at v3.14 41 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66#ifdef CONFIG_CMA 67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68#else 69# define is_migrate_cma(migratetype) false 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78static inline int get_pageblock_migratetype(struct page *page) 79{ 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81} 82 83struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86}; 87 88struct pglist_data; 89 90/* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96#if defined(CONFIG_SMP) 97struct zone_padding { 98 char x[0]; 99} ____cacheline_internodealigned_in_smp; 100#define ZONE_PADDING(name) struct zone_padding name; 101#else 102#define ZONE_PADDING(name) 103#endif 104 105enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_ALLOC_BATCH, 109 NR_LRU_BASE, 110 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 111 NR_ACTIVE_ANON, /* " " " " " */ 112 NR_INACTIVE_FILE, /* " " " " " */ 113 NR_ACTIVE_FILE, /* " " " " " */ 114 NR_UNEVICTABLE, /* " " " " " */ 115 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 116 NR_ANON_PAGES, /* Mapped anonymous pages */ 117 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 118 only modified from process context */ 119 NR_FILE_PAGES, 120 NR_FILE_DIRTY, 121 NR_WRITEBACK, 122 NR_SLAB_RECLAIMABLE, 123 NR_SLAB_UNRECLAIMABLE, 124 NR_PAGETABLE, /* used for pagetables */ 125 NR_KERNEL_STACK, 126 /* Second 128 byte cacheline */ 127 NR_UNSTABLE_NFS, /* NFS unstable pages */ 128 NR_BOUNCE, 129 NR_VMSCAN_WRITE, 130 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 131 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 132 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 133 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 134 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 135 NR_DIRTIED, /* page dirtyings since bootup */ 136 NR_WRITTEN, /* page writings since bootup */ 137#ifdef CONFIG_NUMA 138 NUMA_HIT, /* allocated in intended node */ 139 NUMA_MISS, /* allocated in non intended node */ 140 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 141 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 142 NUMA_LOCAL, /* allocation from local node */ 143 NUMA_OTHER, /* allocation from other node */ 144#endif 145 NR_ANON_TRANSPARENT_HUGEPAGES, 146 NR_FREE_CMA_PAGES, 147 NR_VM_ZONE_STAT_ITEMS }; 148 149/* 150 * We do arithmetic on the LRU lists in various places in the code, 151 * so it is important to keep the active lists LRU_ACTIVE higher in 152 * the array than the corresponding inactive lists, and to keep 153 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 154 * 155 * This has to be kept in sync with the statistics in zone_stat_item 156 * above and the descriptions in vmstat_text in mm/vmstat.c 157 */ 158#define LRU_BASE 0 159#define LRU_ACTIVE 1 160#define LRU_FILE 2 161 162enum lru_list { 163 LRU_INACTIVE_ANON = LRU_BASE, 164 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 165 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 166 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 167 LRU_UNEVICTABLE, 168 NR_LRU_LISTS 169}; 170 171#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 172 173#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 174 175static inline int is_file_lru(enum lru_list lru) 176{ 177 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 178} 179 180static inline int is_active_lru(enum lru_list lru) 181{ 182 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 183} 184 185static inline int is_unevictable_lru(enum lru_list lru) 186{ 187 return (lru == LRU_UNEVICTABLE); 188} 189 190struct zone_reclaim_stat { 191 /* 192 * The pageout code in vmscan.c keeps track of how many of the 193 * mem/swap backed and file backed pages are referenced. 194 * The higher the rotated/scanned ratio, the more valuable 195 * that cache is. 196 * 197 * The anon LRU stats live in [0], file LRU stats in [1] 198 */ 199 unsigned long recent_rotated[2]; 200 unsigned long recent_scanned[2]; 201}; 202 203struct lruvec { 204 struct list_head lists[NR_LRU_LISTS]; 205 struct zone_reclaim_stat reclaim_stat; 206#ifdef CONFIG_MEMCG 207 struct zone *zone; 208#endif 209}; 210 211/* Mask used at gathering information at once (see memcontrol.c) */ 212#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 213#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 214#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 215 216/* Isolate clean file */ 217#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 218/* Isolate unmapped file */ 219#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 220/* Isolate for asynchronous migration */ 221#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 222/* Isolate unevictable pages */ 223#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 224 225/* LRU Isolation modes. */ 226typedef unsigned __bitwise__ isolate_mode_t; 227 228enum zone_watermarks { 229 WMARK_MIN, 230 WMARK_LOW, 231 WMARK_HIGH, 232 NR_WMARK 233}; 234 235#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 236#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 237#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 238 239struct per_cpu_pages { 240 int count; /* number of pages in the list */ 241 int high; /* high watermark, emptying needed */ 242 int batch; /* chunk size for buddy add/remove */ 243 244 /* Lists of pages, one per migrate type stored on the pcp-lists */ 245 struct list_head lists[MIGRATE_PCPTYPES]; 246}; 247 248struct per_cpu_pageset { 249 struct per_cpu_pages pcp; 250#ifdef CONFIG_NUMA 251 s8 expire; 252#endif 253#ifdef CONFIG_SMP 254 s8 stat_threshold; 255 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 256#endif 257}; 258 259#endif /* !__GENERATING_BOUNDS.H */ 260 261enum zone_type { 262#ifdef CONFIG_ZONE_DMA 263 /* 264 * ZONE_DMA is used when there are devices that are not able 265 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 266 * carve out the portion of memory that is needed for these devices. 267 * The range is arch specific. 268 * 269 * Some examples 270 * 271 * Architecture Limit 272 * --------------------------- 273 * parisc, ia64, sparc <4G 274 * s390 <2G 275 * arm Various 276 * alpha Unlimited or 0-16MB. 277 * 278 * i386, x86_64 and multiple other arches 279 * <16M. 280 */ 281 ZONE_DMA, 282#endif 283#ifdef CONFIG_ZONE_DMA32 284 /* 285 * x86_64 needs two ZONE_DMAs because it supports devices that are 286 * only able to do DMA to the lower 16M but also 32 bit devices that 287 * can only do DMA areas below 4G. 288 */ 289 ZONE_DMA32, 290#endif 291 /* 292 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 293 * performed on pages in ZONE_NORMAL if the DMA devices support 294 * transfers to all addressable memory. 295 */ 296 ZONE_NORMAL, 297#ifdef CONFIG_HIGHMEM 298 /* 299 * A memory area that is only addressable by the kernel through 300 * mapping portions into its own address space. This is for example 301 * used by i386 to allow the kernel to address the memory beyond 302 * 900MB. The kernel will set up special mappings (page 303 * table entries on i386) for each page that the kernel needs to 304 * access. 305 */ 306 ZONE_HIGHMEM, 307#endif 308 ZONE_MOVABLE, 309 __MAX_NR_ZONES 310}; 311 312#ifndef __GENERATING_BOUNDS_H 313 314struct zone { 315 /* Fields commonly accessed by the page allocator */ 316 317 /* zone watermarks, access with *_wmark_pages(zone) macros */ 318 unsigned long watermark[NR_WMARK]; 319 320 /* 321 * When free pages are below this point, additional steps are taken 322 * when reading the number of free pages to avoid per-cpu counter 323 * drift allowing watermarks to be breached 324 */ 325 unsigned long percpu_drift_mark; 326 327 /* 328 * We don't know if the memory that we're going to allocate will be freeable 329 * or/and it will be released eventually, so to avoid totally wasting several 330 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 331 * to run OOM on the lower zones despite there's tons of freeable ram 332 * on the higher zones). This array is recalculated at runtime if the 333 * sysctl_lowmem_reserve_ratio sysctl changes. 334 */ 335 unsigned long lowmem_reserve[MAX_NR_ZONES]; 336 337 /* 338 * This is a per-zone reserve of pages that should not be 339 * considered dirtyable memory. 340 */ 341 unsigned long dirty_balance_reserve; 342 343#ifdef CONFIG_NUMA 344 int node; 345 /* 346 * zone reclaim becomes active if more unmapped pages exist. 347 */ 348 unsigned long min_unmapped_pages; 349 unsigned long min_slab_pages; 350#endif 351 struct per_cpu_pageset __percpu *pageset; 352 /* 353 * free areas of different sizes 354 */ 355 spinlock_t lock; 356#if defined CONFIG_COMPACTION || defined CONFIG_CMA 357 /* Set to true when the PG_migrate_skip bits should be cleared */ 358 bool compact_blockskip_flush; 359 360 /* pfns where compaction scanners should start */ 361 unsigned long compact_cached_free_pfn; 362 unsigned long compact_cached_migrate_pfn; 363#endif 364#ifdef CONFIG_MEMORY_HOTPLUG 365 /* see spanned/present_pages for more description */ 366 seqlock_t span_seqlock; 367#endif 368 struct free_area free_area[MAX_ORDER]; 369 370#ifndef CONFIG_SPARSEMEM 371 /* 372 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 373 * In SPARSEMEM, this map is stored in struct mem_section 374 */ 375 unsigned long *pageblock_flags; 376#endif /* CONFIG_SPARSEMEM */ 377 378#ifdef CONFIG_COMPACTION 379 /* 380 * On compaction failure, 1<<compact_defer_shift compactions 381 * are skipped before trying again. The number attempted since 382 * last failure is tracked with compact_considered. 383 */ 384 unsigned int compact_considered; 385 unsigned int compact_defer_shift; 386 int compact_order_failed; 387#endif 388 389 ZONE_PADDING(_pad1_) 390 391 /* Fields commonly accessed by the page reclaim scanner */ 392 spinlock_t lru_lock; 393 struct lruvec lruvec; 394 395 unsigned long pages_scanned; /* since last reclaim */ 396 unsigned long flags; /* zone flags, see below */ 397 398 /* Zone statistics */ 399 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 400 401 /* 402 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 403 * this zone's LRU. Maintained by the pageout code. 404 */ 405 unsigned int inactive_ratio; 406 407 408 ZONE_PADDING(_pad2_) 409 /* Rarely used or read-mostly fields */ 410 411 /* 412 * wait_table -- the array holding the hash table 413 * wait_table_hash_nr_entries -- the size of the hash table array 414 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 415 * 416 * The purpose of all these is to keep track of the people 417 * waiting for a page to become available and make them 418 * runnable again when possible. The trouble is that this 419 * consumes a lot of space, especially when so few things 420 * wait on pages at a given time. So instead of using 421 * per-page waitqueues, we use a waitqueue hash table. 422 * 423 * The bucket discipline is to sleep on the same queue when 424 * colliding and wake all in that wait queue when removing. 425 * When something wakes, it must check to be sure its page is 426 * truly available, a la thundering herd. The cost of a 427 * collision is great, but given the expected load of the 428 * table, they should be so rare as to be outweighed by the 429 * benefits from the saved space. 430 * 431 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 432 * primary users of these fields, and in mm/page_alloc.c 433 * free_area_init_core() performs the initialization of them. 434 */ 435 wait_queue_head_t * wait_table; 436 unsigned long wait_table_hash_nr_entries; 437 unsigned long wait_table_bits; 438 439 /* 440 * Discontig memory support fields. 441 */ 442 struct pglist_data *zone_pgdat; 443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 444 unsigned long zone_start_pfn; 445 446 /* 447 * spanned_pages is the total pages spanned by the zone, including 448 * holes, which is calculated as: 449 * spanned_pages = zone_end_pfn - zone_start_pfn; 450 * 451 * present_pages is physical pages existing within the zone, which 452 * is calculated as: 453 * present_pages = spanned_pages - absent_pages(pages in holes); 454 * 455 * managed_pages is present pages managed by the buddy system, which 456 * is calculated as (reserved_pages includes pages allocated by the 457 * bootmem allocator): 458 * managed_pages = present_pages - reserved_pages; 459 * 460 * So present_pages may be used by memory hotplug or memory power 461 * management logic to figure out unmanaged pages by checking 462 * (present_pages - managed_pages). And managed_pages should be used 463 * by page allocator and vm scanner to calculate all kinds of watermarks 464 * and thresholds. 465 * 466 * Locking rules: 467 * 468 * zone_start_pfn and spanned_pages are protected by span_seqlock. 469 * It is a seqlock because it has to be read outside of zone->lock, 470 * and it is done in the main allocator path. But, it is written 471 * quite infrequently. 472 * 473 * The span_seq lock is declared along with zone->lock because it is 474 * frequently read in proximity to zone->lock. It's good to 475 * give them a chance of being in the same cacheline. 476 * 477 * Write access to present_pages at runtime should be protected by 478 * lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't 479 * tolerant drift of present_pages should hold memory hotplug lock to 480 * get a stable value. 481 * 482 * Read access to managed_pages should be safe because it's unsigned 483 * long. Write access to zone->managed_pages and totalram_pages are 484 * protected by managed_page_count_lock at runtime. Idealy only 485 * adjust_managed_page_count() should be used instead of directly 486 * touching zone->managed_pages and totalram_pages. 487 */ 488 unsigned long spanned_pages; 489 unsigned long present_pages; 490 unsigned long managed_pages; 491 492 /* 493 * Number of MIGRATE_RESEVE page block. To maintain for just 494 * optimization. Protected by zone->lock. 495 */ 496 int nr_migrate_reserve_block; 497 498 /* 499 * rarely used fields: 500 */ 501 const char *name; 502} ____cacheline_internodealigned_in_smp; 503 504typedef enum { 505 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 506 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 507 ZONE_CONGESTED, /* zone has many dirty pages backed by 508 * a congested BDI 509 */ 510 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found 511 * many dirty file pages at the tail 512 * of the LRU. 513 */ 514 ZONE_WRITEBACK, /* reclaim scanning has recently found 515 * many pages under writeback 516 */ 517} zone_flags_t; 518 519static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 520{ 521 set_bit(flag, &zone->flags); 522} 523 524static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 525{ 526 return test_and_set_bit(flag, &zone->flags); 527} 528 529static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 530{ 531 clear_bit(flag, &zone->flags); 532} 533 534static inline int zone_is_reclaim_congested(const struct zone *zone) 535{ 536 return test_bit(ZONE_CONGESTED, &zone->flags); 537} 538 539static inline int zone_is_reclaim_dirty(const struct zone *zone) 540{ 541 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags); 542} 543 544static inline int zone_is_reclaim_writeback(const struct zone *zone) 545{ 546 return test_bit(ZONE_WRITEBACK, &zone->flags); 547} 548 549static inline int zone_is_reclaim_locked(const struct zone *zone) 550{ 551 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 552} 553 554static inline int zone_is_oom_locked(const struct zone *zone) 555{ 556 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 557} 558 559static inline unsigned long zone_end_pfn(const struct zone *zone) 560{ 561 return zone->zone_start_pfn + zone->spanned_pages; 562} 563 564static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 565{ 566 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 567} 568 569static inline bool zone_is_initialized(struct zone *zone) 570{ 571 return !!zone->wait_table; 572} 573 574static inline bool zone_is_empty(struct zone *zone) 575{ 576 return zone->spanned_pages == 0; 577} 578 579/* 580 * The "priority" of VM scanning is how much of the queues we will scan in one 581 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 582 * queues ("queue_length >> 12") during an aging round. 583 */ 584#define DEF_PRIORITY 12 585 586/* Maximum number of zones on a zonelist */ 587#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 588 589#ifdef CONFIG_NUMA 590 591/* 592 * The NUMA zonelists are doubled because we need zonelists that restrict the 593 * allocations to a single node for __GFP_THISNODE. 594 * 595 * [0] : Zonelist with fallback 596 * [1] : No fallback (__GFP_THISNODE) 597 */ 598#define MAX_ZONELISTS 2 599 600 601/* 602 * We cache key information from each zonelist for smaller cache 603 * footprint when scanning for free pages in get_page_from_freelist(). 604 * 605 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 606 * up short of free memory since the last time (last_fullzone_zap) 607 * we zero'd fullzones. 608 * 2) The array z_to_n[] maps each zone in the zonelist to its node 609 * id, so that we can efficiently evaluate whether that node is 610 * set in the current tasks mems_allowed. 611 * 612 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 613 * indexed by a zones offset in the zonelist zones[] array. 614 * 615 * The get_page_from_freelist() routine does two scans. During the 616 * first scan, we skip zones whose corresponding bit in 'fullzones' 617 * is set or whose corresponding node in current->mems_allowed (which 618 * comes from cpusets) is not set. During the second scan, we bypass 619 * this zonelist_cache, to ensure we look methodically at each zone. 620 * 621 * Once per second, we zero out (zap) fullzones, forcing us to 622 * reconsider nodes that might have regained more free memory. 623 * The field last_full_zap is the time we last zapped fullzones. 624 * 625 * This mechanism reduces the amount of time we waste repeatedly 626 * reexaming zones for free memory when they just came up low on 627 * memory momentarilly ago. 628 * 629 * The zonelist_cache struct members logically belong in struct 630 * zonelist. However, the mempolicy zonelists constructed for 631 * MPOL_BIND are intentionally variable length (and usually much 632 * shorter). A general purpose mechanism for handling structs with 633 * multiple variable length members is more mechanism than we want 634 * here. We resort to some special case hackery instead. 635 * 636 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 637 * part because they are shorter), so we put the fixed length stuff 638 * at the front of the zonelist struct, ending in a variable length 639 * zones[], as is needed by MPOL_BIND. 640 * 641 * Then we put the optional zonelist cache on the end of the zonelist 642 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 643 * the fixed length portion at the front of the struct. This pointer 644 * both enables us to find the zonelist cache, and in the case of 645 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 646 * to know that the zonelist cache is not there. 647 * 648 * The end result is that struct zonelists come in two flavors: 649 * 1) The full, fixed length version, shown below, and 650 * 2) The custom zonelists for MPOL_BIND. 651 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 652 * 653 * Even though there may be multiple CPU cores on a node modifying 654 * fullzones or last_full_zap in the same zonelist_cache at the same 655 * time, we don't lock it. This is just hint data - if it is wrong now 656 * and then, the allocator will still function, perhaps a bit slower. 657 */ 658 659 660struct zonelist_cache { 661 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 662 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 663 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 664}; 665#else 666#define MAX_ZONELISTS 1 667struct zonelist_cache; 668#endif 669 670/* 671 * This struct contains information about a zone in a zonelist. It is stored 672 * here to avoid dereferences into large structures and lookups of tables 673 */ 674struct zoneref { 675 struct zone *zone; /* Pointer to actual zone */ 676 int zone_idx; /* zone_idx(zoneref->zone) */ 677}; 678 679/* 680 * One allocation request operates on a zonelist. A zonelist 681 * is a list of zones, the first one is the 'goal' of the 682 * allocation, the other zones are fallback zones, in decreasing 683 * priority. 684 * 685 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 686 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 687 * * 688 * To speed the reading of the zonelist, the zonerefs contain the zone index 689 * of the entry being read. Helper functions to access information given 690 * a struct zoneref are 691 * 692 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 693 * zonelist_zone_idx() - Return the index of the zone for an entry 694 * zonelist_node_idx() - Return the index of the node for an entry 695 */ 696struct zonelist { 697 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 698 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 699#ifdef CONFIG_NUMA 700 struct zonelist_cache zlcache; // optional ... 701#endif 702}; 703 704#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 705struct node_active_region { 706 unsigned long start_pfn; 707 unsigned long end_pfn; 708 int nid; 709}; 710#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 711 712#ifndef CONFIG_DISCONTIGMEM 713/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 714extern struct page *mem_map; 715#endif 716 717/* 718 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 719 * (mostly NUMA machines?) to denote a higher-level memory zone than the 720 * zone denotes. 721 * 722 * On NUMA machines, each NUMA node would have a pg_data_t to describe 723 * it's memory layout. 724 * 725 * Memory statistics and page replacement data structures are maintained on a 726 * per-zone basis. 727 */ 728struct bootmem_data; 729typedef struct pglist_data { 730 struct zone node_zones[MAX_NR_ZONES]; 731 struct zonelist node_zonelists[MAX_ZONELISTS]; 732 int nr_zones; 733#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 734 struct page *node_mem_map; 735#ifdef CONFIG_MEMCG 736 struct page_cgroup *node_page_cgroup; 737#endif 738#endif 739#ifndef CONFIG_NO_BOOTMEM 740 struct bootmem_data *bdata; 741#endif 742#ifdef CONFIG_MEMORY_HOTPLUG 743 /* 744 * Must be held any time you expect node_start_pfn, node_present_pages 745 * or node_spanned_pages stay constant. Holding this will also 746 * guarantee that any pfn_valid() stays that way. 747 * 748 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 749 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 750 * 751 * Nests above zone->lock and zone->span_seqlock 752 */ 753 spinlock_t node_size_lock; 754#endif 755 unsigned long node_start_pfn; 756 unsigned long node_present_pages; /* total number of physical pages */ 757 unsigned long node_spanned_pages; /* total size of physical page 758 range, including holes */ 759 int node_id; 760 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */ 761 wait_queue_head_t kswapd_wait; 762 wait_queue_head_t pfmemalloc_wait; 763 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */ 764 int kswapd_max_order; 765 enum zone_type classzone_idx; 766#ifdef CONFIG_NUMA_BALANCING 767 /* Lock serializing the migrate rate limiting window */ 768 spinlock_t numabalancing_migrate_lock; 769 770 /* Rate limiting time interval */ 771 unsigned long numabalancing_migrate_next_window; 772 773 /* Number of pages migrated during the rate limiting time interval */ 774 unsigned long numabalancing_migrate_nr_pages; 775#endif 776} pg_data_t; 777 778#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 779#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 780#ifdef CONFIG_FLAT_NODE_MEM_MAP 781#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 782#else 783#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 784#endif 785#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 786 787#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 788#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 789 790static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 791{ 792 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 793} 794 795static inline bool pgdat_is_empty(pg_data_t *pgdat) 796{ 797 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 798} 799 800#include <linux/memory_hotplug.h> 801 802extern struct mutex zonelists_mutex; 803void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 804void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 805bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 806 int classzone_idx, int alloc_flags); 807bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 808 int classzone_idx, int alloc_flags); 809enum memmap_context { 810 MEMMAP_EARLY, 811 MEMMAP_HOTPLUG, 812}; 813extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 814 unsigned long size, 815 enum memmap_context context); 816 817extern void lruvec_init(struct lruvec *lruvec); 818 819static inline struct zone *lruvec_zone(struct lruvec *lruvec) 820{ 821#ifdef CONFIG_MEMCG 822 return lruvec->zone; 823#else 824 return container_of(lruvec, struct zone, lruvec); 825#endif 826} 827 828#ifdef CONFIG_HAVE_MEMORY_PRESENT 829void memory_present(int nid, unsigned long start, unsigned long end); 830#else 831static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 832#endif 833 834#ifdef CONFIG_HAVE_MEMORYLESS_NODES 835int local_memory_node(int node_id); 836#else 837static inline int local_memory_node(int node_id) { return node_id; }; 838#endif 839 840#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 841unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 842#endif 843 844/* 845 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 846 */ 847#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 848 849static inline int populated_zone(struct zone *zone) 850{ 851 return (!!zone->present_pages); 852} 853 854extern int movable_zone; 855 856static inline int zone_movable_is_highmem(void) 857{ 858#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 859 return movable_zone == ZONE_HIGHMEM; 860#else 861 return 0; 862#endif 863} 864 865static inline int is_highmem_idx(enum zone_type idx) 866{ 867#ifdef CONFIG_HIGHMEM 868 return (idx == ZONE_HIGHMEM || 869 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 870#else 871 return 0; 872#endif 873} 874 875/** 876 * is_highmem - helper function to quickly check if a struct zone is a 877 * highmem zone or not. This is an attempt to keep references 878 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 879 * @zone - pointer to struct zone variable 880 */ 881static inline int is_highmem(struct zone *zone) 882{ 883#ifdef CONFIG_HIGHMEM 884 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 885 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 886 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 887 zone_movable_is_highmem()); 888#else 889 return 0; 890#endif 891} 892 893/* These two functions are used to setup the per zone pages min values */ 894struct ctl_table; 895int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 896 void __user *, size_t *, loff_t *); 897extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 898int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 899 void __user *, size_t *, loff_t *); 900int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 901 void __user *, size_t *, loff_t *); 902int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 903 void __user *, size_t *, loff_t *); 904int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 905 void __user *, size_t *, loff_t *); 906 907extern int numa_zonelist_order_handler(struct ctl_table *, int, 908 void __user *, size_t *, loff_t *); 909extern char numa_zonelist_order[]; 910#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 911 912#ifndef CONFIG_NEED_MULTIPLE_NODES 913 914extern struct pglist_data contig_page_data; 915#define NODE_DATA(nid) (&contig_page_data) 916#define NODE_MEM_MAP(nid) mem_map 917 918#else /* CONFIG_NEED_MULTIPLE_NODES */ 919 920#include <asm/mmzone.h> 921 922#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 923 924extern struct pglist_data *first_online_pgdat(void); 925extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 926extern struct zone *next_zone(struct zone *zone); 927 928/** 929 * for_each_online_pgdat - helper macro to iterate over all online nodes 930 * @pgdat - pointer to a pg_data_t variable 931 */ 932#define for_each_online_pgdat(pgdat) \ 933 for (pgdat = first_online_pgdat(); \ 934 pgdat; \ 935 pgdat = next_online_pgdat(pgdat)) 936/** 937 * for_each_zone - helper macro to iterate over all memory zones 938 * @zone - pointer to struct zone variable 939 * 940 * The user only needs to declare the zone variable, for_each_zone 941 * fills it in. 942 */ 943#define for_each_zone(zone) \ 944 for (zone = (first_online_pgdat())->node_zones; \ 945 zone; \ 946 zone = next_zone(zone)) 947 948#define for_each_populated_zone(zone) \ 949 for (zone = (first_online_pgdat())->node_zones; \ 950 zone; \ 951 zone = next_zone(zone)) \ 952 if (!populated_zone(zone)) \ 953 ; /* do nothing */ \ 954 else 955 956static inline struct zone *zonelist_zone(struct zoneref *zoneref) 957{ 958 return zoneref->zone; 959} 960 961static inline int zonelist_zone_idx(struct zoneref *zoneref) 962{ 963 return zoneref->zone_idx; 964} 965 966static inline int zonelist_node_idx(struct zoneref *zoneref) 967{ 968#ifdef CONFIG_NUMA 969 /* zone_to_nid not available in this context */ 970 return zoneref->zone->node; 971#else 972 return 0; 973#endif /* CONFIG_NUMA */ 974} 975 976/** 977 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 978 * @z - The cursor used as a starting point for the search 979 * @highest_zoneidx - The zone index of the highest zone to return 980 * @nodes - An optional nodemask to filter the zonelist with 981 * @zone - The first suitable zone found is returned via this parameter 982 * 983 * This function returns the next zone at or below a given zone index that is 984 * within the allowed nodemask using a cursor as the starting point for the 985 * search. The zoneref returned is a cursor that represents the current zone 986 * being examined. It should be advanced by one before calling 987 * next_zones_zonelist again. 988 */ 989struct zoneref *next_zones_zonelist(struct zoneref *z, 990 enum zone_type highest_zoneidx, 991 nodemask_t *nodes, 992 struct zone **zone); 993 994/** 995 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 996 * @zonelist - The zonelist to search for a suitable zone 997 * @highest_zoneidx - The zone index of the highest zone to return 998 * @nodes - An optional nodemask to filter the zonelist with 999 * @zone - The first suitable zone found is returned via this parameter 1000 * 1001 * This function returns the first zone at or below a given zone index that is 1002 * within the allowed nodemask. The zoneref returned is a cursor that can be 1003 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1004 * one before calling. 1005 */ 1006static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1007 enum zone_type highest_zoneidx, 1008 nodemask_t *nodes, 1009 struct zone **zone) 1010{ 1011 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 1012 zone); 1013} 1014 1015/** 1016 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1017 * @zone - The current zone in the iterator 1018 * @z - The current pointer within zonelist->zones being iterated 1019 * @zlist - The zonelist being iterated 1020 * @highidx - The zone index of the highest zone to return 1021 * @nodemask - Nodemask allowed by the allocator 1022 * 1023 * This iterator iterates though all zones at or below a given zone index and 1024 * within a given nodemask 1025 */ 1026#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1027 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1028 zone; \ 1029 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1030 1031/** 1032 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1033 * @zone - The current zone in the iterator 1034 * @z - The current pointer within zonelist->zones being iterated 1035 * @zlist - The zonelist being iterated 1036 * @highidx - The zone index of the highest zone to return 1037 * 1038 * This iterator iterates though all zones at or below a given zone index. 1039 */ 1040#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1041 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1042 1043#ifdef CONFIG_SPARSEMEM 1044#include <asm/sparsemem.h> 1045#endif 1046 1047#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1048 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1049static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1050{ 1051 return 0; 1052} 1053#endif 1054 1055#ifdef CONFIG_FLATMEM 1056#define pfn_to_nid(pfn) (0) 1057#endif 1058 1059#ifdef CONFIG_SPARSEMEM 1060 1061/* 1062 * SECTION_SHIFT #bits space required to store a section # 1063 * 1064 * PA_SECTION_SHIFT physical address to/from section number 1065 * PFN_SECTION_SHIFT pfn to/from section number 1066 */ 1067#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1068#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1069 1070#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1071 1072#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1073#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1074 1075#define SECTION_BLOCKFLAGS_BITS \ 1076 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1077 1078#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1079#error Allocator MAX_ORDER exceeds SECTION_SIZE 1080#endif 1081 1082#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1083#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1084 1085#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1086#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1087 1088struct page; 1089struct page_cgroup; 1090struct mem_section { 1091 /* 1092 * This is, logically, a pointer to an array of struct 1093 * pages. However, it is stored with some other magic. 1094 * (see sparse.c::sparse_init_one_section()) 1095 * 1096 * Additionally during early boot we encode node id of 1097 * the location of the section here to guide allocation. 1098 * (see sparse.c::memory_present()) 1099 * 1100 * Making it a UL at least makes someone do a cast 1101 * before using it wrong. 1102 */ 1103 unsigned long section_mem_map; 1104 1105 /* See declaration of similar field in struct zone */ 1106 unsigned long *pageblock_flags; 1107#ifdef CONFIG_MEMCG 1108 /* 1109 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1110 * section. (see memcontrol.h/page_cgroup.h about this.) 1111 */ 1112 struct page_cgroup *page_cgroup; 1113 unsigned long pad; 1114#endif 1115 /* 1116 * WARNING: mem_section must be a power-of-2 in size for the 1117 * calculation and use of SECTION_ROOT_MASK to make sense. 1118 */ 1119}; 1120 1121#ifdef CONFIG_SPARSEMEM_EXTREME 1122#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1123#else 1124#define SECTIONS_PER_ROOT 1 1125#endif 1126 1127#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1128#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1129#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1130 1131#ifdef CONFIG_SPARSEMEM_EXTREME 1132extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1133#else 1134extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1135#endif 1136 1137static inline struct mem_section *__nr_to_section(unsigned long nr) 1138{ 1139 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1140 return NULL; 1141 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1142} 1143extern int __section_nr(struct mem_section* ms); 1144extern unsigned long usemap_size(void); 1145 1146/* 1147 * We use the lower bits of the mem_map pointer to store 1148 * a little bit of information. There should be at least 1149 * 3 bits here due to 32-bit alignment. 1150 */ 1151#define SECTION_MARKED_PRESENT (1UL<<0) 1152#define SECTION_HAS_MEM_MAP (1UL<<1) 1153#define SECTION_MAP_LAST_BIT (1UL<<2) 1154#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1155#define SECTION_NID_SHIFT 2 1156 1157static inline struct page *__section_mem_map_addr(struct mem_section *section) 1158{ 1159 unsigned long map = section->section_mem_map; 1160 map &= SECTION_MAP_MASK; 1161 return (struct page *)map; 1162} 1163 1164static inline int present_section(struct mem_section *section) 1165{ 1166 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1167} 1168 1169static inline int present_section_nr(unsigned long nr) 1170{ 1171 return present_section(__nr_to_section(nr)); 1172} 1173 1174static inline int valid_section(struct mem_section *section) 1175{ 1176 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1177} 1178 1179static inline int valid_section_nr(unsigned long nr) 1180{ 1181 return valid_section(__nr_to_section(nr)); 1182} 1183 1184static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1185{ 1186 return __nr_to_section(pfn_to_section_nr(pfn)); 1187} 1188 1189#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1190static inline int pfn_valid(unsigned long pfn) 1191{ 1192 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1193 return 0; 1194 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1195} 1196#endif 1197 1198static inline int pfn_present(unsigned long pfn) 1199{ 1200 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1201 return 0; 1202 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1203} 1204 1205/* 1206 * These are _only_ used during initialisation, therefore they 1207 * can use __initdata ... They could have names to indicate 1208 * this restriction. 1209 */ 1210#ifdef CONFIG_NUMA 1211#define pfn_to_nid(pfn) \ 1212({ \ 1213 unsigned long __pfn_to_nid_pfn = (pfn); \ 1214 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1215}) 1216#else 1217#define pfn_to_nid(pfn) (0) 1218#endif 1219 1220#define early_pfn_valid(pfn) pfn_valid(pfn) 1221void sparse_init(void); 1222#else 1223#define sparse_init() do {} while (0) 1224#define sparse_index_init(_sec, _nid) do {} while (0) 1225#endif /* CONFIG_SPARSEMEM */ 1226 1227#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1228bool early_pfn_in_nid(unsigned long pfn, int nid); 1229#else 1230#define early_pfn_in_nid(pfn, nid) (1) 1231#endif 1232 1233#ifndef early_pfn_valid 1234#define early_pfn_valid(pfn) (1) 1235#endif 1236 1237void memory_present(int nid, unsigned long start, unsigned long end); 1238unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1239 1240/* 1241 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1242 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1243 * pfn_valid_within() should be used in this case; we optimise this away 1244 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1245 */ 1246#ifdef CONFIG_HOLES_IN_ZONE 1247#define pfn_valid_within(pfn) pfn_valid(pfn) 1248#else 1249#define pfn_valid_within(pfn) (1) 1250#endif 1251 1252#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1253/* 1254 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1255 * associated with it or not. In FLATMEM, it is expected that holes always 1256 * have valid memmap as long as there is valid PFNs either side of the hole. 1257 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1258 * entire section. 1259 * 1260 * However, an ARM, and maybe other embedded architectures in the future 1261 * free memmap backing holes to save memory on the assumption the memmap is 1262 * never used. The page_zone linkages are then broken even though pfn_valid() 1263 * returns true. A walker of the full memmap must then do this additional 1264 * check to ensure the memmap they are looking at is sane by making sure 1265 * the zone and PFN linkages are still valid. This is expensive, but walkers 1266 * of the full memmap are extremely rare. 1267 */ 1268int memmap_valid_within(unsigned long pfn, 1269 struct page *page, struct zone *zone); 1270#else 1271static inline int memmap_valid_within(unsigned long pfn, 1272 struct page *page, struct zone *zone) 1273{ 1274 return 1; 1275} 1276#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1277 1278#endif /* !__GENERATING_BOUNDS.H */ 1279#endif /* !__ASSEMBLY__ */ 1280#endif /* _LINUX_MMZONE_H */