at v3.14-rc2 25 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/mmdebug.h> 5#include <linux/preempt.h> 6#include <linux/smp.h> 7#include <linux/cpumask.h> 8#include <linux/pfn.h> 9#include <linux/init.h> 10 11#include <asm/percpu.h> 12 13/* enough to cover all DEFINE_PER_CPUs in modules */ 14#ifdef CONFIG_MODULES 15#define PERCPU_MODULE_RESERVE (8 << 10) 16#else 17#define PERCPU_MODULE_RESERVE 0 18#endif 19 20#ifndef PERCPU_ENOUGH_ROOM 21#define PERCPU_ENOUGH_ROOM \ 22 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 23 PERCPU_MODULE_RESERVE) 24#endif 25 26/* 27 * Must be an lvalue. Since @var must be a simple identifier, 28 * we force a syntax error here if it isn't. 29 */ 30#define get_cpu_var(var) (*({ \ 31 preempt_disable(); \ 32 &__get_cpu_var(var); })) 33 34/* 35 * The weird & is necessary because sparse considers (void)(var) to be 36 * a direct dereference of percpu variable (var). 37 */ 38#define put_cpu_var(var) do { \ 39 (void)&(var); \ 40 preempt_enable(); \ 41} while (0) 42 43#define get_cpu_ptr(var) ({ \ 44 preempt_disable(); \ 45 this_cpu_ptr(var); }) 46 47#define put_cpu_ptr(var) do { \ 48 (void)(var); \ 49 preempt_enable(); \ 50} while (0) 51 52/* minimum unit size, also is the maximum supported allocation size */ 53#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 54 55/* 56 * Percpu allocator can serve percpu allocations before slab is 57 * initialized which allows slab to depend on the percpu allocator. 58 * The following two parameters decide how much resource to 59 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 60 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 61 */ 62#define PERCPU_DYNAMIC_EARLY_SLOTS 128 63#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 64 65/* 66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 67 * back on the first chunk for dynamic percpu allocation if arch is 68 * manually allocating and mapping it for faster access (as a part of 69 * large page mapping for example). 70 * 71 * The following values give between one and two pages of free space 72 * after typical minimal boot (2-way SMP, single disk and NIC) with 73 * both defconfig and a distro config on x86_64 and 32. More 74 * intelligent way to determine this would be nice. 75 */ 76#if BITS_PER_LONG > 32 77#define PERCPU_DYNAMIC_RESERVE (20 << 10) 78#else 79#define PERCPU_DYNAMIC_RESERVE (12 << 10) 80#endif 81 82extern void *pcpu_base_addr; 83extern const unsigned long *pcpu_unit_offsets; 84 85struct pcpu_group_info { 86 int nr_units; /* aligned # of units */ 87 unsigned long base_offset; /* base address offset */ 88 unsigned int *cpu_map; /* unit->cpu map, empty 89 * entries contain NR_CPUS */ 90}; 91 92struct pcpu_alloc_info { 93 size_t static_size; 94 size_t reserved_size; 95 size_t dyn_size; 96 size_t unit_size; 97 size_t atom_size; 98 size_t alloc_size; 99 size_t __ai_size; /* internal, don't use */ 100 int nr_groups; /* 0 if grouping unnecessary */ 101 struct pcpu_group_info groups[]; 102}; 103 104enum pcpu_fc { 105 PCPU_FC_AUTO, 106 PCPU_FC_EMBED, 107 PCPU_FC_PAGE, 108 109 PCPU_FC_NR, 110}; 111extern const char * const pcpu_fc_names[PCPU_FC_NR]; 112 113extern enum pcpu_fc pcpu_chosen_fc; 114 115typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 116 size_t align); 117typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 118typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 119typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 120 121extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 122 int nr_units); 123extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 124 125extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 126 void *base_addr); 127 128#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 129extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 130 size_t atom_size, 131 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 132 pcpu_fc_alloc_fn_t alloc_fn, 133 pcpu_fc_free_fn_t free_fn); 134#endif 135 136#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 137extern int __init pcpu_page_first_chunk(size_t reserved_size, 138 pcpu_fc_alloc_fn_t alloc_fn, 139 pcpu_fc_free_fn_t free_fn, 140 pcpu_fc_populate_pte_fn_t populate_pte_fn); 141#endif 142 143/* 144 * Use this to get to a cpu's version of the per-cpu object 145 * dynamically allocated. Non-atomic access to the current CPU's 146 * version should probably be combined with get_cpu()/put_cpu(). 147 */ 148#ifdef CONFIG_SMP 149#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 150#else 151#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 152#endif 153 154extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 155extern bool is_kernel_percpu_address(unsigned long addr); 156 157#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 158extern void __init setup_per_cpu_areas(void); 159#endif 160extern void __init percpu_init_late(void); 161 162extern void __percpu *__alloc_percpu(size_t size, size_t align); 163extern void free_percpu(void __percpu *__pdata); 164extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 165 166#define alloc_percpu(type) \ 167 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 168 169/* 170 * Branching function to split up a function into a set of functions that 171 * are called for different scalar sizes of the objects handled. 172 */ 173 174extern void __bad_size_call_parameter(void); 175 176#define __pcpu_size_call_return(stem, variable) \ 177({ typeof(variable) pscr_ret__; \ 178 __verify_pcpu_ptr(&(variable)); \ 179 switch(sizeof(variable)) { \ 180 case 1: pscr_ret__ = stem##1(variable);break; \ 181 case 2: pscr_ret__ = stem##2(variable);break; \ 182 case 4: pscr_ret__ = stem##4(variable);break; \ 183 case 8: pscr_ret__ = stem##8(variable);break; \ 184 default: \ 185 __bad_size_call_parameter();break; \ 186 } \ 187 pscr_ret__; \ 188}) 189 190#define __pcpu_size_call_return2(stem, variable, ...) \ 191({ \ 192 typeof(variable) pscr2_ret__; \ 193 __verify_pcpu_ptr(&(variable)); \ 194 switch(sizeof(variable)) { \ 195 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 196 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 197 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 198 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 199 default: \ 200 __bad_size_call_parameter(); break; \ 201 } \ 202 pscr2_ret__; \ 203}) 204 205/* 206 * Special handling for cmpxchg_double. cmpxchg_double is passed two 207 * percpu variables. The first has to be aligned to a double word 208 * boundary and the second has to follow directly thereafter. 209 * We enforce this on all architectures even if they don't support 210 * a double cmpxchg instruction, since it's a cheap requirement, and it 211 * avoids breaking the requirement for architectures with the instruction. 212 */ 213#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 214({ \ 215 bool pdcrb_ret__; \ 216 __verify_pcpu_ptr(&pcp1); \ 217 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 218 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 219 VM_BUG_ON((unsigned long)(&pcp2) != \ 220 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 221 switch(sizeof(pcp1)) { \ 222 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 223 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 224 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 225 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 226 default: \ 227 __bad_size_call_parameter(); break; \ 228 } \ 229 pdcrb_ret__; \ 230}) 231 232#define __pcpu_size_call(stem, variable, ...) \ 233do { \ 234 __verify_pcpu_ptr(&(variable)); \ 235 switch(sizeof(variable)) { \ 236 case 1: stem##1(variable, __VA_ARGS__);break; \ 237 case 2: stem##2(variable, __VA_ARGS__);break; \ 238 case 4: stem##4(variable, __VA_ARGS__);break; \ 239 case 8: stem##8(variable, __VA_ARGS__);break; \ 240 default: \ 241 __bad_size_call_parameter();break; \ 242 } \ 243} while (0) 244 245/* 246 * Optimized manipulation for memory allocated through the per cpu 247 * allocator or for addresses of per cpu variables. 248 * 249 * These operation guarantee exclusivity of access for other operations 250 * on the *same* processor. The assumption is that per cpu data is only 251 * accessed by a single processor instance (the current one). 252 * 253 * The first group is used for accesses that must be done in a 254 * preemption safe way since we know that the context is not preempt 255 * safe. Interrupts may occur. If the interrupt modifies the variable 256 * too then RMW actions will not be reliable. 257 * 258 * The arch code can provide optimized functions in two ways: 259 * 260 * 1. Override the function completely. F.e. define this_cpu_add(). 261 * The arch must then ensure that the various scalar format passed 262 * are handled correctly. 263 * 264 * 2. Provide functions for certain scalar sizes. F.e. provide 265 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 266 * sized RMW actions. If arch code does not provide operations for 267 * a scalar size then the fallback in the generic code will be 268 * used. 269 */ 270 271#define _this_cpu_generic_read(pcp) \ 272({ typeof(pcp) ret__; \ 273 preempt_disable(); \ 274 ret__ = *this_cpu_ptr(&(pcp)); \ 275 preempt_enable(); \ 276 ret__; \ 277}) 278 279#ifndef this_cpu_read 280# ifndef this_cpu_read_1 281# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 282# endif 283# ifndef this_cpu_read_2 284# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 285# endif 286# ifndef this_cpu_read_4 287# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 288# endif 289# ifndef this_cpu_read_8 290# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 291# endif 292# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 293#endif 294 295#define _this_cpu_generic_to_op(pcp, val, op) \ 296do { \ 297 unsigned long flags; \ 298 raw_local_irq_save(flags); \ 299 *__this_cpu_ptr(&(pcp)) op val; \ 300 raw_local_irq_restore(flags); \ 301} while (0) 302 303#ifndef this_cpu_write 304# ifndef this_cpu_write_1 305# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 306# endif 307# ifndef this_cpu_write_2 308# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 309# endif 310# ifndef this_cpu_write_4 311# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 312# endif 313# ifndef this_cpu_write_8 314# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 315# endif 316# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 317#endif 318 319#ifndef this_cpu_add 320# ifndef this_cpu_add_1 321# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 322# endif 323# ifndef this_cpu_add_2 324# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 325# endif 326# ifndef this_cpu_add_4 327# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 328# endif 329# ifndef this_cpu_add_8 330# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 331# endif 332# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 333#endif 334 335#ifndef this_cpu_sub 336# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val)) 337#endif 338 339#ifndef this_cpu_inc 340# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 341#endif 342 343#ifndef this_cpu_dec 344# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 345#endif 346 347#ifndef this_cpu_and 348# ifndef this_cpu_and_1 349# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 350# endif 351# ifndef this_cpu_and_2 352# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 353# endif 354# ifndef this_cpu_and_4 355# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 356# endif 357# ifndef this_cpu_and_8 358# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 359# endif 360# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 361#endif 362 363#ifndef this_cpu_or 364# ifndef this_cpu_or_1 365# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 366# endif 367# ifndef this_cpu_or_2 368# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 369# endif 370# ifndef this_cpu_or_4 371# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 372# endif 373# ifndef this_cpu_or_8 374# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 375# endif 376# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 377#endif 378 379#define _this_cpu_generic_add_return(pcp, val) \ 380({ \ 381 typeof(pcp) ret__; \ 382 unsigned long flags; \ 383 raw_local_irq_save(flags); \ 384 __this_cpu_add(pcp, val); \ 385 ret__ = __this_cpu_read(pcp); \ 386 raw_local_irq_restore(flags); \ 387 ret__; \ 388}) 389 390#ifndef this_cpu_add_return 391# ifndef this_cpu_add_return_1 392# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 393# endif 394# ifndef this_cpu_add_return_2 395# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 396# endif 397# ifndef this_cpu_add_return_4 398# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 399# endif 400# ifndef this_cpu_add_return_8 401# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 402# endif 403# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 404#endif 405 406#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) 407#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 408#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 409 410#define _this_cpu_generic_xchg(pcp, nval) \ 411({ typeof(pcp) ret__; \ 412 unsigned long flags; \ 413 raw_local_irq_save(flags); \ 414 ret__ = __this_cpu_read(pcp); \ 415 __this_cpu_write(pcp, nval); \ 416 raw_local_irq_restore(flags); \ 417 ret__; \ 418}) 419 420#ifndef this_cpu_xchg 421# ifndef this_cpu_xchg_1 422# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 423# endif 424# ifndef this_cpu_xchg_2 425# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 426# endif 427# ifndef this_cpu_xchg_4 428# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 429# endif 430# ifndef this_cpu_xchg_8 431# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 432# endif 433# define this_cpu_xchg(pcp, nval) \ 434 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 435#endif 436 437#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 438({ \ 439 typeof(pcp) ret__; \ 440 unsigned long flags; \ 441 raw_local_irq_save(flags); \ 442 ret__ = __this_cpu_read(pcp); \ 443 if (ret__ == (oval)) \ 444 __this_cpu_write(pcp, nval); \ 445 raw_local_irq_restore(flags); \ 446 ret__; \ 447}) 448 449#ifndef this_cpu_cmpxchg 450# ifndef this_cpu_cmpxchg_1 451# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 452# endif 453# ifndef this_cpu_cmpxchg_2 454# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 455# endif 456# ifndef this_cpu_cmpxchg_4 457# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 458# endif 459# ifndef this_cpu_cmpxchg_8 460# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 461# endif 462# define this_cpu_cmpxchg(pcp, oval, nval) \ 463 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 464#endif 465 466/* 467 * cmpxchg_double replaces two adjacent scalars at once. The first 468 * two parameters are per cpu variables which have to be of the same 469 * size. A truth value is returned to indicate success or failure 470 * (since a double register result is difficult to handle). There is 471 * very limited hardware support for these operations, so only certain 472 * sizes may work. 473 */ 474#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 475({ \ 476 int ret__; \ 477 unsigned long flags; \ 478 raw_local_irq_save(flags); \ 479 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 480 oval1, oval2, nval1, nval2); \ 481 raw_local_irq_restore(flags); \ 482 ret__; \ 483}) 484 485#ifndef this_cpu_cmpxchg_double 486# ifndef this_cpu_cmpxchg_double_1 487# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 488 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 489# endif 490# ifndef this_cpu_cmpxchg_double_2 491# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 492 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 493# endif 494# ifndef this_cpu_cmpxchg_double_4 495# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 496 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 497# endif 498# ifndef this_cpu_cmpxchg_double_8 499# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 500 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 501# endif 502# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 503 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 504#endif 505 506/* 507 * Generic percpu operations for context that are safe from preemption/interrupts. 508 * Either we do not care about races or the caller has the 509 * responsibility of handling preemption/interrupt issues. Arch code can still 510 * override these instructions since the arch per cpu code may be more 511 * efficient and may actually get race freeness for free (that is the 512 * case for x86 for example). 513 * 514 * If there is no other protection through preempt disable and/or 515 * disabling interupts then one of these RMW operations can show unexpected 516 * behavior because the execution thread was rescheduled on another processor 517 * or an interrupt occurred and the same percpu variable was modified from 518 * the interrupt context. 519 */ 520#ifndef __this_cpu_read 521# ifndef __this_cpu_read_1 522# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 523# endif 524# ifndef __this_cpu_read_2 525# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 526# endif 527# ifndef __this_cpu_read_4 528# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 529# endif 530# ifndef __this_cpu_read_8 531# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 532# endif 533# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 534#endif 535 536#define __this_cpu_generic_to_op(pcp, val, op) \ 537do { \ 538 *__this_cpu_ptr(&(pcp)) op val; \ 539} while (0) 540 541#ifndef __this_cpu_write 542# ifndef __this_cpu_write_1 543# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 544# endif 545# ifndef __this_cpu_write_2 546# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 547# endif 548# ifndef __this_cpu_write_4 549# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 550# endif 551# ifndef __this_cpu_write_8 552# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 553# endif 554# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 555#endif 556 557#ifndef __this_cpu_add 558# ifndef __this_cpu_add_1 559# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 560# endif 561# ifndef __this_cpu_add_2 562# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 563# endif 564# ifndef __this_cpu_add_4 565# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 566# endif 567# ifndef __this_cpu_add_8 568# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 569# endif 570# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 571#endif 572 573#ifndef __this_cpu_sub 574# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val)) 575#endif 576 577#ifndef __this_cpu_inc 578# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 579#endif 580 581#ifndef __this_cpu_dec 582# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 583#endif 584 585#ifndef __this_cpu_and 586# ifndef __this_cpu_and_1 587# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 588# endif 589# ifndef __this_cpu_and_2 590# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 591# endif 592# ifndef __this_cpu_and_4 593# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 594# endif 595# ifndef __this_cpu_and_8 596# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 597# endif 598# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 599#endif 600 601#ifndef __this_cpu_or 602# ifndef __this_cpu_or_1 603# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 604# endif 605# ifndef __this_cpu_or_2 606# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 607# endif 608# ifndef __this_cpu_or_4 609# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 610# endif 611# ifndef __this_cpu_or_8 612# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 613# endif 614# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 615#endif 616 617#define __this_cpu_generic_add_return(pcp, val) \ 618({ \ 619 __this_cpu_add(pcp, val); \ 620 __this_cpu_read(pcp); \ 621}) 622 623#ifndef __this_cpu_add_return 624# ifndef __this_cpu_add_return_1 625# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 626# endif 627# ifndef __this_cpu_add_return_2 628# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 629# endif 630# ifndef __this_cpu_add_return_4 631# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 632# endif 633# ifndef __this_cpu_add_return_8 634# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 635# endif 636# define __this_cpu_add_return(pcp, val) \ 637 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val) 638#endif 639 640#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) 641#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) 642#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) 643 644#define __this_cpu_generic_xchg(pcp, nval) \ 645({ typeof(pcp) ret__; \ 646 ret__ = __this_cpu_read(pcp); \ 647 __this_cpu_write(pcp, nval); \ 648 ret__; \ 649}) 650 651#ifndef __this_cpu_xchg 652# ifndef __this_cpu_xchg_1 653# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 654# endif 655# ifndef __this_cpu_xchg_2 656# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 657# endif 658# ifndef __this_cpu_xchg_4 659# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 660# endif 661# ifndef __this_cpu_xchg_8 662# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 663# endif 664# define __this_cpu_xchg(pcp, nval) \ 665 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 666#endif 667 668#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 669({ \ 670 typeof(pcp) ret__; \ 671 ret__ = __this_cpu_read(pcp); \ 672 if (ret__ == (oval)) \ 673 __this_cpu_write(pcp, nval); \ 674 ret__; \ 675}) 676 677#ifndef __this_cpu_cmpxchg 678# ifndef __this_cpu_cmpxchg_1 679# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 680# endif 681# ifndef __this_cpu_cmpxchg_2 682# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 683# endif 684# ifndef __this_cpu_cmpxchg_4 685# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 686# endif 687# ifndef __this_cpu_cmpxchg_8 688# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 689# endif 690# define __this_cpu_cmpxchg(pcp, oval, nval) \ 691 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 692#endif 693 694#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 695({ \ 696 int __ret = 0; \ 697 if (__this_cpu_read(pcp1) == (oval1) && \ 698 __this_cpu_read(pcp2) == (oval2)) { \ 699 __this_cpu_write(pcp1, (nval1)); \ 700 __this_cpu_write(pcp2, (nval2)); \ 701 __ret = 1; \ 702 } \ 703 (__ret); \ 704}) 705 706#ifndef __this_cpu_cmpxchg_double 707# ifndef __this_cpu_cmpxchg_double_1 708# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 709 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 710# endif 711# ifndef __this_cpu_cmpxchg_double_2 712# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 713 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 714# endif 715# ifndef __this_cpu_cmpxchg_double_4 716# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 717 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 718# endif 719# ifndef __this_cpu_cmpxchg_double_8 720# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 721 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 722# endif 723# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 724 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 725#endif 726 727#endif /* __LINUX_PERCPU_H */