2, 3)
3198int netdev_info(const struct net_device *dev, const char *format, ...);
3199
3200#define MODULE_ALIAS_NETDEV(device) \
3201 MODULE_ALIAS("netdev-" device)
3202
3203#if defined(CONFIG_DYNAMIC_DEBUG)
3204#define netdev_dbg(__dev, format, args...) \
3205do { \
3206 dynamic_netdev_dbg(__dev, format, ##args); \
3207} while (0)
3208#elif defined(DEBUG)
3209#define netdev_dbg(__dev, format, args...) \
3210 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3211#else
3212#define netdev_dbg(__dev, format, args...) \
3213({ \
3214 if (0) \
3215 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3216 0; \
3217})
3218#endif
3219
3220#if defined(VERBOSE_DEBUG)
3221#define netdev_vdbg netdev_dbg
3222#else
3223
3224#define netdev_vdbg(dev, format, args...) \
3225({ \
3226 if (0) \
3227 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3228 0; \
3229})
3230#endif
3231
3232/*
3233 * netdev_WARN() acts like dev_printk(), but with the key difference
3234 * of using a WARN/WARN_ON to get the message out, including the
3235 * file/line information and a backtrace.
3236 */
3237#define netdev_WARN(dev, format, args...) \
3238 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3239
3240/* netif printk helpers, similar to netdev_printk */
3241
3242#define netif_printk(priv, type, level, dev, fmt, args...) \
3243do { \
3244 if (netif_msg_##type(priv)) \
3245 netdev_printk(level, (dev), fmt, ##args); \
3246} while (0)
3247
3248#define netif_level(level, priv, type, dev, fmt, args...) \
3249do { \
3250 if (netif_msg_##type(priv)) \
3251 netdev_##level(dev, fmt, ##args); \
3252} while (0)
3253
3254#define netif_emerg(priv, type, dev, fmt, args...) \
3255 netif_level(emerg, priv, type, dev, fmt, ##args)
3256#define netif_alert(priv, type, dev, fmt, args...) \
3257 netif_level(alert, priv, type, dev, fmt, ##args)
3258#define netif_crit(priv, type, dev, fmt, args...) \
3259 netif_level(crit, priv, type, dev, fmt, ##args)
3260#define netif_err(priv, type, dev, fmt, args...) \
3261 netif_level(err, priv, type, dev, fmt, ##args)
3262#define netif_warn(priv, type, dev, fmt, args...) \
3263 netif_level(warn, priv, type, dev, fmt, ##args)
3264#define netif_notice(priv, type, dev, fmt, args...) \
3265 netif_level(notice, priv, type, dev, fmt, ##args)
3266#define netif_info(priv, type, dev, fmt, args...) \
3267 netif_level(info, priv, type, dev, fmt, ##args)
3268
3269#if defined(CONFIG_DYNAMIC_DEBUG)
3270#define netif_dbg(priv, type, netdev, format, args...) \
3271do { \
3272 if (netif_msg_##type(priv)) \
3273 dynamic_netdev_dbg(netdev, format, ##args); \
3274} while (0)
3275#elif defined(DEBUG)
3276#define netif_dbg(priv, type, dev, format, args...) \
3277 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3278#else
3279#define netif_dbg(priv, type, dev, format, args...) \
3280({ \
3281 if (0) \
3282 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3283 0; \
3284})
3285#endif
3286
3287#if defined(VERBOSE_DEBUG)
3288#define netif_vdbg netif_dbg
3289#else
3290#define netif_vdbg(priv, type, dev, format, args...) \
3291({ \
3292 if (0) \
3293 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3294 0; \
3295})
3296#endif
3297
3298/*
3299 * The list of packet types we will receive (as opposed to discard)
3300 * and the routines to invoke.
3301 *
3302 * Why 16. Because with 16 the only overlap we get on a hash of the
3303 * low nibble of the protocol value is RARP/SNAP/X.25.
3304 *
3305 * NOTE: That is no longer true with the addition of VLAN tags. Not
3306 * sure which should go first, but I bet it won't make much
3307 * difference if we are running VLANs. The good news is that
3308 * this protocol won't be in the list unless compiled in, so
3309 * the average user (w/out VLANs) will not be adversely affected.
3310 * --BLG
3311 *
3312 * 0800 IP
3313 * 8100 802.1Q VLAN
3314 * 0001 802.3
3315 * 0002 AX.25
3316 * 0004 802.2
3317 * 8035 RARP
3318 * 0005 SNAP
3319 * 0805 X.25
3320 * 0806 ARP
3321 * 8137 IPX
3322 * 0009 Localtalk
3323 * 86DD IPv6
3324 */
3325#define PTYPE_HASH_SIZE (16)
3326#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3327
3328#endif /* _LINUX_NETDEVICE_H */