Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20#include <linux/ctype.h>
21#include <linux/cpu.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/spinlock.h>
25#include <linux/slab.h>
26#include <linux/proc_fs.h>
27
28#include "of_private.h"
29
30LIST_HEAD(aliases_lookup);
31
32struct device_node *of_allnodes;
33EXPORT_SYMBOL(of_allnodes);
34struct device_node *of_chosen;
35struct device_node *of_aliases;
36static struct device_node *of_stdout;
37
38DEFINE_MUTEX(of_aliases_mutex);
39
40/* use when traversing tree through the allnext, child, sibling,
41 * or parent members of struct device_node.
42 */
43DEFINE_RAW_SPINLOCK(devtree_lock);
44
45int of_n_addr_cells(struct device_node *np)
46{
47 const __be32 *ip;
48
49 do {
50 if (np->parent)
51 np = np->parent;
52 ip = of_get_property(np, "#address-cells", NULL);
53 if (ip)
54 return be32_to_cpup(ip);
55 } while (np->parent);
56 /* No #address-cells property for the root node */
57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58}
59EXPORT_SYMBOL(of_n_addr_cells);
60
61int of_n_size_cells(struct device_node *np)
62{
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#size-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #size-cells property for the root node */
73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74}
75EXPORT_SYMBOL(of_n_size_cells);
76
77#ifdef CONFIG_NUMA
78int __weak of_node_to_nid(struct device_node *np)
79{
80 return numa_node_id();
81}
82#endif
83
84#if defined(CONFIG_OF_DYNAMIC)
85/**
86 * of_node_get - Increment refcount of a node
87 * @node: Node to inc refcount, NULL is supported to
88 * simplify writing of callers
89 *
90 * Returns node.
91 */
92struct device_node *of_node_get(struct device_node *node)
93{
94 if (node)
95 kref_get(&node->kref);
96 return node;
97}
98EXPORT_SYMBOL(of_node_get);
99
100static inline struct device_node *kref_to_device_node(struct kref *kref)
101{
102 return container_of(kref, struct device_node, kref);
103}
104
105/**
106 * of_node_release - release a dynamically allocated node
107 * @kref: kref element of the node to be released
108 *
109 * In of_node_put() this function is passed to kref_put()
110 * as the destructor.
111 */
112static void of_node_release(struct kref *kref)
113{
114 struct device_node *node = kref_to_device_node(kref);
115 struct property *prop = node->properties;
116
117 /* We should never be releasing nodes that haven't been detached. */
118 if (!of_node_check_flag(node, OF_DETACHED)) {
119 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
120 dump_stack();
121 kref_init(&node->kref);
122 return;
123 }
124
125 if (!of_node_check_flag(node, OF_DYNAMIC))
126 return;
127
128 while (prop) {
129 struct property *next = prop->next;
130 kfree(prop->name);
131 kfree(prop->value);
132 kfree(prop);
133 prop = next;
134
135 if (!prop) {
136 prop = node->deadprops;
137 node->deadprops = NULL;
138 }
139 }
140 kfree(node->full_name);
141 kfree(node->data);
142 kfree(node);
143}
144
145/**
146 * of_node_put - Decrement refcount of a node
147 * @node: Node to dec refcount, NULL is supported to
148 * simplify writing of callers
149 *
150 */
151void of_node_put(struct device_node *node)
152{
153 if (node)
154 kref_put(&node->kref, of_node_release);
155}
156EXPORT_SYMBOL(of_node_put);
157#endif /* CONFIG_OF_DYNAMIC */
158
159static struct property *__of_find_property(const struct device_node *np,
160 const char *name, int *lenp)
161{
162 struct property *pp;
163
164 if (!np)
165 return NULL;
166
167 for (pp = np->properties; pp; pp = pp->next) {
168 if (of_prop_cmp(pp->name, name) == 0) {
169 if (lenp)
170 *lenp = pp->length;
171 break;
172 }
173 }
174
175 return pp;
176}
177
178struct property *of_find_property(const struct device_node *np,
179 const char *name,
180 int *lenp)
181{
182 struct property *pp;
183 unsigned long flags;
184
185 raw_spin_lock_irqsave(&devtree_lock, flags);
186 pp = __of_find_property(np, name, lenp);
187 raw_spin_unlock_irqrestore(&devtree_lock, flags);
188
189 return pp;
190}
191EXPORT_SYMBOL(of_find_property);
192
193/**
194 * of_find_all_nodes - Get next node in global list
195 * @prev: Previous node or NULL to start iteration
196 * of_node_put() will be called on it
197 *
198 * Returns a node pointer with refcount incremented, use
199 * of_node_put() on it when done.
200 */
201struct device_node *of_find_all_nodes(struct device_node *prev)
202{
203 struct device_node *np;
204 unsigned long flags;
205
206 raw_spin_lock_irqsave(&devtree_lock, flags);
207 np = prev ? prev->allnext : of_allnodes;
208 for (; np != NULL; np = np->allnext)
209 if (of_node_get(np))
210 break;
211 of_node_put(prev);
212 raw_spin_unlock_irqrestore(&devtree_lock, flags);
213 return np;
214}
215EXPORT_SYMBOL(of_find_all_nodes);
216
217/*
218 * Find a property with a given name for a given node
219 * and return the value.
220 */
221static const void *__of_get_property(const struct device_node *np,
222 const char *name, int *lenp)
223{
224 struct property *pp = __of_find_property(np, name, lenp);
225
226 return pp ? pp->value : NULL;
227}
228
229/*
230 * Find a property with a given name for a given node
231 * and return the value.
232 */
233const void *of_get_property(const struct device_node *np, const char *name,
234 int *lenp)
235{
236 struct property *pp = of_find_property(np, name, lenp);
237
238 return pp ? pp->value : NULL;
239}
240EXPORT_SYMBOL(of_get_property);
241
242/*
243 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
244 *
245 * @cpu: logical cpu index of a core/thread
246 * @phys_id: physical identifier of a core/thread
247 *
248 * CPU logical to physical index mapping is architecture specific.
249 * However this __weak function provides a default match of physical
250 * id to logical cpu index. phys_id provided here is usually values read
251 * from the device tree which must match the hardware internal registers.
252 *
253 * Returns true if the physical identifier and the logical cpu index
254 * correspond to the same core/thread, false otherwise.
255 */
256bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
257{
258 return (u32)phys_id == cpu;
259}
260
261/**
262 * Checks if the given "prop_name" property holds the physical id of the
263 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
264 * NULL, local thread number within the core is returned in it.
265 */
266static bool __of_find_n_match_cpu_property(struct device_node *cpun,
267 const char *prop_name, int cpu, unsigned int *thread)
268{
269 const __be32 *cell;
270 int ac, prop_len, tid;
271 u64 hwid;
272
273 ac = of_n_addr_cells(cpun);
274 cell = of_get_property(cpun, prop_name, &prop_len);
275 if (!cell || !ac)
276 return false;
277 prop_len /= sizeof(*cell) * ac;
278 for (tid = 0; tid < prop_len; tid++) {
279 hwid = of_read_number(cell, ac);
280 if (arch_match_cpu_phys_id(cpu, hwid)) {
281 if (thread)
282 *thread = tid;
283 return true;
284 }
285 cell += ac;
286 }
287 return false;
288}
289
290/*
291 * arch_find_n_match_cpu_physical_id - See if the given device node is
292 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
293 * else false. If 'thread' is non-NULL, the local thread number within the
294 * core is returned in it.
295 */
296bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
297 int cpu, unsigned int *thread)
298{
299 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
300 * for thread ids on PowerPC. If it doesn't exist fallback to
301 * standard "reg" property.
302 */
303 if (IS_ENABLED(CONFIG_PPC) &&
304 __of_find_n_match_cpu_property(cpun,
305 "ibm,ppc-interrupt-server#s",
306 cpu, thread))
307 return true;
308
309 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
310 return true;
311
312 return false;
313}
314
315/**
316 * of_get_cpu_node - Get device node associated with the given logical CPU
317 *
318 * @cpu: CPU number(logical index) for which device node is required
319 * @thread: if not NULL, local thread number within the physical core is
320 * returned
321 *
322 * The main purpose of this function is to retrieve the device node for the
323 * given logical CPU index. It should be used to initialize the of_node in
324 * cpu device. Once of_node in cpu device is populated, all the further
325 * references can use that instead.
326 *
327 * CPU logical to physical index mapping is architecture specific and is built
328 * before booting secondary cores. This function uses arch_match_cpu_phys_id
329 * which can be overridden by architecture specific implementation.
330 *
331 * Returns a node pointer for the logical cpu if found, else NULL.
332 */
333struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
334{
335 struct device_node *cpun;
336
337 for_each_node_by_type(cpun, "cpu") {
338 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
339 return cpun;
340 }
341 return NULL;
342}
343EXPORT_SYMBOL(of_get_cpu_node);
344
345/** Checks if the given "compat" string matches one of the strings in
346 * the device's "compatible" property
347 */
348static int __of_device_is_compatible(const struct device_node *device,
349 const char *compat)
350{
351 const char* cp;
352 int cplen, l;
353
354 cp = __of_get_property(device, "compatible", &cplen);
355 if (cp == NULL)
356 return 0;
357 while (cplen > 0) {
358 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
359 return 1;
360 l = strlen(cp) + 1;
361 cp += l;
362 cplen -= l;
363 }
364
365 return 0;
366}
367
368/** Checks if the given "compat" string matches one of the strings in
369 * the device's "compatible" property
370 */
371int of_device_is_compatible(const struct device_node *device,
372 const char *compat)
373{
374 unsigned long flags;
375 int res;
376
377 raw_spin_lock_irqsave(&devtree_lock, flags);
378 res = __of_device_is_compatible(device, compat);
379 raw_spin_unlock_irqrestore(&devtree_lock, flags);
380 return res;
381}
382EXPORT_SYMBOL(of_device_is_compatible);
383
384/**
385 * of_machine_is_compatible - Test root of device tree for a given compatible value
386 * @compat: compatible string to look for in root node's compatible property.
387 *
388 * Returns true if the root node has the given value in its
389 * compatible property.
390 */
391int of_machine_is_compatible(const char *compat)
392{
393 struct device_node *root;
394 int rc = 0;
395
396 root = of_find_node_by_path("/");
397 if (root) {
398 rc = of_device_is_compatible(root, compat);
399 of_node_put(root);
400 }
401 return rc;
402}
403EXPORT_SYMBOL(of_machine_is_compatible);
404
405/**
406 * __of_device_is_available - check if a device is available for use
407 *
408 * @device: Node to check for availability, with locks already held
409 *
410 * Returns 1 if the status property is absent or set to "okay" or "ok",
411 * 0 otherwise
412 */
413static int __of_device_is_available(const struct device_node *device)
414{
415 const char *status;
416 int statlen;
417
418 if (!device)
419 return 0;
420
421 status = __of_get_property(device, "status", &statlen);
422 if (status == NULL)
423 return 1;
424
425 if (statlen > 0) {
426 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
427 return 1;
428 }
429
430 return 0;
431}
432
433/**
434 * of_device_is_available - check if a device is available for use
435 *
436 * @device: Node to check for availability
437 *
438 * Returns 1 if the status property is absent or set to "okay" or "ok",
439 * 0 otherwise
440 */
441int of_device_is_available(const struct device_node *device)
442{
443 unsigned long flags;
444 int res;
445
446 raw_spin_lock_irqsave(&devtree_lock, flags);
447 res = __of_device_is_available(device);
448 raw_spin_unlock_irqrestore(&devtree_lock, flags);
449 return res;
450
451}
452EXPORT_SYMBOL(of_device_is_available);
453
454/**
455 * of_get_parent - Get a node's parent if any
456 * @node: Node to get parent
457 *
458 * Returns a node pointer with refcount incremented, use
459 * of_node_put() on it when done.
460 */
461struct device_node *of_get_parent(const struct device_node *node)
462{
463 struct device_node *np;
464 unsigned long flags;
465
466 if (!node)
467 return NULL;
468
469 raw_spin_lock_irqsave(&devtree_lock, flags);
470 np = of_node_get(node->parent);
471 raw_spin_unlock_irqrestore(&devtree_lock, flags);
472 return np;
473}
474EXPORT_SYMBOL(of_get_parent);
475
476/**
477 * of_get_next_parent - Iterate to a node's parent
478 * @node: Node to get parent of
479 *
480 * This is like of_get_parent() except that it drops the
481 * refcount on the passed node, making it suitable for iterating
482 * through a node's parents.
483 *
484 * Returns a node pointer with refcount incremented, use
485 * of_node_put() on it when done.
486 */
487struct device_node *of_get_next_parent(struct device_node *node)
488{
489 struct device_node *parent;
490 unsigned long flags;
491
492 if (!node)
493 return NULL;
494
495 raw_spin_lock_irqsave(&devtree_lock, flags);
496 parent = of_node_get(node->parent);
497 of_node_put(node);
498 raw_spin_unlock_irqrestore(&devtree_lock, flags);
499 return parent;
500}
501EXPORT_SYMBOL(of_get_next_parent);
502
503/**
504 * of_get_next_child - Iterate a node childs
505 * @node: parent node
506 * @prev: previous child of the parent node, or NULL to get first
507 *
508 * Returns a node pointer with refcount incremented, use
509 * of_node_put() on it when done.
510 */
511struct device_node *of_get_next_child(const struct device_node *node,
512 struct device_node *prev)
513{
514 struct device_node *next;
515 unsigned long flags;
516
517 raw_spin_lock_irqsave(&devtree_lock, flags);
518 next = prev ? prev->sibling : node->child;
519 for (; next; next = next->sibling)
520 if (of_node_get(next))
521 break;
522 of_node_put(prev);
523 raw_spin_unlock_irqrestore(&devtree_lock, flags);
524 return next;
525}
526EXPORT_SYMBOL(of_get_next_child);
527
528/**
529 * of_get_next_available_child - Find the next available child node
530 * @node: parent node
531 * @prev: previous child of the parent node, or NULL to get first
532 *
533 * This function is like of_get_next_child(), except that it
534 * automatically skips any disabled nodes (i.e. status = "disabled").
535 */
536struct device_node *of_get_next_available_child(const struct device_node *node,
537 struct device_node *prev)
538{
539 struct device_node *next;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&devtree_lock, flags);
543 next = prev ? prev->sibling : node->child;
544 for (; next; next = next->sibling) {
545 if (!__of_device_is_available(next))
546 continue;
547 if (of_node_get(next))
548 break;
549 }
550 of_node_put(prev);
551 raw_spin_unlock_irqrestore(&devtree_lock, flags);
552 return next;
553}
554EXPORT_SYMBOL(of_get_next_available_child);
555
556/**
557 * of_get_child_by_name - Find the child node by name for a given parent
558 * @node: parent node
559 * @name: child name to look for.
560 *
561 * This function looks for child node for given matching name
562 *
563 * Returns a node pointer if found, with refcount incremented, use
564 * of_node_put() on it when done.
565 * Returns NULL if node is not found.
566 */
567struct device_node *of_get_child_by_name(const struct device_node *node,
568 const char *name)
569{
570 struct device_node *child;
571
572 for_each_child_of_node(node, child)
573 if (child->name && (of_node_cmp(child->name, name) == 0))
574 break;
575 return child;
576}
577EXPORT_SYMBOL(of_get_child_by_name);
578
579/**
580 * of_find_node_by_path - Find a node matching a full OF path
581 * @path: The full path to match
582 *
583 * Returns a node pointer with refcount incremented, use
584 * of_node_put() on it when done.
585 */
586struct device_node *of_find_node_by_path(const char *path)
587{
588 struct device_node *np = of_allnodes;
589 unsigned long flags;
590
591 raw_spin_lock_irqsave(&devtree_lock, flags);
592 for (; np; np = np->allnext) {
593 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
594 && of_node_get(np))
595 break;
596 }
597 raw_spin_unlock_irqrestore(&devtree_lock, flags);
598 return np;
599}
600EXPORT_SYMBOL(of_find_node_by_path);
601
602/**
603 * of_find_node_by_name - Find a node by its "name" property
604 * @from: The node to start searching from or NULL, the node
605 * you pass will not be searched, only the next one
606 * will; typically, you pass what the previous call
607 * returned. of_node_put() will be called on it
608 * @name: The name string to match against
609 *
610 * Returns a node pointer with refcount incremented, use
611 * of_node_put() on it when done.
612 */
613struct device_node *of_find_node_by_name(struct device_node *from,
614 const char *name)
615{
616 struct device_node *np;
617 unsigned long flags;
618
619 raw_spin_lock_irqsave(&devtree_lock, flags);
620 np = from ? from->allnext : of_allnodes;
621 for (; np; np = np->allnext)
622 if (np->name && (of_node_cmp(np->name, name) == 0)
623 && of_node_get(np))
624 break;
625 of_node_put(from);
626 raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 return np;
628}
629EXPORT_SYMBOL(of_find_node_by_name);
630
631/**
632 * of_find_node_by_type - Find a node by its "device_type" property
633 * @from: The node to start searching from, or NULL to start searching
634 * the entire device tree. The node you pass will not be
635 * searched, only the next one will; typically, you pass
636 * what the previous call returned. of_node_put() will be
637 * called on from for you.
638 * @type: The type string to match against
639 *
640 * Returns a node pointer with refcount incremented, use
641 * of_node_put() on it when done.
642 */
643struct device_node *of_find_node_by_type(struct device_node *from,
644 const char *type)
645{
646 struct device_node *np;
647 unsigned long flags;
648
649 raw_spin_lock_irqsave(&devtree_lock, flags);
650 np = from ? from->allnext : of_allnodes;
651 for (; np; np = np->allnext)
652 if (np->type && (of_node_cmp(np->type, type) == 0)
653 && of_node_get(np))
654 break;
655 of_node_put(from);
656 raw_spin_unlock_irqrestore(&devtree_lock, flags);
657 return np;
658}
659EXPORT_SYMBOL(of_find_node_by_type);
660
661/**
662 * of_find_compatible_node - Find a node based on type and one of the
663 * tokens in its "compatible" property
664 * @from: The node to start searching from or NULL, the node
665 * you pass will not be searched, only the next one
666 * will; typically, you pass what the previous call
667 * returned. of_node_put() will be called on it
668 * @type: The type string to match "device_type" or NULL to ignore
669 * @compatible: The string to match to one of the tokens in the device
670 * "compatible" list.
671 *
672 * Returns a node pointer with refcount incremented, use
673 * of_node_put() on it when done.
674 */
675struct device_node *of_find_compatible_node(struct device_node *from,
676 const char *type, const char *compatible)
677{
678 struct device_node *np;
679 unsigned long flags;
680
681 raw_spin_lock_irqsave(&devtree_lock, flags);
682 np = from ? from->allnext : of_allnodes;
683 for (; np; np = np->allnext) {
684 if (type
685 && !(np->type && (of_node_cmp(np->type, type) == 0)))
686 continue;
687 if (__of_device_is_compatible(np, compatible) &&
688 of_node_get(np))
689 break;
690 }
691 of_node_put(from);
692 raw_spin_unlock_irqrestore(&devtree_lock, flags);
693 return np;
694}
695EXPORT_SYMBOL(of_find_compatible_node);
696
697/**
698 * of_find_node_with_property - Find a node which has a property with
699 * the given name.
700 * @from: The node to start searching from or NULL, the node
701 * you pass will not be searched, only the next one
702 * will; typically, you pass what the previous call
703 * returned. of_node_put() will be called on it
704 * @prop_name: The name of the property to look for.
705 *
706 * Returns a node pointer with refcount incremented, use
707 * of_node_put() on it when done.
708 */
709struct device_node *of_find_node_with_property(struct device_node *from,
710 const char *prop_name)
711{
712 struct device_node *np;
713 struct property *pp;
714 unsigned long flags;
715
716 raw_spin_lock_irqsave(&devtree_lock, flags);
717 np = from ? from->allnext : of_allnodes;
718 for (; np; np = np->allnext) {
719 for (pp = np->properties; pp; pp = pp->next) {
720 if (of_prop_cmp(pp->name, prop_name) == 0) {
721 of_node_get(np);
722 goto out;
723 }
724 }
725 }
726out:
727 of_node_put(from);
728 raw_spin_unlock_irqrestore(&devtree_lock, flags);
729 return np;
730}
731EXPORT_SYMBOL(of_find_node_with_property);
732
733static
734const struct of_device_id *__of_match_node(const struct of_device_id *matches,
735 const struct device_node *node)
736{
737 const char *cp;
738 int cplen, l;
739
740 if (!matches)
741 return NULL;
742
743 cp = __of_get_property(node, "compatible", &cplen);
744 do {
745 const struct of_device_id *m = matches;
746
747 /* Check against matches with current compatible string */
748 while (m->name[0] || m->type[0] || m->compatible[0]) {
749 int match = 1;
750 if (m->name[0])
751 match &= node->name
752 && !strcmp(m->name, node->name);
753 if (m->type[0])
754 match &= node->type
755 && !strcmp(m->type, node->type);
756 if (m->compatible[0])
757 match &= cp
758 && !of_compat_cmp(m->compatible, cp,
759 strlen(m->compatible));
760 if (match)
761 return m;
762 m++;
763 }
764
765 /* Get node's next compatible string */
766 if (cp) {
767 l = strlen(cp) + 1;
768 cp += l;
769 cplen -= l;
770 }
771 } while (cp && (cplen > 0));
772
773 return NULL;
774}
775
776/**
777 * of_match_node - Tell if an device_node has a matching of_match structure
778 * @matches: array of of device match structures to search in
779 * @node: the of device structure to match against
780 *
781 * Low level utility function used by device matching. Matching order
782 * is to compare each of the node's compatibles with all given matches
783 * first. This implies node's compatible is sorted from specific to
784 * generic while matches can be in any order.
785 */
786const struct of_device_id *of_match_node(const struct of_device_id *matches,
787 const struct device_node *node)
788{
789 const struct of_device_id *match;
790 unsigned long flags;
791
792 raw_spin_lock_irqsave(&devtree_lock, flags);
793 match = __of_match_node(matches, node);
794 raw_spin_unlock_irqrestore(&devtree_lock, flags);
795 return match;
796}
797EXPORT_SYMBOL(of_match_node);
798
799/**
800 * of_find_matching_node_and_match - Find a node based on an of_device_id
801 * match table.
802 * @from: The node to start searching from or NULL, the node
803 * you pass will not be searched, only the next one
804 * will; typically, you pass what the previous call
805 * returned. of_node_put() will be called on it
806 * @matches: array of of device match structures to search in
807 * @match Updated to point at the matches entry which matched
808 *
809 * Returns a node pointer with refcount incremented, use
810 * of_node_put() on it when done.
811 */
812struct device_node *of_find_matching_node_and_match(struct device_node *from,
813 const struct of_device_id *matches,
814 const struct of_device_id **match)
815{
816 struct device_node *np;
817 const struct of_device_id *m;
818 unsigned long flags;
819
820 if (match)
821 *match = NULL;
822
823 raw_spin_lock_irqsave(&devtree_lock, flags);
824 np = from ? from->allnext : of_allnodes;
825 for (; np; np = np->allnext) {
826 m = __of_match_node(matches, np);
827 if (m && of_node_get(np)) {
828 if (match)
829 *match = m;
830 break;
831 }
832 }
833 of_node_put(from);
834 raw_spin_unlock_irqrestore(&devtree_lock, flags);
835 return np;
836}
837EXPORT_SYMBOL(of_find_matching_node_and_match);
838
839/**
840 * of_modalias_node - Lookup appropriate modalias for a device node
841 * @node: pointer to a device tree node
842 * @modalias: Pointer to buffer that modalias value will be copied into
843 * @len: Length of modalias value
844 *
845 * Based on the value of the compatible property, this routine will attempt
846 * to choose an appropriate modalias value for a particular device tree node.
847 * It does this by stripping the manufacturer prefix (as delimited by a ',')
848 * from the first entry in the compatible list property.
849 *
850 * This routine returns 0 on success, <0 on failure.
851 */
852int of_modalias_node(struct device_node *node, char *modalias, int len)
853{
854 const char *compatible, *p;
855 int cplen;
856
857 compatible = of_get_property(node, "compatible", &cplen);
858 if (!compatible || strlen(compatible) > cplen)
859 return -ENODEV;
860 p = strchr(compatible, ',');
861 strlcpy(modalias, p ? p + 1 : compatible, len);
862 return 0;
863}
864EXPORT_SYMBOL_GPL(of_modalias_node);
865
866/**
867 * of_find_node_by_phandle - Find a node given a phandle
868 * @handle: phandle of the node to find
869 *
870 * Returns a node pointer with refcount incremented, use
871 * of_node_put() on it when done.
872 */
873struct device_node *of_find_node_by_phandle(phandle handle)
874{
875 struct device_node *np;
876 unsigned long flags;
877
878 raw_spin_lock_irqsave(&devtree_lock, flags);
879 for (np = of_allnodes; np; np = np->allnext)
880 if (np->phandle == handle)
881 break;
882 of_node_get(np);
883 raw_spin_unlock_irqrestore(&devtree_lock, flags);
884 return np;
885}
886EXPORT_SYMBOL(of_find_node_by_phandle);
887
888/**
889 * of_find_property_value_of_size
890 *
891 * @np: device node from which the property value is to be read.
892 * @propname: name of the property to be searched.
893 * @len: requested length of property value
894 *
895 * Search for a property in a device node and valid the requested size.
896 * Returns the property value on success, -EINVAL if the property does not
897 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
898 * property data isn't large enough.
899 *
900 */
901static void *of_find_property_value_of_size(const struct device_node *np,
902 const char *propname, u32 len)
903{
904 struct property *prop = of_find_property(np, propname, NULL);
905
906 if (!prop)
907 return ERR_PTR(-EINVAL);
908 if (!prop->value)
909 return ERR_PTR(-ENODATA);
910 if (len > prop->length)
911 return ERR_PTR(-EOVERFLOW);
912
913 return prop->value;
914}
915
916/**
917 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
918 *
919 * @np: device node from which the property value is to be read.
920 * @propname: name of the property to be searched.
921 * @index: index of the u32 in the list of values
922 * @out_value: pointer to return value, modified only if no error.
923 *
924 * Search for a property in a device node and read nth 32-bit value from
925 * it. Returns 0 on success, -EINVAL if the property does not exist,
926 * -ENODATA if property does not have a value, and -EOVERFLOW if the
927 * property data isn't large enough.
928 *
929 * The out_value is modified only if a valid u32 value can be decoded.
930 */
931int of_property_read_u32_index(const struct device_node *np,
932 const char *propname,
933 u32 index, u32 *out_value)
934{
935 const u32 *val = of_find_property_value_of_size(np, propname,
936 ((index + 1) * sizeof(*out_value)));
937
938 if (IS_ERR(val))
939 return PTR_ERR(val);
940
941 *out_value = be32_to_cpup(((__be32 *)val) + index);
942 return 0;
943}
944EXPORT_SYMBOL_GPL(of_property_read_u32_index);
945
946/**
947 * of_property_read_u8_array - Find and read an array of u8 from a property.
948 *
949 * @np: device node from which the property value is to be read.
950 * @propname: name of the property to be searched.
951 * @out_values: pointer to return value, modified only if return value is 0.
952 * @sz: number of array elements to read
953 *
954 * Search for a property in a device node and read 8-bit value(s) from
955 * it. Returns 0 on success, -EINVAL if the property does not exist,
956 * -ENODATA if property does not have a value, and -EOVERFLOW if the
957 * property data isn't large enough.
958 *
959 * dts entry of array should be like:
960 * property = /bits/ 8 <0x50 0x60 0x70>;
961 *
962 * The out_values is modified only if a valid u8 value can be decoded.
963 */
964int of_property_read_u8_array(const struct device_node *np,
965 const char *propname, u8 *out_values, size_t sz)
966{
967 const u8 *val = of_find_property_value_of_size(np, propname,
968 (sz * sizeof(*out_values)));
969
970 if (IS_ERR(val))
971 return PTR_ERR(val);
972
973 while (sz--)
974 *out_values++ = *val++;
975 return 0;
976}
977EXPORT_SYMBOL_GPL(of_property_read_u8_array);
978
979/**
980 * of_property_read_u16_array - Find and read an array of u16 from a property.
981 *
982 * @np: device node from which the property value is to be read.
983 * @propname: name of the property to be searched.
984 * @out_values: pointer to return value, modified only if return value is 0.
985 * @sz: number of array elements to read
986 *
987 * Search for a property in a device node and read 16-bit value(s) from
988 * it. Returns 0 on success, -EINVAL if the property does not exist,
989 * -ENODATA if property does not have a value, and -EOVERFLOW if the
990 * property data isn't large enough.
991 *
992 * dts entry of array should be like:
993 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
994 *
995 * The out_values is modified only if a valid u16 value can be decoded.
996 */
997int of_property_read_u16_array(const struct device_node *np,
998 const char *propname, u16 *out_values, size_t sz)
999{
1000 const __be16 *val = of_find_property_value_of_size(np, propname,
1001 (sz * sizeof(*out_values)));
1002
1003 if (IS_ERR(val))
1004 return PTR_ERR(val);
1005
1006 while (sz--)
1007 *out_values++ = be16_to_cpup(val++);
1008 return 0;
1009}
1010EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1011
1012/**
1013 * of_property_read_u32_array - Find and read an array of 32 bit integers
1014 * from a property.
1015 *
1016 * @np: device node from which the property value is to be read.
1017 * @propname: name of the property to be searched.
1018 * @out_values: pointer to return value, modified only if return value is 0.
1019 * @sz: number of array elements to read
1020 *
1021 * Search for a property in a device node and read 32-bit value(s) from
1022 * it. Returns 0 on success, -EINVAL if the property does not exist,
1023 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1024 * property data isn't large enough.
1025 *
1026 * The out_values is modified only if a valid u32 value can be decoded.
1027 */
1028int of_property_read_u32_array(const struct device_node *np,
1029 const char *propname, u32 *out_values,
1030 size_t sz)
1031{
1032 const __be32 *val = of_find_property_value_of_size(np, propname,
1033 (sz * sizeof(*out_values)));
1034
1035 if (IS_ERR(val))
1036 return PTR_ERR(val);
1037
1038 while (sz--)
1039 *out_values++ = be32_to_cpup(val++);
1040 return 0;
1041}
1042EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1043
1044/**
1045 * of_property_read_u64 - Find and read a 64 bit integer from a property
1046 * @np: device node from which the property value is to be read.
1047 * @propname: name of the property to be searched.
1048 * @out_value: pointer to return value, modified only if return value is 0.
1049 *
1050 * Search for a property in a device node and read a 64-bit value from
1051 * it. Returns 0 on success, -EINVAL if the property does not exist,
1052 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1053 * property data isn't large enough.
1054 *
1055 * The out_value is modified only if a valid u64 value can be decoded.
1056 */
1057int of_property_read_u64(const struct device_node *np, const char *propname,
1058 u64 *out_value)
1059{
1060 const __be32 *val = of_find_property_value_of_size(np, propname,
1061 sizeof(*out_value));
1062
1063 if (IS_ERR(val))
1064 return PTR_ERR(val);
1065
1066 *out_value = of_read_number(val, 2);
1067 return 0;
1068}
1069EXPORT_SYMBOL_GPL(of_property_read_u64);
1070
1071/**
1072 * of_property_read_string - Find and read a string from a property
1073 * @np: device node from which the property value is to be read.
1074 * @propname: name of the property to be searched.
1075 * @out_string: pointer to null terminated return string, modified only if
1076 * return value is 0.
1077 *
1078 * Search for a property in a device tree node and retrieve a null
1079 * terminated string value (pointer to data, not a copy). Returns 0 on
1080 * success, -EINVAL if the property does not exist, -ENODATA if property
1081 * does not have a value, and -EILSEQ if the string is not null-terminated
1082 * within the length of the property data.
1083 *
1084 * The out_string pointer is modified only if a valid string can be decoded.
1085 */
1086int of_property_read_string(struct device_node *np, const char *propname,
1087 const char **out_string)
1088{
1089 struct property *prop = of_find_property(np, propname, NULL);
1090 if (!prop)
1091 return -EINVAL;
1092 if (!prop->value)
1093 return -ENODATA;
1094 if (strnlen(prop->value, prop->length) >= prop->length)
1095 return -EILSEQ;
1096 *out_string = prop->value;
1097 return 0;
1098}
1099EXPORT_SYMBOL_GPL(of_property_read_string);
1100
1101/**
1102 * of_property_read_string_index - Find and read a string from a multiple
1103 * strings property.
1104 * @np: device node from which the property value is to be read.
1105 * @propname: name of the property to be searched.
1106 * @index: index of the string in the list of strings
1107 * @out_string: pointer to null terminated return string, modified only if
1108 * return value is 0.
1109 *
1110 * Search for a property in a device tree node and retrieve a null
1111 * terminated string value (pointer to data, not a copy) in the list of strings
1112 * contained in that property.
1113 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1114 * property does not have a value, and -EILSEQ if the string is not
1115 * null-terminated within the length of the property data.
1116 *
1117 * The out_string pointer is modified only if a valid string can be decoded.
1118 */
1119int of_property_read_string_index(struct device_node *np, const char *propname,
1120 int index, const char **output)
1121{
1122 struct property *prop = of_find_property(np, propname, NULL);
1123 int i = 0;
1124 size_t l = 0, total = 0;
1125 const char *p;
1126
1127 if (!prop)
1128 return -EINVAL;
1129 if (!prop->value)
1130 return -ENODATA;
1131 if (strnlen(prop->value, prop->length) >= prop->length)
1132 return -EILSEQ;
1133
1134 p = prop->value;
1135
1136 for (i = 0; total < prop->length; total += l, p += l) {
1137 l = strlen(p) + 1;
1138 if (i++ == index) {
1139 *output = p;
1140 return 0;
1141 }
1142 }
1143 return -ENODATA;
1144}
1145EXPORT_SYMBOL_GPL(of_property_read_string_index);
1146
1147/**
1148 * of_property_match_string() - Find string in a list and return index
1149 * @np: pointer to node containing string list property
1150 * @propname: string list property name
1151 * @string: pointer to string to search for in string list
1152 *
1153 * This function searches a string list property and returns the index
1154 * of a specific string value.
1155 */
1156int of_property_match_string(struct device_node *np, const char *propname,
1157 const char *string)
1158{
1159 struct property *prop = of_find_property(np, propname, NULL);
1160 size_t l;
1161 int i;
1162 const char *p, *end;
1163
1164 if (!prop)
1165 return -EINVAL;
1166 if (!prop->value)
1167 return -ENODATA;
1168
1169 p = prop->value;
1170 end = p + prop->length;
1171
1172 for (i = 0; p < end; i++, p += l) {
1173 l = strlen(p) + 1;
1174 if (p + l > end)
1175 return -EILSEQ;
1176 pr_debug("comparing %s with %s\n", string, p);
1177 if (strcmp(string, p) == 0)
1178 return i; /* Found it; return index */
1179 }
1180 return -ENODATA;
1181}
1182EXPORT_SYMBOL_GPL(of_property_match_string);
1183
1184/**
1185 * of_property_count_strings - Find and return the number of strings from a
1186 * multiple strings property.
1187 * @np: device node from which the property value is to be read.
1188 * @propname: name of the property to be searched.
1189 *
1190 * Search for a property in a device tree node and retrieve the number of null
1191 * terminated string contain in it. Returns the number of strings on
1192 * success, -EINVAL if the property does not exist, -ENODATA if property
1193 * does not have a value, and -EILSEQ if the string is not null-terminated
1194 * within the length of the property data.
1195 */
1196int of_property_count_strings(struct device_node *np, const char *propname)
1197{
1198 struct property *prop = of_find_property(np, propname, NULL);
1199 int i = 0;
1200 size_t l = 0, total = 0;
1201 const char *p;
1202
1203 if (!prop)
1204 return -EINVAL;
1205 if (!prop->value)
1206 return -ENODATA;
1207 if (strnlen(prop->value, prop->length) >= prop->length)
1208 return -EILSEQ;
1209
1210 p = prop->value;
1211
1212 for (i = 0; total < prop->length; total += l, p += l, i++)
1213 l = strlen(p) + 1;
1214
1215 return i;
1216}
1217EXPORT_SYMBOL_GPL(of_property_count_strings);
1218
1219void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1220{
1221 int i;
1222 printk("%s %s", msg, of_node_full_name(args->np));
1223 for (i = 0; i < args->args_count; i++)
1224 printk(i ? ",%08x" : ":%08x", args->args[i]);
1225 printk("\n");
1226}
1227
1228static int __of_parse_phandle_with_args(const struct device_node *np,
1229 const char *list_name,
1230 const char *cells_name,
1231 int cell_count, int index,
1232 struct of_phandle_args *out_args)
1233{
1234 const __be32 *list, *list_end;
1235 int rc = 0, size, cur_index = 0;
1236 uint32_t count = 0;
1237 struct device_node *node = NULL;
1238 phandle phandle;
1239
1240 /* Retrieve the phandle list property */
1241 list = of_get_property(np, list_name, &size);
1242 if (!list)
1243 return -ENOENT;
1244 list_end = list + size / sizeof(*list);
1245
1246 /* Loop over the phandles until all the requested entry is found */
1247 while (list < list_end) {
1248 rc = -EINVAL;
1249 count = 0;
1250
1251 /*
1252 * If phandle is 0, then it is an empty entry with no
1253 * arguments. Skip forward to the next entry.
1254 */
1255 phandle = be32_to_cpup(list++);
1256 if (phandle) {
1257 /*
1258 * Find the provider node and parse the #*-cells
1259 * property to determine the argument length.
1260 *
1261 * This is not needed if the cell count is hard-coded
1262 * (i.e. cells_name not set, but cell_count is set),
1263 * except when we're going to return the found node
1264 * below.
1265 */
1266 if (cells_name || cur_index == index) {
1267 node = of_find_node_by_phandle(phandle);
1268 if (!node) {
1269 pr_err("%s: could not find phandle\n",
1270 np->full_name);
1271 goto err;
1272 }
1273 }
1274
1275 if (cells_name) {
1276 if (of_property_read_u32(node, cells_name,
1277 &count)) {
1278 pr_err("%s: could not get %s for %s\n",
1279 np->full_name, cells_name,
1280 node->full_name);
1281 goto err;
1282 }
1283 } else {
1284 count = cell_count;
1285 }
1286
1287 /*
1288 * Make sure that the arguments actually fit in the
1289 * remaining property data length
1290 */
1291 if (list + count > list_end) {
1292 pr_err("%s: arguments longer than property\n",
1293 np->full_name);
1294 goto err;
1295 }
1296 }
1297
1298 /*
1299 * All of the error cases above bail out of the loop, so at
1300 * this point, the parsing is successful. If the requested
1301 * index matches, then fill the out_args structure and return,
1302 * or return -ENOENT for an empty entry.
1303 */
1304 rc = -ENOENT;
1305 if (cur_index == index) {
1306 if (!phandle)
1307 goto err;
1308
1309 if (out_args) {
1310 int i;
1311 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1312 count = MAX_PHANDLE_ARGS;
1313 out_args->np = node;
1314 out_args->args_count = count;
1315 for (i = 0; i < count; i++)
1316 out_args->args[i] = be32_to_cpup(list++);
1317 } else {
1318 of_node_put(node);
1319 }
1320
1321 /* Found it! return success */
1322 return 0;
1323 }
1324
1325 of_node_put(node);
1326 node = NULL;
1327 list += count;
1328 cur_index++;
1329 }
1330
1331 /*
1332 * Unlock node before returning result; will be one of:
1333 * -ENOENT : index is for empty phandle
1334 * -EINVAL : parsing error on data
1335 * [1..n] : Number of phandle (count mode; when index = -1)
1336 */
1337 rc = index < 0 ? cur_index : -ENOENT;
1338 err:
1339 if (node)
1340 of_node_put(node);
1341 return rc;
1342}
1343
1344/**
1345 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1346 * @np: Pointer to device node holding phandle property
1347 * @phandle_name: Name of property holding a phandle value
1348 * @index: For properties holding a table of phandles, this is the index into
1349 * the table
1350 *
1351 * Returns the device_node pointer with refcount incremented. Use
1352 * of_node_put() on it when done.
1353 */
1354struct device_node *of_parse_phandle(const struct device_node *np,
1355 const char *phandle_name, int index)
1356{
1357 struct of_phandle_args args;
1358
1359 if (index < 0)
1360 return NULL;
1361
1362 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1363 index, &args))
1364 return NULL;
1365
1366 return args.np;
1367}
1368EXPORT_SYMBOL(of_parse_phandle);
1369
1370/**
1371 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1372 * @np: pointer to a device tree node containing a list
1373 * @list_name: property name that contains a list
1374 * @cells_name: property name that specifies phandles' arguments count
1375 * @index: index of a phandle to parse out
1376 * @out_args: optional pointer to output arguments structure (will be filled)
1377 *
1378 * This function is useful to parse lists of phandles and their arguments.
1379 * Returns 0 on success and fills out_args, on error returns appropriate
1380 * errno value.
1381 *
1382 * Caller is responsible to call of_node_put() on the returned out_args->node
1383 * pointer.
1384 *
1385 * Example:
1386 *
1387 * phandle1: node1 {
1388 * #list-cells = <2>;
1389 * }
1390 *
1391 * phandle2: node2 {
1392 * #list-cells = <1>;
1393 * }
1394 *
1395 * node3 {
1396 * list = <&phandle1 1 2 &phandle2 3>;
1397 * }
1398 *
1399 * To get a device_node of the `node2' node you may call this:
1400 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1401 */
1402int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1403 const char *cells_name, int index,
1404 struct of_phandle_args *out_args)
1405{
1406 if (index < 0)
1407 return -EINVAL;
1408 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1409 index, out_args);
1410}
1411EXPORT_SYMBOL(of_parse_phandle_with_args);
1412
1413/**
1414 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1415 * @np: pointer to a device tree node containing a list
1416 * @list_name: property name that contains a list
1417 * @cell_count: number of argument cells following the phandle
1418 * @index: index of a phandle to parse out
1419 * @out_args: optional pointer to output arguments structure (will be filled)
1420 *
1421 * This function is useful to parse lists of phandles and their arguments.
1422 * Returns 0 on success and fills out_args, on error returns appropriate
1423 * errno value.
1424 *
1425 * Caller is responsible to call of_node_put() on the returned out_args->node
1426 * pointer.
1427 *
1428 * Example:
1429 *
1430 * phandle1: node1 {
1431 * }
1432 *
1433 * phandle2: node2 {
1434 * }
1435 *
1436 * node3 {
1437 * list = <&phandle1 0 2 &phandle2 2 3>;
1438 * }
1439 *
1440 * To get a device_node of the `node2' node you may call this:
1441 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1442 */
1443int of_parse_phandle_with_fixed_args(const struct device_node *np,
1444 const char *list_name, int cell_count,
1445 int index, struct of_phandle_args *out_args)
1446{
1447 if (index < 0)
1448 return -EINVAL;
1449 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1450 index, out_args);
1451}
1452EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1453
1454/**
1455 * of_count_phandle_with_args() - Find the number of phandles references in a property
1456 * @np: pointer to a device tree node containing a list
1457 * @list_name: property name that contains a list
1458 * @cells_name: property name that specifies phandles' arguments count
1459 *
1460 * Returns the number of phandle + argument tuples within a property. It
1461 * is a typical pattern to encode a list of phandle and variable
1462 * arguments into a single property. The number of arguments is encoded
1463 * by a property in the phandle-target node. For example, a gpios
1464 * property would contain a list of GPIO specifies consisting of a
1465 * phandle and 1 or more arguments. The number of arguments are
1466 * determined by the #gpio-cells property in the node pointed to by the
1467 * phandle.
1468 */
1469int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1470 const char *cells_name)
1471{
1472 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1473 NULL);
1474}
1475EXPORT_SYMBOL(of_count_phandle_with_args);
1476
1477#if defined(CONFIG_OF_DYNAMIC)
1478static int of_property_notify(int action, struct device_node *np,
1479 struct property *prop)
1480{
1481 struct of_prop_reconfig pr;
1482
1483 pr.dn = np;
1484 pr.prop = prop;
1485 return of_reconfig_notify(action, &pr);
1486}
1487#else
1488static int of_property_notify(int action, struct device_node *np,
1489 struct property *prop)
1490{
1491 return 0;
1492}
1493#endif
1494
1495/**
1496 * of_add_property - Add a property to a node
1497 */
1498int of_add_property(struct device_node *np, struct property *prop)
1499{
1500 struct property **next;
1501 unsigned long flags;
1502 int rc;
1503
1504 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1505 if (rc)
1506 return rc;
1507
1508 prop->next = NULL;
1509 raw_spin_lock_irqsave(&devtree_lock, flags);
1510 next = &np->properties;
1511 while (*next) {
1512 if (strcmp(prop->name, (*next)->name) == 0) {
1513 /* duplicate ! don't insert it */
1514 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1515 return -1;
1516 }
1517 next = &(*next)->next;
1518 }
1519 *next = prop;
1520 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1521
1522#ifdef CONFIG_PROC_DEVICETREE
1523 /* try to add to proc as well if it was initialized */
1524 if (np->pde)
1525 proc_device_tree_add_prop(np->pde, prop);
1526#endif /* CONFIG_PROC_DEVICETREE */
1527
1528 return 0;
1529}
1530
1531/**
1532 * of_remove_property - Remove a property from a node.
1533 *
1534 * Note that we don't actually remove it, since we have given out
1535 * who-knows-how-many pointers to the data using get-property.
1536 * Instead we just move the property to the "dead properties"
1537 * list, so it won't be found any more.
1538 */
1539int of_remove_property(struct device_node *np, struct property *prop)
1540{
1541 struct property **next;
1542 unsigned long flags;
1543 int found = 0;
1544 int rc;
1545
1546 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1547 if (rc)
1548 return rc;
1549
1550 raw_spin_lock_irqsave(&devtree_lock, flags);
1551 next = &np->properties;
1552 while (*next) {
1553 if (*next == prop) {
1554 /* found the node */
1555 *next = prop->next;
1556 prop->next = np->deadprops;
1557 np->deadprops = prop;
1558 found = 1;
1559 break;
1560 }
1561 next = &(*next)->next;
1562 }
1563 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1564
1565 if (!found)
1566 return -ENODEV;
1567
1568#ifdef CONFIG_PROC_DEVICETREE
1569 /* try to remove the proc node as well */
1570 if (np->pde)
1571 proc_device_tree_remove_prop(np->pde, prop);
1572#endif /* CONFIG_PROC_DEVICETREE */
1573
1574 return 0;
1575}
1576
1577/*
1578 * of_update_property - Update a property in a node, if the property does
1579 * not exist, add it.
1580 *
1581 * Note that we don't actually remove it, since we have given out
1582 * who-knows-how-many pointers to the data using get-property.
1583 * Instead we just move the property to the "dead properties" list,
1584 * and add the new property to the property list
1585 */
1586int of_update_property(struct device_node *np, struct property *newprop)
1587{
1588 struct property **next, *oldprop;
1589 unsigned long flags;
1590 int rc, found = 0;
1591
1592 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1593 if (rc)
1594 return rc;
1595
1596 if (!newprop->name)
1597 return -EINVAL;
1598
1599 oldprop = of_find_property(np, newprop->name, NULL);
1600 if (!oldprop)
1601 return of_add_property(np, newprop);
1602
1603 raw_spin_lock_irqsave(&devtree_lock, flags);
1604 next = &np->properties;
1605 while (*next) {
1606 if (*next == oldprop) {
1607 /* found the node */
1608 newprop->next = oldprop->next;
1609 *next = newprop;
1610 oldprop->next = np->deadprops;
1611 np->deadprops = oldprop;
1612 found = 1;
1613 break;
1614 }
1615 next = &(*next)->next;
1616 }
1617 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1618
1619 if (!found)
1620 return -ENODEV;
1621
1622#ifdef CONFIG_PROC_DEVICETREE
1623 /* try to add to proc as well if it was initialized */
1624 if (np->pde)
1625 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1626#endif /* CONFIG_PROC_DEVICETREE */
1627
1628 return 0;
1629}
1630
1631#if defined(CONFIG_OF_DYNAMIC)
1632/*
1633 * Support for dynamic device trees.
1634 *
1635 * On some platforms, the device tree can be manipulated at runtime.
1636 * The routines in this section support adding, removing and changing
1637 * device tree nodes.
1638 */
1639
1640static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1641
1642int of_reconfig_notifier_register(struct notifier_block *nb)
1643{
1644 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1645}
1646EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1647
1648int of_reconfig_notifier_unregister(struct notifier_block *nb)
1649{
1650 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1651}
1652EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1653
1654int of_reconfig_notify(unsigned long action, void *p)
1655{
1656 int rc;
1657
1658 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1659 return notifier_to_errno(rc);
1660}
1661
1662#ifdef CONFIG_PROC_DEVICETREE
1663static void of_add_proc_dt_entry(struct device_node *dn)
1664{
1665 struct proc_dir_entry *ent;
1666
1667 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1668 if (ent)
1669 proc_device_tree_add_node(dn, ent);
1670}
1671#else
1672static void of_add_proc_dt_entry(struct device_node *dn)
1673{
1674 return;
1675}
1676#endif
1677
1678/**
1679 * of_attach_node - Plug a device node into the tree and global list.
1680 */
1681int of_attach_node(struct device_node *np)
1682{
1683 unsigned long flags;
1684 int rc;
1685
1686 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1687 if (rc)
1688 return rc;
1689
1690 raw_spin_lock_irqsave(&devtree_lock, flags);
1691 np->sibling = np->parent->child;
1692 np->allnext = of_allnodes;
1693 np->parent->child = np;
1694 of_allnodes = np;
1695 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1696
1697 of_add_proc_dt_entry(np);
1698 return 0;
1699}
1700
1701#ifdef CONFIG_PROC_DEVICETREE
1702static void of_remove_proc_dt_entry(struct device_node *dn)
1703{
1704 proc_remove(dn->pde);
1705}
1706#else
1707static void of_remove_proc_dt_entry(struct device_node *dn)
1708{
1709 return;
1710}
1711#endif
1712
1713/**
1714 * of_detach_node - "Unplug" a node from the device tree.
1715 *
1716 * The caller must hold a reference to the node. The memory associated with
1717 * the node is not freed until its refcount goes to zero.
1718 */
1719int of_detach_node(struct device_node *np)
1720{
1721 struct device_node *parent;
1722 unsigned long flags;
1723 int rc = 0;
1724
1725 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1726 if (rc)
1727 return rc;
1728
1729 raw_spin_lock_irqsave(&devtree_lock, flags);
1730
1731 if (of_node_check_flag(np, OF_DETACHED)) {
1732 /* someone already detached it */
1733 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1734 return rc;
1735 }
1736
1737 parent = np->parent;
1738 if (!parent) {
1739 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1740 return rc;
1741 }
1742
1743 if (of_allnodes == np)
1744 of_allnodes = np->allnext;
1745 else {
1746 struct device_node *prev;
1747 for (prev = of_allnodes;
1748 prev->allnext != np;
1749 prev = prev->allnext)
1750 ;
1751 prev->allnext = np->allnext;
1752 }
1753
1754 if (parent->child == np)
1755 parent->child = np->sibling;
1756 else {
1757 struct device_node *prevsib;
1758 for (prevsib = np->parent->child;
1759 prevsib->sibling != np;
1760 prevsib = prevsib->sibling)
1761 ;
1762 prevsib->sibling = np->sibling;
1763 }
1764
1765 of_node_set_flag(np, OF_DETACHED);
1766 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1767
1768 of_remove_proc_dt_entry(np);
1769 return rc;
1770}
1771#endif /* defined(CONFIG_OF_DYNAMIC) */
1772
1773static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1774 int id, const char *stem, int stem_len)
1775{
1776 ap->np = np;
1777 ap->id = id;
1778 strncpy(ap->stem, stem, stem_len);
1779 ap->stem[stem_len] = 0;
1780 list_add_tail(&ap->link, &aliases_lookup);
1781 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1782 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1783}
1784
1785/**
1786 * of_alias_scan - Scan all properties of 'aliases' node
1787 *
1788 * The function scans all the properties of 'aliases' node and populate
1789 * the the global lookup table with the properties. It returns the
1790 * number of alias_prop found, or error code in error case.
1791 *
1792 * @dt_alloc: An allocator that provides a virtual address to memory
1793 * for the resulting tree
1794 */
1795void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1796{
1797 struct property *pp;
1798
1799 of_chosen = of_find_node_by_path("/chosen");
1800 if (of_chosen == NULL)
1801 of_chosen = of_find_node_by_path("/chosen@0");
1802
1803 if (of_chosen) {
1804 const char *name;
1805
1806 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1807 if (name)
1808 of_stdout = of_find_node_by_path(name);
1809 }
1810
1811 of_aliases = of_find_node_by_path("/aliases");
1812 if (!of_aliases)
1813 return;
1814
1815 for_each_property_of_node(of_aliases, pp) {
1816 const char *start = pp->name;
1817 const char *end = start + strlen(start);
1818 struct device_node *np;
1819 struct alias_prop *ap;
1820 int id, len;
1821
1822 /* Skip those we do not want to proceed */
1823 if (!strcmp(pp->name, "name") ||
1824 !strcmp(pp->name, "phandle") ||
1825 !strcmp(pp->name, "linux,phandle"))
1826 continue;
1827
1828 np = of_find_node_by_path(pp->value);
1829 if (!np)
1830 continue;
1831
1832 /* walk the alias backwards to extract the id and work out
1833 * the 'stem' string */
1834 while (isdigit(*(end-1)) && end > start)
1835 end--;
1836 len = end - start;
1837
1838 if (kstrtoint(end, 10, &id) < 0)
1839 continue;
1840
1841 /* Allocate an alias_prop with enough space for the stem */
1842 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1843 if (!ap)
1844 continue;
1845 memset(ap, 0, sizeof(*ap) + len + 1);
1846 ap->alias = start;
1847 of_alias_add(ap, np, id, start, len);
1848 }
1849}
1850
1851/**
1852 * of_alias_get_id - Get alias id for the given device_node
1853 * @np: Pointer to the given device_node
1854 * @stem: Alias stem of the given device_node
1855 *
1856 * The function travels the lookup table to get alias id for the given
1857 * device_node and alias stem. It returns the alias id if find it.
1858 */
1859int of_alias_get_id(struct device_node *np, const char *stem)
1860{
1861 struct alias_prop *app;
1862 int id = -ENODEV;
1863
1864 mutex_lock(&of_aliases_mutex);
1865 list_for_each_entry(app, &aliases_lookup, link) {
1866 if (strcmp(app->stem, stem) != 0)
1867 continue;
1868
1869 if (np == app->np) {
1870 id = app->id;
1871 break;
1872 }
1873 }
1874 mutex_unlock(&of_aliases_mutex);
1875
1876 return id;
1877}
1878EXPORT_SYMBOL_GPL(of_alias_get_id);
1879
1880const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1881 u32 *pu)
1882{
1883 const void *curv = cur;
1884
1885 if (!prop)
1886 return NULL;
1887
1888 if (!cur) {
1889 curv = prop->value;
1890 goto out_val;
1891 }
1892
1893 curv += sizeof(*cur);
1894 if (curv >= prop->value + prop->length)
1895 return NULL;
1896
1897out_val:
1898 *pu = be32_to_cpup(curv);
1899 return curv;
1900}
1901EXPORT_SYMBOL_GPL(of_prop_next_u32);
1902
1903const char *of_prop_next_string(struct property *prop, const char *cur)
1904{
1905 const void *curv = cur;
1906
1907 if (!prop)
1908 return NULL;
1909
1910 if (!cur)
1911 return prop->value;
1912
1913 curv += strlen(cur) + 1;
1914 if (curv >= prop->value + prop->length)
1915 return NULL;
1916
1917 return curv;
1918}
1919EXPORT_SYMBOL_GPL(of_prop_next_string);
1920
1921/**
1922 * of_device_is_stdout_path - check if a device node matches the
1923 * linux,stdout-path property
1924 *
1925 * Check if this device node matches the linux,stdout-path property
1926 * in the chosen node. return true if yes, false otherwise.
1927 */
1928int of_device_is_stdout_path(struct device_node *dn)
1929{
1930 if (!of_stdout)
1931 return false;
1932
1933 return of_stdout == dn;
1934}
1935EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1936
1937/**
1938 * of_find_next_cache_node - Find a node's subsidiary cache
1939 * @np: node of type "cpu" or "cache"
1940 *
1941 * Returns a node pointer with refcount incremented, use
1942 * of_node_put() on it when done. Caller should hold a reference
1943 * to np.
1944 */
1945struct device_node *of_find_next_cache_node(const struct device_node *np)
1946{
1947 struct device_node *child;
1948 const phandle *handle;
1949
1950 handle = of_get_property(np, "l2-cache", NULL);
1951 if (!handle)
1952 handle = of_get_property(np, "next-level-cache", NULL);
1953
1954 if (handle)
1955 return of_find_node_by_phandle(be32_to_cpup(handle));
1956
1957 /* OF on pmac has nodes instead of properties named "l2-cache"
1958 * beneath CPU nodes.
1959 */
1960 if (!strcmp(np->type, "cpu"))
1961 for_each_child_of_node(np, child)
1962 if (!strcmp(child->type, "cache"))
1963 return child;
1964
1965 return NULL;
1966}