at v3.14 67 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21 22struct mempolicy; 23struct anon_vma; 24struct anon_vma_chain; 25struct file_ra_state; 26struct user_struct; 27struct writeback_control; 28 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 30extern unsigned long max_mapnr; 31 32static inline void set_max_mapnr(unsigned long limit) 33{ 34 max_mapnr = limit; 35} 36#else 37static inline void set_max_mapnr(unsigned long limit) { } 38#endif 39 40extern unsigned long totalram_pages; 41extern void * high_memory; 42extern int page_cluster; 43 44#ifdef CONFIG_SYSCTL 45extern int sysctl_legacy_va_layout; 46#else 47#define sysctl_legacy_va_layout 0 48#endif 49 50#include <asm/page.h> 51#include <asm/pgtable.h> 52#include <asm/processor.h> 53 54#ifndef __pa_symbol 55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 56#endif 57 58extern unsigned long sysctl_user_reserve_kbytes; 59extern unsigned long sysctl_admin_reserve_kbytes; 60 61extern int sysctl_overcommit_memory; 62extern int sysctl_overcommit_ratio; 63extern unsigned long sysctl_overcommit_kbytes; 64 65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 66 size_t *, loff_t *); 67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 68 size_t *, loff_t *); 69 70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 71 72/* to align the pointer to the (next) page boundary */ 73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 74 75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 77 78/* 79 * Linux kernel virtual memory manager primitives. 80 * The idea being to have a "virtual" mm in the same way 81 * we have a virtual fs - giving a cleaner interface to the 82 * mm details, and allowing different kinds of memory mappings 83 * (from shared memory to executable loading to arbitrary 84 * mmap() functions). 85 */ 86 87extern struct kmem_cache *vm_area_cachep; 88 89#ifndef CONFIG_MMU 90extern struct rb_root nommu_region_tree; 91extern struct rw_semaphore nommu_region_sem; 92 93extern unsigned int kobjsize(const void *objp); 94#endif 95 96/* 97 * vm_flags in vm_area_struct, see mm_types.h. 98 */ 99#define VM_NONE 0x00000000 100 101#define VM_READ 0x00000001 /* currently active flags */ 102#define VM_WRITE 0x00000002 103#define VM_EXEC 0x00000004 104#define VM_SHARED 0x00000008 105 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 108#define VM_MAYWRITE 0x00000020 109#define VM_MAYEXEC 0x00000040 110#define VM_MAYSHARE 0x00000080 111 112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 115 116#define VM_LOCKED 0x00002000 117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 118 119 /* Used by sys_madvise() */ 120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 122 123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 131 132#ifdef CONFIG_MEM_SOFT_DIRTY 133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 134#else 135# define VM_SOFTDIRTY 0 136#endif 137 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 142 143#if defined(CONFIG_X86) 144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 145#elif defined(CONFIG_PPC) 146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 147#elif defined(CONFIG_PARISC) 148# define VM_GROWSUP VM_ARCH_1 149#elif defined(CONFIG_METAG) 150# define VM_GROWSUP VM_ARCH_1 151#elif defined(CONFIG_IA64) 152# define VM_GROWSUP VM_ARCH_1 153#elif !defined(CONFIG_MMU) 154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 155#endif 156 157#ifndef VM_GROWSUP 158# define VM_GROWSUP VM_NONE 159#endif 160 161/* Bits set in the VMA until the stack is in its final location */ 162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 163 164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 166#endif 167 168#ifdef CONFIG_STACK_GROWSUP 169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 170#else 171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 172#endif 173 174/* 175 * Special vmas that are non-mergable, non-mlock()able. 176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 177 */ 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 179 180/* 181 * mapping from the currently active vm_flags protection bits (the 182 * low four bits) to a page protection mask.. 183 */ 184extern pgprot_t protection_map[16]; 185 186#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 187#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 188#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 189#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 190#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 191#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 192#define FAULT_FLAG_TRIED 0x40 /* second try */ 193#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 194 195/* 196 * vm_fault is filled by the the pagefault handler and passed to the vma's 197 * ->fault function. The vma's ->fault is responsible for returning a bitmask 198 * of VM_FAULT_xxx flags that give details about how the fault was handled. 199 * 200 * pgoff should be used in favour of virtual_address, if possible. If pgoff 201 * is used, one may implement ->remap_pages to get nonlinear mapping support. 202 */ 203struct vm_fault { 204 unsigned int flags; /* FAULT_FLAG_xxx flags */ 205 pgoff_t pgoff; /* Logical page offset based on vma */ 206 void __user *virtual_address; /* Faulting virtual address */ 207 208 struct page *page; /* ->fault handlers should return a 209 * page here, unless VM_FAULT_NOPAGE 210 * is set (which is also implied by 211 * VM_FAULT_ERROR). 212 */ 213}; 214 215/* 216 * These are the virtual MM functions - opening of an area, closing and 217 * unmapping it (needed to keep files on disk up-to-date etc), pointer 218 * to the functions called when a no-page or a wp-page exception occurs. 219 */ 220struct vm_operations_struct { 221 void (*open)(struct vm_area_struct * area); 222 void (*close)(struct vm_area_struct * area); 223 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 224 225 /* notification that a previously read-only page is about to become 226 * writable, if an error is returned it will cause a SIGBUS */ 227 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 228 229 /* called by access_process_vm when get_user_pages() fails, typically 230 * for use by special VMAs that can switch between memory and hardware 231 */ 232 int (*access)(struct vm_area_struct *vma, unsigned long addr, 233 void *buf, int len, int write); 234#ifdef CONFIG_NUMA 235 /* 236 * set_policy() op must add a reference to any non-NULL @new mempolicy 237 * to hold the policy upon return. Caller should pass NULL @new to 238 * remove a policy and fall back to surrounding context--i.e. do not 239 * install a MPOL_DEFAULT policy, nor the task or system default 240 * mempolicy. 241 */ 242 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 243 244 /* 245 * get_policy() op must add reference [mpol_get()] to any policy at 246 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 247 * in mm/mempolicy.c will do this automatically. 248 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 249 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 250 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 251 * must return NULL--i.e., do not "fallback" to task or system default 252 * policy. 253 */ 254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 255 unsigned long addr); 256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 257 const nodemask_t *to, unsigned long flags); 258#endif 259 /* called by sys_remap_file_pages() to populate non-linear mapping */ 260 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 261 unsigned long size, pgoff_t pgoff); 262}; 263 264struct mmu_gather; 265struct inode; 266 267#define page_private(page) ((page)->private) 268#define set_page_private(page, v) ((page)->private = (v)) 269 270/* It's valid only if the page is free path or free_list */ 271static inline void set_freepage_migratetype(struct page *page, int migratetype) 272{ 273 page->index = migratetype; 274} 275 276/* It's valid only if the page is free path or free_list */ 277static inline int get_freepage_migratetype(struct page *page) 278{ 279 return page->index; 280} 281 282/* 283 * FIXME: take this include out, include page-flags.h in 284 * files which need it (119 of them) 285 */ 286#include <linux/page-flags.h> 287#include <linux/huge_mm.h> 288 289/* 290 * Methods to modify the page usage count. 291 * 292 * What counts for a page usage: 293 * - cache mapping (page->mapping) 294 * - private data (page->private) 295 * - page mapped in a task's page tables, each mapping 296 * is counted separately 297 * 298 * Also, many kernel routines increase the page count before a critical 299 * routine so they can be sure the page doesn't go away from under them. 300 */ 301 302/* 303 * Drop a ref, return true if the refcount fell to zero (the page has no users) 304 */ 305static inline int put_page_testzero(struct page *page) 306{ 307 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 308 return atomic_dec_and_test(&page->_count); 309} 310 311/* 312 * Try to grab a ref unless the page has a refcount of zero, return false if 313 * that is the case. 314 * This can be called when MMU is off so it must not access 315 * any of the virtual mappings. 316 */ 317static inline int get_page_unless_zero(struct page *page) 318{ 319 return atomic_inc_not_zero(&page->_count); 320} 321 322/* 323 * Try to drop a ref unless the page has a refcount of one, return false if 324 * that is the case. 325 * This is to make sure that the refcount won't become zero after this drop. 326 * This can be called when MMU is off so it must not access 327 * any of the virtual mappings. 328 */ 329static inline int put_page_unless_one(struct page *page) 330{ 331 return atomic_add_unless(&page->_count, -1, 1); 332} 333 334extern int page_is_ram(unsigned long pfn); 335 336/* Support for virtually mapped pages */ 337struct page *vmalloc_to_page(const void *addr); 338unsigned long vmalloc_to_pfn(const void *addr); 339 340/* 341 * Determine if an address is within the vmalloc range 342 * 343 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 344 * is no special casing required. 345 */ 346static inline int is_vmalloc_addr(const void *x) 347{ 348#ifdef CONFIG_MMU 349 unsigned long addr = (unsigned long)x; 350 351 return addr >= VMALLOC_START && addr < VMALLOC_END; 352#else 353 return 0; 354#endif 355} 356#ifdef CONFIG_MMU 357extern int is_vmalloc_or_module_addr(const void *x); 358#else 359static inline int is_vmalloc_or_module_addr(const void *x) 360{ 361 return 0; 362} 363#endif 364 365static inline void compound_lock(struct page *page) 366{ 367#ifdef CONFIG_TRANSPARENT_HUGEPAGE 368 VM_BUG_ON_PAGE(PageSlab(page), page); 369 bit_spin_lock(PG_compound_lock, &page->flags); 370#endif 371} 372 373static inline void compound_unlock(struct page *page) 374{ 375#ifdef CONFIG_TRANSPARENT_HUGEPAGE 376 VM_BUG_ON_PAGE(PageSlab(page), page); 377 bit_spin_unlock(PG_compound_lock, &page->flags); 378#endif 379} 380 381static inline unsigned long compound_lock_irqsave(struct page *page) 382{ 383 unsigned long uninitialized_var(flags); 384#ifdef CONFIG_TRANSPARENT_HUGEPAGE 385 local_irq_save(flags); 386 compound_lock(page); 387#endif 388 return flags; 389} 390 391static inline void compound_unlock_irqrestore(struct page *page, 392 unsigned long flags) 393{ 394#ifdef CONFIG_TRANSPARENT_HUGEPAGE 395 compound_unlock(page); 396 local_irq_restore(flags); 397#endif 398} 399 400static inline struct page *compound_head(struct page *page) 401{ 402 if (unlikely(PageTail(page))) { 403 struct page *head = page->first_page; 404 405 /* 406 * page->first_page may be a dangling pointer to an old 407 * compound page, so recheck that it is still a tail 408 * page before returning. 409 */ 410 smp_rmb(); 411 if (likely(PageTail(page))) 412 return head; 413 } 414 return page; 415} 416 417/* 418 * The atomic page->_mapcount, starts from -1: so that transitions 419 * both from it and to it can be tracked, using atomic_inc_and_test 420 * and atomic_add_negative(-1). 421 */ 422static inline void page_mapcount_reset(struct page *page) 423{ 424 atomic_set(&(page)->_mapcount, -1); 425} 426 427static inline int page_mapcount(struct page *page) 428{ 429 return atomic_read(&(page)->_mapcount) + 1; 430} 431 432static inline int page_count(struct page *page) 433{ 434 return atomic_read(&compound_head(page)->_count); 435} 436 437#ifdef CONFIG_HUGETLB_PAGE 438extern int PageHeadHuge(struct page *page_head); 439#else /* CONFIG_HUGETLB_PAGE */ 440static inline int PageHeadHuge(struct page *page_head) 441{ 442 return 0; 443} 444#endif /* CONFIG_HUGETLB_PAGE */ 445 446static inline bool __compound_tail_refcounted(struct page *page) 447{ 448 return !PageSlab(page) && !PageHeadHuge(page); 449} 450 451/* 452 * This takes a head page as parameter and tells if the 453 * tail page reference counting can be skipped. 454 * 455 * For this to be safe, PageSlab and PageHeadHuge must remain true on 456 * any given page where they return true here, until all tail pins 457 * have been released. 458 */ 459static inline bool compound_tail_refcounted(struct page *page) 460{ 461 VM_BUG_ON_PAGE(!PageHead(page), page); 462 return __compound_tail_refcounted(page); 463} 464 465static inline void get_huge_page_tail(struct page *page) 466{ 467 /* 468 * __split_huge_page_refcount() cannot run from under us. 469 */ 470 VM_BUG_ON_PAGE(!PageTail(page), page); 471 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 472 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 473 if (compound_tail_refcounted(page->first_page)) 474 atomic_inc(&page->_mapcount); 475} 476 477extern bool __get_page_tail(struct page *page); 478 479static inline void get_page(struct page *page) 480{ 481 if (unlikely(PageTail(page))) 482 if (likely(__get_page_tail(page))) 483 return; 484 /* 485 * Getting a normal page or the head of a compound page 486 * requires to already have an elevated page->_count. 487 */ 488 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 489 atomic_inc(&page->_count); 490} 491 492static inline struct page *virt_to_head_page(const void *x) 493{ 494 struct page *page = virt_to_page(x); 495 return compound_head(page); 496} 497 498/* 499 * Setup the page count before being freed into the page allocator for 500 * the first time (boot or memory hotplug) 501 */ 502static inline void init_page_count(struct page *page) 503{ 504 atomic_set(&page->_count, 1); 505} 506 507/* 508 * PageBuddy() indicate that the page is free and in the buddy system 509 * (see mm/page_alloc.c). 510 * 511 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 512 * -2 so that an underflow of the page_mapcount() won't be mistaken 513 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 514 * efficiently by most CPU architectures. 515 */ 516#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 517 518static inline int PageBuddy(struct page *page) 519{ 520 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 521} 522 523static inline void __SetPageBuddy(struct page *page) 524{ 525 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 526 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 527} 528 529static inline void __ClearPageBuddy(struct page *page) 530{ 531 VM_BUG_ON_PAGE(!PageBuddy(page), page); 532 atomic_set(&page->_mapcount, -1); 533} 534 535void put_page(struct page *page); 536void put_pages_list(struct list_head *pages); 537 538void split_page(struct page *page, unsigned int order); 539int split_free_page(struct page *page); 540 541/* 542 * Compound pages have a destructor function. Provide a 543 * prototype for that function and accessor functions. 544 * These are _only_ valid on the head of a PG_compound page. 545 */ 546typedef void compound_page_dtor(struct page *); 547 548static inline void set_compound_page_dtor(struct page *page, 549 compound_page_dtor *dtor) 550{ 551 page[1].lru.next = (void *)dtor; 552} 553 554static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 555{ 556 return (compound_page_dtor *)page[1].lru.next; 557} 558 559static inline int compound_order(struct page *page) 560{ 561 if (!PageHead(page)) 562 return 0; 563 return (unsigned long)page[1].lru.prev; 564} 565 566static inline void set_compound_order(struct page *page, unsigned long order) 567{ 568 page[1].lru.prev = (void *)order; 569} 570 571#ifdef CONFIG_MMU 572/* 573 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 574 * servicing faults for write access. In the normal case, do always want 575 * pte_mkwrite. But get_user_pages can cause write faults for mappings 576 * that do not have writing enabled, when used by access_process_vm. 577 */ 578static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 579{ 580 if (likely(vma->vm_flags & VM_WRITE)) 581 pte = pte_mkwrite(pte); 582 return pte; 583} 584#endif 585 586/* 587 * Multiple processes may "see" the same page. E.g. for untouched 588 * mappings of /dev/null, all processes see the same page full of 589 * zeroes, and text pages of executables and shared libraries have 590 * only one copy in memory, at most, normally. 591 * 592 * For the non-reserved pages, page_count(page) denotes a reference count. 593 * page_count() == 0 means the page is free. page->lru is then used for 594 * freelist management in the buddy allocator. 595 * page_count() > 0 means the page has been allocated. 596 * 597 * Pages are allocated by the slab allocator in order to provide memory 598 * to kmalloc and kmem_cache_alloc. In this case, the management of the 599 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 600 * unless a particular usage is carefully commented. (the responsibility of 601 * freeing the kmalloc memory is the caller's, of course). 602 * 603 * A page may be used by anyone else who does a __get_free_page(). 604 * In this case, page_count still tracks the references, and should only 605 * be used through the normal accessor functions. The top bits of page->flags 606 * and page->virtual store page management information, but all other fields 607 * are unused and could be used privately, carefully. The management of this 608 * page is the responsibility of the one who allocated it, and those who have 609 * subsequently been given references to it. 610 * 611 * The other pages (we may call them "pagecache pages") are completely 612 * managed by the Linux memory manager: I/O, buffers, swapping etc. 613 * The following discussion applies only to them. 614 * 615 * A pagecache page contains an opaque `private' member, which belongs to the 616 * page's address_space. Usually, this is the address of a circular list of 617 * the page's disk buffers. PG_private must be set to tell the VM to call 618 * into the filesystem to release these pages. 619 * 620 * A page may belong to an inode's memory mapping. In this case, page->mapping 621 * is the pointer to the inode, and page->index is the file offset of the page, 622 * in units of PAGE_CACHE_SIZE. 623 * 624 * If pagecache pages are not associated with an inode, they are said to be 625 * anonymous pages. These may become associated with the swapcache, and in that 626 * case PG_swapcache is set, and page->private is an offset into the swapcache. 627 * 628 * In either case (swapcache or inode backed), the pagecache itself holds one 629 * reference to the page. Setting PG_private should also increment the 630 * refcount. The each user mapping also has a reference to the page. 631 * 632 * The pagecache pages are stored in a per-mapping radix tree, which is 633 * rooted at mapping->page_tree, and indexed by offset. 634 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 635 * lists, we instead now tag pages as dirty/writeback in the radix tree. 636 * 637 * All pagecache pages may be subject to I/O: 638 * - inode pages may need to be read from disk, 639 * - inode pages which have been modified and are MAP_SHARED may need 640 * to be written back to the inode on disk, 641 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 642 * modified may need to be swapped out to swap space and (later) to be read 643 * back into memory. 644 */ 645 646/* 647 * The zone field is never updated after free_area_init_core() 648 * sets it, so none of the operations on it need to be atomic. 649 */ 650 651/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 652#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 653#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 654#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 655#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 656 657/* 658 * Define the bit shifts to access each section. For non-existent 659 * sections we define the shift as 0; that plus a 0 mask ensures 660 * the compiler will optimise away reference to them. 661 */ 662#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 663#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 664#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 665#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 666 667/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 668#ifdef NODE_NOT_IN_PAGE_FLAGS 669#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 670#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 671 SECTIONS_PGOFF : ZONES_PGOFF) 672#else 673#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 674#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 675 NODES_PGOFF : ZONES_PGOFF) 676#endif 677 678#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 679 680#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 681#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 682#endif 683 684#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 685#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 686#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 687#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1) 688#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 689 690static inline enum zone_type page_zonenum(const struct page *page) 691{ 692 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 693} 694 695#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 696#define SECTION_IN_PAGE_FLAGS 697#endif 698 699/* 700 * The identification function is mainly used by the buddy allocator for 701 * determining if two pages could be buddies. We are not really identifying 702 * the zone since we could be using the section number id if we do not have 703 * node id available in page flags. 704 * We only guarantee that it will return the same value for two combinable 705 * pages in a zone. 706 */ 707static inline int page_zone_id(struct page *page) 708{ 709 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 710} 711 712static inline int zone_to_nid(struct zone *zone) 713{ 714#ifdef CONFIG_NUMA 715 return zone->node; 716#else 717 return 0; 718#endif 719} 720 721#ifdef NODE_NOT_IN_PAGE_FLAGS 722extern int page_to_nid(const struct page *page); 723#else 724static inline int page_to_nid(const struct page *page) 725{ 726 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 727} 728#endif 729 730#ifdef CONFIG_NUMA_BALANCING 731static inline int cpu_pid_to_cpupid(int cpu, int pid) 732{ 733 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 734} 735 736static inline int cpupid_to_pid(int cpupid) 737{ 738 return cpupid & LAST__PID_MASK; 739} 740 741static inline int cpupid_to_cpu(int cpupid) 742{ 743 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 744} 745 746static inline int cpupid_to_nid(int cpupid) 747{ 748 return cpu_to_node(cpupid_to_cpu(cpupid)); 749} 750 751static inline bool cpupid_pid_unset(int cpupid) 752{ 753 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 754} 755 756static inline bool cpupid_cpu_unset(int cpupid) 757{ 758 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 759} 760 761static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 762{ 763 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 764} 765 766#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 767#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 768static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 769{ 770 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 771} 772 773static inline int page_cpupid_last(struct page *page) 774{ 775 return page->_last_cpupid; 776} 777static inline void page_cpupid_reset_last(struct page *page) 778{ 779 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 780} 781#else 782static inline int page_cpupid_last(struct page *page) 783{ 784 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 785} 786 787extern int page_cpupid_xchg_last(struct page *page, int cpupid); 788 789static inline void page_cpupid_reset_last(struct page *page) 790{ 791 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 792 793 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 794 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 795} 796#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 797#else /* !CONFIG_NUMA_BALANCING */ 798static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 799{ 800 return page_to_nid(page); /* XXX */ 801} 802 803static inline int page_cpupid_last(struct page *page) 804{ 805 return page_to_nid(page); /* XXX */ 806} 807 808static inline int cpupid_to_nid(int cpupid) 809{ 810 return -1; 811} 812 813static inline int cpupid_to_pid(int cpupid) 814{ 815 return -1; 816} 817 818static inline int cpupid_to_cpu(int cpupid) 819{ 820 return -1; 821} 822 823static inline int cpu_pid_to_cpupid(int nid, int pid) 824{ 825 return -1; 826} 827 828static inline bool cpupid_pid_unset(int cpupid) 829{ 830 return 1; 831} 832 833static inline void page_cpupid_reset_last(struct page *page) 834{ 835} 836 837static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 838{ 839 return false; 840} 841#endif /* CONFIG_NUMA_BALANCING */ 842 843static inline struct zone *page_zone(const struct page *page) 844{ 845 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 846} 847 848#ifdef SECTION_IN_PAGE_FLAGS 849static inline void set_page_section(struct page *page, unsigned long section) 850{ 851 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 852 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 853} 854 855static inline unsigned long page_to_section(const struct page *page) 856{ 857 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 858} 859#endif 860 861static inline void set_page_zone(struct page *page, enum zone_type zone) 862{ 863 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 864 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 865} 866 867static inline void set_page_node(struct page *page, unsigned long node) 868{ 869 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 870 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 871} 872 873static inline void set_page_links(struct page *page, enum zone_type zone, 874 unsigned long node, unsigned long pfn) 875{ 876 set_page_zone(page, zone); 877 set_page_node(page, node); 878#ifdef SECTION_IN_PAGE_FLAGS 879 set_page_section(page, pfn_to_section_nr(pfn)); 880#endif 881} 882 883/* 884 * Some inline functions in vmstat.h depend on page_zone() 885 */ 886#include <linux/vmstat.h> 887 888static __always_inline void *lowmem_page_address(const struct page *page) 889{ 890 return __va(PFN_PHYS(page_to_pfn(page))); 891} 892 893#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 894#define HASHED_PAGE_VIRTUAL 895#endif 896 897#if defined(WANT_PAGE_VIRTUAL) 898static inline void *page_address(const struct page *page) 899{ 900 return page->virtual; 901} 902static inline void set_page_address(struct page *page, void *address) 903{ 904 page->virtual = address; 905} 906#define page_address_init() do { } while(0) 907#endif 908 909#if defined(HASHED_PAGE_VIRTUAL) 910void *page_address(const struct page *page); 911void set_page_address(struct page *page, void *virtual); 912void page_address_init(void); 913#endif 914 915#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 916#define page_address(page) lowmem_page_address(page) 917#define set_page_address(page, address) do { } while(0) 918#define page_address_init() do { } while(0) 919#endif 920 921/* 922 * On an anonymous page mapped into a user virtual memory area, 923 * page->mapping points to its anon_vma, not to a struct address_space; 924 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 925 * 926 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 927 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 928 * and then page->mapping points, not to an anon_vma, but to a private 929 * structure which KSM associates with that merged page. See ksm.h. 930 * 931 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 932 * 933 * Please note that, confusingly, "page_mapping" refers to the inode 934 * address_space which maps the page from disk; whereas "page_mapped" 935 * refers to user virtual address space into which the page is mapped. 936 */ 937#define PAGE_MAPPING_ANON 1 938#define PAGE_MAPPING_KSM 2 939#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 940 941extern struct address_space *page_mapping(struct page *page); 942 943/* Neutral page->mapping pointer to address_space or anon_vma or other */ 944static inline void *page_rmapping(struct page *page) 945{ 946 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 947} 948 949extern struct address_space *__page_file_mapping(struct page *); 950 951static inline 952struct address_space *page_file_mapping(struct page *page) 953{ 954 if (unlikely(PageSwapCache(page))) 955 return __page_file_mapping(page); 956 957 return page->mapping; 958} 959 960static inline int PageAnon(struct page *page) 961{ 962 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 963} 964 965/* 966 * Return the pagecache index of the passed page. Regular pagecache pages 967 * use ->index whereas swapcache pages use ->private 968 */ 969static inline pgoff_t page_index(struct page *page) 970{ 971 if (unlikely(PageSwapCache(page))) 972 return page_private(page); 973 return page->index; 974} 975 976extern pgoff_t __page_file_index(struct page *page); 977 978/* 979 * Return the file index of the page. Regular pagecache pages use ->index 980 * whereas swapcache pages use swp_offset(->private) 981 */ 982static inline pgoff_t page_file_index(struct page *page) 983{ 984 if (unlikely(PageSwapCache(page))) 985 return __page_file_index(page); 986 987 return page->index; 988} 989 990/* 991 * Return true if this page is mapped into pagetables. 992 */ 993static inline int page_mapped(struct page *page) 994{ 995 return atomic_read(&(page)->_mapcount) >= 0; 996} 997 998/* 999 * Different kinds of faults, as returned by handle_mm_fault(). 1000 * Used to decide whether a process gets delivered SIGBUS or 1001 * just gets major/minor fault counters bumped up. 1002 */ 1003 1004#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1005 1006#define VM_FAULT_OOM 0x0001 1007#define VM_FAULT_SIGBUS 0x0002 1008#define VM_FAULT_MAJOR 0x0004 1009#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1010#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1011#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1012 1013#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1014#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1015#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1016#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1017 1018#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1019 1020#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 1021 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 1022 1023/* Encode hstate index for a hwpoisoned large page */ 1024#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1025#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1026 1027/* 1028 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1029 */ 1030extern void pagefault_out_of_memory(void); 1031 1032#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1033 1034/* 1035 * Flags passed to show_mem() and show_free_areas() to suppress output in 1036 * various contexts. 1037 */ 1038#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1039 1040extern void show_free_areas(unsigned int flags); 1041extern bool skip_free_areas_node(unsigned int flags, int nid); 1042 1043int shmem_zero_setup(struct vm_area_struct *); 1044 1045extern int can_do_mlock(void); 1046extern int user_shm_lock(size_t, struct user_struct *); 1047extern void user_shm_unlock(size_t, struct user_struct *); 1048 1049/* 1050 * Parameter block passed down to zap_pte_range in exceptional cases. 1051 */ 1052struct zap_details { 1053 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1054 struct address_space *check_mapping; /* Check page->mapping if set */ 1055 pgoff_t first_index; /* Lowest page->index to unmap */ 1056 pgoff_t last_index; /* Highest page->index to unmap */ 1057}; 1058 1059struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1060 pte_t pte); 1061 1062int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1063 unsigned long size); 1064void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1065 unsigned long size, struct zap_details *); 1066void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1067 unsigned long start, unsigned long end); 1068 1069/** 1070 * mm_walk - callbacks for walk_page_range 1071 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1072 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1073 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1074 * this handler is required to be able to handle 1075 * pmd_trans_huge() pmds. They may simply choose to 1076 * split_huge_page() instead of handling it explicitly. 1077 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1078 * @pte_hole: if set, called for each hole at all levels 1079 * @hugetlb_entry: if set, called for each hugetlb entry 1080 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1081 * is used. 1082 * 1083 * (see walk_page_range for more details) 1084 */ 1085struct mm_walk { 1086 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1087 unsigned long next, struct mm_walk *walk); 1088 int (*pud_entry)(pud_t *pud, unsigned long addr, 1089 unsigned long next, struct mm_walk *walk); 1090 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1091 unsigned long next, struct mm_walk *walk); 1092 int (*pte_entry)(pte_t *pte, unsigned long addr, 1093 unsigned long next, struct mm_walk *walk); 1094 int (*pte_hole)(unsigned long addr, unsigned long next, 1095 struct mm_walk *walk); 1096 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1097 unsigned long addr, unsigned long next, 1098 struct mm_walk *walk); 1099 struct mm_struct *mm; 1100 void *private; 1101}; 1102 1103int walk_page_range(unsigned long addr, unsigned long end, 1104 struct mm_walk *walk); 1105void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1106 unsigned long end, unsigned long floor, unsigned long ceiling); 1107int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1108 struct vm_area_struct *vma); 1109void unmap_mapping_range(struct address_space *mapping, 1110 loff_t const holebegin, loff_t const holelen, int even_cows); 1111int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1112 unsigned long *pfn); 1113int follow_phys(struct vm_area_struct *vma, unsigned long address, 1114 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1115int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1116 void *buf, int len, int write); 1117 1118static inline void unmap_shared_mapping_range(struct address_space *mapping, 1119 loff_t const holebegin, loff_t const holelen) 1120{ 1121 unmap_mapping_range(mapping, holebegin, holelen, 0); 1122} 1123 1124extern void truncate_pagecache(struct inode *inode, loff_t new); 1125extern void truncate_setsize(struct inode *inode, loff_t newsize); 1126void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1127int truncate_inode_page(struct address_space *mapping, struct page *page); 1128int generic_error_remove_page(struct address_space *mapping, struct page *page); 1129int invalidate_inode_page(struct page *page); 1130 1131#ifdef CONFIG_MMU 1132extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1133 unsigned long address, unsigned int flags); 1134extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1135 unsigned long address, unsigned int fault_flags); 1136#else 1137static inline int handle_mm_fault(struct mm_struct *mm, 1138 struct vm_area_struct *vma, unsigned long address, 1139 unsigned int flags) 1140{ 1141 /* should never happen if there's no MMU */ 1142 BUG(); 1143 return VM_FAULT_SIGBUS; 1144} 1145static inline int fixup_user_fault(struct task_struct *tsk, 1146 struct mm_struct *mm, unsigned long address, 1147 unsigned int fault_flags) 1148{ 1149 /* should never happen if there's no MMU */ 1150 BUG(); 1151 return -EFAULT; 1152} 1153#endif 1154 1155extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1156extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1157 void *buf, int len, int write); 1158 1159long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1160 unsigned long start, unsigned long nr_pages, 1161 unsigned int foll_flags, struct page **pages, 1162 struct vm_area_struct **vmas, int *nonblocking); 1163long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1164 unsigned long start, unsigned long nr_pages, 1165 int write, int force, struct page **pages, 1166 struct vm_area_struct **vmas); 1167int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1168 struct page **pages); 1169struct kvec; 1170int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1171 struct page **pages); 1172int get_kernel_page(unsigned long start, int write, struct page **pages); 1173struct page *get_dump_page(unsigned long addr); 1174 1175extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1176extern void do_invalidatepage(struct page *page, unsigned int offset, 1177 unsigned int length); 1178 1179int __set_page_dirty_nobuffers(struct page *page); 1180int __set_page_dirty_no_writeback(struct page *page); 1181int redirty_page_for_writepage(struct writeback_control *wbc, 1182 struct page *page); 1183void account_page_dirtied(struct page *page, struct address_space *mapping); 1184void account_page_writeback(struct page *page); 1185int set_page_dirty(struct page *page); 1186int set_page_dirty_lock(struct page *page); 1187int clear_page_dirty_for_io(struct page *page); 1188 1189/* Is the vma a continuation of the stack vma above it? */ 1190static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1191{ 1192 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1193} 1194 1195static inline int stack_guard_page_start(struct vm_area_struct *vma, 1196 unsigned long addr) 1197{ 1198 return (vma->vm_flags & VM_GROWSDOWN) && 1199 (vma->vm_start == addr) && 1200 !vma_growsdown(vma->vm_prev, addr); 1201} 1202 1203/* Is the vma a continuation of the stack vma below it? */ 1204static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1205{ 1206 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1207} 1208 1209static inline int stack_guard_page_end(struct vm_area_struct *vma, 1210 unsigned long addr) 1211{ 1212 return (vma->vm_flags & VM_GROWSUP) && 1213 (vma->vm_end == addr) && 1214 !vma_growsup(vma->vm_next, addr); 1215} 1216 1217extern pid_t 1218vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1219 1220extern unsigned long move_page_tables(struct vm_area_struct *vma, 1221 unsigned long old_addr, struct vm_area_struct *new_vma, 1222 unsigned long new_addr, unsigned long len, 1223 bool need_rmap_locks); 1224extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1225 unsigned long end, pgprot_t newprot, 1226 int dirty_accountable, int prot_numa); 1227extern int mprotect_fixup(struct vm_area_struct *vma, 1228 struct vm_area_struct **pprev, unsigned long start, 1229 unsigned long end, unsigned long newflags); 1230 1231/* 1232 * doesn't attempt to fault and will return short. 1233 */ 1234int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1235 struct page **pages); 1236/* 1237 * per-process(per-mm_struct) statistics. 1238 */ 1239static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1240{ 1241 long val = atomic_long_read(&mm->rss_stat.count[member]); 1242 1243#ifdef SPLIT_RSS_COUNTING 1244 /* 1245 * counter is updated in asynchronous manner and may go to minus. 1246 * But it's never be expected number for users. 1247 */ 1248 if (val < 0) 1249 val = 0; 1250#endif 1251 return (unsigned long)val; 1252} 1253 1254static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1255{ 1256 atomic_long_add(value, &mm->rss_stat.count[member]); 1257} 1258 1259static inline void inc_mm_counter(struct mm_struct *mm, int member) 1260{ 1261 atomic_long_inc(&mm->rss_stat.count[member]); 1262} 1263 1264static inline void dec_mm_counter(struct mm_struct *mm, int member) 1265{ 1266 atomic_long_dec(&mm->rss_stat.count[member]); 1267} 1268 1269static inline unsigned long get_mm_rss(struct mm_struct *mm) 1270{ 1271 return get_mm_counter(mm, MM_FILEPAGES) + 1272 get_mm_counter(mm, MM_ANONPAGES); 1273} 1274 1275static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1276{ 1277 return max(mm->hiwater_rss, get_mm_rss(mm)); 1278} 1279 1280static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1281{ 1282 return max(mm->hiwater_vm, mm->total_vm); 1283} 1284 1285static inline void update_hiwater_rss(struct mm_struct *mm) 1286{ 1287 unsigned long _rss = get_mm_rss(mm); 1288 1289 if ((mm)->hiwater_rss < _rss) 1290 (mm)->hiwater_rss = _rss; 1291} 1292 1293static inline void update_hiwater_vm(struct mm_struct *mm) 1294{ 1295 if (mm->hiwater_vm < mm->total_vm) 1296 mm->hiwater_vm = mm->total_vm; 1297} 1298 1299static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1300 struct mm_struct *mm) 1301{ 1302 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1303 1304 if (*maxrss < hiwater_rss) 1305 *maxrss = hiwater_rss; 1306} 1307 1308#if defined(SPLIT_RSS_COUNTING) 1309void sync_mm_rss(struct mm_struct *mm); 1310#else 1311static inline void sync_mm_rss(struct mm_struct *mm) 1312{ 1313} 1314#endif 1315 1316int vma_wants_writenotify(struct vm_area_struct *vma); 1317 1318extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1319 spinlock_t **ptl); 1320static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1321 spinlock_t **ptl) 1322{ 1323 pte_t *ptep; 1324 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1325 return ptep; 1326} 1327 1328#ifdef __PAGETABLE_PUD_FOLDED 1329static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1330 unsigned long address) 1331{ 1332 return 0; 1333} 1334#else 1335int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1336#endif 1337 1338#ifdef __PAGETABLE_PMD_FOLDED 1339static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1340 unsigned long address) 1341{ 1342 return 0; 1343} 1344#else 1345int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1346#endif 1347 1348int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1349 pmd_t *pmd, unsigned long address); 1350int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1351 1352/* 1353 * The following ifdef needed to get the 4level-fixup.h header to work. 1354 * Remove it when 4level-fixup.h has been removed. 1355 */ 1356#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1357static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1358{ 1359 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1360 NULL: pud_offset(pgd, address); 1361} 1362 1363static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1364{ 1365 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1366 NULL: pmd_offset(pud, address); 1367} 1368#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1369 1370#if USE_SPLIT_PTE_PTLOCKS 1371#if ALLOC_SPLIT_PTLOCKS 1372void __init ptlock_cache_init(void); 1373extern bool ptlock_alloc(struct page *page); 1374extern void ptlock_free(struct page *page); 1375 1376static inline spinlock_t *ptlock_ptr(struct page *page) 1377{ 1378 return page->ptl; 1379} 1380#else /* ALLOC_SPLIT_PTLOCKS */ 1381static inline void ptlock_cache_init(void) 1382{ 1383} 1384 1385static inline bool ptlock_alloc(struct page *page) 1386{ 1387 return true; 1388} 1389 1390static inline void ptlock_free(struct page *page) 1391{ 1392} 1393 1394static inline spinlock_t *ptlock_ptr(struct page *page) 1395{ 1396 return &page->ptl; 1397} 1398#endif /* ALLOC_SPLIT_PTLOCKS */ 1399 1400static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1401{ 1402 return ptlock_ptr(pmd_page(*pmd)); 1403} 1404 1405static inline bool ptlock_init(struct page *page) 1406{ 1407 /* 1408 * prep_new_page() initialize page->private (and therefore page->ptl) 1409 * with 0. Make sure nobody took it in use in between. 1410 * 1411 * It can happen if arch try to use slab for page table allocation: 1412 * slab code uses page->slab_cache and page->first_page (for tail 1413 * pages), which share storage with page->ptl. 1414 */ 1415 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1416 if (!ptlock_alloc(page)) 1417 return false; 1418 spin_lock_init(ptlock_ptr(page)); 1419 return true; 1420} 1421 1422/* Reset page->mapping so free_pages_check won't complain. */ 1423static inline void pte_lock_deinit(struct page *page) 1424{ 1425 page->mapping = NULL; 1426 ptlock_free(page); 1427} 1428 1429#else /* !USE_SPLIT_PTE_PTLOCKS */ 1430/* 1431 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1432 */ 1433static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1434{ 1435 return &mm->page_table_lock; 1436} 1437static inline void ptlock_cache_init(void) {} 1438static inline bool ptlock_init(struct page *page) { return true; } 1439static inline void pte_lock_deinit(struct page *page) {} 1440#endif /* USE_SPLIT_PTE_PTLOCKS */ 1441 1442static inline void pgtable_init(void) 1443{ 1444 ptlock_cache_init(); 1445 pgtable_cache_init(); 1446} 1447 1448static inline bool pgtable_page_ctor(struct page *page) 1449{ 1450 inc_zone_page_state(page, NR_PAGETABLE); 1451 return ptlock_init(page); 1452} 1453 1454static inline void pgtable_page_dtor(struct page *page) 1455{ 1456 pte_lock_deinit(page); 1457 dec_zone_page_state(page, NR_PAGETABLE); 1458} 1459 1460#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1461({ \ 1462 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1463 pte_t *__pte = pte_offset_map(pmd, address); \ 1464 *(ptlp) = __ptl; \ 1465 spin_lock(__ptl); \ 1466 __pte; \ 1467}) 1468 1469#define pte_unmap_unlock(pte, ptl) do { \ 1470 spin_unlock(ptl); \ 1471 pte_unmap(pte); \ 1472} while (0) 1473 1474#define pte_alloc_map(mm, vma, pmd, address) \ 1475 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1476 pmd, address))? \ 1477 NULL: pte_offset_map(pmd, address)) 1478 1479#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1480 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1481 pmd, address))? \ 1482 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1483 1484#define pte_alloc_kernel(pmd, address) \ 1485 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1486 NULL: pte_offset_kernel(pmd, address)) 1487 1488#if USE_SPLIT_PMD_PTLOCKS 1489 1490static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1491{ 1492 return ptlock_ptr(virt_to_page(pmd)); 1493} 1494 1495static inline bool pgtable_pmd_page_ctor(struct page *page) 1496{ 1497#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1498 page->pmd_huge_pte = NULL; 1499#endif 1500 return ptlock_init(page); 1501} 1502 1503static inline void pgtable_pmd_page_dtor(struct page *page) 1504{ 1505#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1506 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1507#endif 1508 ptlock_free(page); 1509} 1510 1511#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte) 1512 1513#else 1514 1515static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1516{ 1517 return &mm->page_table_lock; 1518} 1519 1520static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1521static inline void pgtable_pmd_page_dtor(struct page *page) {} 1522 1523#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1524 1525#endif 1526 1527static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1528{ 1529 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1530 spin_lock(ptl); 1531 return ptl; 1532} 1533 1534extern void free_area_init(unsigned long * zones_size); 1535extern void free_area_init_node(int nid, unsigned long * zones_size, 1536 unsigned long zone_start_pfn, unsigned long *zholes_size); 1537extern void free_initmem(void); 1538 1539/* 1540 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1541 * into the buddy system. The freed pages will be poisoned with pattern 1542 * "poison" if it's within range [0, UCHAR_MAX]. 1543 * Return pages freed into the buddy system. 1544 */ 1545extern unsigned long free_reserved_area(void *start, void *end, 1546 int poison, char *s); 1547 1548#ifdef CONFIG_HIGHMEM 1549/* 1550 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1551 * and totalram_pages. 1552 */ 1553extern void free_highmem_page(struct page *page); 1554#endif 1555 1556extern void adjust_managed_page_count(struct page *page, long count); 1557extern void mem_init_print_info(const char *str); 1558 1559/* Free the reserved page into the buddy system, so it gets managed. */ 1560static inline void __free_reserved_page(struct page *page) 1561{ 1562 ClearPageReserved(page); 1563 init_page_count(page); 1564 __free_page(page); 1565} 1566 1567static inline void free_reserved_page(struct page *page) 1568{ 1569 __free_reserved_page(page); 1570 adjust_managed_page_count(page, 1); 1571} 1572 1573static inline void mark_page_reserved(struct page *page) 1574{ 1575 SetPageReserved(page); 1576 adjust_managed_page_count(page, -1); 1577} 1578 1579/* 1580 * Default method to free all the __init memory into the buddy system. 1581 * The freed pages will be poisoned with pattern "poison" if it's within 1582 * range [0, UCHAR_MAX]. 1583 * Return pages freed into the buddy system. 1584 */ 1585static inline unsigned long free_initmem_default(int poison) 1586{ 1587 extern char __init_begin[], __init_end[]; 1588 1589 return free_reserved_area(&__init_begin, &__init_end, 1590 poison, "unused kernel"); 1591} 1592 1593static inline unsigned long get_num_physpages(void) 1594{ 1595 int nid; 1596 unsigned long phys_pages = 0; 1597 1598 for_each_online_node(nid) 1599 phys_pages += node_present_pages(nid); 1600 1601 return phys_pages; 1602} 1603 1604#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1605/* 1606 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1607 * zones, allocate the backing mem_map and account for memory holes in a more 1608 * architecture independent manner. This is a substitute for creating the 1609 * zone_sizes[] and zholes_size[] arrays and passing them to 1610 * free_area_init_node() 1611 * 1612 * An architecture is expected to register range of page frames backed by 1613 * physical memory with memblock_add[_node]() before calling 1614 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1615 * usage, an architecture is expected to do something like 1616 * 1617 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1618 * max_highmem_pfn}; 1619 * for_each_valid_physical_page_range() 1620 * memblock_add_node(base, size, nid) 1621 * free_area_init_nodes(max_zone_pfns); 1622 * 1623 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1624 * registered physical page range. Similarly 1625 * sparse_memory_present_with_active_regions() calls memory_present() for 1626 * each range when SPARSEMEM is enabled. 1627 * 1628 * See mm/page_alloc.c for more information on each function exposed by 1629 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1630 */ 1631extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1632unsigned long node_map_pfn_alignment(void); 1633unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1634 unsigned long end_pfn); 1635extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1636 unsigned long end_pfn); 1637extern void get_pfn_range_for_nid(unsigned int nid, 1638 unsigned long *start_pfn, unsigned long *end_pfn); 1639extern unsigned long find_min_pfn_with_active_regions(void); 1640extern void free_bootmem_with_active_regions(int nid, 1641 unsigned long max_low_pfn); 1642extern void sparse_memory_present_with_active_regions(int nid); 1643 1644#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1645 1646#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1647 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1648static inline int __early_pfn_to_nid(unsigned long pfn) 1649{ 1650 return 0; 1651} 1652#else 1653/* please see mm/page_alloc.c */ 1654extern int __meminit early_pfn_to_nid(unsigned long pfn); 1655#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1656/* there is a per-arch backend function. */ 1657extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1658#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1659#endif 1660 1661extern void set_dma_reserve(unsigned long new_dma_reserve); 1662extern void memmap_init_zone(unsigned long, int, unsigned long, 1663 unsigned long, enum memmap_context); 1664extern void setup_per_zone_wmarks(void); 1665extern int __meminit init_per_zone_wmark_min(void); 1666extern void mem_init(void); 1667extern void __init mmap_init(void); 1668extern void show_mem(unsigned int flags); 1669extern void si_meminfo(struct sysinfo * val); 1670extern void si_meminfo_node(struct sysinfo *val, int nid); 1671 1672extern __printf(3, 4) 1673void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1674 1675extern void setup_per_cpu_pageset(void); 1676 1677extern void zone_pcp_update(struct zone *zone); 1678extern void zone_pcp_reset(struct zone *zone); 1679 1680/* page_alloc.c */ 1681extern int min_free_kbytes; 1682 1683/* nommu.c */ 1684extern atomic_long_t mmap_pages_allocated; 1685extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1686 1687/* interval_tree.c */ 1688void vma_interval_tree_insert(struct vm_area_struct *node, 1689 struct rb_root *root); 1690void vma_interval_tree_insert_after(struct vm_area_struct *node, 1691 struct vm_area_struct *prev, 1692 struct rb_root *root); 1693void vma_interval_tree_remove(struct vm_area_struct *node, 1694 struct rb_root *root); 1695struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1696 unsigned long start, unsigned long last); 1697struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1698 unsigned long start, unsigned long last); 1699 1700#define vma_interval_tree_foreach(vma, root, start, last) \ 1701 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1702 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1703 1704static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1705 struct list_head *list) 1706{ 1707 list_add_tail(&vma->shared.nonlinear, list); 1708} 1709 1710void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1711 struct rb_root *root); 1712void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1713 struct rb_root *root); 1714struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1715 struct rb_root *root, unsigned long start, unsigned long last); 1716struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1717 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1718#ifdef CONFIG_DEBUG_VM_RB 1719void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1720#endif 1721 1722#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1723 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1724 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1725 1726/* mmap.c */ 1727extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1728extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1730extern struct vm_area_struct *vma_merge(struct mm_struct *, 1731 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1732 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1733 struct mempolicy *); 1734extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1735extern int split_vma(struct mm_struct *, 1736 struct vm_area_struct *, unsigned long addr, int new_below); 1737extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1738extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1739 struct rb_node **, struct rb_node *); 1740extern void unlink_file_vma(struct vm_area_struct *); 1741extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1742 unsigned long addr, unsigned long len, pgoff_t pgoff, 1743 bool *need_rmap_locks); 1744extern void exit_mmap(struct mm_struct *); 1745 1746extern int mm_take_all_locks(struct mm_struct *mm); 1747extern void mm_drop_all_locks(struct mm_struct *mm); 1748 1749extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1750extern struct file *get_mm_exe_file(struct mm_struct *mm); 1751 1752extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1753extern int install_special_mapping(struct mm_struct *mm, 1754 unsigned long addr, unsigned long len, 1755 unsigned long flags, struct page **pages); 1756 1757extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1758 1759extern unsigned long mmap_region(struct file *file, unsigned long addr, 1760 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1761extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1762 unsigned long len, unsigned long prot, unsigned long flags, 1763 unsigned long pgoff, unsigned long *populate); 1764extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1765 1766#ifdef CONFIG_MMU 1767extern int __mm_populate(unsigned long addr, unsigned long len, 1768 int ignore_errors); 1769static inline void mm_populate(unsigned long addr, unsigned long len) 1770{ 1771 /* Ignore errors */ 1772 (void) __mm_populate(addr, len, 1); 1773} 1774#else 1775static inline void mm_populate(unsigned long addr, unsigned long len) {} 1776#endif 1777 1778/* These take the mm semaphore themselves */ 1779extern unsigned long vm_brk(unsigned long, unsigned long); 1780extern int vm_munmap(unsigned long, size_t); 1781extern unsigned long vm_mmap(struct file *, unsigned long, 1782 unsigned long, unsigned long, 1783 unsigned long, unsigned long); 1784 1785struct vm_unmapped_area_info { 1786#define VM_UNMAPPED_AREA_TOPDOWN 1 1787 unsigned long flags; 1788 unsigned long length; 1789 unsigned long low_limit; 1790 unsigned long high_limit; 1791 unsigned long align_mask; 1792 unsigned long align_offset; 1793}; 1794 1795extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1796extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1797 1798/* 1799 * Search for an unmapped address range. 1800 * 1801 * We are looking for a range that: 1802 * - does not intersect with any VMA; 1803 * - is contained within the [low_limit, high_limit) interval; 1804 * - is at least the desired size. 1805 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1806 */ 1807static inline unsigned long 1808vm_unmapped_area(struct vm_unmapped_area_info *info) 1809{ 1810 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1811 return unmapped_area(info); 1812 else 1813 return unmapped_area_topdown(info); 1814} 1815 1816/* truncate.c */ 1817extern void truncate_inode_pages(struct address_space *, loff_t); 1818extern void truncate_inode_pages_range(struct address_space *, 1819 loff_t lstart, loff_t lend); 1820 1821/* generic vm_area_ops exported for stackable file systems */ 1822extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1823extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1824 1825/* mm/page-writeback.c */ 1826int write_one_page(struct page *page, int wait); 1827void task_dirty_inc(struct task_struct *tsk); 1828 1829/* readahead.c */ 1830#define VM_MAX_READAHEAD 128 /* kbytes */ 1831#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1832 1833int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1834 pgoff_t offset, unsigned long nr_to_read); 1835 1836void page_cache_sync_readahead(struct address_space *mapping, 1837 struct file_ra_state *ra, 1838 struct file *filp, 1839 pgoff_t offset, 1840 unsigned long size); 1841 1842void page_cache_async_readahead(struct address_space *mapping, 1843 struct file_ra_state *ra, 1844 struct file *filp, 1845 struct page *pg, 1846 pgoff_t offset, 1847 unsigned long size); 1848 1849unsigned long max_sane_readahead(unsigned long nr); 1850unsigned long ra_submit(struct file_ra_state *ra, 1851 struct address_space *mapping, 1852 struct file *filp); 1853 1854/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1855extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1856 1857/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1858extern int expand_downwards(struct vm_area_struct *vma, 1859 unsigned long address); 1860#if VM_GROWSUP 1861extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1862#else 1863 #define expand_upwards(vma, address) do { } while (0) 1864#endif 1865 1866/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1867extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1868extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1869 struct vm_area_struct **pprev); 1870 1871/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1872 NULL if none. Assume start_addr < end_addr. */ 1873static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1874{ 1875 struct vm_area_struct * vma = find_vma(mm,start_addr); 1876 1877 if (vma && end_addr <= vma->vm_start) 1878 vma = NULL; 1879 return vma; 1880} 1881 1882static inline unsigned long vma_pages(struct vm_area_struct *vma) 1883{ 1884 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1885} 1886 1887/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1888static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1889 unsigned long vm_start, unsigned long vm_end) 1890{ 1891 struct vm_area_struct *vma = find_vma(mm, vm_start); 1892 1893 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1894 vma = NULL; 1895 1896 return vma; 1897} 1898 1899#ifdef CONFIG_MMU 1900pgprot_t vm_get_page_prot(unsigned long vm_flags); 1901#else 1902static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1903{ 1904 return __pgprot(0); 1905} 1906#endif 1907 1908#ifdef CONFIG_NUMA_BALANCING 1909unsigned long change_prot_numa(struct vm_area_struct *vma, 1910 unsigned long start, unsigned long end); 1911#endif 1912 1913struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1914int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1915 unsigned long pfn, unsigned long size, pgprot_t); 1916int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1917int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1918 unsigned long pfn); 1919int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1920 unsigned long pfn); 1921int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1922 1923 1924struct page *follow_page_mask(struct vm_area_struct *vma, 1925 unsigned long address, unsigned int foll_flags, 1926 unsigned int *page_mask); 1927 1928static inline struct page *follow_page(struct vm_area_struct *vma, 1929 unsigned long address, unsigned int foll_flags) 1930{ 1931 unsigned int unused_page_mask; 1932 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1933} 1934 1935#define FOLL_WRITE 0x01 /* check pte is writable */ 1936#define FOLL_TOUCH 0x02 /* mark page accessed */ 1937#define FOLL_GET 0x04 /* do get_page on page */ 1938#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1939#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1940#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1941 * and return without waiting upon it */ 1942#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1943#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1944#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1945#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1946#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1947 1948typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1949 void *data); 1950extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1951 unsigned long size, pte_fn_t fn, void *data); 1952 1953#ifdef CONFIG_PROC_FS 1954void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1955#else 1956static inline void vm_stat_account(struct mm_struct *mm, 1957 unsigned long flags, struct file *file, long pages) 1958{ 1959 mm->total_vm += pages; 1960} 1961#endif /* CONFIG_PROC_FS */ 1962 1963#ifdef CONFIG_DEBUG_PAGEALLOC 1964extern void kernel_map_pages(struct page *page, int numpages, int enable); 1965#ifdef CONFIG_HIBERNATION 1966extern bool kernel_page_present(struct page *page); 1967#endif /* CONFIG_HIBERNATION */ 1968#else 1969static inline void 1970kernel_map_pages(struct page *page, int numpages, int enable) {} 1971#ifdef CONFIG_HIBERNATION 1972static inline bool kernel_page_present(struct page *page) { return true; } 1973#endif /* CONFIG_HIBERNATION */ 1974#endif 1975 1976extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1977#ifdef __HAVE_ARCH_GATE_AREA 1978int in_gate_area_no_mm(unsigned long addr); 1979int in_gate_area(struct mm_struct *mm, unsigned long addr); 1980#else 1981int in_gate_area_no_mm(unsigned long addr); 1982#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1983#endif /* __HAVE_ARCH_GATE_AREA */ 1984 1985#ifdef CONFIG_SYSCTL 1986extern int sysctl_drop_caches; 1987int drop_caches_sysctl_handler(struct ctl_table *, int, 1988 void __user *, size_t *, loff_t *); 1989#endif 1990 1991unsigned long shrink_slab(struct shrink_control *shrink, 1992 unsigned long nr_pages_scanned, 1993 unsigned long lru_pages); 1994 1995#ifndef CONFIG_MMU 1996#define randomize_va_space 0 1997#else 1998extern int randomize_va_space; 1999#endif 2000 2001const char * arch_vma_name(struct vm_area_struct *vma); 2002void print_vma_addr(char *prefix, unsigned long rip); 2003 2004void sparse_mem_maps_populate_node(struct page **map_map, 2005 unsigned long pnum_begin, 2006 unsigned long pnum_end, 2007 unsigned long map_count, 2008 int nodeid); 2009 2010struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2011pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2012pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2013pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2014pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2015void *vmemmap_alloc_block(unsigned long size, int node); 2016void *vmemmap_alloc_block_buf(unsigned long size, int node); 2017void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2018int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2019 int node); 2020int vmemmap_populate(unsigned long start, unsigned long end, int node); 2021void vmemmap_populate_print_last(void); 2022#ifdef CONFIG_MEMORY_HOTPLUG 2023void vmemmap_free(unsigned long start, unsigned long end); 2024#endif 2025void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2026 unsigned long size); 2027 2028enum mf_flags { 2029 MF_COUNT_INCREASED = 1 << 0, 2030 MF_ACTION_REQUIRED = 1 << 1, 2031 MF_MUST_KILL = 1 << 2, 2032 MF_SOFT_OFFLINE = 1 << 3, 2033}; 2034extern int memory_failure(unsigned long pfn, int trapno, int flags); 2035extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2036extern int unpoison_memory(unsigned long pfn); 2037extern int sysctl_memory_failure_early_kill; 2038extern int sysctl_memory_failure_recovery; 2039extern void shake_page(struct page *p, int access); 2040extern atomic_long_t num_poisoned_pages; 2041extern int soft_offline_page(struct page *page, int flags); 2042 2043#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2044extern void clear_huge_page(struct page *page, 2045 unsigned long addr, 2046 unsigned int pages_per_huge_page); 2047extern void copy_user_huge_page(struct page *dst, struct page *src, 2048 unsigned long addr, struct vm_area_struct *vma, 2049 unsigned int pages_per_huge_page); 2050#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2051 2052#ifdef CONFIG_DEBUG_PAGEALLOC 2053extern unsigned int _debug_guardpage_minorder; 2054 2055static inline unsigned int debug_guardpage_minorder(void) 2056{ 2057 return _debug_guardpage_minorder; 2058} 2059 2060static inline bool page_is_guard(struct page *page) 2061{ 2062 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 2063} 2064#else 2065static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2066static inline bool page_is_guard(struct page *page) { return false; } 2067#endif /* CONFIG_DEBUG_PAGEALLOC */ 2068 2069#if MAX_NUMNODES > 1 2070void __init setup_nr_node_ids(void); 2071#else 2072static inline void setup_nr_node_ids(void) {} 2073#endif 2074 2075#endif /* __KERNEL__ */ 2076#endif /* _LINUX_MM_H */