at v3.14 437 lines 15 kB view raw
1/* 2 * include/asm-xtensa/pgtable.h 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Copyright (C) 2001 - 2013 Tensilica Inc. 9 */ 10 11#ifndef _XTENSA_PGTABLE_H 12#define _XTENSA_PGTABLE_H 13 14#include <asm-generic/pgtable-nopmd.h> 15#include <asm/page.h> 16 17/* 18 * We only use two ring levels, user and kernel space. 19 */ 20 21#define USER_RING 1 /* user ring level */ 22#define KERNEL_RING 0 /* kernel ring level */ 23 24/* 25 * The Xtensa architecture port of Linux has a two-level page table system, 26 * i.e. the logical three-level Linux page table layout is folded. 27 * Each task has the following memory page tables: 28 * 29 * PGD table (page directory), ie. 3rd-level page table: 30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 31 * (Architectures that don't have the PMD folded point to the PMD tables) 32 * 33 * The pointer to the PGD table for a given task can be retrieved from 34 * the task structure (struct task_struct*) t, e.g. current(): 35 * (t->mm ? t->mm : t->active_mm)->pgd 36 * 37 * PMD tables (page middle-directory), ie. 2nd-level page tables: 38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 39 * 40 * PTE tables (page table entry), ie. 1st-level page tables: 41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 42 * invalid_pte_table for absent mappings. 43 * 44 * The individual pages are 4 kB big with special pages for the empty_zero_page. 45 */ 46 47#define PGDIR_SHIFT 22 48#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 49#define PGDIR_MASK (~(PGDIR_SIZE-1)) 50 51/* 52 * Entries per page directory level: we use two-level, so 53 * we don't really have any PMD directory physically. 54 */ 55#define PTRS_PER_PTE 1024 56#define PTRS_PER_PTE_SHIFT 10 57#define PTRS_PER_PGD 1024 58#define PGD_ORDER 0 59#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 60#define FIRST_USER_ADDRESS 0 61#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 62 63/* 64 * Virtual memory area. We keep a distance to other memory regions to be 65 * on the safe side. We also use this area for cache aliasing. 66 */ 67#define VMALLOC_START 0xC0000000 68#define VMALLOC_END 0xC7FEFFFF 69#define TLBTEMP_BASE_1 0xC7FF0000 70#define TLBTEMP_BASE_2 0xC7FF8000 71 72/* 73 * For the Xtensa architecture, the PTE layout is as follows: 74 * 75 * 31------12 11 10-9 8-6 5-4 3-2 1-0 76 * +-----------------------------------------+ 77 * | | Software | HARDWARE | 78 * | PPN | ADW | RI |Attribute| 79 * +-----------------------------------------+ 80 * pte_none | MBZ | 01 | 11 | 00 | 81 * +-----------------------------------------+ 82 * present | PPN | 0 | 00 | ADW | RI | CA | wx | 83 * +- - - - - - - - - - - - - - - - - - - - -+ 84 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 | 85 * +-----------------------------------------+ 86 * swap | index | type | 01 | 11 | 00 | 87 * +- - - - - - - - - - - - - - - - - - - - -+ 88 * file | file offset | 01 | 11 | 10 | 89 * +-----------------------------------------+ 90 * 91 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE) 92 * +-----------------------------------------+ 93 * present | PPN | 0 | 00 | ADW | RI | CA | w1 | 94 * +-----------------------------------------+ 95 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 | 96 * +-----------------------------------------+ 97 * 98 * Legend: 99 * PPN Physical Page Number 100 * ADW software: accessed (young) / dirty / writable 101 * RI ring (0=privileged, 1=user, 2 and 3 are unused) 102 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough 103 * (11 is invalid and used to mark pages that are not present) 104 * w page is writable (hw) 105 * x page is executable (hw) 106 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB) 107 * (note that the index is always non-zero) 108 * type swap type (5 bits -> 32 types) 109 * file offset 26-bit offset into the file, in increments of PAGE_SIZE 110 * 111 * Notes: 112 * - (PROT_NONE) is a special case of 'present' but causes an exception for 113 * any access (read, write, and execute). 114 * - 'multihit-exception' has the highest priority of all MMU exceptions, 115 * so the ring must be set to 'RING_USER' even for 'non-present' pages. 116 * - on older hardware, the exectuable flag was not supported and 117 * used as a 'valid' flag, so it needs to be always set. 118 * - we need to keep track of certain flags in software (dirty and young) 119 * to do this, we use write exceptions and have a separate software w-flag. 120 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved 121 */ 122 123#define _PAGE_ATTRIB_MASK 0xf 124 125#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ 126#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ 127 128#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ 129#define _PAGE_CA_WB (1<<2) /* write-back */ 130#define _PAGE_CA_WT (2<<2) /* write-through */ 131#define _PAGE_CA_MASK (3<<2) 132#define _PAGE_CA_INVALID (3<<2) 133 134/* We use invalid attribute values to distinguish special pte entries */ 135#if XCHAL_HW_VERSION_MAJOR < 2000 136#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */ 137#define _PAGE_NONE 0x04 138#else 139#define _PAGE_HW_VALID 0x00 140#define _PAGE_NONE 0x0f 141#endif 142#define _PAGE_FILE (1<<1) /* file mapped page, only if !present */ 143 144#define _PAGE_USER (1<<4) /* user access (ring=1) */ 145 146/* Software */ 147#define _PAGE_WRITABLE_BIT 6 148#define _PAGE_WRITABLE (1<<6) /* software: page writable */ 149#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 150#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 151 152#ifdef CONFIG_MMU 153 154#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 155#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) 156 157#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER) 158#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 159#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 160#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 161#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 162#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) 163#define PAGE_SHARED_EXEC \ 164 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) 165#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) 166#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) 167 168#if (DCACHE_WAY_SIZE > PAGE_SIZE) 169# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS) 170#else 171# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) 172#endif 173 174#else /* no mmu */ 175 176# define PAGE_NONE __pgprot(0) 177# define PAGE_SHARED __pgprot(0) 178# define PAGE_COPY __pgprot(0) 179# define PAGE_READONLY __pgprot(0) 180# define PAGE_KERNEL __pgprot(0) 181 182#endif 183 184/* 185 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 186 * the MMU can't do page protection for execute, and considers that the same as 187 * read. Also, write permissions may imply read permissions. 188 * What follows is the closest we can get by reasonable means.. 189 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 190 */ 191#define __P000 PAGE_NONE /* private --- */ 192#define __P001 PAGE_READONLY /* private --r */ 193#define __P010 PAGE_COPY /* private -w- */ 194#define __P011 PAGE_COPY /* private -wr */ 195#define __P100 PAGE_READONLY_EXEC /* private x-- */ 196#define __P101 PAGE_READONLY_EXEC /* private x-r */ 197#define __P110 PAGE_COPY_EXEC /* private xw- */ 198#define __P111 PAGE_COPY_EXEC /* private xwr */ 199 200#define __S000 PAGE_NONE /* shared --- */ 201#define __S001 PAGE_READONLY /* shared --r */ 202#define __S010 PAGE_SHARED /* shared -w- */ 203#define __S011 PAGE_SHARED /* shared -wr */ 204#define __S100 PAGE_READONLY_EXEC /* shared x-- */ 205#define __S101 PAGE_READONLY_EXEC /* shared x-r */ 206#define __S110 PAGE_SHARED_EXEC /* shared xw- */ 207#define __S111 PAGE_SHARED_EXEC /* shared xwr */ 208 209#ifndef __ASSEMBLY__ 210 211#define pte_ERROR(e) \ 212 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 213#define pgd_ERROR(e) \ 214 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 215 216extern unsigned long empty_zero_page[1024]; 217 218#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 219 220#ifdef CONFIG_MMU 221extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 222extern void paging_init(void); 223#else 224# define swapper_pg_dir NULL 225static inline void paging_init(void) { } 226#endif 227static inline void pgtable_cache_init(void) { } 228 229/* 230 * The pmd contains the kernel virtual address of the pte page. 231 */ 232#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 233#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 234 235/* 236 * pte status. 237 */ 238# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER)) 239#if XCHAL_HW_VERSION_MAJOR < 2000 240# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) 241#else 242# define pte_present(pte) \ 243 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \ 244 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE)) 245#endif 246#define pte_clear(mm,addr,ptep) \ 247 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0) 248 249#define pmd_none(pmd) (!pmd_val(pmd)) 250#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 251#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 252#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 253 254static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } 255static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 256static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 257static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 258static inline int pte_special(pte_t pte) { return 0; } 259 260static inline pte_t pte_wrprotect(pte_t pte) 261 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } 262static inline pte_t pte_mkclean(pte_t pte) 263 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } 264static inline pte_t pte_mkold(pte_t pte) 265 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 266static inline pte_t pte_mkdirty(pte_t pte) 267 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 268static inline pte_t pte_mkyoung(pte_t pte) 269 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 270static inline pte_t pte_mkwrite(pte_t pte) 271 { pte_val(pte) |= _PAGE_WRITABLE; return pte; } 272static inline pte_t pte_mkspecial(pte_t pte) 273 { return pte; } 274 275/* 276 * Conversion functions: convert a page and protection to a page entry, 277 * and a page entry and page directory to the page they refer to. 278 */ 279 280#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 281#define pte_same(a,b) (pte_val(a) == pte_val(b)) 282#define pte_page(x) pfn_to_page(pte_pfn(x)) 283#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 284#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 285 286static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 287{ 288 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 289} 290 291/* 292 * Certain architectures need to do special things when pte's 293 * within a page table are directly modified. Thus, the following 294 * hook is made available. 295 */ 296static inline void update_pte(pte_t *ptep, pte_t pteval) 297{ 298 *ptep = pteval; 299#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 300 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); 301#endif 302 303} 304 305struct mm_struct; 306 307static inline void 308set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) 309{ 310 update_pte(ptep, pteval); 311} 312 313 314static inline void 315set_pmd(pmd_t *pmdp, pmd_t pmdval) 316{ 317 *pmdp = pmdval; 318} 319 320struct vm_area_struct; 321 322static inline int 323ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 324 pte_t *ptep) 325{ 326 pte_t pte = *ptep; 327 if (!pte_young(pte)) 328 return 0; 329 update_pte(ptep, pte_mkold(pte)); 330 return 1; 331} 332 333static inline pte_t 334ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 335{ 336 pte_t pte = *ptep; 337 pte_clear(mm, addr, ptep); 338 return pte; 339} 340 341static inline void 342ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 343{ 344 pte_t pte = *ptep; 345 update_pte(ptep, pte_wrprotect(pte)); 346} 347 348/* to find an entry in a kernel page-table-directory */ 349#define pgd_offset_k(address) pgd_offset(&init_mm, address) 350 351/* to find an entry in a page-table-directory */ 352#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) 353 354#define pgd_index(address) ((address) >> PGDIR_SHIFT) 355 356/* Find an entry in the second-level page table.. */ 357#define pmd_offset(dir,address) ((pmd_t*)(dir)) 358 359/* Find an entry in the third-level page table.. */ 360#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 361#define pte_offset_kernel(dir,addr) \ 362 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr)) 363#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) 364#define pte_unmap(pte) do { } while (0) 365 366 367/* 368 * Encode and decode a swap and file entry. 369 */ 370#define SWP_TYPE_BITS 5 371#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) 372 373#define __swp_type(entry) (((entry).val >> 6) & 0x1f) 374#define __swp_offset(entry) ((entry).val >> 11) 375#define __swp_entry(type,offs) \ 376 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \ 377 _PAGE_CA_INVALID | _PAGE_USER}) 378#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 379#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 380 381#define PTE_FILE_MAX_BITS 26 382#define pte_to_pgoff(pte) (pte_val(pte) >> 6) 383#define pgoff_to_pte(off) \ 384 ((pte_t) { ((off) << 6) | _PAGE_CA_INVALID | _PAGE_FILE | _PAGE_USER }) 385 386#endif /* !defined (__ASSEMBLY__) */ 387 388 389#ifdef __ASSEMBLY__ 390 391/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 392 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 393 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 394 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 395 * 396 * Note: We require an additional temporary register which can be the same as 397 * the register that holds the address. 398 * 399 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 400 * 401 */ 402#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 403#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 404 405#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 406 _PGD_INDEX(tmp, adr); \ 407 addx4 mm, tmp, mm 408 409#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 410 srli pmd, pmd, PAGE_SHIFT; \ 411 slli pmd, pmd, PAGE_SHIFT; \ 412 addx4 pmd, tmp, pmd 413 414#else 415 416#define kern_addr_valid(addr) (1) 417 418extern void update_mmu_cache(struct vm_area_struct * vma, 419 unsigned long address, pte_t *ptep); 420 421typedef pte_t *pte_addr_t; 422 423#endif /* !defined (__ASSEMBLY__) */ 424 425#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 426#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 427#define __HAVE_ARCH_PTEP_SET_WRPROTECT 428#define __HAVE_ARCH_PTEP_MKDIRTY 429#define __HAVE_ARCH_PTE_SAME 430/* We provide our own get_unmapped_area to cope with 431 * SHM area cache aliasing for userland. 432 */ 433#define HAVE_ARCH_UNMAPPED_AREA 434 435#include <asm-generic/pgtable.h> 436 437#endif /* _XTENSA_PGTABLE_H */