Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21
22struct mempolicy;
23struct anon_vma;
24struct anon_vma_chain;
25struct file_ra_state;
26struct user_struct;
27struct writeback_control;
28
29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30extern unsigned long max_mapnr;
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
38#endif
39
40extern unsigned long totalram_pages;
41extern void * high_memory;
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
53
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
58extern unsigned long sysctl_user_reserve_kbytes;
59extern unsigned long sysctl_admin_reserve_kbytes;
60
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87extern struct kmem_cache *vm_area_cachep;
88
89#ifndef CONFIG_MMU
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99#define VM_NONE 0x00000000
100
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
174/*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179
180/*
181 * mapping from the currently active vm_flags protection bits (the
182 * low four bits) to a page protection mask..
183 */
184extern pgprot_t protection_map[16];
185
186#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
187#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
188#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
189#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
190#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
191#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
192#define FAULT_FLAG_TRIED 0x40 /* second try */
193#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
194
195/*
196 * vm_fault is filled by the the pagefault handler and passed to the vma's
197 * ->fault function. The vma's ->fault is responsible for returning a bitmask
198 * of VM_FAULT_xxx flags that give details about how the fault was handled.
199 *
200 * pgoff should be used in favour of virtual_address, if possible. If pgoff
201 * is used, one may implement ->remap_pages to get nonlinear mapping support.
202 */
203struct vm_fault {
204 unsigned int flags; /* FAULT_FLAG_xxx flags */
205 pgoff_t pgoff; /* Logical page offset based on vma */
206 void __user *virtual_address; /* Faulting virtual address */
207
208 struct page *page; /* ->fault handlers should return a
209 * page here, unless VM_FAULT_NOPAGE
210 * is set (which is also implied by
211 * VM_FAULT_ERROR).
212 */
213};
214
215/*
216 * These are the virtual MM functions - opening of an area, closing and
217 * unmapping it (needed to keep files on disk up-to-date etc), pointer
218 * to the functions called when a no-page or a wp-page exception occurs.
219 */
220struct vm_operations_struct {
221 void (*open)(struct vm_area_struct * area);
222 void (*close)(struct vm_area_struct * area);
223 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
224
225 /* notification that a previously read-only page is about to become
226 * writable, if an error is returned it will cause a SIGBUS */
227 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
228
229 /* called by access_process_vm when get_user_pages() fails, typically
230 * for use by special VMAs that can switch between memory and hardware
231 */
232 int (*access)(struct vm_area_struct *vma, unsigned long addr,
233 void *buf, int len, int write);
234#ifdef CONFIG_NUMA
235 /*
236 * set_policy() op must add a reference to any non-NULL @new mempolicy
237 * to hold the policy upon return. Caller should pass NULL @new to
238 * remove a policy and fall back to surrounding context--i.e. do not
239 * install a MPOL_DEFAULT policy, nor the task or system default
240 * mempolicy.
241 */
242 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
243
244 /*
245 * get_policy() op must add reference [mpol_get()] to any policy at
246 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
247 * in mm/mempolicy.c will do this automatically.
248 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
249 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
250 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
251 * must return NULL--i.e., do not "fallback" to task or system default
252 * policy.
253 */
254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255 unsigned long addr);
256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257 const nodemask_t *to, unsigned long flags);
258#endif
259 /* called by sys_remap_file_pages() to populate non-linear mapping */
260 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
261 unsigned long size, pgoff_t pgoff);
262};
263
264struct mmu_gather;
265struct inode;
266
267#define page_private(page) ((page)->private)
268#define set_page_private(page, v) ((page)->private = (v))
269
270/* It's valid only if the page is free path or free_list */
271static inline void set_freepage_migratetype(struct page *page, int migratetype)
272{
273 page->index = migratetype;
274}
275
276/* It's valid only if the page is free path or free_list */
277static inline int get_freepage_migratetype(struct page *page)
278{
279 return page->index;
280}
281
282/*
283 * FIXME: take this include out, include page-flags.h in
284 * files which need it (119 of them)
285 */
286#include <linux/page-flags.h>
287#include <linux/huge_mm.h>
288
289/*
290 * Methods to modify the page usage count.
291 *
292 * What counts for a page usage:
293 * - cache mapping (page->mapping)
294 * - private data (page->private)
295 * - page mapped in a task's page tables, each mapping
296 * is counted separately
297 *
298 * Also, many kernel routines increase the page count before a critical
299 * routine so they can be sure the page doesn't go away from under them.
300 */
301
302/*
303 * Drop a ref, return true if the refcount fell to zero (the page has no users)
304 */
305static inline int put_page_testzero(struct page *page)
306{
307 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
308 return atomic_dec_and_test(&page->_count);
309}
310
311/*
312 * Try to grab a ref unless the page has a refcount of zero, return false if
313 * that is the case.
314 * This can be called when MMU is off so it must not access
315 * any of the virtual mappings.
316 */
317static inline int get_page_unless_zero(struct page *page)
318{
319 return atomic_inc_not_zero(&page->_count);
320}
321
322/*
323 * Try to drop a ref unless the page has a refcount of one, return false if
324 * that is the case.
325 * This is to make sure that the refcount won't become zero after this drop.
326 * This can be called when MMU is off so it must not access
327 * any of the virtual mappings.
328 */
329static inline int put_page_unless_one(struct page *page)
330{
331 return atomic_add_unless(&page->_count, -1, 1);
332}
333
334extern int page_is_ram(unsigned long pfn);
335
336/* Support for virtually mapped pages */
337struct page *vmalloc_to_page(const void *addr);
338unsigned long vmalloc_to_pfn(const void *addr);
339
340/*
341 * Determine if an address is within the vmalloc range
342 *
343 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
344 * is no special casing required.
345 */
346static inline int is_vmalloc_addr(const void *x)
347{
348#ifdef CONFIG_MMU
349 unsigned long addr = (unsigned long)x;
350
351 return addr >= VMALLOC_START && addr < VMALLOC_END;
352#else
353 return 0;
354#endif
355}
356#ifdef CONFIG_MMU
357extern int is_vmalloc_or_module_addr(const void *x);
358#else
359static inline int is_vmalloc_or_module_addr(const void *x)
360{
361 return 0;
362}
363#endif
364
365static inline void compound_lock(struct page *page)
366{
367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 VM_BUG_ON_PAGE(PageSlab(page), page);
369 bit_spin_lock(PG_compound_lock, &page->flags);
370#endif
371}
372
373static inline void compound_unlock(struct page *page)
374{
375#ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 VM_BUG_ON_PAGE(PageSlab(page), page);
377 bit_spin_unlock(PG_compound_lock, &page->flags);
378#endif
379}
380
381static inline unsigned long compound_lock_irqsave(struct page *page)
382{
383 unsigned long uninitialized_var(flags);
384#ifdef CONFIG_TRANSPARENT_HUGEPAGE
385 local_irq_save(flags);
386 compound_lock(page);
387#endif
388 return flags;
389}
390
391static inline void compound_unlock_irqrestore(struct page *page,
392 unsigned long flags)
393{
394#ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 compound_unlock(page);
396 local_irq_restore(flags);
397#endif
398}
399
400static inline struct page *compound_head(struct page *page)
401{
402 if (unlikely(PageTail(page))) {
403 struct page *head = page->first_page;
404
405 /*
406 * page->first_page may be a dangling pointer to an old
407 * compound page, so recheck that it is still a tail
408 * page before returning.
409 */
410 smp_rmb();
411 if (likely(PageTail(page)))
412 return head;
413 }
414 return page;
415}
416
417/*
418 * The atomic page->_mapcount, starts from -1: so that transitions
419 * both from it and to it can be tracked, using atomic_inc_and_test
420 * and atomic_add_negative(-1).
421 */
422static inline void page_mapcount_reset(struct page *page)
423{
424 atomic_set(&(page)->_mapcount, -1);
425}
426
427static inline int page_mapcount(struct page *page)
428{
429 return atomic_read(&(page)->_mapcount) + 1;
430}
431
432static inline int page_count(struct page *page)
433{
434 return atomic_read(&compound_head(page)->_count);
435}
436
437#ifdef CONFIG_HUGETLB_PAGE
438extern int PageHeadHuge(struct page *page_head);
439#else /* CONFIG_HUGETLB_PAGE */
440static inline int PageHeadHuge(struct page *page_head)
441{
442 return 0;
443}
444#endif /* CONFIG_HUGETLB_PAGE */
445
446static inline bool __compound_tail_refcounted(struct page *page)
447{
448 return !PageSlab(page) && !PageHeadHuge(page);
449}
450
451/*
452 * This takes a head page as parameter and tells if the
453 * tail page reference counting can be skipped.
454 *
455 * For this to be safe, PageSlab and PageHeadHuge must remain true on
456 * any given page where they return true here, until all tail pins
457 * have been released.
458 */
459static inline bool compound_tail_refcounted(struct page *page)
460{
461 VM_BUG_ON_PAGE(!PageHead(page), page);
462 return __compound_tail_refcounted(page);
463}
464
465static inline void get_huge_page_tail(struct page *page)
466{
467 /*
468 * __split_huge_page_refcount() cannot run from under us.
469 */
470 VM_BUG_ON_PAGE(!PageTail(page), page);
471 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
472 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
473 if (compound_tail_refcounted(page->first_page))
474 atomic_inc(&page->_mapcount);
475}
476
477extern bool __get_page_tail(struct page *page);
478
479static inline void get_page(struct page *page)
480{
481 if (unlikely(PageTail(page)))
482 if (likely(__get_page_tail(page)))
483 return;
484 /*
485 * Getting a normal page or the head of a compound page
486 * requires to already have an elevated page->_count.
487 */
488 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
489 atomic_inc(&page->_count);
490}
491
492static inline struct page *virt_to_head_page(const void *x)
493{
494 struct page *page = virt_to_page(x);
495 return compound_head(page);
496}
497
498/*
499 * Setup the page count before being freed into the page allocator for
500 * the first time (boot or memory hotplug)
501 */
502static inline void init_page_count(struct page *page)
503{
504 atomic_set(&page->_count, 1);
505}
506
507/*
508 * PageBuddy() indicate that the page is free and in the buddy system
509 * (see mm/page_alloc.c).
510 *
511 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
512 * -2 so that an underflow of the page_mapcount() won't be mistaken
513 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
514 * efficiently by most CPU architectures.
515 */
516#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
517
518static inline int PageBuddy(struct page *page)
519{
520 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
521}
522
523static inline void __SetPageBuddy(struct page *page)
524{
525 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
526 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
527}
528
529static inline void __ClearPageBuddy(struct page *page)
530{
531 VM_BUG_ON_PAGE(!PageBuddy(page), page);
532 atomic_set(&page->_mapcount, -1);
533}
534
535void put_page(struct page *page);
536void put_pages_list(struct list_head *pages);
537
538void split_page(struct page *page, unsigned int order);
539int split_free_page(struct page *page);
540
541/*
542 * Compound pages have a destructor function. Provide a
543 * prototype for that function and accessor functions.
544 * These are _only_ valid on the head of a PG_compound page.
545 */
546typedef void compound_page_dtor(struct page *);
547
548static inline void set_compound_page_dtor(struct page *page,
549 compound_page_dtor *dtor)
550{
551 page[1].lru.next = (void *)dtor;
552}
553
554static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
555{
556 return (compound_page_dtor *)page[1].lru.next;
557}
558
559static inline int compound_order(struct page *page)
560{
561 if (!PageHead(page))
562 return 0;
563 return (unsigned long)page[1].lru.prev;
564}
565
566static inline void set_compound_order(struct page *page, unsigned long order)
567{
568 page[1].lru.prev = (void *)order;
569}
570
571#ifdef CONFIG_MMU
572/*
573 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
574 * servicing faults for write access. In the normal case, do always want
575 * pte_mkwrite. But get_user_pages can cause write faults for mappings
576 * that do not have writing enabled, when used by access_process_vm.
577 */
578static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
579{
580 if (likely(vma->vm_flags & VM_WRITE))
581 pte = pte_mkwrite(pte);
582 return pte;
583}
584#endif
585
586/*
587 * Multiple processes may "see" the same page. E.g. for untouched
588 * mappings of /dev/null, all processes see the same page full of
589 * zeroes, and text pages of executables and shared libraries have
590 * only one copy in memory, at most, normally.
591 *
592 * For the non-reserved pages, page_count(page) denotes a reference count.
593 * page_count() == 0 means the page is free. page->lru is then used for
594 * freelist management in the buddy allocator.
595 * page_count() > 0 means the page has been allocated.
596 *
597 * Pages are allocated by the slab allocator in order to provide memory
598 * to kmalloc and kmem_cache_alloc. In this case, the management of the
599 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
600 * unless a particular usage is carefully commented. (the responsibility of
601 * freeing the kmalloc memory is the caller's, of course).
602 *
603 * A page may be used by anyone else who does a __get_free_page().
604 * In this case, page_count still tracks the references, and should only
605 * be used through the normal accessor functions. The top bits of page->flags
606 * and page->virtual store page management information, but all other fields
607 * are unused and could be used privately, carefully. The management of this
608 * page is the responsibility of the one who allocated it, and those who have
609 * subsequently been given references to it.
610 *
611 * The other pages (we may call them "pagecache pages") are completely
612 * managed by the Linux memory manager: I/O, buffers, swapping etc.
613 * The following discussion applies only to them.
614 *
615 * A pagecache page contains an opaque `private' member, which belongs to the
616 * page's address_space. Usually, this is the address of a circular list of
617 * the page's disk buffers. PG_private must be set to tell the VM to call
618 * into the filesystem to release these pages.
619 *
620 * A page may belong to an inode's memory mapping. In this case, page->mapping
621 * is the pointer to the inode, and page->index is the file offset of the page,
622 * in units of PAGE_CACHE_SIZE.
623 *
624 * If pagecache pages are not associated with an inode, they are said to be
625 * anonymous pages. These may become associated with the swapcache, and in that
626 * case PG_swapcache is set, and page->private is an offset into the swapcache.
627 *
628 * In either case (swapcache or inode backed), the pagecache itself holds one
629 * reference to the page. Setting PG_private should also increment the
630 * refcount. The each user mapping also has a reference to the page.
631 *
632 * The pagecache pages are stored in a per-mapping radix tree, which is
633 * rooted at mapping->page_tree, and indexed by offset.
634 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
635 * lists, we instead now tag pages as dirty/writeback in the radix tree.
636 *
637 * All pagecache pages may be subject to I/O:
638 * - inode pages may need to be read from disk,
639 * - inode pages which have been modified and are MAP_SHARED may need
640 * to be written back to the inode on disk,
641 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
642 * modified may need to be swapped out to swap space and (later) to be read
643 * back into memory.
644 */
645
646/*
647 * The zone field is never updated after free_area_init_core()
648 * sets it, so none of the operations on it need to be atomic.
649 */
650
651/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
652#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
653#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
654#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
655#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
656
657/*
658 * Define the bit shifts to access each section. For non-existent
659 * sections we define the shift as 0; that plus a 0 mask ensures
660 * the compiler will optimise away reference to them.
661 */
662#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
663#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
664#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
665#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
666
667/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
668#ifdef NODE_NOT_IN_PAGE_FLAGS
669#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
670#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
671 SECTIONS_PGOFF : ZONES_PGOFF)
672#else
673#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
674#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
675 NODES_PGOFF : ZONES_PGOFF)
676#endif
677
678#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
679
680#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
681#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
682#endif
683
684#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
685#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
686#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
687#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
688#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
689
690static inline enum zone_type page_zonenum(const struct page *page)
691{
692 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
693}
694
695#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
696#define SECTION_IN_PAGE_FLAGS
697#endif
698
699/*
700 * The identification function is mainly used by the buddy allocator for
701 * determining if two pages could be buddies. We are not really identifying
702 * the zone since we could be using the section number id if we do not have
703 * node id available in page flags.
704 * We only guarantee that it will return the same value for two combinable
705 * pages in a zone.
706 */
707static inline int page_zone_id(struct page *page)
708{
709 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
710}
711
712static inline int zone_to_nid(struct zone *zone)
713{
714#ifdef CONFIG_NUMA
715 return zone->node;
716#else
717 return 0;
718#endif
719}
720
721#ifdef NODE_NOT_IN_PAGE_FLAGS
722extern int page_to_nid(const struct page *page);
723#else
724static inline int page_to_nid(const struct page *page)
725{
726 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
727}
728#endif
729
730#ifdef CONFIG_NUMA_BALANCING
731static inline int cpu_pid_to_cpupid(int cpu, int pid)
732{
733 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
734}
735
736static inline int cpupid_to_pid(int cpupid)
737{
738 return cpupid & LAST__PID_MASK;
739}
740
741static inline int cpupid_to_cpu(int cpupid)
742{
743 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
744}
745
746static inline int cpupid_to_nid(int cpupid)
747{
748 return cpu_to_node(cpupid_to_cpu(cpupid));
749}
750
751static inline bool cpupid_pid_unset(int cpupid)
752{
753 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
754}
755
756static inline bool cpupid_cpu_unset(int cpupid)
757{
758 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
759}
760
761static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
762{
763 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
764}
765
766#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
767#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
768static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
769{
770 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
771}
772
773static inline int page_cpupid_last(struct page *page)
774{
775 return page->_last_cpupid;
776}
777static inline void page_cpupid_reset_last(struct page *page)
778{
779 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
780}
781#else
782static inline int page_cpupid_last(struct page *page)
783{
784 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
785}
786
787extern int page_cpupid_xchg_last(struct page *page, int cpupid);
788
789static inline void page_cpupid_reset_last(struct page *page)
790{
791 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
792
793 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
794 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
795}
796#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
797#else /* !CONFIG_NUMA_BALANCING */
798static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
799{
800 return page_to_nid(page); /* XXX */
801}
802
803static inline int page_cpupid_last(struct page *page)
804{
805 return page_to_nid(page); /* XXX */
806}
807
808static inline int cpupid_to_nid(int cpupid)
809{
810 return -1;
811}
812
813static inline int cpupid_to_pid(int cpupid)
814{
815 return -1;
816}
817
818static inline int cpupid_to_cpu(int cpupid)
819{
820 return -1;
821}
822
823static inline int cpu_pid_to_cpupid(int nid, int pid)
824{
825 return -1;
826}
827
828static inline bool cpupid_pid_unset(int cpupid)
829{
830 return 1;
831}
832
833static inline void page_cpupid_reset_last(struct page *page)
834{
835}
836
837static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
838{
839 return false;
840}
841#endif /* CONFIG_NUMA_BALANCING */
842
843static inline struct zone *page_zone(const struct page *page)
844{
845 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
846}
847
848#ifdef SECTION_IN_PAGE_FLAGS
849static inline void set_page_section(struct page *page, unsigned long section)
850{
851 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
852 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
853}
854
855static inline unsigned long page_to_section(const struct page *page)
856{
857 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
858}
859#endif
860
861static inline void set_page_zone(struct page *page, enum zone_type zone)
862{
863 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
864 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
865}
866
867static inline void set_page_node(struct page *page, unsigned long node)
868{
869 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
870 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
871}
872
873static inline void set_page_links(struct page *page, enum zone_type zone,
874 unsigned long node, unsigned long pfn)
875{
876 set_page_zone(page, zone);
877 set_page_node(page, node);
878#ifdef SECTION_IN_PAGE_FLAGS
879 set_page_section(page, pfn_to_section_nr(pfn));
880#endif
881}
882
883/*
884 * Some inline functions in vmstat.h depend on page_zone()
885 */
886#include <linux/vmstat.h>
887
888static __always_inline void *lowmem_page_address(const struct page *page)
889{
890 return __va(PFN_PHYS(page_to_pfn(page)));
891}
892
893#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
894#define HASHED_PAGE_VIRTUAL
895#endif
896
897#if defined(WANT_PAGE_VIRTUAL)
898static inline void *page_address(const struct page *page)
899{
900 return page->virtual;
901}
902static inline void set_page_address(struct page *page, void *address)
903{
904 page->virtual = address;
905}
906#define page_address_init() do { } while(0)
907#endif
908
909#if defined(HASHED_PAGE_VIRTUAL)
910void *page_address(const struct page *page);
911void set_page_address(struct page *page, void *virtual);
912void page_address_init(void);
913#endif
914
915#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
916#define page_address(page) lowmem_page_address(page)
917#define set_page_address(page, address) do { } while(0)
918#define page_address_init() do { } while(0)
919#endif
920
921/*
922 * On an anonymous page mapped into a user virtual memory area,
923 * page->mapping points to its anon_vma, not to a struct address_space;
924 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
925 *
926 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
927 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
928 * and then page->mapping points, not to an anon_vma, but to a private
929 * structure which KSM associates with that merged page. See ksm.h.
930 *
931 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
932 *
933 * Please note that, confusingly, "page_mapping" refers to the inode
934 * address_space which maps the page from disk; whereas "page_mapped"
935 * refers to user virtual address space into which the page is mapped.
936 */
937#define PAGE_MAPPING_ANON 1
938#define PAGE_MAPPING_KSM 2
939#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
940
941extern struct address_space *page_mapping(struct page *page);
942
943/* Neutral page->mapping pointer to address_space or anon_vma or other */
944static inline void *page_rmapping(struct page *page)
945{
946 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
947}
948
949extern struct address_space *__page_file_mapping(struct page *);
950
951static inline
952struct address_space *page_file_mapping(struct page *page)
953{
954 if (unlikely(PageSwapCache(page)))
955 return __page_file_mapping(page);
956
957 return page->mapping;
958}
959
960static inline int PageAnon(struct page *page)
961{
962 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
963}
964
965/*
966 * Return the pagecache index of the passed page. Regular pagecache pages
967 * use ->index whereas swapcache pages use ->private
968 */
969static inline pgoff_t page_index(struct page *page)
970{
971 if (unlikely(PageSwapCache(page)))
972 return page_private(page);
973 return page->index;
974}
975
976extern pgoff_t __page_file_index(struct page *page);
977
978/*
979 * Return the file index of the page. Regular pagecache pages use ->index
980 * whereas swapcache pages use swp_offset(->private)
981 */
982static inline pgoff_t page_file_index(struct page *page)
983{
984 if (unlikely(PageSwapCache(page)))
985 return __page_file_index(page);
986
987 return page->index;
988}
989
990/*
991 * Return true if this page is mapped into pagetables.
992 */
993static inline int page_mapped(struct page *page)
994{
995 return atomic_read(&(page)->_mapcount) >= 0;
996}
997
998/*
999 * Different kinds of faults, as returned by handle_mm_fault().
1000 * Used to decide whether a process gets delivered SIGBUS or
1001 * just gets major/minor fault counters bumped up.
1002 */
1003
1004#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1005
1006#define VM_FAULT_OOM 0x0001
1007#define VM_FAULT_SIGBUS 0x0002
1008#define VM_FAULT_MAJOR 0x0004
1009#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1010#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1011#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1012
1013#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1014#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1015#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1016#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1017
1018#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1019
1020#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1021 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1022
1023/* Encode hstate index for a hwpoisoned large page */
1024#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1025#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1026
1027/*
1028 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1029 */
1030extern void pagefault_out_of_memory(void);
1031
1032#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1033
1034/*
1035 * Flags passed to show_mem() and show_free_areas() to suppress output in
1036 * various contexts.
1037 */
1038#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1039
1040extern void show_free_areas(unsigned int flags);
1041extern bool skip_free_areas_node(unsigned int flags, int nid);
1042
1043int shmem_zero_setup(struct vm_area_struct *);
1044
1045extern int can_do_mlock(void);
1046extern int user_shm_lock(size_t, struct user_struct *);
1047extern void user_shm_unlock(size_t, struct user_struct *);
1048
1049/*
1050 * Parameter block passed down to zap_pte_range in exceptional cases.
1051 */
1052struct zap_details {
1053 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1054 struct address_space *check_mapping; /* Check page->mapping if set */
1055 pgoff_t first_index; /* Lowest page->index to unmap */
1056 pgoff_t last_index; /* Highest page->index to unmap */
1057};
1058
1059struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1060 pte_t pte);
1061
1062int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1063 unsigned long size);
1064void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1065 unsigned long size, struct zap_details *);
1066void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1067 unsigned long start, unsigned long end);
1068
1069/**
1070 * mm_walk - callbacks for walk_page_range
1071 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1072 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1073 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1074 * this handler is required to be able to handle
1075 * pmd_trans_huge() pmds. They may simply choose to
1076 * split_huge_page() instead of handling it explicitly.
1077 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1078 * @pte_hole: if set, called for each hole at all levels
1079 * @hugetlb_entry: if set, called for each hugetlb entry
1080 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1081 * is used.
1082 *
1083 * (see walk_page_range for more details)
1084 */
1085struct mm_walk {
1086 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1087 unsigned long next, struct mm_walk *walk);
1088 int (*pud_entry)(pud_t *pud, unsigned long addr,
1089 unsigned long next, struct mm_walk *walk);
1090 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1091 unsigned long next, struct mm_walk *walk);
1092 int (*pte_entry)(pte_t *pte, unsigned long addr,
1093 unsigned long next, struct mm_walk *walk);
1094 int (*pte_hole)(unsigned long addr, unsigned long next,
1095 struct mm_walk *walk);
1096 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1097 unsigned long addr, unsigned long next,
1098 struct mm_walk *walk);
1099 struct mm_struct *mm;
1100 void *private;
1101};
1102
1103int walk_page_range(unsigned long addr, unsigned long end,
1104 struct mm_walk *walk);
1105void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1106 unsigned long end, unsigned long floor, unsigned long ceiling);
1107int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1108 struct vm_area_struct *vma);
1109void unmap_mapping_range(struct address_space *mapping,
1110 loff_t const holebegin, loff_t const holelen, int even_cows);
1111int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1112 unsigned long *pfn);
1113int follow_phys(struct vm_area_struct *vma, unsigned long address,
1114 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1115int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1116 void *buf, int len, int write);
1117
1118static inline void unmap_shared_mapping_range(struct address_space *mapping,
1119 loff_t const holebegin, loff_t const holelen)
1120{
1121 unmap_mapping_range(mapping, holebegin, holelen, 0);
1122}
1123
1124extern void truncate_pagecache(struct inode *inode, loff_t new);
1125extern void truncate_setsize(struct inode *inode, loff_t newsize);
1126void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1127int truncate_inode_page(struct address_space *mapping, struct page *page);
1128int generic_error_remove_page(struct address_space *mapping, struct page *page);
1129int invalidate_inode_page(struct page *page);
1130
1131#ifdef CONFIG_MMU
1132extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1133 unsigned long address, unsigned int flags);
1134extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1135 unsigned long address, unsigned int fault_flags);
1136#else
1137static inline int handle_mm_fault(struct mm_struct *mm,
1138 struct vm_area_struct *vma, unsigned long address,
1139 unsigned int flags)
1140{
1141 /* should never happen if there's no MMU */
1142 BUG();
1143 return VM_FAULT_SIGBUS;
1144}
1145static inline int fixup_user_fault(struct task_struct *tsk,
1146 struct mm_struct *mm, unsigned long address,
1147 unsigned int fault_flags)
1148{
1149 /* should never happen if there's no MMU */
1150 BUG();
1151 return -EFAULT;
1152}
1153#endif
1154
1155extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1156extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1157 void *buf, int len, int write);
1158
1159long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1160 unsigned long start, unsigned long nr_pages,
1161 unsigned int foll_flags, struct page **pages,
1162 struct vm_area_struct **vmas, int *nonblocking);
1163long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1164 unsigned long start, unsigned long nr_pages,
1165 int write, int force, struct page **pages,
1166 struct vm_area_struct **vmas);
1167int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1168 struct page **pages);
1169struct kvec;
1170int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1171 struct page **pages);
1172int get_kernel_page(unsigned long start, int write, struct page **pages);
1173struct page *get_dump_page(unsigned long addr);
1174
1175extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1176extern void do_invalidatepage(struct page *page, unsigned int offset,
1177 unsigned int length);
1178
1179int __set_page_dirty_nobuffers(struct page *page);
1180int __set_page_dirty_no_writeback(struct page *page);
1181int redirty_page_for_writepage(struct writeback_control *wbc,
1182 struct page *page);
1183void account_page_dirtied(struct page *page, struct address_space *mapping);
1184void account_page_writeback(struct page *page);
1185int set_page_dirty(struct page *page);
1186int set_page_dirty_lock(struct page *page);
1187int clear_page_dirty_for_io(struct page *page);
1188
1189/* Is the vma a continuation of the stack vma above it? */
1190static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1191{
1192 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1193}
1194
1195static inline int stack_guard_page_start(struct vm_area_struct *vma,
1196 unsigned long addr)
1197{
1198 return (vma->vm_flags & VM_GROWSDOWN) &&
1199 (vma->vm_start == addr) &&
1200 !vma_growsdown(vma->vm_prev, addr);
1201}
1202
1203/* Is the vma a continuation of the stack vma below it? */
1204static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1205{
1206 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1207}
1208
1209static inline int stack_guard_page_end(struct vm_area_struct *vma,
1210 unsigned long addr)
1211{
1212 return (vma->vm_flags & VM_GROWSUP) &&
1213 (vma->vm_end == addr) &&
1214 !vma_growsup(vma->vm_next, addr);
1215}
1216
1217extern pid_t
1218vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1219
1220extern unsigned long move_page_tables(struct vm_area_struct *vma,
1221 unsigned long old_addr, struct vm_area_struct *new_vma,
1222 unsigned long new_addr, unsigned long len,
1223 bool need_rmap_locks);
1224extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1225 unsigned long end, pgprot_t newprot,
1226 int dirty_accountable, int prot_numa);
1227extern int mprotect_fixup(struct vm_area_struct *vma,
1228 struct vm_area_struct **pprev, unsigned long start,
1229 unsigned long end, unsigned long newflags);
1230
1231/*
1232 * doesn't attempt to fault and will return short.
1233 */
1234int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1235 struct page **pages);
1236/*
1237 * per-process(per-mm_struct) statistics.
1238 */
1239static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1240{
1241 long val = atomic_long_read(&mm->rss_stat.count[member]);
1242
1243#ifdef SPLIT_RSS_COUNTING
1244 /*
1245 * counter is updated in asynchronous manner and may go to minus.
1246 * But it's never be expected number for users.
1247 */
1248 if (val < 0)
1249 val = 0;
1250#endif
1251 return (unsigned long)val;
1252}
1253
1254static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1255{
1256 atomic_long_add(value, &mm->rss_stat.count[member]);
1257}
1258
1259static inline void inc_mm_counter(struct mm_struct *mm, int member)
1260{
1261 atomic_long_inc(&mm->rss_stat.count[member]);
1262}
1263
1264static inline void dec_mm_counter(struct mm_struct *mm, int member)
1265{
1266 atomic_long_dec(&mm->rss_stat.count[member]);
1267}
1268
1269static inline unsigned long get_mm_rss(struct mm_struct *mm)
1270{
1271 return get_mm_counter(mm, MM_FILEPAGES) +
1272 get_mm_counter(mm, MM_ANONPAGES);
1273}
1274
1275static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1276{
1277 return max(mm->hiwater_rss, get_mm_rss(mm));
1278}
1279
1280static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1281{
1282 return max(mm->hiwater_vm, mm->total_vm);
1283}
1284
1285static inline void update_hiwater_rss(struct mm_struct *mm)
1286{
1287 unsigned long _rss = get_mm_rss(mm);
1288
1289 if ((mm)->hiwater_rss < _rss)
1290 (mm)->hiwater_rss = _rss;
1291}
1292
1293static inline void update_hiwater_vm(struct mm_struct *mm)
1294{
1295 if (mm->hiwater_vm < mm->total_vm)
1296 mm->hiwater_vm = mm->total_vm;
1297}
1298
1299static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1300 struct mm_struct *mm)
1301{
1302 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1303
1304 if (*maxrss < hiwater_rss)
1305 *maxrss = hiwater_rss;
1306}
1307
1308#if defined(SPLIT_RSS_COUNTING)
1309void sync_mm_rss(struct mm_struct *mm);
1310#else
1311static inline void sync_mm_rss(struct mm_struct *mm)
1312{
1313}
1314#endif
1315
1316int vma_wants_writenotify(struct vm_area_struct *vma);
1317
1318extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1319 spinlock_t **ptl);
1320static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1321 spinlock_t **ptl)
1322{
1323 pte_t *ptep;
1324 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1325 return ptep;
1326}
1327
1328#ifdef __PAGETABLE_PUD_FOLDED
1329static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1330 unsigned long address)
1331{
1332 return 0;
1333}
1334#else
1335int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1336#endif
1337
1338#ifdef __PAGETABLE_PMD_FOLDED
1339static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1340 unsigned long address)
1341{
1342 return 0;
1343}
1344#else
1345int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1346#endif
1347
1348int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1349 pmd_t *pmd, unsigned long address);
1350int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1351
1352/*
1353 * The following ifdef needed to get the 4level-fixup.h header to work.
1354 * Remove it when 4level-fixup.h has been removed.
1355 */
1356#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1357static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1358{
1359 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1360 NULL: pud_offset(pgd, address);
1361}
1362
1363static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1364{
1365 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1366 NULL: pmd_offset(pud, address);
1367}
1368#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1369
1370#if USE_SPLIT_PTE_PTLOCKS
1371#if ALLOC_SPLIT_PTLOCKS
1372void __init ptlock_cache_init(void);
1373extern bool ptlock_alloc(struct page *page);
1374extern void ptlock_free(struct page *page);
1375
1376static inline spinlock_t *ptlock_ptr(struct page *page)
1377{
1378 return page->ptl;
1379}
1380#else /* ALLOC_SPLIT_PTLOCKS */
1381static inline void ptlock_cache_init(void)
1382{
1383}
1384
1385static inline bool ptlock_alloc(struct page *page)
1386{
1387 return true;
1388}
1389
1390static inline void ptlock_free(struct page *page)
1391{
1392}
1393
1394static inline spinlock_t *ptlock_ptr(struct page *page)
1395{
1396 return &page->ptl;
1397}
1398#endif /* ALLOC_SPLIT_PTLOCKS */
1399
1400static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1401{
1402 return ptlock_ptr(pmd_page(*pmd));
1403}
1404
1405static inline bool ptlock_init(struct page *page)
1406{
1407 /*
1408 * prep_new_page() initialize page->private (and therefore page->ptl)
1409 * with 0. Make sure nobody took it in use in between.
1410 *
1411 * It can happen if arch try to use slab for page table allocation:
1412 * slab code uses page->slab_cache and page->first_page (for tail
1413 * pages), which share storage with page->ptl.
1414 */
1415 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1416 if (!ptlock_alloc(page))
1417 return false;
1418 spin_lock_init(ptlock_ptr(page));
1419 return true;
1420}
1421
1422/* Reset page->mapping so free_pages_check won't complain. */
1423static inline void pte_lock_deinit(struct page *page)
1424{
1425 page->mapping = NULL;
1426 ptlock_free(page);
1427}
1428
1429#else /* !USE_SPLIT_PTE_PTLOCKS */
1430/*
1431 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1432 */
1433static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1434{
1435 return &mm->page_table_lock;
1436}
1437static inline void ptlock_cache_init(void) {}
1438static inline bool ptlock_init(struct page *page) { return true; }
1439static inline void pte_lock_deinit(struct page *page) {}
1440#endif /* USE_SPLIT_PTE_PTLOCKS */
1441
1442static inline void pgtable_init(void)
1443{
1444 ptlock_cache_init();
1445 pgtable_cache_init();
1446}
1447
1448static inline bool pgtable_page_ctor(struct page *page)
1449{
1450 inc_zone_page_state(page, NR_PAGETABLE);
1451 return ptlock_init(page);
1452}
1453
1454static inline void pgtable_page_dtor(struct page *page)
1455{
1456 pte_lock_deinit(page);
1457 dec_zone_page_state(page, NR_PAGETABLE);
1458}
1459
1460#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1461({ \
1462 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1463 pte_t *__pte = pte_offset_map(pmd, address); \
1464 *(ptlp) = __ptl; \
1465 spin_lock(__ptl); \
1466 __pte; \
1467})
1468
1469#define pte_unmap_unlock(pte, ptl) do { \
1470 spin_unlock(ptl); \
1471 pte_unmap(pte); \
1472} while (0)
1473
1474#define pte_alloc_map(mm, vma, pmd, address) \
1475 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1476 pmd, address))? \
1477 NULL: pte_offset_map(pmd, address))
1478
1479#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1480 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1481 pmd, address))? \
1482 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1483
1484#define pte_alloc_kernel(pmd, address) \
1485 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1486 NULL: pte_offset_kernel(pmd, address))
1487
1488#if USE_SPLIT_PMD_PTLOCKS
1489
1490static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1491{
1492 return ptlock_ptr(virt_to_page(pmd));
1493}
1494
1495static inline bool pgtable_pmd_page_ctor(struct page *page)
1496{
1497#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1498 page->pmd_huge_pte = NULL;
1499#endif
1500 return ptlock_init(page);
1501}
1502
1503static inline void pgtable_pmd_page_dtor(struct page *page)
1504{
1505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1506 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1507#endif
1508 ptlock_free(page);
1509}
1510
1511#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1512
1513#else
1514
1515static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1516{
1517 return &mm->page_table_lock;
1518}
1519
1520static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1521static inline void pgtable_pmd_page_dtor(struct page *page) {}
1522
1523#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1524
1525#endif
1526
1527static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1528{
1529 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1530 spin_lock(ptl);
1531 return ptl;
1532}
1533
1534extern void free_area_init(unsigned long * zones_size);
1535extern void free_area_init_node(int nid, unsigned long * zones_size,
1536 unsigned long zone_start_pfn, unsigned long *zholes_size);
1537extern void free_initmem(void);
1538
1539/*
1540 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1541 * into the buddy system. The freed pages will be poisoned with pattern
1542 * "poison" if it's within range [0, UCHAR_MAX].
1543 * Return pages freed into the buddy system.
1544 */
1545extern unsigned long free_reserved_area(void *start, void *end,
1546 int poison, char *s);
1547
1548#ifdef CONFIG_HIGHMEM
1549/*
1550 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1551 * and totalram_pages.
1552 */
1553extern void free_highmem_page(struct page *page);
1554#endif
1555
1556extern void adjust_managed_page_count(struct page *page, long count);
1557extern void mem_init_print_info(const char *str);
1558
1559/* Free the reserved page into the buddy system, so it gets managed. */
1560static inline void __free_reserved_page(struct page *page)
1561{
1562 ClearPageReserved(page);
1563 init_page_count(page);
1564 __free_page(page);
1565}
1566
1567static inline void free_reserved_page(struct page *page)
1568{
1569 __free_reserved_page(page);
1570 adjust_managed_page_count(page, 1);
1571}
1572
1573static inline void mark_page_reserved(struct page *page)
1574{
1575 SetPageReserved(page);
1576 adjust_managed_page_count(page, -1);
1577}
1578
1579/*
1580 * Default method to free all the __init memory into the buddy system.
1581 * The freed pages will be poisoned with pattern "poison" if it's within
1582 * range [0, UCHAR_MAX].
1583 * Return pages freed into the buddy system.
1584 */
1585static inline unsigned long free_initmem_default(int poison)
1586{
1587 extern char __init_begin[], __init_end[];
1588
1589 return free_reserved_area(&__init_begin, &__init_end,
1590 poison, "unused kernel");
1591}
1592
1593static inline unsigned long get_num_physpages(void)
1594{
1595 int nid;
1596 unsigned long phys_pages = 0;
1597
1598 for_each_online_node(nid)
1599 phys_pages += node_present_pages(nid);
1600
1601 return phys_pages;
1602}
1603
1604#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1605/*
1606 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1607 * zones, allocate the backing mem_map and account for memory holes in a more
1608 * architecture independent manner. This is a substitute for creating the
1609 * zone_sizes[] and zholes_size[] arrays and passing them to
1610 * free_area_init_node()
1611 *
1612 * An architecture is expected to register range of page frames backed by
1613 * physical memory with memblock_add[_node]() before calling
1614 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1615 * usage, an architecture is expected to do something like
1616 *
1617 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1618 * max_highmem_pfn};
1619 * for_each_valid_physical_page_range()
1620 * memblock_add_node(base, size, nid)
1621 * free_area_init_nodes(max_zone_pfns);
1622 *
1623 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1624 * registered physical page range. Similarly
1625 * sparse_memory_present_with_active_regions() calls memory_present() for
1626 * each range when SPARSEMEM is enabled.
1627 *
1628 * See mm/page_alloc.c for more information on each function exposed by
1629 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1630 */
1631extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1632unsigned long node_map_pfn_alignment(void);
1633unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1634 unsigned long end_pfn);
1635extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1636 unsigned long end_pfn);
1637extern void get_pfn_range_for_nid(unsigned int nid,
1638 unsigned long *start_pfn, unsigned long *end_pfn);
1639extern unsigned long find_min_pfn_with_active_regions(void);
1640extern void free_bootmem_with_active_regions(int nid,
1641 unsigned long max_low_pfn);
1642extern void sparse_memory_present_with_active_regions(int nid);
1643
1644#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1645
1646#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1647 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1648static inline int __early_pfn_to_nid(unsigned long pfn)
1649{
1650 return 0;
1651}
1652#else
1653/* please see mm/page_alloc.c */
1654extern int __meminit early_pfn_to_nid(unsigned long pfn);
1655#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1656/* there is a per-arch backend function. */
1657extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1658#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1659#endif
1660
1661extern void set_dma_reserve(unsigned long new_dma_reserve);
1662extern void memmap_init_zone(unsigned long, int, unsigned long,
1663 unsigned long, enum memmap_context);
1664extern void setup_per_zone_wmarks(void);
1665extern int __meminit init_per_zone_wmark_min(void);
1666extern void mem_init(void);
1667extern void __init mmap_init(void);
1668extern void show_mem(unsigned int flags);
1669extern void si_meminfo(struct sysinfo * val);
1670extern void si_meminfo_node(struct sysinfo *val, int nid);
1671
1672extern __printf(3, 4)
1673void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1674
1675extern void setup_per_cpu_pageset(void);
1676
1677extern void zone_pcp_update(struct zone *zone);
1678extern void zone_pcp_reset(struct zone *zone);
1679
1680/* page_alloc.c */
1681extern int min_free_kbytes;
1682
1683/* nommu.c */
1684extern atomic_long_t mmap_pages_allocated;
1685extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1686
1687/* interval_tree.c */
1688void vma_interval_tree_insert(struct vm_area_struct *node,
1689 struct rb_root *root);
1690void vma_interval_tree_insert_after(struct vm_area_struct *node,
1691 struct vm_area_struct *prev,
1692 struct rb_root *root);
1693void vma_interval_tree_remove(struct vm_area_struct *node,
1694 struct rb_root *root);
1695struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1696 unsigned long start, unsigned long last);
1697struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1698 unsigned long start, unsigned long last);
1699
1700#define vma_interval_tree_foreach(vma, root, start, last) \
1701 for (vma = vma_interval_tree_iter_first(root, start, last); \
1702 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1703
1704static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1705 struct list_head *list)
1706{
1707 list_add_tail(&vma->shared.nonlinear, list);
1708}
1709
1710void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1711 struct rb_root *root);
1712void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1713 struct rb_root *root);
1714struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1715 struct rb_root *root, unsigned long start, unsigned long last);
1716struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1717 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1718#ifdef CONFIG_DEBUG_VM_RB
1719void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1720#endif
1721
1722#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1723 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1724 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1725
1726/* mmap.c */
1727extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1728extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1730extern struct vm_area_struct *vma_merge(struct mm_struct *,
1731 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1732 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1733 struct mempolicy *);
1734extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1735extern int split_vma(struct mm_struct *,
1736 struct vm_area_struct *, unsigned long addr, int new_below);
1737extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1738extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1739 struct rb_node **, struct rb_node *);
1740extern void unlink_file_vma(struct vm_area_struct *);
1741extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1742 unsigned long addr, unsigned long len, pgoff_t pgoff,
1743 bool *need_rmap_locks);
1744extern void exit_mmap(struct mm_struct *);
1745
1746extern int mm_take_all_locks(struct mm_struct *mm);
1747extern void mm_drop_all_locks(struct mm_struct *mm);
1748
1749extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1750extern struct file *get_mm_exe_file(struct mm_struct *mm);
1751
1752extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1753extern int install_special_mapping(struct mm_struct *mm,
1754 unsigned long addr, unsigned long len,
1755 unsigned long flags, struct page **pages);
1756
1757extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1758
1759extern unsigned long mmap_region(struct file *file, unsigned long addr,
1760 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1761extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1762 unsigned long len, unsigned long prot, unsigned long flags,
1763 unsigned long pgoff, unsigned long *populate);
1764extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1765
1766#ifdef CONFIG_MMU
1767extern int __mm_populate(unsigned long addr, unsigned long len,
1768 int ignore_errors);
1769static inline void mm_populate(unsigned long addr, unsigned long len)
1770{
1771 /* Ignore errors */
1772 (void) __mm_populate(addr, len, 1);
1773}
1774#else
1775static inline void mm_populate(unsigned long addr, unsigned long len) {}
1776#endif
1777
1778/* These take the mm semaphore themselves */
1779extern unsigned long vm_brk(unsigned long, unsigned long);
1780extern int vm_munmap(unsigned long, size_t);
1781extern unsigned long vm_mmap(struct file *, unsigned long,
1782 unsigned long, unsigned long,
1783 unsigned long, unsigned long);
1784
1785struct vm_unmapped_area_info {
1786#define VM_UNMAPPED_AREA_TOPDOWN 1
1787 unsigned long flags;
1788 unsigned long length;
1789 unsigned long low_limit;
1790 unsigned long high_limit;
1791 unsigned long align_mask;
1792 unsigned long align_offset;
1793};
1794
1795extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1796extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1797
1798/*
1799 * Search for an unmapped address range.
1800 *
1801 * We are looking for a range that:
1802 * - does not intersect with any VMA;
1803 * - is contained within the [low_limit, high_limit) interval;
1804 * - is at least the desired size.
1805 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1806 */
1807static inline unsigned long
1808vm_unmapped_area(struct vm_unmapped_area_info *info)
1809{
1810 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1811 return unmapped_area(info);
1812 else
1813 return unmapped_area_topdown(info);
1814}
1815
1816/* truncate.c */
1817extern void truncate_inode_pages(struct address_space *, loff_t);
1818extern void truncate_inode_pages_range(struct address_space *,
1819 loff_t lstart, loff_t lend);
1820
1821/* generic vm_area_ops exported for stackable file systems */
1822extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1823extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1824
1825/* mm/page-writeback.c */
1826int write_one_page(struct page *page, int wait);
1827void task_dirty_inc(struct task_struct *tsk);
1828
1829/* readahead.c */
1830#define VM_MAX_READAHEAD 128 /* kbytes */
1831#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1832
1833int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1834 pgoff_t offset, unsigned long nr_to_read);
1835
1836void page_cache_sync_readahead(struct address_space *mapping,
1837 struct file_ra_state *ra,
1838 struct file *filp,
1839 pgoff_t offset,
1840 unsigned long size);
1841
1842void page_cache_async_readahead(struct address_space *mapping,
1843 struct file_ra_state *ra,
1844 struct file *filp,
1845 struct page *pg,
1846 pgoff_t offset,
1847 unsigned long size);
1848
1849unsigned long max_sane_readahead(unsigned long nr);
1850unsigned long ra_submit(struct file_ra_state *ra,
1851 struct address_space *mapping,
1852 struct file *filp);
1853
1854/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1855extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1856
1857/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1858extern int expand_downwards(struct vm_area_struct *vma,
1859 unsigned long address);
1860#if VM_GROWSUP
1861extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1862#else
1863 #define expand_upwards(vma, address) do { } while (0)
1864#endif
1865
1866/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1867extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1868extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1869 struct vm_area_struct **pprev);
1870
1871/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1872 NULL if none. Assume start_addr < end_addr. */
1873static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1874{
1875 struct vm_area_struct * vma = find_vma(mm,start_addr);
1876
1877 if (vma && end_addr <= vma->vm_start)
1878 vma = NULL;
1879 return vma;
1880}
1881
1882static inline unsigned long vma_pages(struct vm_area_struct *vma)
1883{
1884 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1885}
1886
1887/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1888static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1889 unsigned long vm_start, unsigned long vm_end)
1890{
1891 struct vm_area_struct *vma = find_vma(mm, vm_start);
1892
1893 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1894 vma = NULL;
1895
1896 return vma;
1897}
1898
1899#ifdef CONFIG_MMU
1900pgprot_t vm_get_page_prot(unsigned long vm_flags);
1901#else
1902static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1903{
1904 return __pgprot(0);
1905}
1906#endif
1907
1908#ifdef CONFIG_NUMA_BALANCING
1909unsigned long change_prot_numa(struct vm_area_struct *vma,
1910 unsigned long start, unsigned long end);
1911#endif
1912
1913struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1914int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1915 unsigned long pfn, unsigned long size, pgprot_t);
1916int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1917int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1918 unsigned long pfn);
1919int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1920 unsigned long pfn);
1921int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1922
1923
1924struct page *follow_page_mask(struct vm_area_struct *vma,
1925 unsigned long address, unsigned int foll_flags,
1926 unsigned int *page_mask);
1927
1928static inline struct page *follow_page(struct vm_area_struct *vma,
1929 unsigned long address, unsigned int foll_flags)
1930{
1931 unsigned int unused_page_mask;
1932 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1933}
1934
1935#define FOLL_WRITE 0x01 /* check pte is writable */
1936#define FOLL_TOUCH 0x02 /* mark page accessed */
1937#define FOLL_GET 0x04 /* do get_page on page */
1938#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1939#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1940#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1941 * and return without waiting upon it */
1942#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1943#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1944#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1945#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1946#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1947
1948typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1949 void *data);
1950extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1951 unsigned long size, pte_fn_t fn, void *data);
1952
1953#ifdef CONFIG_PROC_FS
1954void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1955#else
1956static inline void vm_stat_account(struct mm_struct *mm,
1957 unsigned long flags, struct file *file, long pages)
1958{
1959 mm->total_vm += pages;
1960}
1961#endif /* CONFIG_PROC_FS */
1962
1963#ifdef CONFIG_DEBUG_PAGEALLOC
1964extern void kernel_map_pages(struct page *page, int numpages, int enable);
1965#ifdef CONFIG_HIBERNATION
1966extern bool kernel_page_present(struct page *page);
1967#endif /* CONFIG_HIBERNATION */
1968#else
1969static inline void
1970kernel_map_pages(struct page *page, int numpages, int enable) {}
1971#ifdef CONFIG_HIBERNATION
1972static inline bool kernel_page_present(struct page *page) { return true; }
1973#endif /* CONFIG_HIBERNATION */
1974#endif
1975
1976extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1977#ifdef __HAVE_ARCH_GATE_AREA
1978int in_gate_area_no_mm(unsigned long addr);
1979int in_gate_area(struct mm_struct *mm, unsigned long addr);
1980#else
1981int in_gate_area_no_mm(unsigned long addr);
1982#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1983#endif /* __HAVE_ARCH_GATE_AREA */
1984
1985#ifdef CONFIG_SYSCTL
1986extern int sysctl_drop_caches;
1987int drop_caches_sysctl_handler(struct ctl_table *, int,
1988 void __user *, size_t *, loff_t *);
1989#endif
1990
1991unsigned long shrink_slab(struct shrink_control *shrink,
1992 unsigned long nr_pages_scanned,
1993 unsigned long lru_pages);
1994
1995#ifndef CONFIG_MMU
1996#define randomize_va_space 0
1997#else
1998extern int randomize_va_space;
1999#endif
2000
2001const char * arch_vma_name(struct vm_area_struct *vma);
2002void print_vma_addr(char *prefix, unsigned long rip);
2003
2004void sparse_mem_maps_populate_node(struct page **map_map,
2005 unsigned long pnum_begin,
2006 unsigned long pnum_end,
2007 unsigned long map_count,
2008 int nodeid);
2009
2010struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2011pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2012pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2013pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2014pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2015void *vmemmap_alloc_block(unsigned long size, int node);
2016void *vmemmap_alloc_block_buf(unsigned long size, int node);
2017void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2018int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2019 int node);
2020int vmemmap_populate(unsigned long start, unsigned long end, int node);
2021void vmemmap_populate_print_last(void);
2022#ifdef CONFIG_MEMORY_HOTPLUG
2023void vmemmap_free(unsigned long start, unsigned long end);
2024#endif
2025void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2026 unsigned long size);
2027
2028enum mf_flags {
2029 MF_COUNT_INCREASED = 1 << 0,
2030 MF_ACTION_REQUIRED = 1 << 1,
2031 MF_MUST_KILL = 1 << 2,
2032 MF_SOFT_OFFLINE = 1 << 3,
2033};
2034extern int memory_failure(unsigned long pfn, int trapno, int flags);
2035extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2036extern int unpoison_memory(unsigned long pfn);
2037extern int sysctl_memory_failure_early_kill;
2038extern int sysctl_memory_failure_recovery;
2039extern void shake_page(struct page *p, int access);
2040extern atomic_long_t num_poisoned_pages;
2041extern int soft_offline_page(struct page *page, int flags);
2042
2043#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2044extern void clear_huge_page(struct page *page,
2045 unsigned long addr,
2046 unsigned int pages_per_huge_page);
2047extern void copy_user_huge_page(struct page *dst, struct page *src,
2048 unsigned long addr, struct vm_area_struct *vma,
2049 unsigned int pages_per_huge_page);
2050#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2051
2052#ifdef CONFIG_DEBUG_PAGEALLOC
2053extern unsigned int _debug_guardpage_minorder;
2054
2055static inline unsigned int debug_guardpage_minorder(void)
2056{
2057 return _debug_guardpage_minorder;
2058}
2059
2060static inline bool page_is_guard(struct page *page)
2061{
2062 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2063}
2064#else
2065static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2066static inline bool page_is_guard(struct page *page) { return false; }
2067#endif /* CONFIG_DEBUG_PAGEALLOC */
2068
2069#if MAX_NUMNODES > 1
2070void __init setup_nr_node_ids(void);
2071#else
2072static inline void setup_nr_node_ids(void) {}
2073#endif
2074
2075#endif /* __KERNEL__ */
2076#endif /* _LINUX_MM_H */