at v3.14-rc4 2763 lines 130 kB view raw
1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="drmDevelopersGuide"> 6 <bookinfo> 7 <title>Linux DRM Developer's Guide</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Jesse</firstname> 12 <surname>Barnes</surname> 13 <contrib>Initial version</contrib> 14 <affiliation> 15 <orgname>Intel Corporation</orgname> 16 <address> 17 <email>jesse.barnes@intel.com</email> 18 </address> 19 </affiliation> 20 </author> 21 <author> 22 <firstname>Laurent</firstname> 23 <surname>Pinchart</surname> 24 <contrib>Driver internals</contrib> 25 <affiliation> 26 <orgname>Ideas on board SPRL</orgname> 27 <address> 28 <email>laurent.pinchart@ideasonboard.com</email> 29 </address> 30 </affiliation> 31 </author> 32 </authorgroup> 33 34 <copyright> 35 <year>2008-2009</year> 36 <year>2012</year> 37 <holder>Intel Corporation</holder> 38 <holder>Laurent Pinchart</holder> 39 </copyright> 40 41 <legalnotice> 42 <para> 43 The contents of this file may be used under the terms of the GNU 44 General Public License version 2 (the "GPL") as distributed in 45 the kernel source COPYING file. 46 </para> 47 </legalnotice> 48 49 <revhistory> 50 <!-- Put document revisions here, newest first. --> 51 <revision> 52 <revnumber>1.0</revnumber> 53 <date>2012-07-13</date> 54 <authorinitials>LP</authorinitials> 55 <revremark>Added extensive documentation about driver internals. 56 </revremark> 57 </revision> 58 </revhistory> 59 </bookinfo> 60 61<toc></toc> 62 63 <!-- Introduction --> 64 65 <chapter id="drmIntroduction"> 66 <title>Introduction</title> 67 <para> 68 The Linux DRM layer contains code intended to support the needs 69 of complex graphics devices, usually containing programmable 70 pipelines well suited to 3D graphics acceleration. Graphics 71 drivers in the kernel may make use of DRM functions to make 72 tasks like memory management, interrupt handling and DMA easier, 73 and provide a uniform interface to applications. 74 </para> 75 <para> 76 A note on versions: this guide covers features found in the DRM 77 tree, including the TTM memory manager, output configuration and 78 mode setting, and the new vblank internals, in addition to all 79 the regular features found in current kernels. 80 </para> 81 <para> 82 [Insert diagram of typical DRM stack here] 83 </para> 84 </chapter> 85 86 <!-- Internals --> 87 88 <chapter id="drmInternals"> 89 <title>DRM Internals</title> 90 <para> 91 This chapter documents DRM internals relevant to driver authors 92 and developers working to add support for the latest features to 93 existing drivers. 94 </para> 95 <para> 96 First, we go over some typical driver initialization 97 requirements, like setting up command buffers, creating an 98 initial output configuration, and initializing core services. 99 Subsequent sections cover core internals in more detail, 100 providing implementation notes and examples. 101 </para> 102 <para> 103 The DRM layer provides several services to graphics drivers, 104 many of them driven by the application interfaces it provides 105 through libdrm, the library that wraps most of the DRM ioctls. 106 These include vblank event handling, memory 107 management, output management, framebuffer management, command 108 submission &amp; fencing, suspend/resume support, and DMA 109 services. 110 </para> 111 112 <!-- Internals: driver init --> 113 114 <sect1> 115 <title>Driver Initialization</title> 116 <para> 117 At the core of every DRM driver is a <structname>drm_driver</structname> 118 structure. Drivers typically statically initialize a drm_driver structure, 119 and then pass it to one of the <function>drm_*_init()</function> functions 120 to register it with the DRM subsystem. 121 </para> 122 <para> 123 The <structname>drm_driver</structname> structure contains static 124 information that describes the driver and features it supports, and 125 pointers to methods that the DRM core will call to implement the DRM API. 126 We will first go through the <structname>drm_driver</structname> static 127 information fields, and will then describe individual operations in 128 details as they get used in later sections. 129 </para> 130 <sect2> 131 <title>Driver Information</title> 132 <sect3> 133 <title>Driver Features</title> 134 <para> 135 Drivers inform the DRM core about their requirements and supported 136 features by setting appropriate flags in the 137 <structfield>driver_features</structfield> field. Since those flags 138 influence the DRM core behaviour since registration time, most of them 139 must be set to registering the <structname>drm_driver</structname> 140 instance. 141 </para> 142 <synopsis>u32 driver_features;</synopsis> 143 <variablelist> 144 <title>Driver Feature Flags</title> 145 <varlistentry> 146 <term>DRIVER_USE_AGP</term> 147 <listitem><para> 148 Driver uses AGP interface, the DRM core will manage AGP resources. 149 </para></listitem> 150 </varlistentry> 151 <varlistentry> 152 <term>DRIVER_REQUIRE_AGP</term> 153 <listitem><para> 154 Driver needs AGP interface to function. AGP initialization failure 155 will become a fatal error. 156 </para></listitem> 157 </varlistentry> 158 <varlistentry> 159 <term>DRIVER_PCI_DMA</term> 160 <listitem><para> 161 Driver is capable of PCI DMA, mapping of PCI DMA buffers to 162 userspace will be enabled. Deprecated. 163 </para></listitem> 164 </varlistentry> 165 <varlistentry> 166 <term>DRIVER_SG</term> 167 <listitem><para> 168 Driver can perform scatter/gather DMA, allocation and mapping of 169 scatter/gather buffers will be enabled. Deprecated. 170 </para></listitem> 171 </varlistentry> 172 <varlistentry> 173 <term>DRIVER_HAVE_DMA</term> 174 <listitem><para> 175 Driver supports DMA, the userspace DMA API will be supported. 176 Deprecated. 177 </para></listitem> 178 </varlistentry> 179 <varlistentry> 180 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term> 181 <listitem><para> 182 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler 183 managed by the DRM Core. The core will support simple IRQ handler 184 installation when the flag is set. The installation process is 185 described in <xref linkend="drm-irq-registration"/>.</para> 186 <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler 187 support shared IRQs (note that this is required of PCI drivers). 188 </para></listitem> 189 </varlistentry> 190 <varlistentry> 191 <term>DRIVER_GEM</term> 192 <listitem><para> 193 Driver use the GEM memory manager. 194 </para></listitem> 195 </varlistentry> 196 <varlistentry> 197 <term>DRIVER_MODESET</term> 198 <listitem><para> 199 Driver supports mode setting interfaces (KMS). 200 </para></listitem> 201 </varlistentry> 202 <varlistentry> 203 <term>DRIVER_PRIME</term> 204 <listitem><para> 205 Driver implements DRM PRIME buffer sharing. 206 </para></listitem> 207 </varlistentry> 208 <varlistentry> 209 <term>DRIVER_RENDER</term> 210 <listitem><para> 211 Driver supports dedicated render nodes. 212 </para></listitem> 213 </varlistentry> 214 </variablelist> 215 </sect3> 216 <sect3> 217 <title>Major, Minor and Patchlevel</title> 218 <synopsis>int major; 219int minor; 220int patchlevel;</synopsis> 221 <para> 222 The DRM core identifies driver versions by a major, minor and patch 223 level triplet. The information is printed to the kernel log at 224 initialization time and passed to userspace through the 225 DRM_IOCTL_VERSION ioctl. 226 </para> 227 <para> 228 The major and minor numbers are also used to verify the requested driver 229 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes 230 between minor versions, applications can call DRM_IOCTL_SET_VERSION to 231 select a specific version of the API. If the requested major isn't equal 232 to the driver major, or the requested minor is larger than the driver 233 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise 234 the driver's set_version() method will be called with the requested 235 version. 236 </para> 237 </sect3> 238 <sect3> 239 <title>Name, Description and Date</title> 240 <synopsis>char *name; 241char *desc; 242char *date;</synopsis> 243 <para> 244 The driver name is printed to the kernel log at initialization time, 245 used for IRQ registration and passed to userspace through 246 DRM_IOCTL_VERSION. 247 </para> 248 <para> 249 The driver description is a purely informative string passed to 250 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by 251 the kernel. 252 </para> 253 <para> 254 The driver date, formatted as YYYYMMDD, is meant to identify the date of 255 the latest modification to the driver. However, as most drivers fail to 256 update it, its value is mostly useless. The DRM core prints it to the 257 kernel log at initialization time and passes it to userspace through the 258 DRM_IOCTL_VERSION ioctl. 259 </para> 260 </sect3> 261 </sect2> 262 <sect2> 263 <title>Driver Load</title> 264 <para> 265 The <methodname>load</methodname> method is the driver and device 266 initialization entry point. The method is responsible for allocating and 267 initializing driver private data, specifying supported performance 268 counters, performing resource allocation and mapping (e.g. acquiring 269 clocks, mapping registers or allocating command buffers), initializing 270 the memory manager (<xref linkend="drm-memory-management"/>), installing 271 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up 272 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode 273 setting (<xref linkend="drm-mode-setting"/>) and initial output 274 configuration (<xref linkend="drm-kms-init"/>). 275 </para> 276 <note><para> 277 If compatibility is a concern (e.g. with drivers converted over from 278 User Mode Setting to Kernel Mode Setting), care must be taken to prevent 279 device initialization and control that is incompatible with currently 280 active userspace drivers. For instance, if user level mode setting 281 drivers are in use, it would be problematic to perform output discovery 282 &amp; configuration at load time. Likewise, if user-level drivers 283 unaware of memory management are in use, memory management and command 284 buffer setup may need to be omitted. These requirements are 285 driver-specific, and care needs to be taken to keep both old and new 286 applications and libraries working. 287 </para></note> 288 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis> 289 <para> 290 The method takes two arguments, a pointer to the newly created 291 <structname>drm_device</structname> and flags. The flags are used to 292 pass the <structfield>driver_data</structfield> field of the device id 293 corresponding to the device passed to <function>drm_*_init()</function>. 294 Only PCI devices currently use this, USB and platform DRM drivers have 295 their <methodname>load</methodname> method called with flags to 0. 296 </para> 297 <sect3> 298 <title>Driver Private &amp; Performance Counters</title> 299 <para> 300 The driver private hangs off the main 301 <structname>drm_device</structname> structure and can be used for 302 tracking various device-specific bits of information, like register 303 offsets, command buffer status, register state for suspend/resume, etc. 304 At load time, a driver may simply allocate one and set 305 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 306 appropriately; it should be freed and 307 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 308 set to NULL when the driver is unloaded. 309 </para> 310 <para> 311 DRM supports several counters which were used for rough performance 312 characterization. This stat counter system is deprecated and should not 313 be used. If performance monitoring is desired, the developer should 314 investigate and potentially enhance the kernel perf and tracing 315 infrastructure to export GPU related performance information for 316 consumption by performance monitoring tools and applications. 317 </para> 318 </sect3> 319 <sect3 id="drm-irq-registration"> 320 <title>IRQ Registration</title> 321 <para> 322 The DRM core tries to facilitate IRQ handler registration and 323 unregistration by providing <function>drm_irq_install</function> and 324 <function>drm_irq_uninstall</function> functions. Those functions only 325 support a single interrupt per device, devices that use more than one 326 IRQs need to be handled manually. 327 </para> 328 <sect4> 329 <title>Managed IRQ Registration</title> 330 <para> 331 Both the <function>drm_irq_install</function> and 332 <function>drm_irq_uninstall</function> functions get the device IRQ by 333 calling <function>drm_dev_to_irq</function>. This inline function will 334 call a bus-specific operation to retrieve the IRQ number. For platform 335 devices, <function>platform_get_irq</function>(..., 0) is used to 336 retrieve the IRQ number. 337 </para> 338 <para> 339 <function>drm_irq_install</function> starts by calling the 340 <methodname>irq_preinstall</methodname> driver operation. The operation 341 is optional and must make sure that the interrupt will not get fired by 342 clearing all pending interrupt flags or disabling the interrupt. 343 </para> 344 <para> 345 The IRQ will then be requested by a call to 346 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver 347 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be 348 requested. 349 </para> 350 <para> 351 The IRQ handler function must be provided as the mandatory irq_handler 352 driver operation. It will get passed directly to 353 <function>request_irq</function> and thus has the same prototype as all 354 IRQ handlers. It will get called with a pointer to the DRM device as the 355 second argument. 356 </para> 357 <para> 358 Finally the function calls the optional 359 <methodname>irq_postinstall</methodname> driver operation. The operation 360 usually enables interrupts (excluding the vblank interrupt, which is 361 enabled separately), but drivers may choose to enable/disable interrupts 362 at a different time. 363 </para> 364 <para> 365 <function>drm_irq_uninstall</function> is similarly used to uninstall an 366 IRQ handler. It starts by waking up all processes waiting on a vblank 367 interrupt to make sure they don't hang, and then calls the optional 368 <methodname>irq_uninstall</methodname> driver operation. The operation 369 must disable all hardware interrupts. Finally the function frees the IRQ 370 by calling <function>free_irq</function>. 371 </para> 372 </sect4> 373 <sect4> 374 <title>Manual IRQ Registration</title> 375 <para> 376 Drivers that require multiple interrupt handlers can't use the managed 377 IRQ registration functions. In that case IRQs must be registered and 378 unregistered manually (usually with the <function>request_irq</function> 379 and <function>free_irq</function> functions, or their devm_* equivalent). 380 </para> 381 <para> 382 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ 383 driver feature flag, and must not provide the 384 <methodname>irq_handler</methodname> driver operation. They must set the 385 <structname>drm_device</structname> <structfield>irq_enabled</structfield> 386 field to 1 upon registration of the IRQs, and clear it to 0 after 387 unregistering the IRQs. 388 </para> 389 </sect4> 390 </sect3> 391 <sect3> 392 <title>Memory Manager Initialization</title> 393 <para> 394 Every DRM driver requires a memory manager which must be initialized at 395 load time. DRM currently contains two memory managers, the Translation 396 Table Manager (TTM) and the Graphics Execution Manager (GEM). 397 This document describes the use of the GEM memory manager only. See 398 <xref linkend="drm-memory-management"/> for details. 399 </para> 400 </sect3> 401 <sect3> 402 <title>Miscellaneous Device Configuration</title> 403 <para> 404 Another task that may be necessary for PCI devices during configuration 405 is mapping the video BIOS. On many devices, the VBIOS describes device 406 configuration, LCD panel timings (if any), and contains flags indicating 407 device state. Mapping the BIOS can be done using the pci_map_rom() call, 408 a convenience function that takes care of mapping the actual ROM, 409 whether it has been shadowed into memory (typically at address 0xc0000) 410 or exists on the PCI device in the ROM BAR. Note that after the ROM has 411 been mapped and any necessary information has been extracted, it should 412 be unmapped; on many devices, the ROM address decoder is shared with 413 other BARs, so leaving it mapped could cause undesired behaviour like 414 hangs or memory corruption. 415 <!--!Fdrivers/pci/rom.c pci_map_rom--> 416 </para> 417 </sect3> 418 </sect2> 419 </sect1> 420 421 <!-- Internals: memory management --> 422 423 <sect1 id="drm-memory-management"> 424 <title>Memory management</title> 425 <para> 426 Modern Linux systems require large amount of graphics memory to store 427 frame buffers, textures, vertices and other graphics-related data. Given 428 the very dynamic nature of many of that data, managing graphics memory 429 efficiently is thus crucial for the graphics stack and plays a central 430 role in the DRM infrastructure. 431 </para> 432 <para> 433 The DRM core includes two memory managers, namely Translation Table Maps 434 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory 435 manager to be developed and tried to be a one-size-fits-them all 436 solution. It provides a single userspace API to accommodate the need of 437 all hardware, supporting both Unified Memory Architecture (UMA) devices 438 and devices with dedicated video RAM (i.e. most discrete video cards). 439 This resulted in a large, complex piece of code that turned out to be 440 hard to use for driver development. 441 </para> 442 <para> 443 GEM started as an Intel-sponsored project in reaction to TTM's 444 complexity. Its design philosophy is completely different: instead of 445 providing a solution to every graphics memory-related problems, GEM 446 identified common code between drivers and created a support library to 447 share it. GEM has simpler initialization and execution requirements than 448 TTM, but has no video RAM management capabitilies and is thus limited to 449 UMA devices. 450 </para> 451 <sect2> 452 <title>The Translation Table Manager (TTM)</title> 453 <para> 454 TTM design background and information belongs here. 455 </para> 456 <sect3> 457 <title>TTM initialization</title> 458 <warning><para>This section is outdated.</para></warning> 459 <para> 460 Drivers wishing to support TTM must fill out a drm_bo_driver 461 structure. The structure contains several fields with function 462 pointers for initializing the TTM, allocating and freeing memory, 463 waiting for command completion and fence synchronization, and memory 464 migration. See the radeon_ttm.c file for an example of usage. 465 </para> 466 <para> 467 The ttm_global_reference structure is made up of several fields: 468 </para> 469 <programlisting> 470 struct ttm_global_reference { 471 enum ttm_global_types global_type; 472 size_t size; 473 void *object; 474 int (*init) (struct ttm_global_reference *); 475 void (*release) (struct ttm_global_reference *); 476 }; 477 </programlisting> 478 <para> 479 There should be one global reference structure for your memory 480 manager as a whole, and there will be others for each object 481 created by the memory manager at runtime. Your global TTM should 482 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global 483 object should be sizeof(struct ttm_mem_global), and the init and 484 release hooks should point at your driver-specific init and 485 release routines, which probably eventually call 486 ttm_mem_global_init and ttm_mem_global_release, respectively. 487 </para> 488 <para> 489 Once your global TTM accounting structure is set up and initialized 490 by calling ttm_global_item_ref() on it, 491 you need to create a buffer object TTM to 492 provide a pool for buffer object allocation by clients and the 493 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, 494 and its size should be sizeof(struct ttm_bo_global). Again, 495 driver-specific init and release functions may be provided, 496 likely eventually calling ttm_bo_global_init() and 497 ttm_bo_global_release(), respectively. Also, like the previous 498 object, ttm_global_item_ref() is used to create an initial reference 499 count for the TTM, which will call your initialization function. 500 </para> 501 </sect3> 502 </sect2> 503 <sect2 id="drm-gem"> 504 <title>The Graphics Execution Manager (GEM)</title> 505 <para> 506 The GEM design approach has resulted in a memory manager that doesn't 507 provide full coverage of all (or even all common) use cases in its 508 userspace or kernel API. GEM exposes a set of standard memory-related 509 operations to userspace and a set of helper functions to drivers, and let 510 drivers implement hardware-specific operations with their own private API. 511 </para> 512 <para> 513 The GEM userspace API is described in the 514 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics 515 Execution Manager</citetitle></ulink> article on LWN. While slightly 516 outdated, the document provides a good overview of the GEM API principles. 517 Buffer allocation and read and write operations, described as part of the 518 common GEM API, are currently implemented using driver-specific ioctls. 519 </para> 520 <para> 521 GEM is data-agnostic. It manages abstract buffer objects without knowing 522 what individual buffers contain. APIs that require knowledge of buffer 523 contents or purpose, such as buffer allocation or synchronization 524 primitives, are thus outside of the scope of GEM and must be implemented 525 using driver-specific ioctls. 526 </para> 527 <para> 528 On a fundamental level, GEM involves several operations: 529 <itemizedlist> 530 <listitem>Memory allocation and freeing</listitem> 531 <listitem>Command execution</listitem> 532 <listitem>Aperture management at command execution time</listitem> 533 </itemizedlist> 534 Buffer object allocation is relatively straightforward and largely 535 provided by Linux's shmem layer, which provides memory to back each 536 object. 537 </para> 538 <para> 539 Device-specific operations, such as command execution, pinning, buffer 540 read &amp; write, mapping, and domain ownership transfers are left to 541 driver-specific ioctls. 542 </para> 543 <sect3> 544 <title>GEM Initialization</title> 545 <para> 546 Drivers that use GEM must set the DRIVER_GEM bit in the struct 547 <structname>drm_driver</structname> 548 <structfield>driver_features</structfield> field. The DRM core will 549 then automatically initialize the GEM core before calling the 550 <methodname>load</methodname> operation. Behind the scene, this will 551 create a DRM Memory Manager object which provides an address space 552 pool for object allocation. 553 </para> 554 <para> 555 In a KMS configuration, drivers need to allocate and initialize a 556 command ring buffer following core GEM initialization if required by 557 the hardware. UMA devices usually have what is called a "stolen" 558 memory region, which provides space for the initial framebuffer and 559 large, contiguous memory regions required by the device. This space is 560 typically not managed by GEM, and must be initialized separately into 561 its own DRM MM object. 562 </para> 563 </sect3> 564 <sect3> 565 <title>GEM Objects Creation</title> 566 <para> 567 GEM splits creation of GEM objects and allocation of the memory that 568 backs them in two distinct operations. 569 </para> 570 <para> 571 GEM objects are represented by an instance of struct 572 <structname>drm_gem_object</structname>. Drivers usually need to extend 573 GEM objects with private information and thus create a driver-specific 574 GEM object structure type that embeds an instance of struct 575 <structname>drm_gem_object</structname>. 576 </para> 577 <para> 578 To create a GEM object, a driver allocates memory for an instance of its 579 specific GEM object type and initializes the embedded struct 580 <structname>drm_gem_object</structname> with a call to 581 <function>drm_gem_object_init</function>. The function takes a pointer to 582 the DRM device, a pointer to the GEM object and the buffer object size 583 in bytes. 584 </para> 585 <para> 586 GEM uses shmem to allocate anonymous pageable memory. 587 <function>drm_gem_object_init</function> will create an shmfs file of 588 the requested size and store it into the struct 589 <structname>drm_gem_object</structname> <structfield>filp</structfield> 590 field. The memory is used as either main storage for the object when the 591 graphics hardware uses system memory directly or as a backing store 592 otherwise. 593 </para> 594 <para> 595 Drivers are responsible for the actual physical pages allocation by 596 calling <function>shmem_read_mapping_page_gfp</function> for each page. 597 Note that they can decide to allocate pages when initializing the GEM 598 object, or to delay allocation until the memory is needed (for instance 599 when a page fault occurs as a result of a userspace memory access or 600 when the driver needs to start a DMA transfer involving the memory). 601 </para> 602 <para> 603 Anonymous pageable memory allocation is not always desired, for instance 604 when the hardware requires physically contiguous system memory as is 605 often the case in embedded devices. Drivers can create GEM objects with 606 no shmfs backing (called private GEM objects) by initializing them with 607 a call to <function>drm_gem_private_object_init</function> instead of 608 <function>drm_gem_object_init</function>. Storage for private GEM 609 objects must be managed by drivers. 610 </para> 611 <para> 612 Drivers that do not need to extend GEM objects with private information 613 can call the <function>drm_gem_object_alloc</function> function to 614 allocate and initialize a struct <structname>drm_gem_object</structname> 615 instance. The GEM core will call the optional driver 616 <methodname>gem_init_object</methodname> operation after initializing 617 the GEM object with <function>drm_gem_object_init</function>. 618 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis> 619 </para> 620 <para> 621 No alloc-and-init function exists for private GEM objects. 622 </para> 623 </sect3> 624 <sect3> 625 <title>GEM Objects Lifetime</title> 626 <para> 627 All GEM objects are reference-counted by the GEM core. References can be 628 acquired and release by <function>calling drm_gem_object_reference</function> 629 and <function>drm_gem_object_unreference</function> respectively. The 630 caller must hold the <structname>drm_device</structname> 631 <structfield>struct_mutex</structfield> lock. As a convenience, GEM 632 provides the <function>drm_gem_object_reference_unlocked</function> and 633 <function>drm_gem_object_unreference_unlocked</function> functions that 634 can be called without holding the lock. 635 </para> 636 <para> 637 When the last reference to a GEM object is released the GEM core calls 638 the <structname>drm_driver</structname> 639 <methodname>gem_free_object</methodname> operation. That operation is 640 mandatory for GEM-enabled drivers and must free the GEM object and all 641 associated resources. 642 </para> 643 <para> 644 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis> 645 Drivers are responsible for freeing all GEM object resources, including 646 the resources created by the GEM core. If an mmap offset has been 647 created for the object (in which case 648 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield> 649 is not NULL) it must be freed by a call to 650 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store 651 must be released by calling <function>drm_gem_object_release</function> 652 (that function can safely be called if no shmfs backing store has been 653 created). 654 </para> 655 </sect3> 656 <sect3> 657 <title>GEM Objects Naming</title> 658 <para> 659 Communication between userspace and the kernel refers to GEM objects 660 using local handles, global names or, more recently, file descriptors. 661 All of those are 32-bit integer values; the usual Linux kernel limits 662 apply to the file descriptors. 663 </para> 664 <para> 665 GEM handles are local to a DRM file. Applications get a handle to a GEM 666 object through a driver-specific ioctl, and can use that handle to refer 667 to the GEM object in other standard or driver-specific ioctls. Closing a 668 DRM file handle frees all its GEM handles and dereferences the 669 associated GEM objects. 670 </para> 671 <para> 672 To create a handle for a GEM object drivers call 673 <function>drm_gem_handle_create</function>. The function takes a pointer 674 to the DRM file and the GEM object and returns a locally unique handle. 675 When the handle is no longer needed drivers delete it with a call to 676 <function>drm_gem_handle_delete</function>. Finally the GEM object 677 associated with a handle can be retrieved by a call to 678 <function>drm_gem_object_lookup</function>. 679 </para> 680 <para> 681 Handles don't take ownership of GEM objects, they only take a reference 682 to the object that will be dropped when the handle is destroyed. To 683 avoid leaking GEM objects, drivers must make sure they drop the 684 reference(s) they own (such as the initial reference taken at object 685 creation time) as appropriate, without any special consideration for the 686 handle. For example, in the particular case of combined GEM object and 687 handle creation in the implementation of the 688 <methodname>dumb_create</methodname> operation, drivers must drop the 689 initial reference to the GEM object before returning the handle. 690 </para> 691 <para> 692 GEM names are similar in purpose to handles but are not local to DRM 693 files. They can be passed between processes to reference a GEM object 694 globally. Names can't be used directly to refer to objects in the DRM 695 API, applications must convert handles to names and names to handles 696 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls 697 respectively. The conversion is handled by the DRM core without any 698 driver-specific support. 699 </para> 700 <para> 701 Similar to global names, GEM file descriptors are also used to share GEM 702 objects across processes. They offer additional security: as file 703 descriptors must be explicitly sent over UNIX domain sockets to be shared 704 between applications, they can't be guessed like the globally unique GEM 705 names. 706 </para> 707 <para> 708 Drivers that support GEM file descriptors, also known as the DRM PRIME 709 API, must set the DRIVER_PRIME bit in the struct 710 <structname>drm_driver</structname> 711 <structfield>driver_features</structfield> field, and implement the 712 <methodname>prime_handle_to_fd</methodname> and 713 <methodname>prime_fd_to_handle</methodname> operations. 714 </para> 715 <para> 716 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev, 717 struct drm_file *file_priv, uint32_t handle, 718 uint32_t flags, int *prime_fd); 719 int (*prime_fd_to_handle)(struct drm_device *dev, 720 struct drm_file *file_priv, int prime_fd, 721 uint32_t *handle);</synopsis> 722 Those two operations convert a handle to a PRIME file descriptor and 723 vice versa. Drivers must use the kernel dma-buf buffer sharing framework 724 to manage the PRIME file descriptors. 725 </para> 726 <para> 727 While non-GEM drivers must implement the operations themselves, GEM 728 drivers must use the <function>drm_gem_prime_handle_to_fd</function> 729 and <function>drm_gem_prime_fd_to_handle</function> helper functions. 730 Those helpers rely on the driver 731 <methodname>gem_prime_export</methodname> and 732 <methodname>gem_prime_import</methodname> operations to create a dma-buf 733 instance from a GEM object (dma-buf exporter role) and to create a GEM 734 object from a dma-buf instance (dma-buf importer role). 735 </para> 736 <para> 737 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev, 738 struct drm_gem_object *obj, 739 int flags); 740 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev, 741 struct dma_buf *dma_buf);</synopsis> 742 These two operations are mandatory for GEM drivers that support DRM 743 PRIME. 744 </para> 745 <sect4> 746 <title>DRM PRIME Helper Functions Reference</title> 747!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers 748 </sect4> 749 </sect3> 750 <sect3 id="drm-gem-objects-mapping"> 751 <title>GEM Objects Mapping</title> 752 <para> 753 Because mapping operations are fairly heavyweight GEM favours 754 read/write-like access to buffers, implemented through driver-specific 755 ioctls, over mapping buffers to userspace. However, when random access 756 to the buffer is needed (to perform software rendering for instance), 757 direct access to the object can be more efficient. 758 </para> 759 <para> 760 The mmap system call can't be used directly to map GEM objects, as they 761 don't have their own file handle. Two alternative methods currently 762 co-exist to map GEM objects to userspace. The first method uses a 763 driver-specific ioctl to perform the mapping operation, calling 764 <function>do_mmap</function> under the hood. This is often considered 765 dubious, seems to be discouraged for new GEM-enabled drivers, and will 766 thus not be described here. 767 </para> 768 <para> 769 The second method uses the mmap system call on the DRM file handle. 770 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd, 771 off_t offset);</synopsis> 772 DRM identifies the GEM object to be mapped by a fake offset passed 773 through the mmap offset argument. Prior to being mapped, a GEM object 774 must thus be associated with a fake offset. To do so, drivers must call 775 <function>drm_gem_create_mmap_offset</function> on the object. The 776 function allocates a fake offset range from a pool and stores the 777 offset divided by PAGE_SIZE in 778 <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to 779 call <function>drm_gem_create_mmap_offset</function> if a fake offset 780 has already been allocated for the object. This can be tested by 781 <literal>obj-&gt;map_list.map</literal> being non-NULL. 782 </para> 783 <para> 784 Once allocated, the fake offset value 785 (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>) 786 must be passed to the application in a driver-specific way and can then 787 be used as the mmap offset argument. 788 </para> 789 <para> 790 The GEM core provides a helper method <function>drm_gem_mmap</function> 791 to handle object mapping. The method can be set directly as the mmap 792 file operation handler. It will look up the GEM object based on the 793 offset value and set the VMA operations to the 794 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 795 field. Note that <function>drm_gem_mmap</function> doesn't map memory to 796 userspace, but relies on the driver-provided fault handler to map pages 797 individually. 798 </para> 799 <para> 800 To use <function>drm_gem_mmap</function>, drivers must fill the struct 801 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 802 field with a pointer to VM operations. 803 </para> 804 <para> 805 <synopsis>struct vm_operations_struct *gem_vm_ops 806 807 struct vm_operations_struct { 808 void (*open)(struct vm_area_struct * area); 809 void (*close)(struct vm_area_struct * area); 810 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 811 };</synopsis> 812 </para> 813 <para> 814 The <methodname>open</methodname> and <methodname>close</methodname> 815 operations must update the GEM object reference count. Drivers can use 816 the <function>drm_gem_vm_open</function> and 817 <function>drm_gem_vm_close</function> helper functions directly as open 818 and close handlers. 819 </para> 820 <para> 821 The fault operation handler is responsible for mapping individual pages 822 to userspace when a page fault occurs. Depending on the memory 823 allocation scheme, drivers can allocate pages at fault time, or can 824 decide to allocate memory for the GEM object at the time the object is 825 created. 826 </para> 827 <para> 828 Drivers that want to map the GEM object upfront instead of handling page 829 faults can implement their own mmap file operation handler. 830 </para> 831 </sect3> 832 <sect3> 833 <title>Dumb GEM Objects</title> 834 <para> 835 The GEM API doesn't standardize GEM objects creation and leaves it to 836 driver-specific ioctls. While not an issue for full-fledged graphics 837 stacks that include device-specific userspace components (in libdrm for 838 instance), this limit makes DRM-based early boot graphics unnecessarily 839 complex. 840 </para> 841 <para> 842 Dumb GEM objects partly alleviate the problem by providing a standard 843 API to create dumb buffers suitable for scanout, which can then be used 844 to create KMS frame buffers. 845 </para> 846 <para> 847 To support dumb GEM objects drivers must implement the 848 <methodname>dumb_create</methodname>, 849 <methodname>dumb_destroy</methodname> and 850 <methodname>dumb_map_offset</methodname> operations. 851 </para> 852 <itemizedlist> 853 <listitem> 854 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev, 855 struct drm_mode_create_dumb *args);</synopsis> 856 <para> 857 The <methodname>dumb_create</methodname> operation creates a GEM 858 object suitable for scanout based on the width, height and depth 859 from the struct <structname>drm_mode_create_dumb</structname> 860 argument. It fills the argument's <structfield>handle</structfield>, 861 <structfield>pitch</structfield> and <structfield>size</structfield> 862 fields with a handle for the newly created GEM object and its line 863 pitch and size in bytes. 864 </para> 865 </listitem> 866 <listitem> 867 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev, 868 uint32_t handle);</synopsis> 869 <para> 870 The <methodname>dumb_destroy</methodname> operation destroys a dumb 871 GEM object created by <methodname>dumb_create</methodname>. 872 </para> 873 </listitem> 874 <listitem> 875 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev, 876 uint32_t handle, uint64_t *offset);</synopsis> 877 <para> 878 The <methodname>dumb_map_offset</methodname> operation associates an 879 mmap fake offset with the GEM object given by the handle and returns 880 it. Drivers must use the 881 <function>drm_gem_create_mmap_offset</function> function to 882 associate the fake offset as described in 883 <xref linkend="drm-gem-objects-mapping"/>. 884 </para> 885 </listitem> 886 </itemizedlist> 887 </sect3> 888 <sect3> 889 <title>Memory Coherency</title> 890 <para> 891 When mapped to the device or used in a command buffer, backing pages 892 for an object are flushed to memory and marked write combined so as to 893 be coherent with the GPU. Likewise, if the CPU accesses an object 894 after the GPU has finished rendering to the object, then the object 895 must be made coherent with the CPU's view of memory, usually involving 896 GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU 897 coherency management is provided by a device-specific ioctl, which 898 evaluates an object's current domain and performs any necessary 899 flushing or synchronization to put the object into the desired 900 coherency domain (note that the object may be busy, i.e. an active 901 render target; in that case, setting the domain blocks the client and 902 waits for rendering to complete before performing any necessary 903 flushing operations). 904 </para> 905 </sect3> 906 <sect3> 907 <title>Command Execution</title> 908 <para> 909 Perhaps the most important GEM function for GPU devices is providing a 910 command execution interface to clients. Client programs construct 911 command buffers containing references to previously allocated memory 912 objects, and then submit them to GEM. At that point, GEM takes care to 913 bind all the objects into the GTT, execute the buffer, and provide 914 necessary synchronization between clients accessing the same buffers. 915 This often involves evicting some objects from the GTT and re-binding 916 others (a fairly expensive operation), and providing relocation 917 support which hides fixed GTT offsets from clients. Clients must take 918 care not to submit command buffers that reference more objects than 919 can fit in the GTT; otherwise, GEM will reject them and no rendering 920 will occur. Similarly, if several objects in the buffer require fence 921 registers to be allocated for correct rendering (e.g. 2D blits on 922 pre-965 chips), care must be taken not to require more fence registers 923 than are available to the client. Such resource management should be 924 abstracted from the client in libdrm. 925 </para> 926 </sect3> 927 </sect2> 928 </sect1> 929 930 <!-- Internals: mode setting --> 931 932 <sect1 id="drm-mode-setting"> 933 <title>Mode Setting</title> 934 <para> 935 Drivers must initialize the mode setting core by calling 936 <function>drm_mode_config_init</function> on the DRM device. The function 937 initializes the <structname>drm_device</structname> 938 <structfield>mode_config</structfield> field and never fails. Once done, 939 mode configuration must be setup by initializing the following fields. 940 </para> 941 <itemizedlist> 942 <listitem> 943 <synopsis>int min_width, min_height; 944int max_width, max_height;</synopsis> 945 <para> 946 Minimum and maximum width and height of the frame buffers in pixel 947 units. 948 </para> 949 </listitem> 950 <listitem> 951 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis> 952 <para>Mode setting functions.</para> 953 </listitem> 954 </itemizedlist> 955 <sect2> 956 <title>Frame Buffer Creation</title> 957 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev, 958 struct drm_file *file_priv, 959 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis> 960 <para> 961 Frame buffers are abstract memory objects that provide a source of 962 pixels to scanout to a CRTC. Applications explicitly request the 963 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and 964 receive an opaque handle that can be passed to the KMS CRTC control, 965 plane configuration and page flip functions. 966 </para> 967 <para> 968 Frame buffers rely on the underneath memory manager for low-level memory 969 operations. When creating a frame buffer applications pass a memory 970 handle (or a list of memory handles for multi-planar formats) through 971 the <parameter>drm_mode_fb_cmd2</parameter> argument. This document 972 assumes that the driver uses GEM, those handles thus reference GEM 973 objects. 974 </para> 975 <para> 976 Drivers must first validate the requested frame buffer parameters passed 977 through the mode_cmd argument. In particular this is where invalid 978 sizes, pixel formats or pitches can be caught. 979 </para> 980 <para> 981 If the parameters are deemed valid, drivers then create, initialize and 982 return an instance of struct <structname>drm_framebuffer</structname>. 983 If desired the instance can be embedded in a larger driver-specific 984 structure. Drivers must fill its <structfield>width</structfield>, 985 <structfield>height</structfield>, <structfield>pitches</structfield>, 986 <structfield>offsets</structfield>, <structfield>depth</structfield>, 987 <structfield>bits_per_pixel</structfield> and 988 <structfield>pixel_format</structfield> fields from the values passed 989 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They 990 should call the <function>drm_helper_mode_fill_fb_struct</function> 991 helper function to do so. 992 </para> 993 994 <para> 995 The initailization of the new framebuffer instance is finalized with a 996 call to <function>drm_framebuffer_init</function> which takes a pointer 997 to DRM frame buffer operations (struct 998 <structname>drm_framebuffer_funcs</structname>). Note that this function 999 publishes the framebuffer and so from this point on it can be accessed 1000 concurrently from other threads. Hence it must be the last step in the 1001 driver's framebuffer initialization sequence. Frame buffer operations 1002 are 1003 <itemizedlist> 1004 <listitem> 1005 <synopsis>int (*create_handle)(struct drm_framebuffer *fb, 1006 struct drm_file *file_priv, unsigned int *handle);</synopsis> 1007 <para> 1008 Create a handle to the frame buffer underlying memory object. If 1009 the frame buffer uses a multi-plane format, the handle will 1010 reference the memory object associated with the first plane. 1011 </para> 1012 <para> 1013 Drivers call <function>drm_gem_handle_create</function> to create 1014 the handle. 1015 </para> 1016 </listitem> 1017 <listitem> 1018 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis> 1019 <para> 1020 Destroy the frame buffer object and frees all associated 1021 resources. Drivers must call 1022 <function>drm_framebuffer_cleanup</function> to free resources 1023 allocated by the DRM core for the frame buffer object, and must 1024 make sure to unreference all memory objects associated with the 1025 frame buffer. Handles created by the 1026 <methodname>create_handle</methodname> operation are released by 1027 the DRM core. 1028 </para> 1029 </listitem> 1030 <listitem> 1031 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer, 1032 struct drm_file *file_priv, unsigned flags, unsigned color, 1033 struct drm_clip_rect *clips, unsigned num_clips);</synopsis> 1034 <para> 1035 This optional operation notifies the driver that a region of the 1036 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB 1037 ioctl call. 1038 </para> 1039 </listitem> 1040 </itemizedlist> 1041 </para> 1042 <para> 1043 The lifetime of a drm framebuffer is controlled with a reference count, 1044 drivers can grab additional references with 1045 <function>drm_framebuffer_reference</function> </para> and drop them 1046 again with <function>drm_framebuffer_unreference</function>. For 1047 driver-private framebuffers for which the last reference is never 1048 dropped (e.g. for the fbdev framebuffer when the struct 1049 <structname>drm_framebuffer</structname> is embedded into the fbdev 1050 helper struct) drivers can manually clean up a framebuffer at module 1051 unload time with 1052 <function>drm_framebuffer_unregister_private</function>. 1053 </sect2> 1054 <sect2> 1055 <title>Output Polling</title> 1056 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis> 1057 <para> 1058 This operation notifies the driver that the status of one or more 1059 connectors has changed. Drivers that use the fb helper can just call the 1060 <function>drm_fb_helper_hotplug_event</function> function to handle this 1061 operation. 1062 </para> 1063 </sect2> 1064 <sect2> 1065 <title>Locking</title> 1066 <para> 1067 Beside some lookup structures with their own locking (which is hidden 1068 behind the interface functions) most of the modeset state is protected 1069 by the <code>dev-&lt;mode_config.lock</code> mutex and additionally 1070 per-crtc locks to allow cursor updates, pageflips and similar operations 1071 to occur concurrently with background tasks like output detection. 1072 Operations which cross domains like a full modeset always grab all 1073 locks. Drivers there need to protect resources shared between crtcs with 1074 additional locking. They also need to be careful to always grab the 1075 relevant crtc locks if a modset functions touches crtc state, e.g. for 1076 load detection (which does only grab the <code>mode_config.lock</code> 1077 to allow concurrent screen updates on live crtcs). 1078 </para> 1079 </sect2> 1080 </sect1> 1081 1082 <!-- Internals: kms initialization and cleanup --> 1083 1084 <sect1 id="drm-kms-init"> 1085 <title>KMS Initialization and Cleanup</title> 1086 <para> 1087 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders 1088 and connectors. KMS drivers must thus create and initialize all those 1089 objects at load time after initializing mode setting. 1090 </para> 1091 <sect2> 1092 <title>CRTCs (struct <structname>drm_crtc</structname>)</title> 1093 <para> 1094 A CRTC is an abstraction representing a part of the chip that contains a 1095 pointer to a scanout buffer. Therefore, the number of CRTCs available 1096 determines how many independent scanout buffers can be active at any 1097 given time. The CRTC structure contains several fields to support this: 1098 a pointer to some video memory (abstracted as a frame buffer object), a 1099 display mode, and an (x, y) offset into the video memory to support 1100 panning or configurations where one piece of video memory spans multiple 1101 CRTCs. 1102 </para> 1103 <sect3> 1104 <title>CRTC Initialization</title> 1105 <para> 1106 A KMS device must create and register at least one struct 1107 <structname>drm_crtc</structname> instance. The instance is allocated 1108 and zeroed by the driver, possibly as part of a larger structure, and 1109 registered with a call to <function>drm_crtc_init</function> with a 1110 pointer to CRTC functions. 1111 </para> 1112 </sect3> 1113 <sect3> 1114 <title>CRTC Operations</title> 1115 <sect4> 1116 <title>Set Configuration</title> 1117 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis> 1118 <para> 1119 Apply a new CRTC configuration to the device. The configuration 1120 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in 1121 the frame buffer, a display mode and an array of connectors to drive 1122 with the CRTC if possible. 1123 </para> 1124 <para> 1125 If the frame buffer specified in the configuration is NULL, the driver 1126 must detach all encoders connected to the CRTC and all connectors 1127 attached to those encoders and disable them. 1128 </para> 1129 <para> 1130 This operation is called with the mode config lock held. 1131 </para> 1132 <note><para> 1133 FIXME: How should set_config interact with DPMS? If the CRTC is 1134 suspended, should it be resumed? 1135 </para></note> 1136 </sect4> 1137 <sect4> 1138 <title>Page Flipping</title> 1139 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb, 1140 struct drm_pending_vblank_event *event);</synopsis> 1141 <para> 1142 Schedule a page flip to the given frame buffer for the CRTC. This 1143 operation is called with the mode config mutex held. 1144 </para> 1145 <para> 1146 Page flipping is a synchronization mechanism that replaces the frame 1147 buffer being scanned out by the CRTC with a new frame buffer during 1148 vertical blanking, avoiding tearing. When an application requests a page 1149 flip the DRM core verifies that the new frame buffer is large enough to 1150 be scanned out by the CRTC in the currently configured mode and then 1151 calls the CRTC <methodname>page_flip</methodname> operation with a 1152 pointer to the new frame buffer. 1153 </para> 1154 <para> 1155 The <methodname>page_flip</methodname> operation schedules a page flip. 1156 Once any pending rendering targeting the new frame buffer has 1157 completed, the CRTC will be reprogrammed to display that frame buffer 1158 after the next vertical refresh. The operation must return immediately 1159 without waiting for rendering or page flip to complete and must block 1160 any new rendering to the frame buffer until the page flip completes. 1161 </para> 1162 <para> 1163 If a page flip can be successfully scheduled the driver must set the 1164 <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to 1165 by <code>fb</code>. This is important so that the reference counting 1166 on framebuffers stays balanced. 1167 </para> 1168 <para> 1169 If a page flip is already pending, the 1170 <methodname>page_flip</methodname> operation must return 1171 -<errorname>EBUSY</errorname>. 1172 </para> 1173 <para> 1174 To synchronize page flip to vertical blanking the driver will likely 1175 need to enable vertical blanking interrupts. It should call 1176 <function>drm_vblank_get</function> for that purpose, and call 1177 <function>drm_vblank_put</function> after the page flip completes. 1178 </para> 1179 <para> 1180 If the application has requested to be notified when page flip completes 1181 the <methodname>page_flip</methodname> operation will be called with a 1182 non-NULL <parameter>event</parameter> argument pointing to a 1183 <structname>drm_pending_vblank_event</structname> instance. Upon page 1184 flip completion the driver must call <methodname>drm_send_vblank_event</methodname> 1185 to fill in the event and send to wake up any waiting processes. 1186 This can be performed with 1187 <programlisting><![CDATA[ 1188 spin_lock_irqsave(&dev->event_lock, flags); 1189 ... 1190 drm_send_vblank_event(dev, pipe, event); 1191 spin_unlock_irqrestore(&dev->event_lock, flags); 1192 ]]></programlisting> 1193 </para> 1194 <note><para> 1195 FIXME: Could drivers that don't need to wait for rendering to complete 1196 just add the event to <literal>dev-&gt;vblank_event_list</literal> and 1197 let the DRM core handle everything, as for "normal" vertical blanking 1198 events? 1199 </para></note> 1200 <para> 1201 While waiting for the page flip to complete, the 1202 <literal>event-&gt;base.link</literal> list head can be used freely by 1203 the driver to store the pending event in a driver-specific list. 1204 </para> 1205 <para> 1206 If the file handle is closed before the event is signaled, drivers must 1207 take care to destroy the event in their 1208 <methodname>preclose</methodname> operation (and, if needed, call 1209 <function>drm_vblank_put</function>). 1210 </para> 1211 </sect4> 1212 <sect4> 1213 <title>Miscellaneous</title> 1214 <itemizedlist> 1215 <listitem> 1216 <synopsis>void (*set_property)(struct drm_crtc *crtc, 1217 struct drm_property *property, uint64_t value);</synopsis> 1218 <para> 1219 Set the value of the given CRTC property to 1220 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1221 for more information about properties. 1222 </para> 1223 </listitem> 1224 <listitem> 1225 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 1226 uint32_t start, uint32_t size);</synopsis> 1227 <para> 1228 Apply a gamma table to the device. The operation is optional. 1229 </para> 1230 </listitem> 1231 <listitem> 1232 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis> 1233 <para> 1234 Destroy the CRTC when not needed anymore. See 1235 <xref linkend="drm-kms-init"/>. 1236 </para> 1237 </listitem> 1238 </itemizedlist> 1239 </sect4> 1240 </sect3> 1241 </sect2> 1242 <sect2> 1243 <title>Planes (struct <structname>drm_plane</structname>)</title> 1244 <para> 1245 A plane represents an image source that can be blended with or overlayed 1246 on top of a CRTC during the scanout process. Planes are associated with 1247 a frame buffer to crop a portion of the image memory (source) and 1248 optionally scale it to a destination size. The result is then blended 1249 with or overlayed on top of a CRTC. 1250 </para> 1251 <sect3> 1252 <title>Plane Initialization</title> 1253 <para> 1254 Planes are optional. To create a plane, a KMS drivers allocates and 1255 zeroes an instances of struct <structname>drm_plane</structname> 1256 (possibly as part of a larger structure) and registers it with a call 1257 to <function>drm_plane_init</function>. The function takes a bitmask 1258 of the CRTCs that can be associated with the plane, a pointer to the 1259 plane functions and a list of format supported formats. 1260 </para> 1261 </sect3> 1262 <sect3> 1263 <title>Plane Operations</title> 1264 <itemizedlist> 1265 <listitem> 1266 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc, 1267 struct drm_framebuffer *fb, int crtc_x, int crtc_y, 1268 unsigned int crtc_w, unsigned int crtc_h, 1269 uint32_t src_x, uint32_t src_y, 1270 uint32_t src_w, uint32_t src_h);</synopsis> 1271 <para> 1272 Enable and configure the plane to use the given CRTC and frame buffer. 1273 </para> 1274 <para> 1275 The source rectangle in frame buffer memory coordinates is given by 1276 the <parameter>src_x</parameter>, <parameter>src_y</parameter>, 1277 <parameter>src_w</parameter> and <parameter>src_h</parameter> 1278 parameters (as 16.16 fixed point values). Devices that don't support 1279 subpixel plane coordinates can ignore the fractional part. 1280 </para> 1281 <para> 1282 The destination rectangle in CRTC coordinates is given by the 1283 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>, 1284 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter> 1285 parameters (as integer values). Devices scale the source rectangle to 1286 the destination rectangle. If scaling is not supported, and the source 1287 rectangle size doesn't match the destination rectangle size, the 1288 driver must return a -<errorname>EINVAL</errorname> error. 1289 </para> 1290 </listitem> 1291 <listitem> 1292 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis> 1293 <para> 1294 Disable the plane. The DRM core calls this method in response to a 1295 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0. 1296 Disabled planes must not be processed by the CRTC. 1297 </para> 1298 </listitem> 1299 <listitem> 1300 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis> 1301 <para> 1302 Destroy the plane when not needed anymore. See 1303 <xref linkend="drm-kms-init"/>. 1304 </para> 1305 </listitem> 1306 </itemizedlist> 1307 </sect3> 1308 </sect2> 1309 <sect2> 1310 <title>Encoders (struct <structname>drm_encoder</structname>)</title> 1311 <para> 1312 An encoder takes pixel data from a CRTC and converts it to a format 1313 suitable for any attached connectors. On some devices, it may be 1314 possible to have a CRTC send data to more than one encoder. In that 1315 case, both encoders would receive data from the same scanout buffer, 1316 resulting in a "cloned" display configuration across the connectors 1317 attached to each encoder. 1318 </para> 1319 <sect3> 1320 <title>Encoder Initialization</title> 1321 <para> 1322 As for CRTCs, a KMS driver must create, initialize and register at 1323 least one struct <structname>drm_encoder</structname> instance. The 1324 instance is allocated and zeroed by the driver, possibly as part of a 1325 larger structure. 1326 </para> 1327 <para> 1328 Drivers must initialize the struct <structname>drm_encoder</structname> 1329 <structfield>possible_crtcs</structfield> and 1330 <structfield>possible_clones</structfield> fields before registering the 1331 encoder. Both fields are bitmasks of respectively the CRTCs that the 1332 encoder can be connected to, and sibling encoders candidate for cloning. 1333 </para> 1334 <para> 1335 After being initialized, the encoder must be registered with a call to 1336 <function>drm_encoder_init</function>. The function takes a pointer to 1337 the encoder functions and an encoder type. Supported types are 1338 <itemizedlist> 1339 <listitem> 1340 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A 1341 </listitem> 1342 <listitem> 1343 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort 1344 </listitem> 1345 <listitem> 1346 DRM_MODE_ENCODER_LVDS for display panels 1347 </listitem> 1348 <listitem> 1349 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component, 1350 SCART) 1351 </listitem> 1352 <listitem> 1353 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays 1354 </listitem> 1355 </itemizedlist> 1356 </para> 1357 <para> 1358 Encoders must be attached to a CRTC to be used. DRM drivers leave 1359 encoders unattached at initialization time. Applications (or the fbdev 1360 compatibility layer when implemented) are responsible for attaching the 1361 encoders they want to use to a CRTC. 1362 </para> 1363 </sect3> 1364 <sect3> 1365 <title>Encoder Operations</title> 1366 <itemizedlist> 1367 <listitem> 1368 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis> 1369 <para> 1370 Called to destroy the encoder when not needed anymore. See 1371 <xref linkend="drm-kms-init"/>. 1372 </para> 1373 </listitem> 1374 <listitem> 1375 <synopsis>void (*set_property)(struct drm_plane *plane, 1376 struct drm_property *property, uint64_t value);</synopsis> 1377 <para> 1378 Set the value of the given plane property to 1379 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1380 for more information about properties. 1381 </para> 1382 </listitem> 1383 </itemizedlist> 1384 </sect3> 1385 </sect2> 1386 <sect2> 1387 <title>Connectors (struct <structname>drm_connector</structname>)</title> 1388 <para> 1389 A connector is the final destination for pixel data on a device, and 1390 usually connects directly to an external display device like a monitor 1391 or laptop panel. A connector can only be attached to one encoder at a 1392 time. The connector is also the structure where information about the 1393 attached display is kept, so it contains fields for display data, EDID 1394 data, DPMS &amp; connection status, and information about modes 1395 supported on the attached displays. 1396 </para> 1397 <sect3> 1398 <title>Connector Initialization</title> 1399 <para> 1400 Finally a KMS driver must create, initialize, register and attach at 1401 least one struct <structname>drm_connector</structname> instance. The 1402 instance is created as other KMS objects and initialized by setting the 1403 following fields. 1404 </para> 1405 <variablelist> 1406 <varlistentry> 1407 <term><structfield>interlace_allowed</structfield></term> 1408 <listitem><para> 1409 Whether the connector can handle interlaced modes. 1410 </para></listitem> 1411 </varlistentry> 1412 <varlistentry> 1413 <term><structfield>doublescan_allowed</structfield></term> 1414 <listitem><para> 1415 Whether the connector can handle doublescan. 1416 </para></listitem> 1417 </varlistentry> 1418 <varlistentry> 1419 <term><structfield>display_info 1420 </structfield></term> 1421 <listitem><para> 1422 Display information is filled from EDID information when a display 1423 is detected. For non hot-pluggable displays such as flat panels in 1424 embedded systems, the driver should initialize the 1425 <structfield>display_info</structfield>.<structfield>width_mm</structfield> 1426 and 1427 <structfield>display_info</structfield>.<structfield>height_mm</structfield> 1428 fields with the physical size of the display. 1429 </para></listitem> 1430 </varlistentry> 1431 <varlistentry> 1432 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term> 1433 <listitem><para> 1434 Connector polling mode, a combination of 1435 <variablelist> 1436 <varlistentry> 1437 <term>DRM_CONNECTOR_POLL_HPD</term> 1438 <listitem><para> 1439 The connector generates hotplug events and doesn't need to be 1440 periodically polled. The CONNECT and DISCONNECT flags must not 1441 be set together with the HPD flag. 1442 </para></listitem> 1443 </varlistentry> 1444 <varlistentry> 1445 <term>DRM_CONNECTOR_POLL_CONNECT</term> 1446 <listitem><para> 1447 Periodically poll the connector for connection. 1448 </para></listitem> 1449 </varlistentry> 1450 <varlistentry> 1451 <term>DRM_CONNECTOR_POLL_DISCONNECT</term> 1452 <listitem><para> 1453 Periodically poll the connector for disconnection. 1454 </para></listitem> 1455 </varlistentry> 1456 </variablelist> 1457 Set to 0 for connectors that don't support connection status 1458 discovery. 1459 </para></listitem> 1460 </varlistentry> 1461 </variablelist> 1462 <para> 1463 The connector is then registered with a call to 1464 <function>drm_connector_init</function> with a pointer to the connector 1465 functions and a connector type, and exposed through sysfs with a call to 1466 <function>drm_sysfs_connector_add</function>. 1467 </para> 1468 <para> 1469 Supported connector types are 1470 <itemizedlist> 1471 <listitem>DRM_MODE_CONNECTOR_VGA</listitem> 1472 <listitem>DRM_MODE_CONNECTOR_DVII</listitem> 1473 <listitem>DRM_MODE_CONNECTOR_DVID</listitem> 1474 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem> 1475 <listitem>DRM_MODE_CONNECTOR_Composite</listitem> 1476 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem> 1477 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem> 1478 <listitem>DRM_MODE_CONNECTOR_Component</listitem> 1479 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem> 1480 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem> 1481 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem> 1482 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem> 1483 <listitem>DRM_MODE_CONNECTOR_TV</listitem> 1484 <listitem>DRM_MODE_CONNECTOR_eDP</listitem> 1485 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem> 1486 </itemizedlist> 1487 </para> 1488 <para> 1489 Connectors must be attached to an encoder to be used. For devices that 1490 map connectors to encoders 1:1, the connector should be attached at 1491 initialization time with a call to 1492 <function>drm_mode_connector_attach_encoder</function>. The driver must 1493 also set the <structname>drm_connector</structname> 1494 <structfield>encoder</structfield> field to point to the attached 1495 encoder. 1496 </para> 1497 <para> 1498 Finally, drivers must initialize the connectors state change detection 1499 with a call to <function>drm_kms_helper_poll_init</function>. If at 1500 least one connector is pollable but can't generate hotplug interrupts 1501 (indicated by the DRM_CONNECTOR_POLL_CONNECT and 1502 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will 1503 automatically be queued to periodically poll for changes. Connectors 1504 that can generate hotplug interrupts must be marked with the 1505 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must 1506 call <function>drm_helper_hpd_irq_event</function>. The function will 1507 queue a delayed work to check the state of all connectors, but no 1508 periodic polling will be done. 1509 </para> 1510 </sect3> 1511 <sect3> 1512 <title>Connector Operations</title> 1513 <note><para> 1514 Unless otherwise state, all operations are mandatory. 1515 </para></note> 1516 <sect4> 1517 <title>DPMS</title> 1518 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis> 1519 <para> 1520 The DPMS operation sets the power state of a connector. The mode 1521 argument is one of 1522 <itemizedlist> 1523 <listitem><para>DRM_MODE_DPMS_ON</para></listitem> 1524 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem> 1525 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem> 1526 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem> 1527 </itemizedlist> 1528 </para> 1529 <para> 1530 In all but DPMS_ON mode the encoder to which the connector is attached 1531 should put the display in low-power mode by driving its signals 1532 appropriately. If more than one connector is attached to the encoder 1533 care should be taken not to change the power state of other displays as 1534 a side effect. Low-power mode should be propagated to the encoders and 1535 CRTCs when all related connectors are put in low-power mode. 1536 </para> 1537 </sect4> 1538 <sect4> 1539 <title>Modes</title> 1540 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, 1541 uint32_t max_height);</synopsis> 1542 <para> 1543 Fill the mode list with all supported modes for the connector. If the 1544 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1545 arguments are non-zero, the implementation must ignore all modes wider 1546 than <parameter>max_width</parameter> or higher than 1547 <parameter>max_height</parameter>. 1548 </para> 1549 <para> 1550 The connector must also fill in this operation its 1551 <structfield>display_info</structfield> 1552 <structfield>width_mm</structfield> and 1553 <structfield>height_mm</structfield> fields with the connected display 1554 physical size in millimeters. The fields should be set to 0 if the value 1555 isn't known or is not applicable (for instance for projector devices). 1556 </para> 1557 </sect4> 1558 <sect4> 1559 <title>Connection Status</title> 1560 <para> 1561 The connection status is updated through polling or hotplug events when 1562 supported (see <xref linkend="drm-kms-connector-polled"/>). The status 1563 value is reported to userspace through ioctls and must not be used 1564 inside the driver, as it only gets initialized by a call to 1565 <function>drm_mode_getconnector</function> from userspace. 1566 </para> 1567 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector, 1568 bool force);</synopsis> 1569 <para> 1570 Check to see if anything is attached to the connector. The 1571 <parameter>force</parameter> parameter is set to false whilst polling or 1572 to true when checking the connector due to user request. 1573 <parameter>force</parameter> can be used by the driver to avoid 1574 expensive, destructive operations during automated probing. 1575 </para> 1576 <para> 1577 Return connector_status_connected if something is connected to the 1578 connector, connector_status_disconnected if nothing is connected and 1579 connector_status_unknown if the connection state isn't known. 1580 </para> 1581 <para> 1582 Drivers should only return connector_status_connected if the connection 1583 status has really been probed as connected. Connectors that can't detect 1584 the connection status, or failed connection status probes, should return 1585 connector_status_unknown. 1586 </para> 1587 </sect4> 1588 <sect4> 1589 <title>Miscellaneous</title> 1590 <itemizedlist> 1591 <listitem> 1592 <synopsis>void (*set_property)(struct drm_connector *connector, 1593 struct drm_property *property, uint64_t value);</synopsis> 1594 <para> 1595 Set the value of the given connector property to 1596 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1597 for more information about properties. 1598 </para> 1599 </listitem> 1600 <listitem> 1601 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis> 1602 <para> 1603 Destroy the connector when not needed anymore. See 1604 <xref linkend="drm-kms-init"/>. 1605 </para> 1606 </listitem> 1607 </itemizedlist> 1608 </sect4> 1609 </sect3> 1610 </sect2> 1611 <sect2> 1612 <title>Cleanup</title> 1613 <para> 1614 The DRM core manages its objects' lifetime. When an object is not needed 1615 anymore the core calls its destroy function, which must clean up and 1616 free every resource allocated for the object. Every 1617 <function>drm_*_init</function> call must be matched with a 1618 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs 1619 (<function>drm_crtc_cleanup</function>), planes 1620 (<function>drm_plane_cleanup</function>), encoders 1621 (<function>drm_encoder_cleanup</function>) and connectors 1622 (<function>drm_connector_cleanup</function>). Furthermore, connectors 1623 that have been added to sysfs must be removed by a call to 1624 <function>drm_sysfs_connector_remove</function> before calling 1625 <function>drm_connector_cleanup</function>. 1626 </para> 1627 <para> 1628 Connectors state change detection must be cleanup up with a call to 1629 <function>drm_kms_helper_poll_fini</function>. 1630 </para> 1631 </sect2> 1632 <sect2> 1633 <title>Output discovery and initialization example</title> 1634 <programlisting><![CDATA[ 1635void intel_crt_init(struct drm_device *dev) 1636{ 1637 struct drm_connector *connector; 1638 struct intel_output *intel_output; 1639 1640 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL); 1641 if (!intel_output) 1642 return; 1643 1644 connector = &intel_output->base; 1645 drm_connector_init(dev, &intel_output->base, 1646 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1647 1648 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs, 1649 DRM_MODE_ENCODER_DAC); 1650 1651 drm_mode_connector_attach_encoder(&intel_output->base, 1652 &intel_output->enc); 1653 1654 /* Set up the DDC bus. */ 1655 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A"); 1656 if (!intel_output->ddc_bus) { 1657 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration " 1658 "failed.\n"); 1659 return; 1660 } 1661 1662 intel_output->type = INTEL_OUTPUT_ANALOG; 1663 connector->interlace_allowed = 0; 1664 connector->doublescan_allowed = 0; 1665 1666 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs); 1667 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs); 1668 1669 drm_sysfs_connector_add(connector); 1670}]]></programlisting> 1671 <para> 1672 In the example above (taken from the i915 driver), a CRTC, connector and 1673 encoder combination is created. A device-specific i2c bus is also 1674 created for fetching EDID data and performing monitor detection. Once 1675 the process is complete, the new connector is registered with sysfs to 1676 make its properties available to applications. 1677 </para> 1678 </sect2> 1679 <sect2> 1680 <title>KMS API Functions</title> 1681!Edrivers/gpu/drm/drm_crtc.c 1682 </sect2> 1683 </sect1> 1684 1685 <!-- Internals: kms helper functions --> 1686 1687 <sect1> 1688 <title>Mode Setting Helper Functions</title> 1689 <para> 1690 The CRTC, encoder and connector functions provided by the drivers 1691 implement the DRM API. They're called by the DRM core and ioctl handlers 1692 to handle device state changes and configuration request. As implementing 1693 those functions often requires logic not specific to drivers, mid-layer 1694 helper functions are available to avoid duplicating boilerplate code. 1695 </para> 1696 <para> 1697 The DRM core contains one mid-layer implementation. The mid-layer provides 1698 implementations of several CRTC, encoder and connector functions (called 1699 from the top of the mid-layer) that pre-process requests and call 1700 lower-level functions provided by the driver (at the bottom of the 1701 mid-layer). For instance, the 1702 <function>drm_crtc_helper_set_config</function> function can be used to 1703 fill the struct <structname>drm_crtc_funcs</structname> 1704 <structfield>set_config</structfield> field. When called, it will split 1705 the <methodname>set_config</methodname> operation in smaller, simpler 1706 operations and call the driver to handle them. 1707 </para> 1708 <para> 1709 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>, 1710 <function>drm_encoder_helper_add</function> and 1711 <function>drm_connector_helper_add</function> functions to install their 1712 mid-layer bottom operations handlers, and fill the 1713 <structname>drm_crtc_funcs</structname>, 1714 <structname>drm_encoder_funcs</structname> and 1715 <structname>drm_connector_funcs</structname> structures with pointers to 1716 the mid-layer top API functions. Installing the mid-layer bottom operation 1717 handlers is best done right after registering the corresponding KMS object. 1718 </para> 1719 <para> 1720 The mid-layer is not split between CRTC, encoder and connector operations. 1721 To use it, a driver must provide bottom functions for all of the three KMS 1722 entities. 1723 </para> 1724 <sect2> 1725 <title>Helper Functions</title> 1726 <itemizedlist> 1727 <listitem> 1728 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis> 1729 <para> 1730 The <function>drm_crtc_helper_set_config</function> helper function 1731 is a CRTC <methodname>set_config</methodname> implementation. It 1732 first tries to locate the best encoder for each connector by calling 1733 the connector <methodname>best_encoder</methodname> helper 1734 operation. 1735 </para> 1736 <para> 1737 After locating the appropriate encoders, the helper function will 1738 call the <methodname>mode_fixup</methodname> encoder and CRTC helper 1739 operations to adjust the requested mode, or reject it completely in 1740 which case an error will be returned to the application. If the new 1741 configuration after mode adjustment is identical to the current 1742 configuration the helper function will return without performing any 1743 other operation. 1744 </para> 1745 <para> 1746 If the adjusted mode is identical to the current mode but changes to 1747 the frame buffer need to be applied, the 1748 <function>drm_crtc_helper_set_config</function> function will call 1749 the CRTC <methodname>mode_set_base</methodname> helper operation. If 1750 the adjusted mode differs from the current mode, or if the 1751 <methodname>mode_set_base</methodname> helper operation is not 1752 provided, the helper function performs a full mode set sequence by 1753 calling the <methodname>prepare</methodname>, 1754 <methodname>mode_set</methodname> and 1755 <methodname>commit</methodname> CRTC and encoder helper operations, 1756 in that order. 1757 </para> 1758 </listitem> 1759 <listitem> 1760 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis> 1761 <para> 1762 The <function>drm_helper_connector_dpms</function> helper function 1763 is a connector <methodname>dpms</methodname> implementation that 1764 tracks power state of connectors. To use the function, drivers must 1765 provide <methodname>dpms</methodname> helper operations for CRTCs 1766 and encoders to apply the DPMS state to the device. 1767 </para> 1768 <para> 1769 The mid-layer doesn't track the power state of CRTCs and encoders. 1770 The <methodname>dpms</methodname> helper operations can thus be 1771 called with a mode identical to the currently active mode. 1772 </para> 1773 </listitem> 1774 <listitem> 1775 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector, 1776 uint32_t maxX, uint32_t maxY);</synopsis> 1777 <para> 1778 The <function>drm_helper_probe_single_connector_modes</function> helper 1779 function is a connector <methodname>fill_modes</methodname> 1780 implementation that updates the connection status for the connector 1781 and then retrieves a list of modes by calling the connector 1782 <methodname>get_modes</methodname> helper operation. 1783 </para> 1784 <para> 1785 The function filters out modes larger than 1786 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1787 if specified. It then calls the connector 1788 <methodname>mode_valid</methodname> helper operation for each mode in 1789 the probed list to check whether the mode is valid for the connector. 1790 </para> 1791 </listitem> 1792 </itemizedlist> 1793 </sect2> 1794 <sect2> 1795 <title>CRTC Helper Operations</title> 1796 <itemizedlist> 1797 <listitem id="drm-helper-crtc-mode-fixup"> 1798 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc, 1799 const struct drm_display_mode *mode, 1800 struct drm_display_mode *adjusted_mode);</synopsis> 1801 <para> 1802 Let CRTCs adjust the requested mode or reject it completely. This 1803 operation returns true if the mode is accepted (possibly after being 1804 adjusted) or false if it is rejected. 1805 </para> 1806 <para> 1807 The <methodname>mode_fixup</methodname> operation should reject the 1808 mode if it can't reasonably use it. The definition of "reasonable" 1809 is currently fuzzy in this context. One possible behaviour would be 1810 to set the adjusted mode to the panel timings when a fixed-mode 1811 panel is used with hardware capable of scaling. Another behaviour 1812 would be to accept any input mode and adjust it to the closest mode 1813 supported by the hardware (FIXME: This needs to be clarified). 1814 </para> 1815 </listitem> 1816 <listitem> 1817 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y, 1818 struct drm_framebuffer *old_fb)</synopsis> 1819 <para> 1820 Move the CRTC on the current frame buffer (stored in 1821 <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame 1822 buffer, x position or y position may have been modified. 1823 </para> 1824 <para> 1825 This helper operation is optional. If not provided, the 1826 <function>drm_crtc_helper_set_config</function> function will fall 1827 back to the <methodname>mode_set</methodname> helper operation. 1828 </para> 1829 <note><para> 1830 FIXME: Why are x and y passed as arguments, as they can be accessed 1831 through <literal>crtc-&gt;x</literal> and 1832 <literal>crtc-&gt;y</literal>? 1833 </para></note> 1834 </listitem> 1835 <listitem> 1836 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis> 1837 <para> 1838 Prepare the CRTC for mode setting. This operation is called after 1839 validating the requested mode. Drivers use it to perform 1840 device-specific operations required before setting the new mode. 1841 </para> 1842 </listitem> 1843 <listitem> 1844 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode, 1845 struct drm_display_mode *adjusted_mode, int x, int y, 1846 struct drm_framebuffer *old_fb);</synopsis> 1847 <para> 1848 Set a new mode, position and frame buffer. Depending on the device 1849 requirements, the mode can be stored internally by the driver and 1850 applied in the <methodname>commit</methodname> operation, or 1851 programmed to the hardware immediately. 1852 </para> 1853 <para> 1854 The <methodname>mode_set</methodname> operation returns 0 on success 1855 or a negative error code if an error occurs. 1856 </para> 1857 </listitem> 1858 <listitem> 1859 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis> 1860 <para> 1861 Commit a mode. This operation is called after setting the new mode. 1862 Upon return the device must use the new mode and be fully 1863 operational. 1864 </para> 1865 </listitem> 1866 </itemizedlist> 1867 </sect2> 1868 <sect2> 1869 <title>Encoder Helper Operations</title> 1870 <itemizedlist> 1871 <listitem> 1872 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder, 1873 const struct drm_display_mode *mode, 1874 struct drm_display_mode *adjusted_mode);</synopsis> 1875 <para> 1876 Let encoders adjust the requested mode or reject it completely. This 1877 operation returns true if the mode is accepted (possibly after being 1878 adjusted) or false if it is rejected. See the 1879 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper 1880 operation</link> for an explanation of the allowed adjustments. 1881 </para> 1882 </listitem> 1883 <listitem> 1884 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis> 1885 <para> 1886 Prepare the encoder for mode setting. This operation is called after 1887 validating the requested mode. Drivers use it to perform 1888 device-specific operations required before setting the new mode. 1889 </para> 1890 </listitem> 1891 <listitem> 1892 <synopsis>void (*mode_set)(struct drm_encoder *encoder, 1893 struct drm_display_mode *mode, 1894 struct drm_display_mode *adjusted_mode);</synopsis> 1895 <para> 1896 Set a new mode. Depending on the device requirements, the mode can 1897 be stored internally by the driver and applied in the 1898 <methodname>commit</methodname> operation, or programmed to the 1899 hardware immediately. 1900 </para> 1901 </listitem> 1902 <listitem> 1903 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis> 1904 <para> 1905 Commit a mode. This operation is called after setting the new mode. 1906 Upon return the device must use the new mode and be fully 1907 operational. 1908 </para> 1909 </listitem> 1910 </itemizedlist> 1911 </sect2> 1912 <sect2> 1913 <title>Connector Helper Operations</title> 1914 <itemizedlist> 1915 <listitem> 1916 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis> 1917 <para> 1918 Return a pointer to the best encoder for the connecter. Device that 1919 map connectors to encoders 1:1 simply return the pointer to the 1920 associated encoder. This operation is mandatory. 1921 </para> 1922 </listitem> 1923 <listitem> 1924 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis> 1925 <para> 1926 Fill the connector's <structfield>probed_modes</structfield> list 1927 by parsing EDID data with <function>drm_add_edid_modes</function> or 1928 calling <function>drm_mode_probed_add</function> directly for every 1929 supported mode and return the number of modes it has detected. This 1930 operation is mandatory. 1931 </para> 1932 <para> 1933 When adding modes manually the driver creates each mode with a call to 1934 <function>drm_mode_create</function> and must fill the following fields. 1935 <itemizedlist> 1936 <listitem> 1937 <synopsis>__u32 type;</synopsis> 1938 <para> 1939 Mode type bitmask, a combination of 1940 <variablelist> 1941 <varlistentry> 1942 <term>DRM_MODE_TYPE_BUILTIN</term> 1943 <listitem><para>not used?</para></listitem> 1944 </varlistentry> 1945 <varlistentry> 1946 <term>DRM_MODE_TYPE_CLOCK_C</term> 1947 <listitem><para>not used?</para></listitem> 1948 </varlistentry> 1949 <varlistentry> 1950 <term>DRM_MODE_TYPE_CRTC_C</term> 1951 <listitem><para>not used?</para></listitem> 1952 </varlistentry> 1953 <varlistentry> 1954 <term> 1955 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector 1956 </term> 1957 <listitem> 1958 <para>not used?</para> 1959 </listitem> 1960 </varlistentry> 1961 <varlistentry> 1962 <term>DRM_MODE_TYPE_DEFAULT</term> 1963 <listitem><para>not used?</para></listitem> 1964 </varlistentry> 1965 <varlistentry> 1966 <term>DRM_MODE_TYPE_USERDEF</term> 1967 <listitem><para>not used?</para></listitem> 1968 </varlistentry> 1969 <varlistentry> 1970 <term>DRM_MODE_TYPE_DRIVER</term> 1971 <listitem> 1972 <para> 1973 The mode has been created by the driver (as opposed to 1974 to user-created modes). 1975 </para> 1976 </listitem> 1977 </varlistentry> 1978 </variablelist> 1979 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they 1980 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred 1981 mode. 1982 </para> 1983 </listitem> 1984 <listitem> 1985 <synopsis>__u32 clock;</synopsis> 1986 <para>Pixel clock frequency in kHz unit</para> 1987 </listitem> 1988 <listitem> 1989 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal; 1990 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis> 1991 <para>Horizontal and vertical timing information</para> 1992 <screen><![CDATA[ 1993 Active Front Sync Back 1994 Region Porch Porch 1995 <-----------------------><----------------><-------------><--------------> 1996 1997 //////////////////////| 1998 ////////////////////// | 1999 ////////////////////// |.................. ................ 2000 _______________ 2001 2002 <----- [hv]display -----> 2003 <------------- [hv]sync_start ------------> 2004 <--------------------- [hv]sync_end ---------------------> 2005 <-------------------------------- [hv]total -----------------------------> 2006]]></screen> 2007 </listitem> 2008 <listitem> 2009 <synopsis>__u16 hskew; 2010 __u16 vscan;</synopsis> 2011 <para>Unknown</para> 2012 </listitem> 2013 <listitem> 2014 <synopsis>__u32 flags;</synopsis> 2015 <para> 2016 Mode flags, a combination of 2017 <variablelist> 2018 <varlistentry> 2019 <term>DRM_MODE_FLAG_PHSYNC</term> 2020 <listitem><para> 2021 Horizontal sync is active high 2022 </para></listitem> 2023 </varlistentry> 2024 <varlistentry> 2025 <term>DRM_MODE_FLAG_NHSYNC</term> 2026 <listitem><para> 2027 Horizontal sync is active low 2028 </para></listitem> 2029 </varlistentry> 2030 <varlistentry> 2031 <term>DRM_MODE_FLAG_PVSYNC</term> 2032 <listitem><para> 2033 Vertical sync is active high 2034 </para></listitem> 2035 </varlistentry> 2036 <varlistentry> 2037 <term>DRM_MODE_FLAG_NVSYNC</term> 2038 <listitem><para> 2039 Vertical sync is active low 2040 </para></listitem> 2041 </varlistentry> 2042 <varlistentry> 2043 <term>DRM_MODE_FLAG_INTERLACE</term> 2044 <listitem><para> 2045 Mode is interlaced 2046 </para></listitem> 2047 </varlistentry> 2048 <varlistentry> 2049 <term>DRM_MODE_FLAG_DBLSCAN</term> 2050 <listitem><para> 2051 Mode uses doublescan 2052 </para></listitem> 2053 </varlistentry> 2054 <varlistentry> 2055 <term>DRM_MODE_FLAG_CSYNC</term> 2056 <listitem><para> 2057 Mode uses composite sync 2058 </para></listitem> 2059 </varlistentry> 2060 <varlistentry> 2061 <term>DRM_MODE_FLAG_PCSYNC</term> 2062 <listitem><para> 2063 Composite sync is active high 2064 </para></listitem> 2065 </varlistentry> 2066 <varlistentry> 2067 <term>DRM_MODE_FLAG_NCSYNC</term> 2068 <listitem><para> 2069 Composite sync is active low 2070 </para></listitem> 2071 </varlistentry> 2072 <varlistentry> 2073 <term>DRM_MODE_FLAG_HSKEW</term> 2074 <listitem><para> 2075 hskew provided (not used?) 2076 </para></listitem> 2077 </varlistentry> 2078 <varlistentry> 2079 <term>DRM_MODE_FLAG_BCAST</term> 2080 <listitem><para> 2081 not used? 2082 </para></listitem> 2083 </varlistentry> 2084 <varlistentry> 2085 <term>DRM_MODE_FLAG_PIXMUX</term> 2086 <listitem><para> 2087 not used? 2088 </para></listitem> 2089 </varlistentry> 2090 <varlistentry> 2091 <term>DRM_MODE_FLAG_DBLCLK</term> 2092 <listitem><para> 2093 not used? 2094 </para></listitem> 2095 </varlistentry> 2096 <varlistentry> 2097 <term>DRM_MODE_FLAG_CLKDIV2</term> 2098 <listitem><para> 2099 ? 2100 </para></listitem> 2101 </varlistentry> 2102 </variablelist> 2103 </para> 2104 <para> 2105 Note that modes marked with the INTERLACE or DBLSCAN flags will be 2106 filtered out by 2107 <function>drm_helper_probe_single_connector_modes</function> if 2108 the connector's <structfield>interlace_allowed</structfield> or 2109 <structfield>doublescan_allowed</structfield> field is set to 0. 2110 </para> 2111 </listitem> 2112 <listitem> 2113 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis> 2114 <para> 2115 Mode name. The driver must call 2116 <function>drm_mode_set_name</function> to fill the mode name from 2117 <structfield>hdisplay</structfield>, 2118 <structfield>vdisplay</structfield> and interlace flag after 2119 filling the corresponding fields. 2120 </para> 2121 </listitem> 2122 </itemizedlist> 2123 </para> 2124 <para> 2125 The <structfield>vrefresh</structfield> value is computed by 2126 <function>drm_helper_probe_single_connector_modes</function>. 2127 </para> 2128 <para> 2129 When parsing EDID data, <function>drm_add_edid_modes</function> fill the 2130 connector <structfield>display_info</structfield> 2131 <structfield>width_mm</structfield> and 2132 <structfield>height_mm</structfield> fields. When creating modes 2133 manually the <methodname>get_modes</methodname> helper operation must 2134 set the <structfield>display_info</structfield> 2135 <structfield>width_mm</structfield> and 2136 <structfield>height_mm</structfield> fields if they haven't been set 2137 already (for instance at initilization time when a fixed-size panel is 2138 attached to the connector). The mode <structfield>width_mm</structfield> 2139 and <structfield>height_mm</structfield> fields are only used internally 2140 during EDID parsing and should not be set when creating modes manually. 2141 </para> 2142 </listitem> 2143 <listitem> 2144 <synopsis>int (*mode_valid)(struct drm_connector *connector, 2145 struct drm_display_mode *mode);</synopsis> 2146 <para> 2147 Verify whether a mode is valid for the connector. Return MODE_OK for 2148 supported modes and one of the enum drm_mode_status values (MODE_*) 2149 for unsupported modes. This operation is mandatory. 2150 </para> 2151 <para> 2152 As the mode rejection reason is currently not used beside for 2153 immediately removing the unsupported mode, an implementation can 2154 return MODE_BAD regardless of the exact reason why the mode is not 2155 valid. 2156 </para> 2157 <note><para> 2158 Note that the <methodname>mode_valid</methodname> helper operation is 2159 only called for modes detected by the device, and 2160 <emphasis>not</emphasis> for modes set by the user through the CRTC 2161 <methodname>set_config</methodname> operation. 2162 </para></note> 2163 </listitem> 2164 </itemizedlist> 2165 </sect2> 2166 <sect2> 2167 <title>Modeset Helper Functions Reference</title> 2168!Edrivers/gpu/drm/drm_crtc_helper.c 2169 </sect2> 2170 <sect2> 2171 <title>fbdev Helper Functions Reference</title> 2172!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers 2173!Edrivers/gpu/drm/drm_fb_helper.c 2174!Iinclude/drm/drm_fb_helper.h 2175 </sect2> 2176 <sect2> 2177 <title>Display Port Helper Functions Reference</title> 2178!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers 2179!Iinclude/drm/drm_dp_helper.h 2180!Edrivers/gpu/drm/drm_dp_helper.c 2181 </sect2> 2182 <sect2> 2183 <title>EDID Helper Functions Reference</title> 2184!Edrivers/gpu/drm/drm_edid.c 2185 </sect2> 2186 <sect2> 2187 <title>Rectangle Utilities Reference</title> 2188!Pinclude/drm/drm_rect.h rect utils 2189!Iinclude/drm/drm_rect.h 2190!Edrivers/gpu/drm/drm_rect.c 2191 </sect2> 2192 <sect2> 2193 <title>Flip-work Helper Reference</title> 2194!Pinclude/drm/drm_flip_work.h flip utils 2195!Iinclude/drm/drm_flip_work.h 2196!Edrivers/gpu/drm/drm_flip_work.c 2197 </sect2> 2198 <sect2> 2199 <title>VMA Offset Manager</title> 2200!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager 2201!Edrivers/gpu/drm/drm_vma_manager.c 2202!Iinclude/drm/drm_vma_manager.h 2203 </sect2> 2204 </sect1> 2205 2206 <!-- Internals: kms properties --> 2207 2208 <sect1 id="drm-kms-properties"> 2209 <title>KMS Properties</title> 2210 <para> 2211 Drivers may need to expose additional parameters to applications than 2212 those described in the previous sections. KMS supports attaching 2213 properties to CRTCs, connectors and planes and offers a userspace API to 2214 list, get and set the property values. 2215 </para> 2216 <para> 2217 Properties are identified by a name that uniquely defines the property 2218 purpose, and store an associated value. For all property types except blob 2219 properties the value is a 64-bit unsigned integer. 2220 </para> 2221 <para> 2222 KMS differentiates between properties and property instances. Drivers 2223 first create properties and then create and associate individual instances 2224 of those properties to objects. A property can be instantiated multiple 2225 times and associated with different objects. Values are stored in property 2226 instances, and all other property information are stored in the propery 2227 and shared between all instances of the property. 2228 </para> 2229 <para> 2230 Every property is created with a type that influences how the KMS core 2231 handles the property. Supported property types are 2232 <variablelist> 2233 <varlistentry> 2234 <term>DRM_MODE_PROP_RANGE</term> 2235 <listitem><para>Range properties report their minimum and maximum 2236 admissible values. The KMS core verifies that values set by 2237 application fit in that range.</para></listitem> 2238 </varlistentry> 2239 <varlistentry> 2240 <term>DRM_MODE_PROP_ENUM</term> 2241 <listitem><para>Enumerated properties take a numerical value that 2242 ranges from 0 to the number of enumerated values defined by the 2243 property minus one, and associate a free-formed string name to each 2244 value. Applications can retrieve the list of defined value-name pairs 2245 and use the numerical value to get and set property instance values. 2246 </para></listitem> 2247 </varlistentry> 2248 <varlistentry> 2249 <term>DRM_MODE_PROP_BITMASK</term> 2250 <listitem><para>Bitmask properties are enumeration properties that 2251 additionally restrict all enumerated values to the 0..63 range. 2252 Bitmask property instance values combine one or more of the 2253 enumerated bits defined by the property.</para></listitem> 2254 </varlistentry> 2255 <varlistentry> 2256 <term>DRM_MODE_PROP_BLOB</term> 2257 <listitem><para>Blob properties store a binary blob without any format 2258 restriction. The binary blobs are created as KMS standalone objects, 2259 and blob property instance values store the ID of their associated 2260 blob object.</para> 2261 <para>Blob properties are only used for the connector EDID property 2262 and cannot be created by drivers.</para></listitem> 2263 </varlistentry> 2264 </variablelist> 2265 </para> 2266 <para> 2267 To create a property drivers call one of the following functions depending 2268 on the property type. All property creation functions take property flags 2269 and name, as well as type-specific arguments. 2270 <itemizedlist> 2271 <listitem> 2272 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags, 2273 const char *name, 2274 uint64_t min, uint64_t max);</synopsis> 2275 <para>Create a range property with the given minimum and maximum 2276 values.</para> 2277 </listitem> 2278 <listitem> 2279 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags, 2280 const char *name, 2281 const struct drm_prop_enum_list *props, 2282 int num_values);</synopsis> 2283 <para>Create an enumerated property. The <parameter>props</parameter> 2284 argument points to an array of <parameter>num_values</parameter> 2285 value-name pairs.</para> 2286 </listitem> 2287 <listitem> 2288 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev, 2289 int flags, const char *name, 2290 const struct drm_prop_enum_list *props, 2291 int num_values);</synopsis> 2292 <para>Create a bitmask property. The <parameter>props</parameter> 2293 argument points to an array of <parameter>num_values</parameter> 2294 value-name pairs.</para> 2295 </listitem> 2296 </itemizedlist> 2297 </para> 2298 <para> 2299 Properties can additionally be created as immutable, in which case they 2300 will be read-only for applications but can be modified by the driver. To 2301 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE 2302 flag at property creation time. 2303 </para> 2304 <para> 2305 When no array of value-name pairs is readily available at property 2306 creation time for enumerated or range properties, drivers can create 2307 the property using the <function>drm_property_create</function> function 2308 and manually add enumeration value-name pairs by calling the 2309 <function>drm_property_add_enum</function> function. Care must be taken to 2310 properly specify the property type through the <parameter>flags</parameter> 2311 argument. 2312 </para> 2313 <para> 2314 After creating properties drivers can attach property instances to CRTC, 2315 connector and plane objects by calling the 2316 <function>drm_object_attach_property</function>. The function takes a 2317 pointer to the target object, a pointer to the previously created property 2318 and an initial instance value. 2319 </para> 2320 </sect1> 2321 2322 <!-- Internals: vertical blanking --> 2323 2324 <sect1 id="drm-vertical-blank"> 2325 <title>Vertical Blanking</title> 2326 <para> 2327 Vertical blanking plays a major role in graphics rendering. To achieve 2328 tear-free display, users must synchronize page flips and/or rendering to 2329 vertical blanking. The DRM API offers ioctls to perform page flips 2330 synchronized to vertical blanking and wait for vertical blanking. 2331 </para> 2332 <para> 2333 The DRM core handles most of the vertical blanking management logic, which 2334 involves filtering out spurious interrupts, keeping race-free blanking 2335 counters, coping with counter wrap-around and resets and keeping use 2336 counts. It relies on the driver to generate vertical blanking interrupts 2337 and optionally provide a hardware vertical blanking counter. Drivers must 2338 implement the following operations. 2339 </para> 2340 <itemizedlist> 2341 <listitem> 2342 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc); 2343void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis> 2344 <para> 2345 Enable or disable vertical blanking interrupts for the given CRTC. 2346 </para> 2347 </listitem> 2348 <listitem> 2349 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis> 2350 <para> 2351 Retrieve the value of the vertical blanking counter for the given 2352 CRTC. If the hardware maintains a vertical blanking counter its value 2353 should be returned. Otherwise drivers can use the 2354 <function>drm_vblank_count</function> helper function to handle this 2355 operation. 2356 </para> 2357 </listitem> 2358 </itemizedlist> 2359 <para> 2360 Drivers must initialize the vertical blanking handling core with a call to 2361 <function>drm_vblank_init</function> in their 2362 <methodname>load</methodname> operation. The function will set the struct 2363 <structname>drm_device</structname> 2364 <structfield>vblank_disable_allowed</structfield> field to 0. This will 2365 keep vertical blanking interrupts enabled permanently until the first mode 2366 set operation, where <structfield>vblank_disable_allowed</structfield> is 2367 set to 1. The reason behind this is not clear. Drivers can set the field 2368 to 1 after <function>calling drm_vblank_init</function> to make vertical 2369 blanking interrupts dynamically managed from the beginning. 2370 </para> 2371 <para> 2372 Vertical blanking interrupts can be enabled by the DRM core or by drivers 2373 themselves (for instance to handle page flipping operations). The DRM core 2374 maintains a vertical blanking use count to ensure that the interrupts are 2375 not disabled while a user still needs them. To increment the use count, 2376 drivers call <function>drm_vblank_get</function>. Upon return vertical 2377 blanking interrupts are guaranteed to be enabled. 2378 </para> 2379 <para> 2380 To decrement the use count drivers call 2381 <function>drm_vblank_put</function>. Only when the use count drops to zero 2382 will the DRM core disable the vertical blanking interrupts after a delay 2383 by scheduling a timer. The delay is accessible through the vblankoffdelay 2384 module parameter or the <varname>drm_vblank_offdelay</varname> global 2385 variable and expressed in milliseconds. Its default value is 5000 ms. 2386 </para> 2387 <para> 2388 When a vertical blanking interrupt occurs drivers only need to call the 2389 <function>drm_handle_vblank</function> function to account for the 2390 interrupt. 2391 </para> 2392 <para> 2393 Resources allocated by <function>drm_vblank_init</function> must be freed 2394 with a call to <function>drm_vblank_cleanup</function> in the driver 2395 <methodname>unload</methodname> operation handler. 2396 </para> 2397 </sect1> 2398 2399 <!-- Internals: open/close, file operations and ioctls --> 2400 2401 <sect1> 2402 <title>Open/Close, File Operations and IOCTLs</title> 2403 <sect2> 2404 <title>Open and Close</title> 2405 <synopsis>int (*firstopen) (struct drm_device *); 2406void (*lastclose) (struct drm_device *); 2407int (*open) (struct drm_device *, struct drm_file *); 2408void (*preclose) (struct drm_device *, struct drm_file *); 2409void (*postclose) (struct drm_device *, struct drm_file *);</synopsis> 2410 <abstract>Open and close handlers. None of those methods are mandatory. 2411 </abstract> 2412 <para> 2413 The <methodname>firstopen</methodname> method is called by the DRM core 2414 for legacy UMS (User Mode Setting) drivers only when an application 2415 opens a device that has no other opened file handle. UMS drivers can 2416 implement it to acquire device resources. KMS drivers can't use the 2417 method and must acquire resources in the <methodname>load</methodname> 2418 method instead. 2419 </para> 2420 <para> 2421 Similarly the <methodname>lastclose</methodname> method is called when 2422 the last application holding a file handle opened on the device closes 2423 it, for both UMS and KMS drivers. Additionally, the method is also 2424 called at module unload time or, for hot-pluggable devices, when the 2425 device is unplugged. The <methodname>firstopen</methodname> and 2426 <methodname>lastclose</methodname> calls can thus be unbalanced. 2427 </para> 2428 <para> 2429 The <methodname>open</methodname> method is called every time the device 2430 is opened by an application. Drivers can allocate per-file private data 2431 in this method and store them in the struct 2432 <structname>drm_file</structname> <structfield>driver_priv</structfield> 2433 field. Note that the <methodname>open</methodname> method is called 2434 before <methodname>firstopen</methodname>. 2435 </para> 2436 <para> 2437 The close operation is split into <methodname>preclose</methodname> and 2438 <methodname>postclose</methodname> methods. Drivers must stop and 2439 cleanup all per-file operations in the <methodname>preclose</methodname> 2440 method. For instance pending vertical blanking and page flip events must 2441 be cancelled. No per-file operation is allowed on the file handle after 2442 returning from the <methodname>preclose</methodname> method. 2443 </para> 2444 <para> 2445 Finally the <methodname>postclose</methodname> method is called as the 2446 last step of the close operation, right before calling the 2447 <methodname>lastclose</methodname> method if no other open file handle 2448 exists for the device. Drivers that have allocated per-file private data 2449 in the <methodname>open</methodname> method should free it here. 2450 </para> 2451 <para> 2452 The <methodname>lastclose</methodname> method should restore CRTC and 2453 plane properties to default value, so that a subsequent open of the 2454 device will not inherit state from the previous user. It can also be 2455 used to execute delayed power switching state changes, e.g. in 2456 conjunction with the vga-switcheroo infrastructure. Beyond that KMS 2457 drivers should not do any further cleanup. Only legacy UMS drivers might 2458 need to clean up device state so that the vga console or an independent 2459 fbdev driver could take over. 2460 </para> 2461 </sect2> 2462 <sect2> 2463 <title>File Operations</title> 2464 <synopsis>const struct file_operations *fops</synopsis> 2465 <abstract>File operations for the DRM device node.</abstract> 2466 <para> 2467 Drivers must define the file operations structure that forms the DRM 2468 userspace API entry point, even though most of those operations are 2469 implemented in the DRM core. The <methodname>open</methodname>, 2470 <methodname>release</methodname> and <methodname>ioctl</methodname> 2471 operations are handled by 2472 <programlisting> 2473 .owner = THIS_MODULE, 2474 .open = drm_open, 2475 .release = drm_release, 2476 .unlocked_ioctl = drm_ioctl, 2477 #ifdef CONFIG_COMPAT 2478 .compat_ioctl = drm_compat_ioctl, 2479 #endif 2480 </programlisting> 2481 </para> 2482 <para> 2483 Drivers that implement private ioctls that requires 32/64bit 2484 compatibility support must provide their own 2485 <methodname>compat_ioctl</methodname> handler that processes private 2486 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls. 2487 </para> 2488 <para> 2489 The <methodname>read</methodname> and <methodname>poll</methodname> 2490 operations provide support for reading DRM events and polling them. They 2491 are implemented by 2492 <programlisting> 2493 .poll = drm_poll, 2494 .read = drm_read, 2495 .llseek = no_llseek, 2496 </programlisting> 2497 </para> 2498 <para> 2499 The memory mapping implementation varies depending on how the driver 2500 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>, 2501 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See 2502 <xref linkend="drm-gem"/>. 2503 <programlisting> 2504 .mmap = drm_gem_mmap, 2505 </programlisting> 2506 </para> 2507 <para> 2508 No other file operation is supported by the DRM API. 2509 </para> 2510 </sect2> 2511 <sect2> 2512 <title>IOCTLs</title> 2513 <synopsis>struct drm_ioctl_desc *ioctls; 2514int num_ioctls;</synopsis> 2515 <abstract>Driver-specific ioctls descriptors table.</abstract> 2516 <para> 2517 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls 2518 descriptors table is indexed by the ioctl number offset from the base 2519 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the 2520 table entries. 2521 </para> 2522 <para> 2523 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting> 2524 <para> 2525 <parameter>ioctl</parameter> is the ioctl name. Drivers must define 2526 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number 2527 offset from DRM_COMMAND_BASE and the ioctl number respectively. The 2528 first macro is private to the device while the second must be exposed 2529 to userspace in a public header. 2530 </para> 2531 <para> 2532 <parameter>func</parameter> is a pointer to the ioctl handler function 2533 compatible with the <type>drm_ioctl_t</type> type. 2534 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data, 2535 struct drm_file *file_priv);</programlisting> 2536 </para> 2537 <para> 2538 <parameter>flags</parameter> is a bitmask combination of the following 2539 values. It restricts how the ioctl is allowed to be called. 2540 <itemizedlist> 2541 <listitem><para> 2542 DRM_AUTH - Only authenticated callers allowed 2543 </para></listitem> 2544 <listitem><para> 2545 DRM_MASTER - The ioctl can only be called on the master file 2546 handle 2547 </para></listitem> 2548 <listitem><para> 2549 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed 2550 </para></listitem> 2551 <listitem><para> 2552 DRM_CONTROL_ALLOW - The ioctl can only be called on a control 2553 device 2554 </para></listitem> 2555 <listitem><para> 2556 DRM_UNLOCKED - The ioctl handler will be called without locking 2557 the DRM global mutex 2558 </para></listitem> 2559 </itemizedlist> 2560 </para> 2561 </para> 2562 </sect2> 2563 </sect1> 2564 2565 <sect1> 2566 <title>Command submission &amp; fencing</title> 2567 <para> 2568 This should cover a few device-specific command submission 2569 implementations. 2570 </para> 2571 </sect1> 2572 2573 <!-- Internals: suspend/resume --> 2574 2575 <sect1> 2576 <title>Suspend/Resume</title> 2577 <para> 2578 The DRM core provides some suspend/resume code, but drivers wanting full 2579 suspend/resume support should provide save() and restore() functions. 2580 These are called at suspend, hibernate, or resume time, and should perform 2581 any state save or restore required by your device across suspend or 2582 hibernate states. 2583 </para> 2584 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state); 2585int (*resume) (struct drm_device *);</synopsis> 2586 <para> 2587 Those are legacy suspend and resume methods. New driver should use the 2588 power management interface provided by their bus type (usually through 2589 the struct <structname>device_driver</structname> dev_pm_ops) and set 2590 these methods to NULL. 2591 </para> 2592 </sect1> 2593 2594 <sect1> 2595 <title>DMA services</title> 2596 <para> 2597 This should cover how DMA mapping etc. is supported by the core. 2598 These functions are deprecated and should not be used. 2599 </para> 2600 </sect1> 2601 </chapter> 2602 2603<!-- TODO 2604 2605- Add a glossary 2606- Document the struct_mutex catch-all lock 2607- Document connector properties 2608 2609- Why is the load method optional? 2610- What are drivers supposed to set the initial display state to, and how? 2611 Connector's DPMS states are not initialized and are thus equal to 2612 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls 2613 drm_helper_disable_unused_functions(), which disables unused encoders and 2614 CRTCs, but doesn't touch the connectors' DPMS state, and 2615 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers 2616 that don't implement (or just don't use) fbcon compatibility need to call 2617 those functions themselves? 2618- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset() 2619 around mode setting. Should this be done in the DRM core? 2620- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset() 2621 call and never set back to 0. It seems to be safe to permanently set it to 1 2622 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as 2623 well. This should be investigated. 2624- crtc and connector .save and .restore operations are only used internally in 2625 drivers, should they be removed from the core? 2626- encoder mid-layer .save and .restore operations are only used internally in 2627 drivers, should they be removed from the core? 2628- encoder mid-layer .detect operation is only used internally in drivers, 2629 should it be removed from the core? 2630--> 2631 2632 <!-- External interfaces --> 2633 2634 <chapter id="drmExternals"> 2635 <title>Userland interfaces</title> 2636 <para> 2637 The DRM core exports several interfaces to applications, 2638 generally intended to be used through corresponding libdrm 2639 wrapper functions. In addition, drivers export device-specific 2640 interfaces for use by userspace drivers &amp; device-aware 2641 applications through ioctls and sysfs files. 2642 </para> 2643 <para> 2644 External interfaces include: memory mapping, context management, 2645 DMA operations, AGP management, vblank control, fence 2646 management, memory management, and output management. 2647 </para> 2648 <para> 2649 Cover generic ioctls and sysfs layout here. We only need high-level 2650 info, since man pages should cover the rest. 2651 </para> 2652 2653 <!-- External: render nodes --> 2654 2655 <sect1> 2656 <title>Render nodes</title> 2657 <para> 2658 DRM core provides multiple character-devices for user-space to use. 2659 Depending on which device is opened, user-space can perform a different 2660 set of operations (mainly ioctls). The primary node is always created 2661 and called <term>card&lt;num&gt;</term>. Additionally, a currently 2662 unused control node, called <term>controlD&lt;num&gt;</term> is also 2663 created. The primary node provides all legacy operations and 2664 historically was the only interface used by userspace. With KMS, the 2665 control node was introduced. However, the planned KMS control interface 2666 has never been written and so the control node stays unused to date. 2667 </para> 2668 <para> 2669 With the increased use of offscreen renderers and GPGPU applications, 2670 clients no longer require running compositors or graphics servers to 2671 make use of a GPU. But the DRM API required unprivileged clients to 2672 authenticate to a DRM-Master prior to getting GPU access. To avoid this 2673 step and to grant clients GPU access without authenticating, render 2674 nodes were introduced. Render nodes solely serve render clients, that 2675 is, no modesetting or privileged ioctls can be issued on render nodes. 2676 Only non-global rendering commands are allowed. If a driver supports 2677 render nodes, it must advertise it via the <term>DRIVER_RENDER</term> 2678 DRM driver capability. If not supported, the primary node must be used 2679 for render clients together with the legacy drmAuth authentication 2680 procedure. 2681 </para> 2682 <para> 2683 If a driver advertises render node support, DRM core will create a 2684 separate render node called <term>renderD&lt;num&gt;</term>. There will 2685 be one render node per device. No ioctls except PRIME-related ioctls 2686 will be allowed on this node. Especially <term>GEM_OPEN</term> will be 2687 explicitly prohibited. Render nodes are designed to avoid the 2688 buffer-leaks, which occur if clients guess the flink names or mmap 2689 offsets on the legacy interface. Additionally to this basic interface, 2690 drivers must mark their driver-dependent render-only ioctls as 2691 <term>DRM_RENDER_ALLOW</term> so render clients can use them. Driver 2692 authors must be careful not to allow any privileged ioctls on render 2693 nodes. 2694 </para> 2695 <para> 2696 With render nodes, user-space can now control access to the render node 2697 via basic file-system access-modes. A running graphics server which 2698 authenticates clients on the privileged primary/legacy node is no longer 2699 required. Instead, a client can open the render node and is immediately 2700 granted GPU access. Communication between clients (or servers) is done 2701 via PRIME. FLINK from render node to legacy node is not supported. New 2702 clients must not use the insecure FLINK interface. 2703 </para> 2704 <para> 2705 Besides dropping all modeset/global ioctls, render nodes also drop the 2706 DRM-Master concept. There is no reason to associate render clients with 2707 a DRM-Master as they are independent of any graphics server. Besides, 2708 they must work without any running master, anyway. 2709 Drivers must be able to run without a master object if they support 2710 render nodes. If, on the other hand, a driver requires shared state 2711 between clients which is visible to user-space and accessible beyond 2712 open-file boundaries, they cannot support render nodes. 2713 </para> 2714 </sect1> 2715 2716 <!-- External: vblank handling --> 2717 2718 <sect1> 2719 <title>VBlank event handling</title> 2720 <para> 2721 The DRM core exposes two vertical blank related ioctls: 2722 <variablelist> 2723 <varlistentry> 2724 <term>DRM_IOCTL_WAIT_VBLANK</term> 2725 <listitem> 2726 <para> 2727 This takes a struct drm_wait_vblank structure as its argument, 2728 and it is used to block or request a signal when a specified 2729 vblank event occurs. 2730 </para> 2731 </listitem> 2732 </varlistentry> 2733 <varlistentry> 2734 <term>DRM_IOCTL_MODESET_CTL</term> 2735 <listitem> 2736 <para> 2737 This should be called by application level drivers before and 2738 after mode setting, since on many devices the vertical blank 2739 counter is reset at that time. Internally, the DRM snapshots 2740 the last vblank count when the ioctl is called with the 2741 _DRM_PRE_MODESET command, so that the counter won't go backwards 2742 (which is dealt with when _DRM_POST_MODESET is used). 2743 </para> 2744 </listitem> 2745 </varlistentry> 2746 </variablelist> 2747<!--!Edrivers/char/drm/drm_irq.c--> 2748 </para> 2749 </sect1> 2750 2751 </chapter> 2752 2753 <!-- API reference --> 2754 2755 <appendix id="drmDriverApi"> 2756 <title>DRM Driver API</title> 2757 <para> 2758 Include auto-generated API reference here (need to reference it 2759 from paragraphs above too). 2760 </para> 2761 </appendix> 2762 2763</book>