at v3.14 1649 lines 48 kB view raw
1/* 2 * S390 version 3 * Copyright IBM Corp. 1999, 2000 4 * Author(s): Hartmut Penner (hp@de.ibm.com) 5 * Ulrich Weigand (weigand@de.ibm.com) 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * 8 * Derived from "include/asm-i386/pgtable.h" 9 */ 10 11#ifndef _ASM_S390_PGTABLE_H 12#define _ASM_S390_PGTABLE_H 13 14/* 15 * The Linux memory management assumes a three-level page table setup. For 16 * s390 31 bit we "fold" the mid level into the top-level page table, so 17 * that we physically have the same two-level page table as the s390 mmu 18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 19 * the hardware provides (region first and region second tables are not 20 * used). 21 * 22 * The "pgd_xxx()" functions are trivial for a folded two-level 23 * setup: the pgd is never bad, and a pmd always exists (as it's folded 24 * into the pgd entry) 25 * 26 * This file contains the functions and defines necessary to modify and use 27 * the S390 page table tree. 28 */ 29#ifndef __ASSEMBLY__ 30#include <linux/sched.h> 31#include <linux/mm_types.h> 32#include <linux/page-flags.h> 33#include <asm/bug.h> 34#include <asm/page.h> 35 36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 37extern void paging_init(void); 38extern void vmem_map_init(void); 39 40/* 41 * The S390 doesn't have any external MMU info: the kernel page 42 * tables contain all the necessary information. 43 */ 44#define update_mmu_cache(vma, address, ptep) do { } while (0) 45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 46 47/* 48 * ZERO_PAGE is a global shared page that is always zero; used 49 * for zero-mapped memory areas etc.. 50 */ 51 52extern unsigned long empty_zero_page; 53extern unsigned long zero_page_mask; 54 55#define ZERO_PAGE(vaddr) \ 56 (virt_to_page((void *)(empty_zero_page + \ 57 (((unsigned long)(vaddr)) &zero_page_mask)))) 58#define __HAVE_COLOR_ZERO_PAGE 59 60/* TODO: s390 cannot support io_remap_pfn_range... */ 61#endif /* !__ASSEMBLY__ */ 62 63/* 64 * PMD_SHIFT determines the size of the area a second-level page 65 * table can map 66 * PGDIR_SHIFT determines what a third-level page table entry can map 67 */ 68#ifndef CONFIG_64BIT 69# define PMD_SHIFT 20 70# define PUD_SHIFT 20 71# define PGDIR_SHIFT 20 72#else /* CONFIG_64BIT */ 73# define PMD_SHIFT 20 74# define PUD_SHIFT 31 75# define PGDIR_SHIFT 42 76#endif /* CONFIG_64BIT */ 77 78#define PMD_SIZE (1UL << PMD_SHIFT) 79#define PMD_MASK (~(PMD_SIZE-1)) 80#define PUD_SIZE (1UL << PUD_SHIFT) 81#define PUD_MASK (~(PUD_SIZE-1)) 82#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 83#define PGDIR_MASK (~(PGDIR_SIZE-1)) 84 85/* 86 * entries per page directory level: the S390 is two-level, so 87 * we don't really have any PMD directory physically. 88 * for S390 segment-table entries are combined to one PGD 89 * that leads to 1024 pte per pgd 90 */ 91#define PTRS_PER_PTE 256 92#ifndef CONFIG_64BIT 93#define PTRS_PER_PMD 1 94#define PTRS_PER_PUD 1 95#else /* CONFIG_64BIT */ 96#define PTRS_PER_PMD 2048 97#define PTRS_PER_PUD 2048 98#endif /* CONFIG_64BIT */ 99#define PTRS_PER_PGD 2048 100 101#define FIRST_USER_ADDRESS 0 102 103#define pte_ERROR(e) \ 104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 105#define pmd_ERROR(e) \ 106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 107#define pud_ERROR(e) \ 108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 109#define pgd_ERROR(e) \ 110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 111 112#ifndef __ASSEMBLY__ 113/* 114 * The vmalloc and module area will always be on the topmost area of the kernel 115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules. 116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 117 * modules will reside. That makes sure that inter module branches always 118 * happen without trampolines and in addition the placement within a 2GB frame 119 * is branch prediction unit friendly. 120 */ 121extern unsigned long VMALLOC_START; 122extern unsigned long VMALLOC_END; 123extern struct page *vmemmap; 124 125#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 126 127#ifdef CONFIG_64BIT 128extern unsigned long MODULES_VADDR; 129extern unsigned long MODULES_END; 130#define MODULES_VADDR MODULES_VADDR 131#define MODULES_END MODULES_END 132#define MODULES_LEN (1UL << 31) 133#endif 134 135/* 136 * A 31 bit pagetable entry of S390 has following format: 137 * | PFRA | | OS | 138 * 0 0IP0 139 * 00000000001111111111222222222233 140 * 01234567890123456789012345678901 141 * 142 * I Page-Invalid Bit: Page is not available for address-translation 143 * P Page-Protection Bit: Store access not possible for page 144 * 145 * A 31 bit segmenttable entry of S390 has following format: 146 * | P-table origin | |PTL 147 * 0 IC 148 * 00000000001111111111222222222233 149 * 01234567890123456789012345678901 150 * 151 * I Segment-Invalid Bit: Segment is not available for address-translation 152 * C Common-Segment Bit: Segment is not private (PoP 3-30) 153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 154 * 155 * The 31 bit segmenttable origin of S390 has following format: 156 * 157 * |S-table origin | | STL | 158 * X **GPS 159 * 00000000001111111111222222222233 160 * 01234567890123456789012345678901 161 * 162 * X Space-Switch event: 163 * G Segment-Invalid Bit: * 164 * P Private-Space Bit: Segment is not private (PoP 3-30) 165 * S Storage-Alteration: 166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 167 * 168 * A 64 bit pagetable entry of S390 has following format: 169 * | PFRA |0IPC| OS | 170 * 0000000000111111111122222222223333333333444444444455555555556666 171 * 0123456789012345678901234567890123456789012345678901234567890123 172 * 173 * I Page-Invalid Bit: Page is not available for address-translation 174 * P Page-Protection Bit: Store access not possible for page 175 * C Change-bit override: HW is not required to set change bit 176 * 177 * A 64 bit segmenttable entry of S390 has following format: 178 * | P-table origin | TT 179 * 0000000000111111111122222222223333333333444444444455555555556666 180 * 0123456789012345678901234567890123456789012345678901234567890123 181 * 182 * I Segment-Invalid Bit: Segment is not available for address-translation 183 * C Common-Segment Bit: Segment is not private (PoP 3-30) 184 * P Page-Protection Bit: Store access not possible for page 185 * TT Type 00 186 * 187 * A 64 bit region table entry of S390 has following format: 188 * | S-table origin | TF TTTL 189 * 0000000000111111111122222222223333333333444444444455555555556666 190 * 0123456789012345678901234567890123456789012345678901234567890123 191 * 192 * I Segment-Invalid Bit: Segment is not available for address-translation 193 * TT Type 01 194 * TF 195 * TL Table length 196 * 197 * The 64 bit regiontable origin of S390 has following format: 198 * | region table origon | DTTL 199 * 0000000000111111111122222222223333333333444444444455555555556666 200 * 0123456789012345678901234567890123456789012345678901234567890123 201 * 202 * X Space-Switch event: 203 * G Segment-Invalid Bit: 204 * P Private-Space Bit: 205 * S Storage-Alteration: 206 * R Real space 207 * TL Table-Length: 208 * 209 * A storage key has the following format: 210 * | ACC |F|R|C|0| 211 * 0 3 4 5 6 7 212 * ACC: access key 213 * F : fetch protection bit 214 * R : referenced bit 215 * C : changed bit 216 */ 217 218/* Hardware bits in the page table entry */ 219#define _PAGE_CO 0x100 /* HW Change-bit override */ 220#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 221#define _PAGE_INVALID 0x400 /* HW invalid bit */ 222#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 223 224/* Software bits in the page table entry */ 225#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 226#define _PAGE_TYPE 0x002 /* SW pte type bit */ 227#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 228#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 229#define _PAGE_READ 0x010 /* SW pte read bit */ 230#define _PAGE_WRITE 0x020 /* SW pte write bit */ 231#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 232#define __HAVE_ARCH_PTE_SPECIAL 233 234/* Set of bits not changed in pte_modify */ 235#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \ 236 _PAGE_DIRTY | _PAGE_YOUNG) 237 238/* 239 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the 240 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit 241 * is used to distinguish present from not-present ptes. It is changed only 242 * with the page table lock held. 243 * 244 * The following table gives the different possible bit combinations for 245 * the pte hardware and software bits in the last 12 bits of a pte: 246 * 247 * 842100000000 248 * 000084210000 249 * 000000008421 250 * .IR...wrdytp 251 * empty .10...000000 252 * swap .10...xxxx10 253 * file .11...xxxxx0 254 * prot-none, clean, old .11...000001 255 * prot-none, clean, young .11...000101 256 * prot-none, dirty, old .10...001001 257 * prot-none, dirty, young .10...001101 258 * read-only, clean, old .11...010001 259 * read-only, clean, young .01...010101 260 * read-only, dirty, old .11...011001 261 * read-only, dirty, young .01...011101 262 * read-write, clean, old .11...110001 263 * read-write, clean, young .01...110101 264 * read-write, dirty, old .10...111001 265 * read-write, dirty, young .00...111101 266 * 267 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001 268 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400 269 * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600 270 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402 271 */ 272 273#ifndef CONFIG_64BIT 274 275/* Bits in the segment table address-space-control-element */ 276#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ 277#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ 278#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 279#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 280#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ 281 282/* Bits in the segment table entry */ 283#define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */ 284#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ 285#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */ 286#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 287#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ 288#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ 289#define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_PROTECT 290 291#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) 292#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 293 294/* 295 * Segment table entry encoding (I = invalid, R = read-only bit): 296 * ..R...I..... 297 * prot-none ..1...1..... 298 * read-only ..1...0..... 299 * read-write ..0...0..... 300 * empty ..0...1..... 301 */ 302 303/* Page status table bits for virtualization */ 304#define PGSTE_ACC_BITS 0xf0000000UL 305#define PGSTE_FP_BIT 0x08000000UL 306#define PGSTE_PCL_BIT 0x00800000UL 307#define PGSTE_HR_BIT 0x00400000UL 308#define PGSTE_HC_BIT 0x00200000UL 309#define PGSTE_GR_BIT 0x00040000UL 310#define PGSTE_GC_BIT 0x00020000UL 311#define PGSTE_IN_BIT 0x00008000UL /* IPTE notify bit */ 312 313#else /* CONFIG_64BIT */ 314 315/* Bits in the segment/region table address-space-control-element */ 316#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 317#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 318#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 319#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 320#define _ASCE_REAL_SPACE 0x20 /* real space control */ 321#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 322#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 323#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 324#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 325#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 326#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 327 328/* Bits in the region table entry */ 329#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 330#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 331#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 332#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 333#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 334#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 335#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 336#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 337 338#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 339#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 340#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 341#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 342#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 343#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 344 345#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ 346#define _REGION3_ENTRY_RO 0x200 /* page protection bit */ 347#define _REGION3_ENTRY_CO 0x100 /* change-recording override */ 348 349/* Bits in the segment table entry */ 350#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 351#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL 352#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 353#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 354#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */ 355#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 356 357#define _SEGMENT_ENTRY (0) 358#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 359 360#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ 361#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ 362#define _SEGMENT_ENTRY_SPLIT 0x001 /* THP splitting bit */ 363#define _SEGMENT_ENTRY_YOUNG 0x002 /* SW segment young bit */ 364#define _SEGMENT_ENTRY_NONE _SEGMENT_ENTRY_YOUNG 365 366/* 367 * Segment table entry encoding (R = read-only, I = invalid, y = young bit): 368 * ..R...I...y. 369 * prot-none, old ..0...1...1. 370 * prot-none, young ..1...1...1. 371 * read-only, old ..1...1...0. 372 * read-only, young ..1...0...1. 373 * read-write, old ..0...1...0. 374 * read-write, young ..0...0...1. 375 * The segment table origin is used to distinguish empty (origin==0) from 376 * read-write, old segment table entries (origin!=0) 377 */ 378 379#define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */ 380 381/* Set of bits not changed in pmd_modify */ 382#define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \ 383 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO) 384 385/* Page status table bits for virtualization */ 386#define PGSTE_ACC_BITS 0xf000000000000000UL 387#define PGSTE_FP_BIT 0x0800000000000000UL 388#define PGSTE_PCL_BIT 0x0080000000000000UL 389#define PGSTE_HR_BIT 0x0040000000000000UL 390#define PGSTE_HC_BIT 0x0020000000000000UL 391#define PGSTE_GR_BIT 0x0004000000000000UL 392#define PGSTE_GC_BIT 0x0002000000000000UL 393#define PGSTE_IN_BIT 0x0000800000000000UL /* IPTE notify bit */ 394 395#endif /* CONFIG_64BIT */ 396 397/* 398 * A user page table pointer has the space-switch-event bit, the 399 * private-space-control bit and the storage-alteration-event-control 400 * bit set. A kernel page table pointer doesn't need them. 401 */ 402#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 403 _ASCE_ALT_EVENT) 404 405/* 406 * Page protection definitions. 407 */ 408#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID) 409#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 410 _PAGE_INVALID | _PAGE_PROTECT) 411#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 412 _PAGE_INVALID | _PAGE_PROTECT) 413 414#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 415 _PAGE_YOUNG | _PAGE_DIRTY) 416#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 417 _PAGE_YOUNG | _PAGE_DIRTY) 418#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 419 _PAGE_PROTECT) 420 421/* 422 * On s390 the page table entry has an invalid bit and a read-only bit. 423 * Read permission implies execute permission and write permission 424 * implies read permission. 425 */ 426 /*xwr*/ 427#define __P000 PAGE_NONE 428#define __P001 PAGE_READ 429#define __P010 PAGE_READ 430#define __P011 PAGE_READ 431#define __P100 PAGE_READ 432#define __P101 PAGE_READ 433#define __P110 PAGE_READ 434#define __P111 PAGE_READ 435 436#define __S000 PAGE_NONE 437#define __S001 PAGE_READ 438#define __S010 PAGE_WRITE 439#define __S011 PAGE_WRITE 440#define __S100 PAGE_READ 441#define __S101 PAGE_READ 442#define __S110 PAGE_WRITE 443#define __S111 PAGE_WRITE 444 445/* 446 * Segment entry (large page) protection definitions. 447 */ 448#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 449 _SEGMENT_ENTRY_NONE) 450#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_INVALID | \ 451 _SEGMENT_ENTRY_PROTECT) 452#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_INVALID) 453 454static inline int mm_has_pgste(struct mm_struct *mm) 455{ 456#ifdef CONFIG_PGSTE 457 if (unlikely(mm->context.has_pgste)) 458 return 1; 459#endif 460 return 0; 461} 462/* 463 * pgd/pmd/pte query functions 464 */ 465#ifndef CONFIG_64BIT 466 467static inline int pgd_present(pgd_t pgd) { return 1; } 468static inline int pgd_none(pgd_t pgd) { return 0; } 469static inline int pgd_bad(pgd_t pgd) { return 0; } 470 471static inline int pud_present(pud_t pud) { return 1; } 472static inline int pud_none(pud_t pud) { return 0; } 473static inline int pud_large(pud_t pud) { return 0; } 474static inline int pud_bad(pud_t pud) { return 0; } 475 476#else /* CONFIG_64BIT */ 477 478static inline int pgd_present(pgd_t pgd) 479{ 480 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 481 return 1; 482 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 483} 484 485static inline int pgd_none(pgd_t pgd) 486{ 487 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 488 return 0; 489 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 490} 491 492static inline int pgd_bad(pgd_t pgd) 493{ 494 /* 495 * With dynamic page table levels the pgd can be a region table 496 * entry or a segment table entry. Check for the bit that are 497 * invalid for either table entry. 498 */ 499 unsigned long mask = 500 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 501 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 502 return (pgd_val(pgd) & mask) != 0; 503} 504 505static inline int pud_present(pud_t pud) 506{ 507 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 508 return 1; 509 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 510} 511 512static inline int pud_none(pud_t pud) 513{ 514 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 515 return 0; 516 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL; 517} 518 519static inline int pud_large(pud_t pud) 520{ 521 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 522 return 0; 523 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 524} 525 526static inline int pud_bad(pud_t pud) 527{ 528 /* 529 * With dynamic page table levels the pud can be a region table 530 * entry or a segment table entry. Check for the bit that are 531 * invalid for either table entry. 532 */ 533 unsigned long mask = 534 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 535 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 536 return (pud_val(pud) & mask) != 0; 537} 538 539#endif /* CONFIG_64BIT */ 540 541static inline int pmd_present(pmd_t pmd) 542{ 543 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID; 544} 545 546static inline int pmd_none(pmd_t pmd) 547{ 548 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID; 549} 550 551static inline int pmd_large(pmd_t pmd) 552{ 553#ifdef CONFIG_64BIT 554 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 555#else 556 return 0; 557#endif 558} 559 560static inline int pmd_prot_none(pmd_t pmd) 561{ 562 return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) && 563 (pmd_val(pmd) & _SEGMENT_ENTRY_NONE); 564} 565 566static inline int pmd_bad(pmd_t pmd) 567{ 568#ifdef CONFIG_64BIT 569 if (pmd_large(pmd)) 570 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 571#endif 572 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 573} 574 575#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 576extern void pmdp_splitting_flush(struct vm_area_struct *vma, 577 unsigned long addr, pmd_t *pmdp); 578 579#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 580extern int pmdp_set_access_flags(struct vm_area_struct *vma, 581 unsigned long address, pmd_t *pmdp, 582 pmd_t entry, int dirty); 583 584#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 585extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 586 unsigned long address, pmd_t *pmdp); 587 588#define __HAVE_ARCH_PMD_WRITE 589static inline int pmd_write(pmd_t pmd) 590{ 591 if (pmd_prot_none(pmd)) 592 return 0; 593 return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0; 594} 595 596static inline int pmd_young(pmd_t pmd) 597{ 598 int young = 0; 599#ifdef CONFIG_64BIT 600 if (pmd_prot_none(pmd)) 601 young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0; 602 else 603 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 604#endif 605 return young; 606} 607 608static inline int pte_present(pte_t pte) 609{ 610 /* Bit pattern: (pte & 0x001) == 0x001 */ 611 return (pte_val(pte) & _PAGE_PRESENT) != 0; 612} 613 614static inline int pte_none(pte_t pte) 615{ 616 /* Bit pattern: pte == 0x400 */ 617 return pte_val(pte) == _PAGE_INVALID; 618} 619 620static inline int pte_file(pte_t pte) 621{ 622 /* Bit pattern: (pte & 0x601) == 0x600 */ 623 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT)) 624 == (_PAGE_INVALID | _PAGE_PROTECT); 625} 626 627static inline int pte_special(pte_t pte) 628{ 629 return (pte_val(pte) & _PAGE_SPECIAL); 630} 631 632#define __HAVE_ARCH_PTE_SAME 633static inline int pte_same(pte_t a, pte_t b) 634{ 635 return pte_val(a) == pte_val(b); 636} 637 638static inline pgste_t pgste_get_lock(pte_t *ptep) 639{ 640 unsigned long new = 0; 641#ifdef CONFIG_PGSTE 642 unsigned long old; 643 644 preempt_disable(); 645 asm( 646 " lg %0,%2\n" 647 "0: lgr %1,%0\n" 648 " nihh %0,0xff7f\n" /* clear PCL bit in old */ 649 " oihh %1,0x0080\n" /* set PCL bit in new */ 650 " csg %0,%1,%2\n" 651 " jl 0b\n" 652 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) 653 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); 654#endif 655 return __pgste(new); 656} 657 658static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) 659{ 660#ifdef CONFIG_PGSTE 661 asm( 662 " nihh %1,0xff7f\n" /* clear PCL bit */ 663 " stg %1,%0\n" 664 : "=Q" (ptep[PTRS_PER_PTE]) 665 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) 666 : "cc", "memory"); 667 preempt_enable(); 668#endif 669} 670 671static inline pgste_t pgste_get(pte_t *ptep) 672{ 673 unsigned long pgste = 0; 674#ifdef CONFIG_PGSTE 675 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE); 676#endif 677 return __pgste(pgste); 678} 679 680static inline void pgste_set(pte_t *ptep, pgste_t pgste) 681{ 682#ifdef CONFIG_PGSTE 683 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; 684#endif 685} 686 687static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste) 688{ 689#ifdef CONFIG_PGSTE 690 unsigned long address, bits, skey; 691 692 if (pte_val(*ptep) & _PAGE_INVALID) 693 return pgste; 694 address = pte_val(*ptep) & PAGE_MASK; 695 skey = (unsigned long) page_get_storage_key(address); 696 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); 697 if (!(pgste_val(pgste) & PGSTE_HC_BIT) && (bits & _PAGE_CHANGED)) { 698 /* Transfer dirty + referenced bit to host bits in pgste */ 699 pgste_val(pgste) |= bits << 52; 700 page_set_storage_key(address, skey ^ bits, 0); 701 } else if (!(pgste_val(pgste) & PGSTE_HR_BIT) && 702 (bits & _PAGE_REFERENCED)) { 703 /* Transfer referenced bit to host bit in pgste */ 704 pgste_val(pgste) |= PGSTE_HR_BIT; 705 page_reset_referenced(address); 706 } 707 /* Transfer page changed & referenced bit to guest bits in pgste */ 708 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */ 709 /* Copy page access key and fetch protection bit to pgste */ 710 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT); 711 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; 712#endif 713 return pgste; 714 715} 716 717static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste) 718{ 719#ifdef CONFIG_PGSTE 720 if (pte_val(*ptep) & _PAGE_INVALID) 721 return pgste; 722 /* Get referenced bit from storage key */ 723 if (page_reset_referenced(pte_val(*ptep) & PAGE_MASK)) 724 pgste_val(pgste) |= PGSTE_HR_BIT | PGSTE_GR_BIT; 725#endif 726 return pgste; 727} 728 729static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry) 730{ 731#ifdef CONFIG_PGSTE 732 unsigned long address; 733 unsigned long nkey; 734 735 if (pte_val(entry) & _PAGE_INVALID) 736 return; 737 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID)); 738 address = pte_val(entry) & PAGE_MASK; 739 /* 740 * Set page access key and fetch protection bit from pgste. 741 * The guest C/R information is still in the PGSTE, set real 742 * key C/R to 0. 743 */ 744 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56; 745 page_set_storage_key(address, nkey, 0); 746#endif 747} 748 749static inline void pgste_set_pte(pte_t *ptep, pte_t entry) 750{ 751 if (!MACHINE_HAS_ESOP && 752 (pte_val(entry) & _PAGE_PRESENT) && 753 (pte_val(entry) & _PAGE_WRITE)) { 754 /* 755 * Without enhanced suppression-on-protection force 756 * the dirty bit on for all writable ptes. 757 */ 758 pte_val(entry) |= _PAGE_DIRTY; 759 pte_val(entry) &= ~_PAGE_PROTECT; 760 } 761 *ptep = entry; 762} 763 764/** 765 * struct gmap_struct - guest address space 766 * @mm: pointer to the parent mm_struct 767 * @table: pointer to the page directory 768 * @asce: address space control element for gmap page table 769 * @crst_list: list of all crst tables used in the guest address space 770 */ 771struct gmap { 772 struct list_head list; 773 struct mm_struct *mm; 774 unsigned long *table; 775 unsigned long asce; 776 void *private; 777 struct list_head crst_list; 778}; 779 780/** 781 * struct gmap_rmap - reverse mapping for segment table entries 782 * @gmap: pointer to the gmap_struct 783 * @entry: pointer to a segment table entry 784 * @vmaddr: virtual address in the guest address space 785 */ 786struct gmap_rmap { 787 struct list_head list; 788 struct gmap *gmap; 789 unsigned long *entry; 790 unsigned long vmaddr; 791}; 792 793/** 794 * struct gmap_pgtable - gmap information attached to a page table 795 * @vmaddr: address of the 1MB segment in the process virtual memory 796 * @mapper: list of segment table entries mapping a page table 797 */ 798struct gmap_pgtable { 799 unsigned long vmaddr; 800 struct list_head mapper; 801}; 802 803/** 804 * struct gmap_notifier - notify function block for page invalidation 805 * @notifier_call: address of callback function 806 */ 807struct gmap_notifier { 808 struct list_head list; 809 void (*notifier_call)(struct gmap *gmap, unsigned long address); 810}; 811 812struct gmap *gmap_alloc(struct mm_struct *mm); 813void gmap_free(struct gmap *gmap); 814void gmap_enable(struct gmap *gmap); 815void gmap_disable(struct gmap *gmap); 816int gmap_map_segment(struct gmap *gmap, unsigned long from, 817 unsigned long to, unsigned long len); 818int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); 819unsigned long __gmap_translate(unsigned long address, struct gmap *); 820unsigned long gmap_translate(unsigned long address, struct gmap *); 821unsigned long __gmap_fault(unsigned long address, struct gmap *); 822unsigned long gmap_fault(unsigned long address, struct gmap *); 823void gmap_discard(unsigned long from, unsigned long to, struct gmap *); 824 825void gmap_register_ipte_notifier(struct gmap_notifier *); 826void gmap_unregister_ipte_notifier(struct gmap_notifier *); 827int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); 828void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); 829 830static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, 831 unsigned long addr, 832 pte_t *ptep, pgste_t pgste) 833{ 834#ifdef CONFIG_PGSTE 835 if (pgste_val(pgste) & PGSTE_IN_BIT) { 836 pgste_val(pgste) &= ~PGSTE_IN_BIT; 837 gmap_do_ipte_notify(mm, addr, ptep); 838 } 839#endif 840 return pgste; 841} 842 843/* 844 * Certain architectures need to do special things when PTEs 845 * within a page table are directly modified. Thus, the following 846 * hook is made available. 847 */ 848static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 849 pte_t *ptep, pte_t entry) 850{ 851 pgste_t pgste; 852 853 if (mm_has_pgste(mm)) { 854 pgste = pgste_get_lock(ptep); 855 pgste_set_key(ptep, pgste, entry); 856 pgste_set_pte(ptep, entry); 857 pgste_set_unlock(ptep, pgste); 858 } else { 859 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1) 860 pte_val(entry) |= _PAGE_CO; 861 *ptep = entry; 862 } 863} 864 865/* 866 * query functions pte_write/pte_dirty/pte_young only work if 867 * pte_present() is true. Undefined behaviour if not.. 868 */ 869static inline int pte_write(pte_t pte) 870{ 871 return (pte_val(pte) & _PAGE_WRITE) != 0; 872} 873 874static inline int pte_dirty(pte_t pte) 875{ 876 return (pte_val(pte) & _PAGE_DIRTY) != 0; 877} 878 879static inline int pte_young(pte_t pte) 880{ 881 return (pte_val(pte) & _PAGE_YOUNG) != 0; 882} 883 884/* 885 * pgd/pmd/pte modification functions 886 */ 887 888static inline void pgd_clear(pgd_t *pgd) 889{ 890#ifdef CONFIG_64BIT 891 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 892 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 893#endif 894} 895 896static inline void pud_clear(pud_t *pud) 897{ 898#ifdef CONFIG_64BIT 899 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 900 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 901#endif 902} 903 904static inline void pmd_clear(pmd_t *pmdp) 905{ 906 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID; 907} 908 909static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 910{ 911 pte_val(*ptep) = _PAGE_INVALID; 912} 913 914/* 915 * The following pte modification functions only work if 916 * pte_present() is true. Undefined behaviour if not.. 917 */ 918static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 919{ 920 pte_val(pte) &= _PAGE_CHG_MASK; 921 pte_val(pte) |= pgprot_val(newprot); 922 /* 923 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the 924 * invalid bit set, clear it again for readable, young pages 925 */ 926 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 927 pte_val(pte) &= ~_PAGE_INVALID; 928 /* 929 * newprot for PAGE_READ and PAGE_WRITE has the page protection 930 * bit set, clear it again for writable, dirty pages 931 */ 932 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 933 pte_val(pte) &= ~_PAGE_PROTECT; 934 return pte; 935} 936 937static inline pte_t pte_wrprotect(pte_t pte) 938{ 939 pte_val(pte) &= ~_PAGE_WRITE; 940 pte_val(pte) |= _PAGE_PROTECT; 941 return pte; 942} 943 944static inline pte_t pte_mkwrite(pte_t pte) 945{ 946 pte_val(pte) |= _PAGE_WRITE; 947 if (pte_val(pte) & _PAGE_DIRTY) 948 pte_val(pte) &= ~_PAGE_PROTECT; 949 return pte; 950} 951 952static inline pte_t pte_mkclean(pte_t pte) 953{ 954 pte_val(pte) &= ~_PAGE_DIRTY; 955 pte_val(pte) |= _PAGE_PROTECT; 956 return pte; 957} 958 959static inline pte_t pte_mkdirty(pte_t pte) 960{ 961 pte_val(pte) |= _PAGE_DIRTY; 962 if (pte_val(pte) & _PAGE_WRITE) 963 pte_val(pte) &= ~_PAGE_PROTECT; 964 return pte; 965} 966 967static inline pte_t pte_mkold(pte_t pte) 968{ 969 pte_val(pte) &= ~_PAGE_YOUNG; 970 pte_val(pte) |= _PAGE_INVALID; 971 return pte; 972} 973 974static inline pte_t pte_mkyoung(pte_t pte) 975{ 976 pte_val(pte) |= _PAGE_YOUNG; 977 if (pte_val(pte) & _PAGE_READ) 978 pte_val(pte) &= ~_PAGE_INVALID; 979 return pte; 980} 981 982static inline pte_t pte_mkspecial(pte_t pte) 983{ 984 pte_val(pte) |= _PAGE_SPECIAL; 985 return pte; 986} 987 988#ifdef CONFIG_HUGETLB_PAGE 989static inline pte_t pte_mkhuge(pte_t pte) 990{ 991 pte_val(pte) |= _PAGE_LARGE; 992 return pte; 993} 994#endif 995 996/* 997 * Get (and clear) the user dirty bit for a pte. 998 */ 999static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, 1000 pte_t *ptep) 1001{ 1002 pgste_t pgste; 1003 int dirty = 0; 1004 1005 if (mm_has_pgste(mm)) { 1006 pgste = pgste_get_lock(ptep); 1007 pgste = pgste_update_all(ptep, pgste); 1008 dirty = !!(pgste_val(pgste) & PGSTE_HC_BIT); 1009 pgste_val(pgste) &= ~PGSTE_HC_BIT; 1010 pgste_set_unlock(ptep, pgste); 1011 return dirty; 1012 } 1013 return dirty; 1014} 1015 1016/* 1017 * Get (and clear) the user referenced bit for a pte. 1018 */ 1019static inline int ptep_test_and_clear_user_young(struct mm_struct *mm, 1020 pte_t *ptep) 1021{ 1022 pgste_t pgste; 1023 int young = 0; 1024 1025 if (mm_has_pgste(mm)) { 1026 pgste = pgste_get_lock(ptep); 1027 pgste = pgste_update_young(ptep, pgste); 1028 young = !!(pgste_val(pgste) & PGSTE_HR_BIT); 1029 pgste_val(pgste) &= ~PGSTE_HR_BIT; 1030 pgste_set_unlock(ptep, pgste); 1031 } 1032 return young; 1033} 1034 1035static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 1036{ 1037 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 1038#ifndef CONFIG_64BIT 1039 /* pto must point to the start of the segment table */ 1040 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 1041#else 1042 /* ipte in zarch mode can do the math */ 1043 pte_t *pto = ptep; 1044#endif 1045 asm volatile( 1046 " ipte %2,%3" 1047 : "=m" (*ptep) : "m" (*ptep), 1048 "a" (pto), "a" (address)); 1049 } 1050} 1051 1052static inline void ptep_flush_lazy(struct mm_struct *mm, 1053 unsigned long address, pte_t *ptep) 1054{ 1055 int active = (mm == current->active_mm) ? 1 : 0; 1056 1057 if (atomic_read(&mm->context.attach_count) > active) 1058 __ptep_ipte(address, ptep); 1059 else 1060 mm->context.flush_mm = 1; 1061} 1062 1063#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1064static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1065 unsigned long addr, pte_t *ptep) 1066{ 1067 pgste_t pgste; 1068 pte_t pte; 1069 int young; 1070 1071 if (mm_has_pgste(vma->vm_mm)) { 1072 pgste = pgste_get_lock(ptep); 1073 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste); 1074 } 1075 1076 pte = *ptep; 1077 __ptep_ipte(addr, ptep); 1078 young = pte_young(pte); 1079 pte = pte_mkold(pte); 1080 1081 if (mm_has_pgste(vma->vm_mm)) { 1082 pgste_set_pte(ptep, pte); 1083 pgste_set_unlock(ptep, pgste); 1084 } else 1085 *ptep = pte; 1086 1087 return young; 1088} 1089 1090#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1091static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1092 unsigned long address, pte_t *ptep) 1093{ 1094 return ptep_test_and_clear_young(vma, address, ptep); 1095} 1096 1097/* 1098 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1099 * both clear the TLB for the unmapped pte. The reason is that 1100 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1101 * to modify an active pte. The sequence is 1102 * 1) ptep_get_and_clear 1103 * 2) set_pte_at 1104 * 3) flush_tlb_range 1105 * On s390 the tlb needs to get flushed with the modification of the pte 1106 * if the pte is active. The only way how this can be implemented is to 1107 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1108 * is a nop. 1109 */ 1110#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1111static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1112 unsigned long address, pte_t *ptep) 1113{ 1114 pgste_t pgste; 1115 pte_t pte; 1116 1117 if (mm_has_pgste(mm)) { 1118 pgste = pgste_get_lock(ptep); 1119 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1120 } 1121 1122 pte = *ptep; 1123 ptep_flush_lazy(mm, address, ptep); 1124 pte_val(*ptep) = _PAGE_INVALID; 1125 1126 if (mm_has_pgste(mm)) { 1127 pgste = pgste_update_all(&pte, pgste); 1128 pgste_set_unlock(ptep, pgste); 1129 } 1130 return pte; 1131} 1132 1133#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1134static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 1135 unsigned long address, 1136 pte_t *ptep) 1137{ 1138 pgste_t pgste; 1139 pte_t pte; 1140 1141 if (mm_has_pgste(mm)) { 1142 pgste = pgste_get_lock(ptep); 1143 pgste_ipte_notify(mm, address, ptep, pgste); 1144 } 1145 1146 pte = *ptep; 1147 ptep_flush_lazy(mm, address, ptep); 1148 pte_val(*ptep) |= _PAGE_INVALID; 1149 1150 if (mm_has_pgste(mm)) { 1151 pgste = pgste_update_all(&pte, pgste); 1152 pgste_set(ptep, pgste); 1153 } 1154 return pte; 1155} 1156 1157static inline void ptep_modify_prot_commit(struct mm_struct *mm, 1158 unsigned long address, 1159 pte_t *ptep, pte_t pte) 1160{ 1161 pgste_t pgste; 1162 1163 if (mm_has_pgste(mm)) { 1164 pgste = pgste_get(ptep); 1165 pgste_set_key(ptep, pgste, pte); 1166 pgste_set_pte(ptep, pte); 1167 pgste_set_unlock(ptep, pgste); 1168 } else 1169 *ptep = pte; 1170} 1171 1172#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1173static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1174 unsigned long address, pte_t *ptep) 1175{ 1176 pgste_t pgste; 1177 pte_t pte; 1178 1179 if (mm_has_pgste(vma->vm_mm)) { 1180 pgste = pgste_get_lock(ptep); 1181 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1182 } 1183 1184 pte = *ptep; 1185 __ptep_ipte(address, ptep); 1186 pte_val(*ptep) = _PAGE_INVALID; 1187 1188 if (mm_has_pgste(vma->vm_mm)) { 1189 pgste = pgste_update_all(&pte, pgste); 1190 pgste_set_unlock(ptep, pgste); 1191 } 1192 return pte; 1193} 1194 1195/* 1196 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1197 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1198 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1199 * cannot be accessed while the batched unmap is running. In this case 1200 * full==1 and a simple pte_clear is enough. See tlb.h. 1201 */ 1202#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1203static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1204 unsigned long address, 1205 pte_t *ptep, int full) 1206{ 1207 pgste_t pgste; 1208 pte_t pte; 1209 1210 if (!full && mm_has_pgste(mm)) { 1211 pgste = pgste_get_lock(ptep); 1212 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1213 } 1214 1215 pte = *ptep; 1216 if (!full) 1217 ptep_flush_lazy(mm, address, ptep); 1218 pte_val(*ptep) = _PAGE_INVALID; 1219 1220 if (!full && mm_has_pgste(mm)) { 1221 pgste = pgste_update_all(&pte, pgste); 1222 pgste_set_unlock(ptep, pgste); 1223 } 1224 return pte; 1225} 1226 1227#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1228static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, 1229 unsigned long address, pte_t *ptep) 1230{ 1231 pgste_t pgste; 1232 pte_t pte = *ptep; 1233 1234 if (pte_write(pte)) { 1235 if (mm_has_pgste(mm)) { 1236 pgste = pgste_get_lock(ptep); 1237 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1238 } 1239 1240 ptep_flush_lazy(mm, address, ptep); 1241 pte = pte_wrprotect(pte); 1242 1243 if (mm_has_pgste(mm)) { 1244 pgste_set_pte(ptep, pte); 1245 pgste_set_unlock(ptep, pgste); 1246 } else 1247 *ptep = pte; 1248 } 1249 return pte; 1250} 1251 1252#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1253static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1254 unsigned long address, pte_t *ptep, 1255 pte_t entry, int dirty) 1256{ 1257 pgste_t pgste; 1258 1259 if (pte_same(*ptep, entry)) 1260 return 0; 1261 if (mm_has_pgste(vma->vm_mm)) { 1262 pgste = pgste_get_lock(ptep); 1263 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1264 } 1265 1266 __ptep_ipte(address, ptep); 1267 1268 if (mm_has_pgste(vma->vm_mm)) { 1269 pgste_set_pte(ptep, entry); 1270 pgste_set_unlock(ptep, pgste); 1271 } else 1272 *ptep = entry; 1273 return 1; 1274} 1275 1276/* 1277 * Conversion functions: convert a page and protection to a page entry, 1278 * and a page entry and page directory to the page they refer to. 1279 */ 1280static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1281{ 1282 pte_t __pte; 1283 pte_val(__pte) = physpage + pgprot_val(pgprot); 1284 return pte_mkyoung(__pte); 1285} 1286 1287static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1288{ 1289 unsigned long physpage = page_to_phys(page); 1290 pte_t __pte = mk_pte_phys(physpage, pgprot); 1291 1292 if (pte_write(__pte) && PageDirty(page)) 1293 __pte = pte_mkdirty(__pte); 1294 return __pte; 1295} 1296 1297#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1298#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1299#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1300#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1301 1302#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1303#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1304 1305#ifndef CONFIG_64BIT 1306 1307#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1308#define pud_deref(pmd) ({ BUG(); 0UL; }) 1309#define pgd_deref(pmd) ({ BUG(); 0UL; }) 1310 1311#define pud_offset(pgd, address) ((pud_t *) pgd) 1312#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) 1313 1314#else /* CONFIG_64BIT */ 1315 1316#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1317#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1318#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1319 1320static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 1321{ 1322 pud_t *pud = (pud_t *) pgd; 1323 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1324 pud = (pud_t *) pgd_deref(*pgd); 1325 return pud + pud_index(address); 1326} 1327 1328static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1329{ 1330 pmd_t *pmd = (pmd_t *) pud; 1331 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1332 pmd = (pmd_t *) pud_deref(*pud); 1333 return pmd + pmd_index(address); 1334} 1335 1336#endif /* CONFIG_64BIT */ 1337 1338#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1339#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1340#define pte_page(x) pfn_to_page(pte_pfn(x)) 1341 1342#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 1343 1344/* Find an entry in the lowest level page table.. */ 1345#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1346#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1347#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1348#define pte_unmap(pte) do { } while (0) 1349 1350static inline void __pmd_idte(unsigned long address, pmd_t *pmdp) 1351{ 1352 unsigned long sto = (unsigned long) pmdp - 1353 pmd_index(address) * sizeof(pmd_t); 1354 1355 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)) { 1356 asm volatile( 1357 " .insn rrf,0xb98e0000,%2,%3,0,0" 1358 : "=m" (*pmdp) 1359 : "m" (*pmdp), "a" (sto), 1360 "a" ((address & HPAGE_MASK)) 1361 : "cc" 1362 ); 1363 } 1364} 1365 1366static inline void __pmd_csp(pmd_t *pmdp) 1367{ 1368 register unsigned long reg2 asm("2") = pmd_val(*pmdp); 1369 register unsigned long reg3 asm("3") = pmd_val(*pmdp) | 1370 _SEGMENT_ENTRY_INVALID; 1371 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5; 1372 1373 asm volatile( 1374 " csp %1,%3" 1375 : "=m" (*pmdp) 1376 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc"); 1377} 1378 1379#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1380static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1381{ 1382 /* 1383 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx) 1384 * Convert to segment table entry format. 1385 */ 1386 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1387 return pgprot_val(SEGMENT_NONE); 1388 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ)) 1389 return pgprot_val(SEGMENT_READ); 1390 return pgprot_val(SEGMENT_WRITE); 1391} 1392 1393static inline pmd_t pmd_mkyoung(pmd_t pmd) 1394{ 1395#ifdef CONFIG_64BIT 1396 if (pmd_prot_none(pmd)) { 1397 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1398 } else { 1399 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1400 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1401 } 1402#endif 1403 return pmd; 1404} 1405 1406static inline pmd_t pmd_mkold(pmd_t pmd) 1407{ 1408#ifdef CONFIG_64BIT 1409 if (pmd_prot_none(pmd)) { 1410 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1411 } else { 1412 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1413 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1414 } 1415#endif 1416 return pmd; 1417} 1418 1419static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1420{ 1421 int young; 1422 1423 young = pmd_young(pmd); 1424 pmd_val(pmd) &= _SEGMENT_CHG_MASK; 1425 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1426 if (young) 1427 pmd = pmd_mkyoung(pmd); 1428 return pmd; 1429} 1430 1431static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1432{ 1433 pmd_t __pmd; 1434 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1435 return pmd_mkyoung(__pmd); 1436} 1437 1438static inline pmd_t pmd_mkwrite(pmd_t pmd) 1439{ 1440 /* Do not clobber PROT_NONE segments! */ 1441 if (!pmd_prot_none(pmd)) 1442 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1443 return pmd; 1444} 1445#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1446 1447static inline void pmdp_flush_lazy(struct mm_struct *mm, 1448 unsigned long address, pmd_t *pmdp) 1449{ 1450 int active = (mm == current->active_mm) ? 1 : 0; 1451 1452 if ((atomic_read(&mm->context.attach_count) & 0xffff) > active) 1453 __pmd_idte(address, pmdp); 1454 else 1455 mm->context.flush_mm = 1; 1456} 1457 1458#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1459 1460#define __HAVE_ARCH_PGTABLE_DEPOSIT 1461extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1462 pgtable_t pgtable); 1463 1464#define __HAVE_ARCH_PGTABLE_WITHDRAW 1465extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1466 1467static inline int pmd_trans_splitting(pmd_t pmd) 1468{ 1469 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT; 1470} 1471 1472static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1473 pmd_t *pmdp, pmd_t entry) 1474{ 1475 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1) 1476 pmd_val(entry) |= _SEGMENT_ENTRY_CO; 1477 *pmdp = entry; 1478} 1479 1480static inline pmd_t pmd_mkhuge(pmd_t pmd) 1481{ 1482 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1483 return pmd; 1484} 1485 1486static inline pmd_t pmd_wrprotect(pmd_t pmd) 1487{ 1488 /* Do not clobber PROT_NONE segments! */ 1489 if (!pmd_prot_none(pmd)) 1490 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1491 return pmd; 1492} 1493 1494static inline pmd_t pmd_mkdirty(pmd_t pmd) 1495{ 1496 /* No dirty bit in the segment table entry. */ 1497 return pmd; 1498} 1499 1500#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1501static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1502 unsigned long address, pmd_t *pmdp) 1503{ 1504 pmd_t pmd; 1505 1506 pmd = *pmdp; 1507 __pmd_idte(address, pmdp); 1508 *pmdp = pmd_mkold(pmd); 1509 return pmd_young(pmd); 1510} 1511 1512#define __HAVE_ARCH_PMDP_GET_AND_CLEAR 1513static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 1514 unsigned long address, pmd_t *pmdp) 1515{ 1516 pmd_t pmd = *pmdp; 1517 1518 __pmd_idte(address, pmdp); 1519 pmd_clear(pmdp); 1520 return pmd; 1521} 1522 1523#define __HAVE_ARCH_PMDP_CLEAR_FLUSH 1524static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 1525 unsigned long address, pmd_t *pmdp) 1526{ 1527 return pmdp_get_and_clear(vma->vm_mm, address, pmdp); 1528} 1529 1530#define __HAVE_ARCH_PMDP_INVALIDATE 1531static inline void pmdp_invalidate(struct vm_area_struct *vma, 1532 unsigned long address, pmd_t *pmdp) 1533{ 1534 __pmd_idte(address, pmdp); 1535} 1536 1537#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1538static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1539 unsigned long address, pmd_t *pmdp) 1540{ 1541 pmd_t pmd = *pmdp; 1542 1543 if (pmd_write(pmd)) { 1544 __pmd_idte(address, pmdp); 1545 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); 1546 } 1547} 1548 1549#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1550#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1551 1552static inline int pmd_trans_huge(pmd_t pmd) 1553{ 1554 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1555} 1556 1557static inline int has_transparent_hugepage(void) 1558{ 1559 return MACHINE_HAS_HPAGE ? 1 : 0; 1560} 1561 1562static inline unsigned long pmd_pfn(pmd_t pmd) 1563{ 1564 return pmd_val(pmd) >> PAGE_SHIFT; 1565} 1566#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1567 1568/* 1569 * 31 bit swap entry format: 1570 * A page-table entry has some bits we have to treat in a special way. 1571 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 1572 * exception will occur instead of a page translation exception. The 1573 * specifiation exception has the bad habit not to store necessary 1574 * information in the lowcore. 1575 * Bits 21, 22, 30 and 31 are used to indicate the page type. 1576 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402 1577 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 1578 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 1579 * plus 24 for the offset. 1580 * 0| offset |0110|o|type |00| 1581 * 0 0000000001111111111 2222 2 22222 33 1582 * 0 1234567890123456789 0123 4 56789 01 1583 * 1584 * 64 bit swap entry format: 1585 * A page-table entry has some bits we have to treat in a special way. 1586 * Bits 52 and bit 55 have to be zero, otherwise an specification 1587 * exception will occur instead of a page translation exception. The 1588 * specifiation exception has the bad habit not to store necessary 1589 * information in the lowcore. 1590 * Bits 53, 54, 62 and 63 are used to indicate the page type. 1591 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402 1592 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 1593 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 1594 * plus 56 for the offset. 1595 * | offset |0110|o|type |00| 1596 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 1597 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 1598 */ 1599#ifndef CONFIG_64BIT 1600#define __SWP_OFFSET_MASK (~0UL >> 12) 1601#else 1602#define __SWP_OFFSET_MASK (~0UL >> 11) 1603#endif 1604static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1605{ 1606 pte_t pte; 1607 offset &= __SWP_OFFSET_MASK; 1608 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) | 1609 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 1610 return pte; 1611} 1612 1613#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 1614#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 1615#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 1616 1617#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1618#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1619 1620#ifndef CONFIG_64BIT 1621# define PTE_FILE_MAX_BITS 26 1622#else /* CONFIG_64BIT */ 1623# define PTE_FILE_MAX_BITS 59 1624#endif /* CONFIG_64BIT */ 1625 1626#define pte_to_pgoff(__pte) \ 1627 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 1628 1629#define pgoff_to_pte(__off) \ 1630 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 1631 | _PAGE_INVALID | _PAGE_PROTECT }) 1632 1633#endif /* !__ASSEMBLY__ */ 1634 1635#define kern_addr_valid(addr) (1) 1636 1637extern int vmem_add_mapping(unsigned long start, unsigned long size); 1638extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1639extern int s390_enable_sie(void); 1640 1641/* 1642 * No page table caches to initialise 1643 */ 1644static inline void pgtable_cache_init(void) { } 1645static inline void check_pgt_cache(void) { } 1646 1647#include <asm-generic/pgtable.h> 1648 1649#endif /* _S390_PAGE_H */