Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35/*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/kmemcheck.h>
45#include <linux/mm.h>
46#include <linux/interrupt.h>
47#include <linux/in.h>
48#include <linux/inet.h>
49#include <linux/slab.h>
50#include <linux/netdevice.h>
51#ifdef CONFIG_NET_CLS_ACT
52#include <net/pkt_sched.h>
53#endif
54#include <linux/string.h>
55#include <linux/skbuff.h>
56#include <linux/splice.h>
57#include <linux/cache.h>
58#include <linux/rtnetlink.h>
59#include <linux/init.h>
60#include <linux/scatterlist.h>
61#include <linux/errqueue.h>
62#include <linux/prefetch.h>
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
68#include <net/xfrm.h>
69
70#include <asm/uaccess.h>
71#include <trace/events/skb.h>
72#include <linux/highmem.h>
73
74struct kmem_cache *skbuff_head_cache __read_mostly;
75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76
77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
79{
80 put_page(buf->page);
81}
82
83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
85{
86 get_page(buf->page);
87}
88
89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91{
92 return 1;
93}
94
95
96/* Pipe buffer operations for a socket. */
97static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
105};
106
107/**
108 * skb_panic - private function for out-of-line support
109 * @skb: buffer
110 * @sz: size
111 * @addr: address
112 * @msg: skb_over_panic or skb_under_panic
113 *
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
118 */
119static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 const char msg[])
121{
122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 msg, addr, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127}
128
129static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130{
131 skb_panic(skb, sz, addr, __func__);
132}
133
134static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
135{
136 skb_panic(skb, sz, addr, __func__);
137}
138
139/*
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
144 * memory is free
145 */
146#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
148
149static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 unsigned long ip, bool *pfmemalloc)
151{
152 void *obj;
153 bool ret_pfmemalloc = false;
154
155 /*
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
158 */
159 obj = kmalloc_node_track_caller(size,
160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 node);
162 if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 goto out;
164
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc = true;
167 obj = kmalloc_node_track_caller(size, flags, node);
168
169out:
170 if (pfmemalloc)
171 *pfmemalloc = ret_pfmemalloc;
172
173 return obj;
174}
175
176/* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
178 * [BEEP] leaks.
179 *
180 */
181
182struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
183{
184 struct sk_buff *skb;
185
186 /* Get the HEAD */
187 skb = kmem_cache_alloc_node(skbuff_head_cache,
188 gfp_mask & ~__GFP_DMA, node);
189 if (!skb)
190 goto out;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->head = NULL;
199 skb->truesize = sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201
202 skb->mac_header = (typeof(skb->mac_header))~0U;
203out:
204 return skb;
205}
206
207/**
208 * __alloc_skb - allocate a network buffer
209 * @size: size to allocate
210 * @gfp_mask: allocation mask
211 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
212 * instead of head cache and allocate a cloned (child) skb.
213 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
214 * allocations in case the data is required for writeback
215 * @node: numa node to allocate memory on
216 *
217 * Allocate a new &sk_buff. The returned buffer has no headroom and a
218 * tail room of at least size bytes. The object has a reference count
219 * of one. The return is the buffer. On a failure the return is %NULL.
220 *
221 * Buffers may only be allocated from interrupts using a @gfp_mask of
222 * %GFP_ATOMIC.
223 */
224struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
225 int flags, int node)
226{
227 struct kmem_cache *cache;
228 struct skb_shared_info *shinfo;
229 struct sk_buff *skb;
230 u8 *data;
231 bool pfmemalloc;
232
233 cache = (flags & SKB_ALLOC_FCLONE)
234 ? skbuff_fclone_cache : skbuff_head_cache;
235
236 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
237 gfp_mask |= __GFP_MEMALLOC;
238
239 /* Get the HEAD */
240 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
241 if (!skb)
242 goto out;
243 prefetchw(skb);
244
245 /* We do our best to align skb_shared_info on a separate cache
246 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
247 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
248 * Both skb->head and skb_shared_info are cache line aligned.
249 */
250 size = SKB_DATA_ALIGN(size);
251 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
252 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
253 if (!data)
254 goto nodata;
255 /* kmalloc(size) might give us more room than requested.
256 * Put skb_shared_info exactly at the end of allocated zone,
257 * to allow max possible filling before reallocation.
258 */
259 size = SKB_WITH_OVERHEAD(ksize(data));
260 prefetchw(data + size);
261
262 /*
263 * Only clear those fields we need to clear, not those that we will
264 * actually initialise below. Hence, don't put any more fields after
265 * the tail pointer in struct sk_buff!
266 */
267 memset(skb, 0, offsetof(struct sk_buff, tail));
268 /* Account for allocated memory : skb + skb->head */
269 skb->truesize = SKB_TRUESIZE(size);
270 skb->pfmemalloc = pfmemalloc;
271 atomic_set(&skb->users, 1);
272 skb->head = data;
273 skb->data = data;
274 skb_reset_tail_pointer(skb);
275 skb->end = skb->tail + size;
276 skb->mac_header = (typeof(skb->mac_header))~0U;
277 skb->transport_header = (typeof(skb->transport_header))~0U;
278
279 /* make sure we initialize shinfo sequentially */
280 shinfo = skb_shinfo(skb);
281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 atomic_set(&shinfo->dataref, 1);
283 kmemcheck_annotate_variable(shinfo->destructor_arg);
284
285 if (flags & SKB_ALLOC_FCLONE) {
286 struct sk_buff *child = skb + 1;
287 atomic_t *fclone_ref = (atomic_t *) (child + 1);
288
289 kmemcheck_annotate_bitfield(child, flags1);
290 kmemcheck_annotate_bitfield(child, flags2);
291 skb->fclone = SKB_FCLONE_ORIG;
292 atomic_set(fclone_ref, 1);
293
294 child->fclone = SKB_FCLONE_UNAVAILABLE;
295 child->pfmemalloc = pfmemalloc;
296 }
297out:
298 return skb;
299nodata:
300 kmem_cache_free(cache, skb);
301 skb = NULL;
302 goto out;
303}
304EXPORT_SYMBOL(__alloc_skb);
305
306/**
307 * build_skb - build a network buffer
308 * @data: data buffer provided by caller
309 * @frag_size: size of fragment, or 0 if head was kmalloced
310 *
311 * Allocate a new &sk_buff. Caller provides space holding head and
312 * skb_shared_info. @data must have been allocated by kmalloc() only if
313 * @frag_size is 0, otherwise data should come from the page allocator.
314 * The return is the new skb buffer.
315 * On a failure the return is %NULL, and @data is not freed.
316 * Notes :
317 * Before IO, driver allocates only data buffer where NIC put incoming frame
318 * Driver should add room at head (NET_SKB_PAD) and
319 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
320 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
321 * before giving packet to stack.
322 * RX rings only contains data buffers, not full skbs.
323 */
324struct sk_buff *build_skb(void *data, unsigned int frag_size)
325{
326 struct skb_shared_info *shinfo;
327 struct sk_buff *skb;
328 unsigned int size = frag_size ? : ksize(data);
329
330 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
331 if (!skb)
332 return NULL;
333
334 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
335
336 memset(skb, 0, offsetof(struct sk_buff, tail));
337 skb->truesize = SKB_TRUESIZE(size);
338 skb->head_frag = frag_size != 0;
339 atomic_set(&skb->users, 1);
340 skb->head = data;
341 skb->data = data;
342 skb_reset_tail_pointer(skb);
343 skb->end = skb->tail + size;
344 skb->mac_header = (typeof(skb->mac_header))~0U;
345 skb->transport_header = (typeof(skb->transport_header))~0U;
346
347 /* make sure we initialize shinfo sequentially */
348 shinfo = skb_shinfo(skb);
349 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
350 atomic_set(&shinfo->dataref, 1);
351 kmemcheck_annotate_variable(shinfo->destructor_arg);
352
353 return skb;
354}
355EXPORT_SYMBOL(build_skb);
356
357struct netdev_alloc_cache {
358 struct page_frag frag;
359 /* we maintain a pagecount bias, so that we dont dirty cache line
360 * containing page->_count every time we allocate a fragment.
361 */
362 unsigned int pagecnt_bias;
363};
364static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
365
366static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
367{
368 struct netdev_alloc_cache *nc;
369 void *data = NULL;
370 int order;
371 unsigned long flags;
372
373 local_irq_save(flags);
374 nc = &__get_cpu_var(netdev_alloc_cache);
375 if (unlikely(!nc->frag.page)) {
376refill:
377 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
378 gfp_t gfp = gfp_mask;
379
380 if (order)
381 gfp |= __GFP_COMP | __GFP_NOWARN;
382 nc->frag.page = alloc_pages(gfp, order);
383 if (likely(nc->frag.page))
384 break;
385 if (--order < 0)
386 goto end;
387 }
388 nc->frag.size = PAGE_SIZE << order;
389recycle:
390 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
391 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
392 nc->frag.offset = 0;
393 }
394
395 if (nc->frag.offset + fragsz > nc->frag.size) {
396 /* avoid unnecessary locked operations if possible */
397 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
398 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
399 goto recycle;
400 goto refill;
401 }
402
403 data = page_address(nc->frag.page) + nc->frag.offset;
404 nc->frag.offset += fragsz;
405 nc->pagecnt_bias--;
406end:
407 local_irq_restore(flags);
408 return data;
409}
410
411/**
412 * netdev_alloc_frag - allocate a page fragment
413 * @fragsz: fragment size
414 *
415 * Allocates a frag from a page for receive buffer.
416 * Uses GFP_ATOMIC allocations.
417 */
418void *netdev_alloc_frag(unsigned int fragsz)
419{
420 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
421}
422EXPORT_SYMBOL(netdev_alloc_frag);
423
424/**
425 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
426 * @dev: network device to receive on
427 * @length: length to allocate
428 * @gfp_mask: get_free_pages mask, passed to alloc_skb
429 *
430 * Allocate a new &sk_buff and assign it a usage count of one. The
431 * buffer has unspecified headroom built in. Users should allocate
432 * the headroom they think they need without accounting for the
433 * built in space. The built in space is used for optimisations.
434 *
435 * %NULL is returned if there is no free memory.
436 */
437struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
438 unsigned int length, gfp_t gfp_mask)
439{
440 struct sk_buff *skb = NULL;
441 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
442 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443
444 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
445 void *data;
446
447 if (sk_memalloc_socks())
448 gfp_mask |= __GFP_MEMALLOC;
449
450 data = __netdev_alloc_frag(fragsz, gfp_mask);
451
452 if (likely(data)) {
453 skb = build_skb(data, fragsz);
454 if (unlikely(!skb))
455 put_page(virt_to_head_page(data));
456 }
457 } else {
458 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
459 SKB_ALLOC_RX, NUMA_NO_NODE);
460 }
461 if (likely(skb)) {
462 skb_reserve(skb, NET_SKB_PAD);
463 skb->dev = dev;
464 }
465 return skb;
466}
467EXPORT_SYMBOL(__netdev_alloc_skb);
468
469void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
470 int size, unsigned int truesize)
471{
472 skb_fill_page_desc(skb, i, page, off, size);
473 skb->len += size;
474 skb->data_len += size;
475 skb->truesize += truesize;
476}
477EXPORT_SYMBOL(skb_add_rx_frag);
478
479void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
480 unsigned int truesize)
481{
482 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
483
484 skb_frag_size_add(frag, size);
485 skb->len += size;
486 skb->data_len += size;
487 skb->truesize += truesize;
488}
489EXPORT_SYMBOL(skb_coalesce_rx_frag);
490
491static void skb_drop_list(struct sk_buff **listp)
492{
493 kfree_skb_list(*listp);
494 *listp = NULL;
495}
496
497static inline void skb_drop_fraglist(struct sk_buff *skb)
498{
499 skb_drop_list(&skb_shinfo(skb)->frag_list);
500}
501
502static void skb_clone_fraglist(struct sk_buff *skb)
503{
504 struct sk_buff *list;
505
506 skb_walk_frags(skb, list)
507 skb_get(list);
508}
509
510static void skb_free_head(struct sk_buff *skb)
511{
512 if (skb->head_frag)
513 put_page(virt_to_head_page(skb->head));
514 else
515 kfree(skb->head);
516}
517
518static void skb_release_data(struct sk_buff *skb)
519{
520 if (!skb->cloned ||
521 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
522 &skb_shinfo(skb)->dataref)) {
523 if (skb_shinfo(skb)->nr_frags) {
524 int i;
525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
526 skb_frag_unref(skb, i);
527 }
528
529 /*
530 * If skb buf is from userspace, we need to notify the caller
531 * the lower device DMA has done;
532 */
533 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
534 struct ubuf_info *uarg;
535
536 uarg = skb_shinfo(skb)->destructor_arg;
537 if (uarg->callback)
538 uarg->callback(uarg, true);
539 }
540
541 if (skb_has_frag_list(skb))
542 skb_drop_fraglist(skb);
543
544 skb_free_head(skb);
545 }
546}
547
548/*
549 * Free an skbuff by memory without cleaning the state.
550 */
551static void kfree_skbmem(struct sk_buff *skb)
552{
553 struct sk_buff *other;
554 atomic_t *fclone_ref;
555
556 switch (skb->fclone) {
557 case SKB_FCLONE_UNAVAILABLE:
558 kmem_cache_free(skbuff_head_cache, skb);
559 break;
560
561 case SKB_FCLONE_ORIG:
562 fclone_ref = (atomic_t *) (skb + 2);
563 if (atomic_dec_and_test(fclone_ref))
564 kmem_cache_free(skbuff_fclone_cache, skb);
565 break;
566
567 case SKB_FCLONE_CLONE:
568 fclone_ref = (atomic_t *) (skb + 1);
569 other = skb - 1;
570
571 /* The clone portion is available for
572 * fast-cloning again.
573 */
574 skb->fclone = SKB_FCLONE_UNAVAILABLE;
575
576 if (atomic_dec_and_test(fclone_ref))
577 kmem_cache_free(skbuff_fclone_cache, other);
578 break;
579 }
580}
581
582static void skb_release_head_state(struct sk_buff *skb)
583{
584 skb_dst_drop(skb);
585#ifdef CONFIG_XFRM
586 secpath_put(skb->sp);
587#endif
588 if (skb->destructor) {
589 WARN_ON(in_irq());
590 skb->destructor(skb);
591 }
592#if IS_ENABLED(CONFIG_NF_CONNTRACK)
593 nf_conntrack_put(skb->nfct);
594#endif
595#ifdef CONFIG_BRIDGE_NETFILTER
596 nf_bridge_put(skb->nf_bridge);
597#endif
598/* XXX: IS this still necessary? - JHS */
599#ifdef CONFIG_NET_SCHED
600 skb->tc_index = 0;
601#ifdef CONFIG_NET_CLS_ACT
602 skb->tc_verd = 0;
603#endif
604#endif
605}
606
607/* Free everything but the sk_buff shell. */
608static void skb_release_all(struct sk_buff *skb)
609{
610 skb_release_head_state(skb);
611 if (likely(skb->head))
612 skb_release_data(skb);
613}
614
615/**
616 * __kfree_skb - private function
617 * @skb: buffer
618 *
619 * Free an sk_buff. Release anything attached to the buffer.
620 * Clean the state. This is an internal helper function. Users should
621 * always call kfree_skb
622 */
623
624void __kfree_skb(struct sk_buff *skb)
625{
626 skb_release_all(skb);
627 kfree_skbmem(skb);
628}
629EXPORT_SYMBOL(__kfree_skb);
630
631/**
632 * kfree_skb - free an sk_buff
633 * @skb: buffer to free
634 *
635 * Drop a reference to the buffer and free it if the usage count has
636 * hit zero.
637 */
638void kfree_skb(struct sk_buff *skb)
639{
640 if (unlikely(!skb))
641 return;
642 if (likely(atomic_read(&skb->users) == 1))
643 smp_rmb();
644 else if (likely(!atomic_dec_and_test(&skb->users)))
645 return;
646 trace_kfree_skb(skb, __builtin_return_address(0));
647 __kfree_skb(skb);
648}
649EXPORT_SYMBOL(kfree_skb);
650
651void kfree_skb_list(struct sk_buff *segs)
652{
653 while (segs) {
654 struct sk_buff *next = segs->next;
655
656 kfree_skb(segs);
657 segs = next;
658 }
659}
660EXPORT_SYMBOL(kfree_skb_list);
661
662/**
663 * skb_tx_error - report an sk_buff xmit error
664 * @skb: buffer that triggered an error
665 *
666 * Report xmit error if a device callback is tracking this skb.
667 * skb must be freed afterwards.
668 */
669void skb_tx_error(struct sk_buff *skb)
670{
671 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
672 struct ubuf_info *uarg;
673
674 uarg = skb_shinfo(skb)->destructor_arg;
675 if (uarg->callback)
676 uarg->callback(uarg, false);
677 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
678 }
679}
680EXPORT_SYMBOL(skb_tx_error);
681
682/**
683 * consume_skb - free an skbuff
684 * @skb: buffer to free
685 *
686 * Drop a ref to the buffer and free it if the usage count has hit zero
687 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
688 * is being dropped after a failure and notes that
689 */
690void consume_skb(struct sk_buff *skb)
691{
692 if (unlikely(!skb))
693 return;
694 if (likely(atomic_read(&skb->users) == 1))
695 smp_rmb();
696 else if (likely(!atomic_dec_and_test(&skb->users)))
697 return;
698 trace_consume_skb(skb);
699 __kfree_skb(skb);
700}
701EXPORT_SYMBOL(consume_skb);
702
703static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
704{
705 new->tstamp = old->tstamp;
706 new->dev = old->dev;
707 new->transport_header = old->transport_header;
708 new->network_header = old->network_header;
709 new->mac_header = old->mac_header;
710 new->inner_protocol = old->inner_protocol;
711 new->inner_transport_header = old->inner_transport_header;
712 new->inner_network_header = old->inner_network_header;
713 new->inner_mac_header = old->inner_mac_header;
714 skb_dst_copy(new, old);
715 new->rxhash = old->rxhash;
716 new->ooo_okay = old->ooo_okay;
717 new->l4_rxhash = old->l4_rxhash;
718 new->no_fcs = old->no_fcs;
719 new->encapsulation = old->encapsulation;
720#ifdef CONFIG_XFRM
721 new->sp = secpath_get(old->sp);
722#endif
723 memcpy(new->cb, old->cb, sizeof(old->cb));
724 new->csum = old->csum;
725 new->local_df = old->local_df;
726 new->pkt_type = old->pkt_type;
727 new->ip_summed = old->ip_summed;
728 skb_copy_queue_mapping(new, old);
729 new->priority = old->priority;
730#if IS_ENABLED(CONFIG_IP_VS)
731 new->ipvs_property = old->ipvs_property;
732#endif
733 new->pfmemalloc = old->pfmemalloc;
734 new->protocol = old->protocol;
735 new->mark = old->mark;
736 new->skb_iif = old->skb_iif;
737 __nf_copy(new, old);
738#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
739 new->nf_trace = old->nf_trace;
740#endif
741#ifdef CONFIG_NET_SCHED
742 new->tc_index = old->tc_index;
743#ifdef CONFIG_NET_CLS_ACT
744 new->tc_verd = old->tc_verd;
745#endif
746#endif
747 new->vlan_proto = old->vlan_proto;
748 new->vlan_tci = old->vlan_tci;
749
750 skb_copy_secmark(new, old);
751
752#ifdef CONFIG_NET_RX_BUSY_POLL
753 new->napi_id = old->napi_id;
754#endif
755}
756
757/*
758 * You should not add any new code to this function. Add it to
759 * __copy_skb_header above instead.
760 */
761static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
762{
763#define C(x) n->x = skb->x
764
765 n->next = n->prev = NULL;
766 n->sk = NULL;
767 __copy_skb_header(n, skb);
768
769 C(len);
770 C(data_len);
771 C(mac_len);
772 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
773 n->cloned = 1;
774 n->nohdr = 0;
775 n->destructor = NULL;
776 C(tail);
777 C(end);
778 C(head);
779 C(head_frag);
780 C(data);
781 C(truesize);
782 atomic_set(&n->users, 1);
783
784 atomic_inc(&(skb_shinfo(skb)->dataref));
785 skb->cloned = 1;
786
787 return n;
788#undef C
789}
790
791/**
792 * skb_morph - morph one skb into another
793 * @dst: the skb to receive the contents
794 * @src: the skb to supply the contents
795 *
796 * This is identical to skb_clone except that the target skb is
797 * supplied by the user.
798 *
799 * The target skb is returned upon exit.
800 */
801struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
802{
803 skb_release_all(dst);
804 return __skb_clone(dst, src);
805}
806EXPORT_SYMBOL_GPL(skb_morph);
807
808/**
809 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
810 * @skb: the skb to modify
811 * @gfp_mask: allocation priority
812 *
813 * This must be called on SKBTX_DEV_ZEROCOPY skb.
814 * It will copy all frags into kernel and drop the reference
815 * to userspace pages.
816 *
817 * If this function is called from an interrupt gfp_mask() must be
818 * %GFP_ATOMIC.
819 *
820 * Returns 0 on success or a negative error code on failure
821 * to allocate kernel memory to copy to.
822 */
823int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
824{
825 int i;
826 int num_frags = skb_shinfo(skb)->nr_frags;
827 struct page *page, *head = NULL;
828 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
829
830 for (i = 0; i < num_frags; i++) {
831 u8 *vaddr;
832 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
833
834 page = alloc_page(gfp_mask);
835 if (!page) {
836 while (head) {
837 struct page *next = (struct page *)page_private(head);
838 put_page(head);
839 head = next;
840 }
841 return -ENOMEM;
842 }
843 vaddr = kmap_atomic(skb_frag_page(f));
844 memcpy(page_address(page),
845 vaddr + f->page_offset, skb_frag_size(f));
846 kunmap_atomic(vaddr);
847 set_page_private(page, (unsigned long)head);
848 head = page;
849 }
850
851 /* skb frags release userspace buffers */
852 for (i = 0; i < num_frags; i++)
853 skb_frag_unref(skb, i);
854
855 uarg->callback(uarg, false);
856
857 /* skb frags point to kernel buffers */
858 for (i = num_frags - 1; i >= 0; i--) {
859 __skb_fill_page_desc(skb, i, head, 0,
860 skb_shinfo(skb)->frags[i].size);
861 head = (struct page *)page_private(head);
862 }
863
864 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
865 return 0;
866}
867EXPORT_SYMBOL_GPL(skb_copy_ubufs);
868
869/**
870 * skb_clone - duplicate an sk_buff
871 * @skb: buffer to clone
872 * @gfp_mask: allocation priority
873 *
874 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
875 * copies share the same packet data but not structure. The new
876 * buffer has a reference count of 1. If the allocation fails the
877 * function returns %NULL otherwise the new buffer is returned.
878 *
879 * If this function is called from an interrupt gfp_mask() must be
880 * %GFP_ATOMIC.
881 */
882
883struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
884{
885 struct sk_buff *n;
886
887 if (skb_orphan_frags(skb, gfp_mask))
888 return NULL;
889
890 n = skb + 1;
891 if (skb->fclone == SKB_FCLONE_ORIG &&
892 n->fclone == SKB_FCLONE_UNAVAILABLE) {
893 atomic_t *fclone_ref = (atomic_t *) (n + 1);
894 n->fclone = SKB_FCLONE_CLONE;
895 atomic_inc(fclone_ref);
896 } else {
897 if (skb_pfmemalloc(skb))
898 gfp_mask |= __GFP_MEMALLOC;
899
900 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
901 if (!n)
902 return NULL;
903
904 kmemcheck_annotate_bitfield(n, flags1);
905 kmemcheck_annotate_bitfield(n, flags2);
906 n->fclone = SKB_FCLONE_UNAVAILABLE;
907 }
908
909 return __skb_clone(n, skb);
910}
911EXPORT_SYMBOL(skb_clone);
912
913static void skb_headers_offset_update(struct sk_buff *skb, int off)
914{
915 /* Only adjust this if it actually is csum_start rather than csum */
916 if (skb->ip_summed == CHECKSUM_PARTIAL)
917 skb->csum_start += off;
918 /* {transport,network,mac}_header and tail are relative to skb->head */
919 skb->transport_header += off;
920 skb->network_header += off;
921 if (skb_mac_header_was_set(skb))
922 skb->mac_header += off;
923 skb->inner_transport_header += off;
924 skb->inner_network_header += off;
925 skb->inner_mac_header += off;
926}
927
928static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
929{
930 __copy_skb_header(new, old);
931
932 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
933 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
934 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
935}
936
937static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
938{
939 if (skb_pfmemalloc(skb))
940 return SKB_ALLOC_RX;
941 return 0;
942}
943
944/**
945 * skb_copy - create private copy of an sk_buff
946 * @skb: buffer to copy
947 * @gfp_mask: allocation priority
948 *
949 * Make a copy of both an &sk_buff and its data. This is used when the
950 * caller wishes to modify the data and needs a private copy of the
951 * data to alter. Returns %NULL on failure or the pointer to the buffer
952 * on success. The returned buffer has a reference count of 1.
953 *
954 * As by-product this function converts non-linear &sk_buff to linear
955 * one, so that &sk_buff becomes completely private and caller is allowed
956 * to modify all the data of returned buffer. This means that this
957 * function is not recommended for use in circumstances when only
958 * header is going to be modified. Use pskb_copy() instead.
959 */
960
961struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
962{
963 int headerlen = skb_headroom(skb);
964 unsigned int size = skb_end_offset(skb) + skb->data_len;
965 struct sk_buff *n = __alloc_skb(size, gfp_mask,
966 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
967
968 if (!n)
969 return NULL;
970
971 /* Set the data pointer */
972 skb_reserve(n, headerlen);
973 /* Set the tail pointer and length */
974 skb_put(n, skb->len);
975
976 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
977 BUG();
978
979 copy_skb_header(n, skb);
980 return n;
981}
982EXPORT_SYMBOL(skb_copy);
983
984/**
985 * __pskb_copy - create copy of an sk_buff with private head.
986 * @skb: buffer to copy
987 * @headroom: headroom of new skb
988 * @gfp_mask: allocation priority
989 *
990 * Make a copy of both an &sk_buff and part of its data, located
991 * in header. Fragmented data remain shared. This is used when
992 * the caller wishes to modify only header of &sk_buff and needs
993 * private copy of the header to alter. Returns %NULL on failure
994 * or the pointer to the buffer on success.
995 * The returned buffer has a reference count of 1.
996 */
997
998struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
999{
1000 unsigned int size = skb_headlen(skb) + headroom;
1001 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1002 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1003
1004 if (!n)
1005 goto out;
1006
1007 /* Set the data pointer */
1008 skb_reserve(n, headroom);
1009 /* Set the tail pointer and length */
1010 skb_put(n, skb_headlen(skb));
1011 /* Copy the bytes */
1012 skb_copy_from_linear_data(skb, n->data, n->len);
1013
1014 n->truesize += skb->data_len;
1015 n->data_len = skb->data_len;
1016 n->len = skb->len;
1017
1018 if (skb_shinfo(skb)->nr_frags) {
1019 int i;
1020
1021 if (skb_orphan_frags(skb, gfp_mask)) {
1022 kfree_skb(n);
1023 n = NULL;
1024 goto out;
1025 }
1026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1027 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1028 skb_frag_ref(skb, i);
1029 }
1030 skb_shinfo(n)->nr_frags = i;
1031 }
1032
1033 if (skb_has_frag_list(skb)) {
1034 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1035 skb_clone_fraglist(n);
1036 }
1037
1038 copy_skb_header(n, skb);
1039out:
1040 return n;
1041}
1042EXPORT_SYMBOL(__pskb_copy);
1043
1044/**
1045 * pskb_expand_head - reallocate header of &sk_buff
1046 * @skb: buffer to reallocate
1047 * @nhead: room to add at head
1048 * @ntail: room to add at tail
1049 * @gfp_mask: allocation priority
1050 *
1051 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1052 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1053 * reference count of 1. Returns zero in the case of success or error,
1054 * if expansion failed. In the last case, &sk_buff is not changed.
1055 *
1056 * All the pointers pointing into skb header may change and must be
1057 * reloaded after call to this function.
1058 */
1059
1060int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1061 gfp_t gfp_mask)
1062{
1063 int i;
1064 u8 *data;
1065 int size = nhead + skb_end_offset(skb) + ntail;
1066 long off;
1067
1068 BUG_ON(nhead < 0);
1069
1070 if (skb_shared(skb))
1071 BUG();
1072
1073 size = SKB_DATA_ALIGN(size);
1074
1075 if (skb_pfmemalloc(skb))
1076 gfp_mask |= __GFP_MEMALLOC;
1077 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1078 gfp_mask, NUMA_NO_NODE, NULL);
1079 if (!data)
1080 goto nodata;
1081 size = SKB_WITH_OVERHEAD(ksize(data));
1082
1083 /* Copy only real data... and, alas, header. This should be
1084 * optimized for the cases when header is void.
1085 */
1086 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1087
1088 memcpy((struct skb_shared_info *)(data + size),
1089 skb_shinfo(skb),
1090 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1091
1092 /*
1093 * if shinfo is shared we must drop the old head gracefully, but if it
1094 * is not we can just drop the old head and let the existing refcount
1095 * be since all we did is relocate the values
1096 */
1097 if (skb_cloned(skb)) {
1098 /* copy this zero copy skb frags */
1099 if (skb_orphan_frags(skb, gfp_mask))
1100 goto nofrags;
1101 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1102 skb_frag_ref(skb, i);
1103
1104 if (skb_has_frag_list(skb))
1105 skb_clone_fraglist(skb);
1106
1107 skb_release_data(skb);
1108 } else {
1109 skb_free_head(skb);
1110 }
1111 off = (data + nhead) - skb->head;
1112
1113 skb->head = data;
1114 skb->head_frag = 0;
1115 skb->data += off;
1116#ifdef NET_SKBUFF_DATA_USES_OFFSET
1117 skb->end = size;
1118 off = nhead;
1119#else
1120 skb->end = skb->head + size;
1121#endif
1122 skb->tail += off;
1123 skb_headers_offset_update(skb, nhead);
1124 skb->cloned = 0;
1125 skb->hdr_len = 0;
1126 skb->nohdr = 0;
1127 atomic_set(&skb_shinfo(skb)->dataref, 1);
1128 return 0;
1129
1130nofrags:
1131 kfree(data);
1132nodata:
1133 return -ENOMEM;
1134}
1135EXPORT_SYMBOL(pskb_expand_head);
1136
1137/* Make private copy of skb with writable head and some headroom */
1138
1139struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1140{
1141 struct sk_buff *skb2;
1142 int delta = headroom - skb_headroom(skb);
1143
1144 if (delta <= 0)
1145 skb2 = pskb_copy(skb, GFP_ATOMIC);
1146 else {
1147 skb2 = skb_clone(skb, GFP_ATOMIC);
1148 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1149 GFP_ATOMIC)) {
1150 kfree_skb(skb2);
1151 skb2 = NULL;
1152 }
1153 }
1154 return skb2;
1155}
1156EXPORT_SYMBOL(skb_realloc_headroom);
1157
1158/**
1159 * skb_copy_expand - copy and expand sk_buff
1160 * @skb: buffer to copy
1161 * @newheadroom: new free bytes at head
1162 * @newtailroom: new free bytes at tail
1163 * @gfp_mask: allocation priority
1164 *
1165 * Make a copy of both an &sk_buff and its data and while doing so
1166 * allocate additional space.
1167 *
1168 * This is used when the caller wishes to modify the data and needs a
1169 * private copy of the data to alter as well as more space for new fields.
1170 * Returns %NULL on failure or the pointer to the buffer
1171 * on success. The returned buffer has a reference count of 1.
1172 *
1173 * You must pass %GFP_ATOMIC as the allocation priority if this function
1174 * is called from an interrupt.
1175 */
1176struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1177 int newheadroom, int newtailroom,
1178 gfp_t gfp_mask)
1179{
1180 /*
1181 * Allocate the copy buffer
1182 */
1183 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1184 gfp_mask, skb_alloc_rx_flag(skb),
1185 NUMA_NO_NODE);
1186 int oldheadroom = skb_headroom(skb);
1187 int head_copy_len, head_copy_off;
1188
1189 if (!n)
1190 return NULL;
1191
1192 skb_reserve(n, newheadroom);
1193
1194 /* Set the tail pointer and length */
1195 skb_put(n, skb->len);
1196
1197 head_copy_len = oldheadroom;
1198 head_copy_off = 0;
1199 if (newheadroom <= head_copy_len)
1200 head_copy_len = newheadroom;
1201 else
1202 head_copy_off = newheadroom - head_copy_len;
1203
1204 /* Copy the linear header and data. */
1205 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1206 skb->len + head_copy_len))
1207 BUG();
1208
1209 copy_skb_header(n, skb);
1210
1211 skb_headers_offset_update(n, newheadroom - oldheadroom);
1212
1213 return n;
1214}
1215EXPORT_SYMBOL(skb_copy_expand);
1216
1217/**
1218 * skb_pad - zero pad the tail of an skb
1219 * @skb: buffer to pad
1220 * @pad: space to pad
1221 *
1222 * Ensure that a buffer is followed by a padding area that is zero
1223 * filled. Used by network drivers which may DMA or transfer data
1224 * beyond the buffer end onto the wire.
1225 *
1226 * May return error in out of memory cases. The skb is freed on error.
1227 */
1228
1229int skb_pad(struct sk_buff *skb, int pad)
1230{
1231 int err;
1232 int ntail;
1233
1234 /* If the skbuff is non linear tailroom is always zero.. */
1235 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1236 memset(skb->data+skb->len, 0, pad);
1237 return 0;
1238 }
1239
1240 ntail = skb->data_len + pad - (skb->end - skb->tail);
1241 if (likely(skb_cloned(skb) || ntail > 0)) {
1242 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1243 if (unlikely(err))
1244 goto free_skb;
1245 }
1246
1247 /* FIXME: The use of this function with non-linear skb's really needs
1248 * to be audited.
1249 */
1250 err = skb_linearize(skb);
1251 if (unlikely(err))
1252 goto free_skb;
1253
1254 memset(skb->data + skb->len, 0, pad);
1255 return 0;
1256
1257free_skb:
1258 kfree_skb(skb);
1259 return err;
1260}
1261EXPORT_SYMBOL(skb_pad);
1262
1263/**
1264 * pskb_put - add data to the tail of a potentially fragmented buffer
1265 * @skb: start of the buffer to use
1266 * @tail: tail fragment of the buffer to use
1267 * @len: amount of data to add
1268 *
1269 * This function extends the used data area of the potentially
1270 * fragmented buffer. @tail must be the last fragment of @skb -- or
1271 * @skb itself. If this would exceed the total buffer size the kernel
1272 * will panic. A pointer to the first byte of the extra data is
1273 * returned.
1274 */
1275
1276unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1277{
1278 if (tail != skb) {
1279 skb->data_len += len;
1280 skb->len += len;
1281 }
1282 return skb_put(tail, len);
1283}
1284EXPORT_SYMBOL_GPL(pskb_put);
1285
1286/**
1287 * skb_put - add data to a buffer
1288 * @skb: buffer to use
1289 * @len: amount of data to add
1290 *
1291 * This function extends the used data area of the buffer. If this would
1292 * exceed the total buffer size the kernel will panic. A pointer to the
1293 * first byte of the extra data is returned.
1294 */
1295unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1296{
1297 unsigned char *tmp = skb_tail_pointer(skb);
1298 SKB_LINEAR_ASSERT(skb);
1299 skb->tail += len;
1300 skb->len += len;
1301 if (unlikely(skb->tail > skb->end))
1302 skb_over_panic(skb, len, __builtin_return_address(0));
1303 return tmp;
1304}
1305EXPORT_SYMBOL(skb_put);
1306
1307/**
1308 * skb_push - add data to the start of a buffer
1309 * @skb: buffer to use
1310 * @len: amount of data to add
1311 *
1312 * This function extends the used data area of the buffer at the buffer
1313 * start. If this would exceed the total buffer headroom the kernel will
1314 * panic. A pointer to the first byte of the extra data is returned.
1315 */
1316unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1317{
1318 skb->data -= len;
1319 skb->len += len;
1320 if (unlikely(skb->data<skb->head))
1321 skb_under_panic(skb, len, __builtin_return_address(0));
1322 return skb->data;
1323}
1324EXPORT_SYMBOL(skb_push);
1325
1326/**
1327 * skb_pull - remove data from the start of a buffer
1328 * @skb: buffer to use
1329 * @len: amount of data to remove
1330 *
1331 * This function removes data from the start of a buffer, returning
1332 * the memory to the headroom. A pointer to the next data in the buffer
1333 * is returned. Once the data has been pulled future pushes will overwrite
1334 * the old data.
1335 */
1336unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1337{
1338 return skb_pull_inline(skb, len);
1339}
1340EXPORT_SYMBOL(skb_pull);
1341
1342/**
1343 * skb_trim - remove end from a buffer
1344 * @skb: buffer to alter
1345 * @len: new length
1346 *
1347 * Cut the length of a buffer down by removing data from the tail. If
1348 * the buffer is already under the length specified it is not modified.
1349 * The skb must be linear.
1350 */
1351void skb_trim(struct sk_buff *skb, unsigned int len)
1352{
1353 if (skb->len > len)
1354 __skb_trim(skb, len);
1355}
1356EXPORT_SYMBOL(skb_trim);
1357
1358/* Trims skb to length len. It can change skb pointers.
1359 */
1360
1361int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1362{
1363 struct sk_buff **fragp;
1364 struct sk_buff *frag;
1365 int offset = skb_headlen(skb);
1366 int nfrags = skb_shinfo(skb)->nr_frags;
1367 int i;
1368 int err;
1369
1370 if (skb_cloned(skb) &&
1371 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1372 return err;
1373
1374 i = 0;
1375 if (offset >= len)
1376 goto drop_pages;
1377
1378 for (; i < nfrags; i++) {
1379 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1380
1381 if (end < len) {
1382 offset = end;
1383 continue;
1384 }
1385
1386 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1387
1388drop_pages:
1389 skb_shinfo(skb)->nr_frags = i;
1390
1391 for (; i < nfrags; i++)
1392 skb_frag_unref(skb, i);
1393
1394 if (skb_has_frag_list(skb))
1395 skb_drop_fraglist(skb);
1396 goto done;
1397 }
1398
1399 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1400 fragp = &frag->next) {
1401 int end = offset + frag->len;
1402
1403 if (skb_shared(frag)) {
1404 struct sk_buff *nfrag;
1405
1406 nfrag = skb_clone(frag, GFP_ATOMIC);
1407 if (unlikely(!nfrag))
1408 return -ENOMEM;
1409
1410 nfrag->next = frag->next;
1411 consume_skb(frag);
1412 frag = nfrag;
1413 *fragp = frag;
1414 }
1415
1416 if (end < len) {
1417 offset = end;
1418 continue;
1419 }
1420
1421 if (end > len &&
1422 unlikely((err = pskb_trim(frag, len - offset))))
1423 return err;
1424
1425 if (frag->next)
1426 skb_drop_list(&frag->next);
1427 break;
1428 }
1429
1430done:
1431 if (len > skb_headlen(skb)) {
1432 skb->data_len -= skb->len - len;
1433 skb->len = len;
1434 } else {
1435 skb->len = len;
1436 skb->data_len = 0;
1437 skb_set_tail_pointer(skb, len);
1438 }
1439
1440 return 0;
1441}
1442EXPORT_SYMBOL(___pskb_trim);
1443
1444/**
1445 * __pskb_pull_tail - advance tail of skb header
1446 * @skb: buffer to reallocate
1447 * @delta: number of bytes to advance tail
1448 *
1449 * The function makes a sense only on a fragmented &sk_buff,
1450 * it expands header moving its tail forward and copying necessary
1451 * data from fragmented part.
1452 *
1453 * &sk_buff MUST have reference count of 1.
1454 *
1455 * Returns %NULL (and &sk_buff does not change) if pull failed
1456 * or value of new tail of skb in the case of success.
1457 *
1458 * All the pointers pointing into skb header may change and must be
1459 * reloaded after call to this function.
1460 */
1461
1462/* Moves tail of skb head forward, copying data from fragmented part,
1463 * when it is necessary.
1464 * 1. It may fail due to malloc failure.
1465 * 2. It may change skb pointers.
1466 *
1467 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1468 */
1469unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1470{
1471 /* If skb has not enough free space at tail, get new one
1472 * plus 128 bytes for future expansions. If we have enough
1473 * room at tail, reallocate without expansion only if skb is cloned.
1474 */
1475 int i, k, eat = (skb->tail + delta) - skb->end;
1476
1477 if (eat > 0 || skb_cloned(skb)) {
1478 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1479 GFP_ATOMIC))
1480 return NULL;
1481 }
1482
1483 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1484 BUG();
1485
1486 /* Optimization: no fragments, no reasons to preestimate
1487 * size of pulled pages. Superb.
1488 */
1489 if (!skb_has_frag_list(skb))
1490 goto pull_pages;
1491
1492 /* Estimate size of pulled pages. */
1493 eat = delta;
1494 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1495 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1496
1497 if (size >= eat)
1498 goto pull_pages;
1499 eat -= size;
1500 }
1501
1502 /* If we need update frag list, we are in troubles.
1503 * Certainly, it possible to add an offset to skb data,
1504 * but taking into account that pulling is expected to
1505 * be very rare operation, it is worth to fight against
1506 * further bloating skb head and crucify ourselves here instead.
1507 * Pure masohism, indeed. 8)8)
1508 */
1509 if (eat) {
1510 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1511 struct sk_buff *clone = NULL;
1512 struct sk_buff *insp = NULL;
1513
1514 do {
1515 BUG_ON(!list);
1516
1517 if (list->len <= eat) {
1518 /* Eaten as whole. */
1519 eat -= list->len;
1520 list = list->next;
1521 insp = list;
1522 } else {
1523 /* Eaten partially. */
1524
1525 if (skb_shared(list)) {
1526 /* Sucks! We need to fork list. :-( */
1527 clone = skb_clone(list, GFP_ATOMIC);
1528 if (!clone)
1529 return NULL;
1530 insp = list->next;
1531 list = clone;
1532 } else {
1533 /* This may be pulled without
1534 * problems. */
1535 insp = list;
1536 }
1537 if (!pskb_pull(list, eat)) {
1538 kfree_skb(clone);
1539 return NULL;
1540 }
1541 break;
1542 }
1543 } while (eat);
1544
1545 /* Free pulled out fragments. */
1546 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1547 skb_shinfo(skb)->frag_list = list->next;
1548 kfree_skb(list);
1549 }
1550 /* And insert new clone at head. */
1551 if (clone) {
1552 clone->next = list;
1553 skb_shinfo(skb)->frag_list = clone;
1554 }
1555 }
1556 /* Success! Now we may commit changes to skb data. */
1557
1558pull_pages:
1559 eat = delta;
1560 k = 0;
1561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1562 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1563
1564 if (size <= eat) {
1565 skb_frag_unref(skb, i);
1566 eat -= size;
1567 } else {
1568 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1569 if (eat) {
1570 skb_shinfo(skb)->frags[k].page_offset += eat;
1571 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1572 eat = 0;
1573 }
1574 k++;
1575 }
1576 }
1577 skb_shinfo(skb)->nr_frags = k;
1578
1579 skb->tail += delta;
1580 skb->data_len -= delta;
1581
1582 return skb_tail_pointer(skb);
1583}
1584EXPORT_SYMBOL(__pskb_pull_tail);
1585
1586/**
1587 * skb_copy_bits - copy bits from skb to kernel buffer
1588 * @skb: source skb
1589 * @offset: offset in source
1590 * @to: destination buffer
1591 * @len: number of bytes to copy
1592 *
1593 * Copy the specified number of bytes from the source skb to the
1594 * destination buffer.
1595 *
1596 * CAUTION ! :
1597 * If its prototype is ever changed,
1598 * check arch/{*}/net/{*}.S files,
1599 * since it is called from BPF assembly code.
1600 */
1601int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1602{
1603 int start = skb_headlen(skb);
1604 struct sk_buff *frag_iter;
1605 int i, copy;
1606
1607 if (offset > (int)skb->len - len)
1608 goto fault;
1609
1610 /* Copy header. */
1611 if ((copy = start - offset) > 0) {
1612 if (copy > len)
1613 copy = len;
1614 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1615 if ((len -= copy) == 0)
1616 return 0;
1617 offset += copy;
1618 to += copy;
1619 }
1620
1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1622 int end;
1623 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1624
1625 WARN_ON(start > offset + len);
1626
1627 end = start + skb_frag_size(f);
1628 if ((copy = end - offset) > 0) {
1629 u8 *vaddr;
1630
1631 if (copy > len)
1632 copy = len;
1633
1634 vaddr = kmap_atomic(skb_frag_page(f));
1635 memcpy(to,
1636 vaddr + f->page_offset + offset - start,
1637 copy);
1638 kunmap_atomic(vaddr);
1639
1640 if ((len -= copy) == 0)
1641 return 0;
1642 offset += copy;
1643 to += copy;
1644 }
1645 start = end;
1646 }
1647
1648 skb_walk_frags(skb, frag_iter) {
1649 int end;
1650
1651 WARN_ON(start > offset + len);
1652
1653 end = start + frag_iter->len;
1654 if ((copy = end - offset) > 0) {
1655 if (copy > len)
1656 copy = len;
1657 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1658 goto fault;
1659 if ((len -= copy) == 0)
1660 return 0;
1661 offset += copy;
1662 to += copy;
1663 }
1664 start = end;
1665 }
1666
1667 if (!len)
1668 return 0;
1669
1670fault:
1671 return -EFAULT;
1672}
1673EXPORT_SYMBOL(skb_copy_bits);
1674
1675/*
1676 * Callback from splice_to_pipe(), if we need to release some pages
1677 * at the end of the spd in case we error'ed out in filling the pipe.
1678 */
1679static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1680{
1681 put_page(spd->pages[i]);
1682}
1683
1684static struct page *linear_to_page(struct page *page, unsigned int *len,
1685 unsigned int *offset,
1686 struct sock *sk)
1687{
1688 struct page_frag *pfrag = sk_page_frag(sk);
1689
1690 if (!sk_page_frag_refill(sk, pfrag))
1691 return NULL;
1692
1693 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1694
1695 memcpy(page_address(pfrag->page) + pfrag->offset,
1696 page_address(page) + *offset, *len);
1697 *offset = pfrag->offset;
1698 pfrag->offset += *len;
1699
1700 return pfrag->page;
1701}
1702
1703static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1704 struct page *page,
1705 unsigned int offset)
1706{
1707 return spd->nr_pages &&
1708 spd->pages[spd->nr_pages - 1] == page &&
1709 (spd->partial[spd->nr_pages - 1].offset +
1710 spd->partial[spd->nr_pages - 1].len == offset);
1711}
1712
1713/*
1714 * Fill page/offset/length into spd, if it can hold more pages.
1715 */
1716static bool spd_fill_page(struct splice_pipe_desc *spd,
1717 struct pipe_inode_info *pipe, struct page *page,
1718 unsigned int *len, unsigned int offset,
1719 bool linear,
1720 struct sock *sk)
1721{
1722 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1723 return true;
1724
1725 if (linear) {
1726 page = linear_to_page(page, len, &offset, sk);
1727 if (!page)
1728 return true;
1729 }
1730 if (spd_can_coalesce(spd, page, offset)) {
1731 spd->partial[spd->nr_pages - 1].len += *len;
1732 return false;
1733 }
1734 get_page(page);
1735 spd->pages[spd->nr_pages] = page;
1736 spd->partial[spd->nr_pages].len = *len;
1737 spd->partial[spd->nr_pages].offset = offset;
1738 spd->nr_pages++;
1739
1740 return false;
1741}
1742
1743static bool __splice_segment(struct page *page, unsigned int poff,
1744 unsigned int plen, unsigned int *off,
1745 unsigned int *len,
1746 struct splice_pipe_desc *spd, bool linear,
1747 struct sock *sk,
1748 struct pipe_inode_info *pipe)
1749{
1750 if (!*len)
1751 return true;
1752
1753 /* skip this segment if already processed */
1754 if (*off >= plen) {
1755 *off -= plen;
1756 return false;
1757 }
1758
1759 /* ignore any bits we already processed */
1760 poff += *off;
1761 plen -= *off;
1762 *off = 0;
1763
1764 do {
1765 unsigned int flen = min(*len, plen);
1766
1767 if (spd_fill_page(spd, pipe, page, &flen, poff,
1768 linear, sk))
1769 return true;
1770 poff += flen;
1771 plen -= flen;
1772 *len -= flen;
1773 } while (*len && plen);
1774
1775 return false;
1776}
1777
1778/*
1779 * Map linear and fragment data from the skb to spd. It reports true if the
1780 * pipe is full or if we already spliced the requested length.
1781 */
1782static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1783 unsigned int *offset, unsigned int *len,
1784 struct splice_pipe_desc *spd, struct sock *sk)
1785{
1786 int seg;
1787
1788 /* map the linear part :
1789 * If skb->head_frag is set, this 'linear' part is backed by a
1790 * fragment, and if the head is not shared with any clones then
1791 * we can avoid a copy since we own the head portion of this page.
1792 */
1793 if (__splice_segment(virt_to_page(skb->data),
1794 (unsigned long) skb->data & (PAGE_SIZE - 1),
1795 skb_headlen(skb),
1796 offset, len, spd,
1797 skb_head_is_locked(skb),
1798 sk, pipe))
1799 return true;
1800
1801 /*
1802 * then map the fragments
1803 */
1804 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1805 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1806
1807 if (__splice_segment(skb_frag_page(f),
1808 f->page_offset, skb_frag_size(f),
1809 offset, len, spd, false, sk, pipe))
1810 return true;
1811 }
1812
1813 return false;
1814}
1815
1816/*
1817 * Map data from the skb to a pipe. Should handle both the linear part,
1818 * the fragments, and the frag list. It does NOT handle frag lists within
1819 * the frag list, if such a thing exists. We'd probably need to recurse to
1820 * handle that cleanly.
1821 */
1822int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1823 struct pipe_inode_info *pipe, unsigned int tlen,
1824 unsigned int flags)
1825{
1826 struct partial_page partial[MAX_SKB_FRAGS];
1827 struct page *pages[MAX_SKB_FRAGS];
1828 struct splice_pipe_desc spd = {
1829 .pages = pages,
1830 .partial = partial,
1831 .nr_pages_max = MAX_SKB_FRAGS,
1832 .flags = flags,
1833 .ops = &sock_pipe_buf_ops,
1834 .spd_release = sock_spd_release,
1835 };
1836 struct sk_buff *frag_iter;
1837 struct sock *sk = skb->sk;
1838 int ret = 0;
1839
1840 /*
1841 * __skb_splice_bits() only fails if the output has no room left,
1842 * so no point in going over the frag_list for the error case.
1843 */
1844 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1845 goto done;
1846 else if (!tlen)
1847 goto done;
1848
1849 /*
1850 * now see if we have a frag_list to map
1851 */
1852 skb_walk_frags(skb, frag_iter) {
1853 if (!tlen)
1854 break;
1855 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1856 break;
1857 }
1858
1859done:
1860 if (spd.nr_pages) {
1861 /*
1862 * Drop the socket lock, otherwise we have reverse
1863 * locking dependencies between sk_lock and i_mutex
1864 * here as compared to sendfile(). We enter here
1865 * with the socket lock held, and splice_to_pipe() will
1866 * grab the pipe inode lock. For sendfile() emulation,
1867 * we call into ->sendpage() with the i_mutex lock held
1868 * and networking will grab the socket lock.
1869 */
1870 release_sock(sk);
1871 ret = splice_to_pipe(pipe, &spd);
1872 lock_sock(sk);
1873 }
1874
1875 return ret;
1876}
1877
1878/**
1879 * skb_store_bits - store bits from kernel buffer to skb
1880 * @skb: destination buffer
1881 * @offset: offset in destination
1882 * @from: source buffer
1883 * @len: number of bytes to copy
1884 *
1885 * Copy the specified number of bytes from the source buffer to the
1886 * destination skb. This function handles all the messy bits of
1887 * traversing fragment lists and such.
1888 */
1889
1890int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1891{
1892 int start = skb_headlen(skb);
1893 struct sk_buff *frag_iter;
1894 int i, copy;
1895
1896 if (offset > (int)skb->len - len)
1897 goto fault;
1898
1899 if ((copy = start - offset) > 0) {
1900 if (copy > len)
1901 copy = len;
1902 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1903 if ((len -= copy) == 0)
1904 return 0;
1905 offset += copy;
1906 from += copy;
1907 }
1908
1909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1911 int end;
1912
1913 WARN_ON(start > offset + len);
1914
1915 end = start + skb_frag_size(frag);
1916 if ((copy = end - offset) > 0) {
1917 u8 *vaddr;
1918
1919 if (copy > len)
1920 copy = len;
1921
1922 vaddr = kmap_atomic(skb_frag_page(frag));
1923 memcpy(vaddr + frag->page_offset + offset - start,
1924 from, copy);
1925 kunmap_atomic(vaddr);
1926
1927 if ((len -= copy) == 0)
1928 return 0;
1929 offset += copy;
1930 from += copy;
1931 }
1932 start = end;
1933 }
1934
1935 skb_walk_frags(skb, frag_iter) {
1936 int end;
1937
1938 WARN_ON(start > offset + len);
1939
1940 end = start + frag_iter->len;
1941 if ((copy = end - offset) > 0) {
1942 if (copy > len)
1943 copy = len;
1944 if (skb_store_bits(frag_iter, offset - start,
1945 from, copy))
1946 goto fault;
1947 if ((len -= copy) == 0)
1948 return 0;
1949 offset += copy;
1950 from += copy;
1951 }
1952 start = end;
1953 }
1954 if (!len)
1955 return 0;
1956
1957fault:
1958 return -EFAULT;
1959}
1960EXPORT_SYMBOL(skb_store_bits);
1961
1962/* Checksum skb data. */
1963__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
1964 __wsum csum, const struct skb_checksum_ops *ops)
1965{
1966 int start = skb_headlen(skb);
1967 int i, copy = start - offset;
1968 struct sk_buff *frag_iter;
1969 int pos = 0;
1970
1971 /* Checksum header. */
1972 if (copy > 0) {
1973 if (copy > len)
1974 copy = len;
1975 csum = ops->update(skb->data + offset, copy, csum);
1976 if ((len -= copy) == 0)
1977 return csum;
1978 offset += copy;
1979 pos = copy;
1980 }
1981
1982 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1983 int end;
1984 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1985
1986 WARN_ON(start > offset + len);
1987
1988 end = start + skb_frag_size(frag);
1989 if ((copy = end - offset) > 0) {
1990 __wsum csum2;
1991 u8 *vaddr;
1992
1993 if (copy > len)
1994 copy = len;
1995 vaddr = kmap_atomic(skb_frag_page(frag));
1996 csum2 = ops->update(vaddr + frag->page_offset +
1997 offset - start, copy, 0);
1998 kunmap_atomic(vaddr);
1999 csum = ops->combine(csum, csum2, pos, copy);
2000 if (!(len -= copy))
2001 return csum;
2002 offset += copy;
2003 pos += copy;
2004 }
2005 start = end;
2006 }
2007
2008 skb_walk_frags(skb, frag_iter) {
2009 int end;
2010
2011 WARN_ON(start > offset + len);
2012
2013 end = start + frag_iter->len;
2014 if ((copy = end - offset) > 0) {
2015 __wsum csum2;
2016 if (copy > len)
2017 copy = len;
2018 csum2 = __skb_checksum(frag_iter, offset - start,
2019 copy, 0, ops);
2020 csum = ops->combine(csum, csum2, pos, copy);
2021 if ((len -= copy) == 0)
2022 return csum;
2023 offset += copy;
2024 pos += copy;
2025 }
2026 start = end;
2027 }
2028 BUG_ON(len);
2029
2030 return csum;
2031}
2032EXPORT_SYMBOL(__skb_checksum);
2033
2034__wsum skb_checksum(const struct sk_buff *skb, int offset,
2035 int len, __wsum csum)
2036{
2037 const struct skb_checksum_ops ops = {
2038 .update = csum_partial_ext,
2039 .combine = csum_block_add_ext,
2040 };
2041
2042 return __skb_checksum(skb, offset, len, csum, &ops);
2043}
2044EXPORT_SYMBOL(skb_checksum);
2045
2046/* Both of above in one bottle. */
2047
2048__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2049 u8 *to, int len, __wsum csum)
2050{
2051 int start = skb_headlen(skb);
2052 int i, copy = start - offset;
2053 struct sk_buff *frag_iter;
2054 int pos = 0;
2055
2056 /* Copy header. */
2057 if (copy > 0) {
2058 if (copy > len)
2059 copy = len;
2060 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2061 copy, csum);
2062 if ((len -= copy) == 0)
2063 return csum;
2064 offset += copy;
2065 to += copy;
2066 pos = copy;
2067 }
2068
2069 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2070 int end;
2071
2072 WARN_ON(start > offset + len);
2073
2074 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2075 if ((copy = end - offset) > 0) {
2076 __wsum csum2;
2077 u8 *vaddr;
2078 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2079
2080 if (copy > len)
2081 copy = len;
2082 vaddr = kmap_atomic(skb_frag_page(frag));
2083 csum2 = csum_partial_copy_nocheck(vaddr +
2084 frag->page_offset +
2085 offset - start, to,
2086 copy, 0);
2087 kunmap_atomic(vaddr);
2088 csum = csum_block_add(csum, csum2, pos);
2089 if (!(len -= copy))
2090 return csum;
2091 offset += copy;
2092 to += copy;
2093 pos += copy;
2094 }
2095 start = end;
2096 }
2097
2098 skb_walk_frags(skb, frag_iter) {
2099 __wsum csum2;
2100 int end;
2101
2102 WARN_ON(start > offset + len);
2103
2104 end = start + frag_iter->len;
2105 if ((copy = end - offset) > 0) {
2106 if (copy > len)
2107 copy = len;
2108 csum2 = skb_copy_and_csum_bits(frag_iter,
2109 offset - start,
2110 to, copy, 0);
2111 csum = csum_block_add(csum, csum2, pos);
2112 if ((len -= copy) == 0)
2113 return csum;
2114 offset += copy;
2115 to += copy;
2116 pos += copy;
2117 }
2118 start = end;
2119 }
2120 BUG_ON(len);
2121 return csum;
2122}
2123EXPORT_SYMBOL(skb_copy_and_csum_bits);
2124
2125void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2126{
2127 __wsum csum;
2128 long csstart;
2129
2130 if (skb->ip_summed == CHECKSUM_PARTIAL)
2131 csstart = skb_checksum_start_offset(skb);
2132 else
2133 csstart = skb_headlen(skb);
2134
2135 BUG_ON(csstart > skb_headlen(skb));
2136
2137 skb_copy_from_linear_data(skb, to, csstart);
2138
2139 csum = 0;
2140 if (csstart != skb->len)
2141 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2142 skb->len - csstart, 0);
2143
2144 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2145 long csstuff = csstart + skb->csum_offset;
2146
2147 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2148 }
2149}
2150EXPORT_SYMBOL(skb_copy_and_csum_dev);
2151
2152/**
2153 * skb_dequeue - remove from the head of the queue
2154 * @list: list to dequeue from
2155 *
2156 * Remove the head of the list. The list lock is taken so the function
2157 * may be used safely with other locking list functions. The head item is
2158 * returned or %NULL if the list is empty.
2159 */
2160
2161struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2162{
2163 unsigned long flags;
2164 struct sk_buff *result;
2165
2166 spin_lock_irqsave(&list->lock, flags);
2167 result = __skb_dequeue(list);
2168 spin_unlock_irqrestore(&list->lock, flags);
2169 return result;
2170}
2171EXPORT_SYMBOL(skb_dequeue);
2172
2173/**
2174 * skb_dequeue_tail - remove from the tail of the queue
2175 * @list: list to dequeue from
2176 *
2177 * Remove the tail of the list. The list lock is taken so the function
2178 * may be used safely with other locking list functions. The tail item is
2179 * returned or %NULL if the list is empty.
2180 */
2181struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2182{
2183 unsigned long flags;
2184 struct sk_buff *result;
2185
2186 spin_lock_irqsave(&list->lock, flags);
2187 result = __skb_dequeue_tail(list);
2188 spin_unlock_irqrestore(&list->lock, flags);
2189 return result;
2190}
2191EXPORT_SYMBOL(skb_dequeue_tail);
2192
2193/**
2194 * skb_queue_purge - empty a list
2195 * @list: list to empty
2196 *
2197 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2198 * the list and one reference dropped. This function takes the list
2199 * lock and is atomic with respect to other list locking functions.
2200 */
2201void skb_queue_purge(struct sk_buff_head *list)
2202{
2203 struct sk_buff *skb;
2204 while ((skb = skb_dequeue(list)) != NULL)
2205 kfree_skb(skb);
2206}
2207EXPORT_SYMBOL(skb_queue_purge);
2208
2209/**
2210 * skb_queue_head - queue a buffer at the list head
2211 * @list: list to use
2212 * @newsk: buffer to queue
2213 *
2214 * Queue a buffer at the start of the list. This function takes the
2215 * list lock and can be used safely with other locking &sk_buff functions
2216 * safely.
2217 *
2218 * A buffer cannot be placed on two lists at the same time.
2219 */
2220void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2221{
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(&list->lock, flags);
2225 __skb_queue_head(list, newsk);
2226 spin_unlock_irqrestore(&list->lock, flags);
2227}
2228EXPORT_SYMBOL(skb_queue_head);
2229
2230/**
2231 * skb_queue_tail - queue a buffer at the list tail
2232 * @list: list to use
2233 * @newsk: buffer to queue
2234 *
2235 * Queue a buffer at the tail of the list. This function takes the
2236 * list lock and can be used safely with other locking &sk_buff functions
2237 * safely.
2238 *
2239 * A buffer cannot be placed on two lists at the same time.
2240 */
2241void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2242{
2243 unsigned long flags;
2244
2245 spin_lock_irqsave(&list->lock, flags);
2246 __skb_queue_tail(list, newsk);
2247 spin_unlock_irqrestore(&list->lock, flags);
2248}
2249EXPORT_SYMBOL(skb_queue_tail);
2250
2251/**
2252 * skb_unlink - remove a buffer from a list
2253 * @skb: buffer to remove
2254 * @list: list to use
2255 *
2256 * Remove a packet from a list. The list locks are taken and this
2257 * function is atomic with respect to other list locked calls
2258 *
2259 * You must know what list the SKB is on.
2260 */
2261void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2262{
2263 unsigned long flags;
2264
2265 spin_lock_irqsave(&list->lock, flags);
2266 __skb_unlink(skb, list);
2267 spin_unlock_irqrestore(&list->lock, flags);
2268}
2269EXPORT_SYMBOL(skb_unlink);
2270
2271/**
2272 * skb_append - append a buffer
2273 * @old: buffer to insert after
2274 * @newsk: buffer to insert
2275 * @list: list to use
2276 *
2277 * Place a packet after a given packet in a list. The list locks are taken
2278 * and this function is atomic with respect to other list locked calls.
2279 * A buffer cannot be placed on two lists at the same time.
2280 */
2281void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2282{
2283 unsigned long flags;
2284
2285 spin_lock_irqsave(&list->lock, flags);
2286 __skb_queue_after(list, old, newsk);
2287 spin_unlock_irqrestore(&list->lock, flags);
2288}
2289EXPORT_SYMBOL(skb_append);
2290
2291/**
2292 * skb_insert - insert a buffer
2293 * @old: buffer to insert before
2294 * @newsk: buffer to insert
2295 * @list: list to use
2296 *
2297 * Place a packet before a given packet in a list. The list locks are
2298 * taken and this function is atomic with respect to other list locked
2299 * calls.
2300 *
2301 * A buffer cannot be placed on two lists at the same time.
2302 */
2303void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2304{
2305 unsigned long flags;
2306
2307 spin_lock_irqsave(&list->lock, flags);
2308 __skb_insert(newsk, old->prev, old, list);
2309 spin_unlock_irqrestore(&list->lock, flags);
2310}
2311EXPORT_SYMBOL(skb_insert);
2312
2313static inline void skb_split_inside_header(struct sk_buff *skb,
2314 struct sk_buff* skb1,
2315 const u32 len, const int pos)
2316{
2317 int i;
2318
2319 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2320 pos - len);
2321 /* And move data appendix as is. */
2322 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2323 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2324
2325 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2326 skb_shinfo(skb)->nr_frags = 0;
2327 skb1->data_len = skb->data_len;
2328 skb1->len += skb1->data_len;
2329 skb->data_len = 0;
2330 skb->len = len;
2331 skb_set_tail_pointer(skb, len);
2332}
2333
2334static inline void skb_split_no_header(struct sk_buff *skb,
2335 struct sk_buff* skb1,
2336 const u32 len, int pos)
2337{
2338 int i, k = 0;
2339 const int nfrags = skb_shinfo(skb)->nr_frags;
2340
2341 skb_shinfo(skb)->nr_frags = 0;
2342 skb1->len = skb1->data_len = skb->len - len;
2343 skb->len = len;
2344 skb->data_len = len - pos;
2345
2346 for (i = 0; i < nfrags; i++) {
2347 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2348
2349 if (pos + size > len) {
2350 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2351
2352 if (pos < len) {
2353 /* Split frag.
2354 * We have two variants in this case:
2355 * 1. Move all the frag to the second
2356 * part, if it is possible. F.e.
2357 * this approach is mandatory for TUX,
2358 * where splitting is expensive.
2359 * 2. Split is accurately. We make this.
2360 */
2361 skb_frag_ref(skb, i);
2362 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2363 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2364 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2365 skb_shinfo(skb)->nr_frags++;
2366 }
2367 k++;
2368 } else
2369 skb_shinfo(skb)->nr_frags++;
2370 pos += size;
2371 }
2372 skb_shinfo(skb1)->nr_frags = k;
2373}
2374
2375/**
2376 * skb_split - Split fragmented skb to two parts at length len.
2377 * @skb: the buffer to split
2378 * @skb1: the buffer to receive the second part
2379 * @len: new length for skb
2380 */
2381void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2382{
2383 int pos = skb_headlen(skb);
2384
2385 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2386 if (len < pos) /* Split line is inside header. */
2387 skb_split_inside_header(skb, skb1, len, pos);
2388 else /* Second chunk has no header, nothing to copy. */
2389 skb_split_no_header(skb, skb1, len, pos);
2390}
2391EXPORT_SYMBOL(skb_split);
2392
2393/* Shifting from/to a cloned skb is a no-go.
2394 *
2395 * Caller cannot keep skb_shinfo related pointers past calling here!
2396 */
2397static int skb_prepare_for_shift(struct sk_buff *skb)
2398{
2399 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2400}
2401
2402/**
2403 * skb_shift - Shifts paged data partially from skb to another
2404 * @tgt: buffer into which tail data gets added
2405 * @skb: buffer from which the paged data comes from
2406 * @shiftlen: shift up to this many bytes
2407 *
2408 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2409 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2410 * It's up to caller to free skb if everything was shifted.
2411 *
2412 * If @tgt runs out of frags, the whole operation is aborted.
2413 *
2414 * Skb cannot include anything else but paged data while tgt is allowed
2415 * to have non-paged data as well.
2416 *
2417 * TODO: full sized shift could be optimized but that would need
2418 * specialized skb free'er to handle frags without up-to-date nr_frags.
2419 */
2420int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2421{
2422 int from, to, merge, todo;
2423 struct skb_frag_struct *fragfrom, *fragto;
2424
2425 BUG_ON(shiftlen > skb->len);
2426 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2427
2428 todo = shiftlen;
2429 from = 0;
2430 to = skb_shinfo(tgt)->nr_frags;
2431 fragfrom = &skb_shinfo(skb)->frags[from];
2432
2433 /* Actual merge is delayed until the point when we know we can
2434 * commit all, so that we don't have to undo partial changes
2435 */
2436 if (!to ||
2437 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2438 fragfrom->page_offset)) {
2439 merge = -1;
2440 } else {
2441 merge = to - 1;
2442
2443 todo -= skb_frag_size(fragfrom);
2444 if (todo < 0) {
2445 if (skb_prepare_for_shift(skb) ||
2446 skb_prepare_for_shift(tgt))
2447 return 0;
2448
2449 /* All previous frag pointers might be stale! */
2450 fragfrom = &skb_shinfo(skb)->frags[from];
2451 fragto = &skb_shinfo(tgt)->frags[merge];
2452
2453 skb_frag_size_add(fragto, shiftlen);
2454 skb_frag_size_sub(fragfrom, shiftlen);
2455 fragfrom->page_offset += shiftlen;
2456
2457 goto onlymerged;
2458 }
2459
2460 from++;
2461 }
2462
2463 /* Skip full, not-fitting skb to avoid expensive operations */
2464 if ((shiftlen == skb->len) &&
2465 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2466 return 0;
2467
2468 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2469 return 0;
2470
2471 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2472 if (to == MAX_SKB_FRAGS)
2473 return 0;
2474
2475 fragfrom = &skb_shinfo(skb)->frags[from];
2476 fragto = &skb_shinfo(tgt)->frags[to];
2477
2478 if (todo >= skb_frag_size(fragfrom)) {
2479 *fragto = *fragfrom;
2480 todo -= skb_frag_size(fragfrom);
2481 from++;
2482 to++;
2483
2484 } else {
2485 __skb_frag_ref(fragfrom);
2486 fragto->page = fragfrom->page;
2487 fragto->page_offset = fragfrom->page_offset;
2488 skb_frag_size_set(fragto, todo);
2489
2490 fragfrom->page_offset += todo;
2491 skb_frag_size_sub(fragfrom, todo);
2492 todo = 0;
2493
2494 to++;
2495 break;
2496 }
2497 }
2498
2499 /* Ready to "commit" this state change to tgt */
2500 skb_shinfo(tgt)->nr_frags = to;
2501
2502 if (merge >= 0) {
2503 fragfrom = &skb_shinfo(skb)->frags[0];
2504 fragto = &skb_shinfo(tgt)->frags[merge];
2505
2506 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2507 __skb_frag_unref(fragfrom);
2508 }
2509
2510 /* Reposition in the original skb */
2511 to = 0;
2512 while (from < skb_shinfo(skb)->nr_frags)
2513 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2514 skb_shinfo(skb)->nr_frags = to;
2515
2516 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2517
2518onlymerged:
2519 /* Most likely the tgt won't ever need its checksum anymore, skb on
2520 * the other hand might need it if it needs to be resent
2521 */
2522 tgt->ip_summed = CHECKSUM_PARTIAL;
2523 skb->ip_summed = CHECKSUM_PARTIAL;
2524
2525 /* Yak, is it really working this way? Some helper please? */
2526 skb->len -= shiftlen;
2527 skb->data_len -= shiftlen;
2528 skb->truesize -= shiftlen;
2529 tgt->len += shiftlen;
2530 tgt->data_len += shiftlen;
2531 tgt->truesize += shiftlen;
2532
2533 return shiftlen;
2534}
2535
2536/**
2537 * skb_prepare_seq_read - Prepare a sequential read of skb data
2538 * @skb: the buffer to read
2539 * @from: lower offset of data to be read
2540 * @to: upper offset of data to be read
2541 * @st: state variable
2542 *
2543 * Initializes the specified state variable. Must be called before
2544 * invoking skb_seq_read() for the first time.
2545 */
2546void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2547 unsigned int to, struct skb_seq_state *st)
2548{
2549 st->lower_offset = from;
2550 st->upper_offset = to;
2551 st->root_skb = st->cur_skb = skb;
2552 st->frag_idx = st->stepped_offset = 0;
2553 st->frag_data = NULL;
2554}
2555EXPORT_SYMBOL(skb_prepare_seq_read);
2556
2557/**
2558 * skb_seq_read - Sequentially read skb data
2559 * @consumed: number of bytes consumed by the caller so far
2560 * @data: destination pointer for data to be returned
2561 * @st: state variable
2562 *
2563 * Reads a block of skb data at @consumed relative to the
2564 * lower offset specified to skb_prepare_seq_read(). Assigns
2565 * the head of the data block to @data and returns the length
2566 * of the block or 0 if the end of the skb data or the upper
2567 * offset has been reached.
2568 *
2569 * The caller is not required to consume all of the data
2570 * returned, i.e. @consumed is typically set to the number
2571 * of bytes already consumed and the next call to
2572 * skb_seq_read() will return the remaining part of the block.
2573 *
2574 * Note 1: The size of each block of data returned can be arbitrary,
2575 * this limitation is the cost for zerocopy seqeuental
2576 * reads of potentially non linear data.
2577 *
2578 * Note 2: Fragment lists within fragments are not implemented
2579 * at the moment, state->root_skb could be replaced with
2580 * a stack for this purpose.
2581 */
2582unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2583 struct skb_seq_state *st)
2584{
2585 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2586 skb_frag_t *frag;
2587
2588 if (unlikely(abs_offset >= st->upper_offset)) {
2589 if (st->frag_data) {
2590 kunmap_atomic(st->frag_data);
2591 st->frag_data = NULL;
2592 }
2593 return 0;
2594 }
2595
2596next_skb:
2597 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2598
2599 if (abs_offset < block_limit && !st->frag_data) {
2600 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2601 return block_limit - abs_offset;
2602 }
2603
2604 if (st->frag_idx == 0 && !st->frag_data)
2605 st->stepped_offset += skb_headlen(st->cur_skb);
2606
2607 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2608 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2609 block_limit = skb_frag_size(frag) + st->stepped_offset;
2610
2611 if (abs_offset < block_limit) {
2612 if (!st->frag_data)
2613 st->frag_data = kmap_atomic(skb_frag_page(frag));
2614
2615 *data = (u8 *) st->frag_data + frag->page_offset +
2616 (abs_offset - st->stepped_offset);
2617
2618 return block_limit - abs_offset;
2619 }
2620
2621 if (st->frag_data) {
2622 kunmap_atomic(st->frag_data);
2623 st->frag_data = NULL;
2624 }
2625
2626 st->frag_idx++;
2627 st->stepped_offset += skb_frag_size(frag);
2628 }
2629
2630 if (st->frag_data) {
2631 kunmap_atomic(st->frag_data);
2632 st->frag_data = NULL;
2633 }
2634
2635 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2636 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2637 st->frag_idx = 0;
2638 goto next_skb;
2639 } else if (st->cur_skb->next) {
2640 st->cur_skb = st->cur_skb->next;
2641 st->frag_idx = 0;
2642 goto next_skb;
2643 }
2644
2645 return 0;
2646}
2647EXPORT_SYMBOL(skb_seq_read);
2648
2649/**
2650 * skb_abort_seq_read - Abort a sequential read of skb data
2651 * @st: state variable
2652 *
2653 * Must be called if skb_seq_read() was not called until it
2654 * returned 0.
2655 */
2656void skb_abort_seq_read(struct skb_seq_state *st)
2657{
2658 if (st->frag_data)
2659 kunmap_atomic(st->frag_data);
2660}
2661EXPORT_SYMBOL(skb_abort_seq_read);
2662
2663#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2664
2665static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2666 struct ts_config *conf,
2667 struct ts_state *state)
2668{
2669 return skb_seq_read(offset, text, TS_SKB_CB(state));
2670}
2671
2672static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2673{
2674 skb_abort_seq_read(TS_SKB_CB(state));
2675}
2676
2677/**
2678 * skb_find_text - Find a text pattern in skb data
2679 * @skb: the buffer to look in
2680 * @from: search offset
2681 * @to: search limit
2682 * @config: textsearch configuration
2683 * @state: uninitialized textsearch state variable
2684 *
2685 * Finds a pattern in the skb data according to the specified
2686 * textsearch configuration. Use textsearch_next() to retrieve
2687 * subsequent occurrences of the pattern. Returns the offset
2688 * to the first occurrence or UINT_MAX if no match was found.
2689 */
2690unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2691 unsigned int to, struct ts_config *config,
2692 struct ts_state *state)
2693{
2694 unsigned int ret;
2695
2696 config->get_next_block = skb_ts_get_next_block;
2697 config->finish = skb_ts_finish;
2698
2699 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2700
2701 ret = textsearch_find(config, state);
2702 return (ret <= to - from ? ret : UINT_MAX);
2703}
2704EXPORT_SYMBOL(skb_find_text);
2705
2706/**
2707 * skb_append_datato_frags - append the user data to a skb
2708 * @sk: sock structure
2709 * @skb: skb structure to be appened with user data.
2710 * @getfrag: call back function to be used for getting the user data
2711 * @from: pointer to user message iov
2712 * @length: length of the iov message
2713 *
2714 * Description: This procedure append the user data in the fragment part
2715 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2716 */
2717int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2718 int (*getfrag)(void *from, char *to, int offset,
2719 int len, int odd, struct sk_buff *skb),
2720 void *from, int length)
2721{
2722 int frg_cnt = skb_shinfo(skb)->nr_frags;
2723 int copy;
2724 int offset = 0;
2725 int ret;
2726 struct page_frag *pfrag = ¤t->task_frag;
2727
2728 do {
2729 /* Return error if we don't have space for new frag */
2730 if (frg_cnt >= MAX_SKB_FRAGS)
2731 return -EMSGSIZE;
2732
2733 if (!sk_page_frag_refill(sk, pfrag))
2734 return -ENOMEM;
2735
2736 /* copy the user data to page */
2737 copy = min_t(int, length, pfrag->size - pfrag->offset);
2738
2739 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2740 offset, copy, 0, skb);
2741 if (ret < 0)
2742 return -EFAULT;
2743
2744 /* copy was successful so update the size parameters */
2745 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2746 copy);
2747 frg_cnt++;
2748 pfrag->offset += copy;
2749 get_page(pfrag->page);
2750
2751 skb->truesize += copy;
2752 atomic_add(copy, &sk->sk_wmem_alloc);
2753 skb->len += copy;
2754 skb->data_len += copy;
2755 offset += copy;
2756 length -= copy;
2757
2758 } while (length > 0);
2759
2760 return 0;
2761}
2762EXPORT_SYMBOL(skb_append_datato_frags);
2763
2764/**
2765 * skb_pull_rcsum - pull skb and update receive checksum
2766 * @skb: buffer to update
2767 * @len: length of data pulled
2768 *
2769 * This function performs an skb_pull on the packet and updates
2770 * the CHECKSUM_COMPLETE checksum. It should be used on
2771 * receive path processing instead of skb_pull unless you know
2772 * that the checksum difference is zero (e.g., a valid IP header)
2773 * or you are setting ip_summed to CHECKSUM_NONE.
2774 */
2775unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2776{
2777 BUG_ON(len > skb->len);
2778 skb->len -= len;
2779 BUG_ON(skb->len < skb->data_len);
2780 skb_postpull_rcsum(skb, skb->data, len);
2781 return skb->data += len;
2782}
2783EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2784
2785/**
2786 * skb_segment - Perform protocol segmentation on skb.
2787 * @skb: buffer to segment
2788 * @features: features for the output path (see dev->features)
2789 *
2790 * This function performs segmentation on the given skb. It returns
2791 * a pointer to the first in a list of new skbs for the segments.
2792 * In case of error it returns ERR_PTR(err).
2793 */
2794struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2795{
2796 struct sk_buff *segs = NULL;
2797 struct sk_buff *tail = NULL;
2798 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2799 skb_frag_t *skb_frag = skb_shinfo(skb)->frags;
2800 unsigned int mss = skb_shinfo(skb)->gso_size;
2801 unsigned int doffset = skb->data - skb_mac_header(skb);
2802 unsigned int offset = doffset;
2803 unsigned int tnl_hlen = skb_tnl_header_len(skb);
2804 unsigned int headroom;
2805 unsigned int len;
2806 __be16 proto;
2807 bool csum;
2808 int sg = !!(features & NETIF_F_SG);
2809 int nfrags = skb_shinfo(skb)->nr_frags;
2810 int err = -ENOMEM;
2811 int i = 0;
2812 int pos;
2813
2814 proto = skb_network_protocol(skb);
2815 if (unlikely(!proto))
2816 return ERR_PTR(-EINVAL);
2817
2818 csum = !!can_checksum_protocol(features, proto);
2819 __skb_push(skb, doffset);
2820 headroom = skb_headroom(skb);
2821 pos = skb_headlen(skb);
2822
2823 do {
2824 struct sk_buff *nskb;
2825 skb_frag_t *frag;
2826 int hsize;
2827 int size;
2828
2829 len = skb->len - offset;
2830 if (len > mss)
2831 len = mss;
2832
2833 hsize = skb_headlen(skb) - offset;
2834 if (hsize < 0)
2835 hsize = 0;
2836 if (hsize > len || !sg)
2837 hsize = len;
2838
2839 if (!hsize && i >= nfrags && skb_headlen(fskb) &&
2840 (skb_headlen(fskb) == len || sg)) {
2841 BUG_ON(skb_headlen(fskb) > len);
2842
2843 i = 0;
2844 nfrags = skb_shinfo(fskb)->nr_frags;
2845 skb_frag = skb_shinfo(fskb)->frags;
2846 pos += skb_headlen(fskb);
2847
2848 while (pos < offset + len) {
2849 BUG_ON(i >= nfrags);
2850
2851 size = skb_frag_size(skb_frag);
2852 if (pos + size > offset + len)
2853 break;
2854
2855 i++;
2856 pos += size;
2857 skb_frag++;
2858 }
2859
2860 nskb = skb_clone(fskb, GFP_ATOMIC);
2861 fskb = fskb->next;
2862
2863 if (unlikely(!nskb))
2864 goto err;
2865
2866 if (unlikely(pskb_trim(nskb, len))) {
2867 kfree_skb(nskb);
2868 goto err;
2869 }
2870
2871 hsize = skb_end_offset(nskb);
2872 if (skb_cow_head(nskb, doffset + headroom)) {
2873 kfree_skb(nskb);
2874 goto err;
2875 }
2876
2877 nskb->truesize += skb_end_offset(nskb) - hsize;
2878 skb_release_head_state(nskb);
2879 __skb_push(nskb, doffset);
2880 } else {
2881 nskb = __alloc_skb(hsize + doffset + headroom,
2882 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2883 NUMA_NO_NODE);
2884
2885 if (unlikely(!nskb))
2886 goto err;
2887
2888 skb_reserve(nskb, headroom);
2889 __skb_put(nskb, doffset);
2890 }
2891
2892 if (segs)
2893 tail->next = nskb;
2894 else
2895 segs = nskb;
2896 tail = nskb;
2897
2898 __copy_skb_header(nskb, skb);
2899 nskb->mac_len = skb->mac_len;
2900
2901 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
2902
2903 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2904 nskb->data - tnl_hlen,
2905 doffset + tnl_hlen);
2906
2907 if (nskb->len == len + doffset)
2908 goto perform_csum_check;
2909
2910 if (!sg) {
2911 nskb->ip_summed = CHECKSUM_NONE;
2912 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2913 skb_put(nskb, len),
2914 len, 0);
2915 continue;
2916 }
2917
2918 frag = skb_shinfo(nskb)->frags;
2919
2920 skb_copy_from_linear_data_offset(skb, offset,
2921 skb_put(nskb, hsize), hsize);
2922
2923 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2924
2925 while (pos < offset + len) {
2926 if (i >= nfrags) {
2927 BUG_ON(skb_headlen(fskb));
2928
2929 i = 0;
2930 nfrags = skb_shinfo(fskb)->nr_frags;
2931 skb_frag = skb_shinfo(fskb)->frags;
2932
2933 BUG_ON(!nfrags);
2934
2935 fskb = fskb->next;
2936 }
2937
2938 if (unlikely(skb_shinfo(nskb)->nr_frags >=
2939 MAX_SKB_FRAGS)) {
2940 net_warn_ratelimited(
2941 "skb_segment: too many frags: %u %u\n",
2942 pos, mss);
2943 goto err;
2944 }
2945
2946 *frag = *skb_frag;
2947 __skb_frag_ref(frag);
2948 size = skb_frag_size(frag);
2949
2950 if (pos < offset) {
2951 frag->page_offset += offset - pos;
2952 skb_frag_size_sub(frag, offset - pos);
2953 }
2954
2955 skb_shinfo(nskb)->nr_frags++;
2956
2957 if (pos + size <= offset + len) {
2958 i++;
2959 skb_frag++;
2960 pos += size;
2961 } else {
2962 skb_frag_size_sub(frag, pos + size - (offset + len));
2963 goto skip_fraglist;
2964 }
2965
2966 frag++;
2967 }
2968
2969skip_fraglist:
2970 nskb->data_len = len - hsize;
2971 nskb->len += nskb->data_len;
2972 nskb->truesize += nskb->data_len;
2973
2974perform_csum_check:
2975 if (!csum) {
2976 nskb->csum = skb_checksum(nskb, doffset,
2977 nskb->len - doffset, 0);
2978 nskb->ip_summed = CHECKSUM_NONE;
2979 }
2980 } while ((offset += len) < skb->len);
2981
2982 return segs;
2983
2984err:
2985 while ((skb = segs)) {
2986 segs = skb->next;
2987 kfree_skb(skb);
2988 }
2989 return ERR_PTR(err);
2990}
2991EXPORT_SYMBOL_GPL(skb_segment);
2992
2993int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2994{
2995 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
2996 unsigned int offset = skb_gro_offset(skb);
2997 unsigned int headlen = skb_headlen(skb);
2998 struct sk_buff *nskb, *lp, *p = *head;
2999 unsigned int len = skb_gro_len(skb);
3000 unsigned int delta_truesize;
3001 unsigned int headroom;
3002
3003 if (unlikely(p->len + len >= 65536))
3004 return -E2BIG;
3005
3006 lp = NAPI_GRO_CB(p)->last ?: p;
3007 pinfo = skb_shinfo(lp);
3008
3009 if (headlen <= offset) {
3010 skb_frag_t *frag;
3011 skb_frag_t *frag2;
3012 int i = skbinfo->nr_frags;
3013 int nr_frags = pinfo->nr_frags + i;
3014
3015 if (nr_frags > MAX_SKB_FRAGS)
3016 goto merge;
3017
3018 offset -= headlen;
3019 pinfo->nr_frags = nr_frags;
3020 skbinfo->nr_frags = 0;
3021
3022 frag = pinfo->frags + nr_frags;
3023 frag2 = skbinfo->frags + i;
3024 do {
3025 *--frag = *--frag2;
3026 } while (--i);
3027
3028 frag->page_offset += offset;
3029 skb_frag_size_sub(frag, offset);
3030
3031 /* all fragments truesize : remove (head size + sk_buff) */
3032 delta_truesize = skb->truesize -
3033 SKB_TRUESIZE(skb_end_offset(skb));
3034
3035 skb->truesize -= skb->data_len;
3036 skb->len -= skb->data_len;
3037 skb->data_len = 0;
3038
3039 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3040 goto done;
3041 } else if (skb->head_frag) {
3042 int nr_frags = pinfo->nr_frags;
3043 skb_frag_t *frag = pinfo->frags + nr_frags;
3044 struct page *page = virt_to_head_page(skb->head);
3045 unsigned int first_size = headlen - offset;
3046 unsigned int first_offset;
3047
3048 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3049 goto merge;
3050
3051 first_offset = skb->data -
3052 (unsigned char *)page_address(page) +
3053 offset;
3054
3055 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3056
3057 frag->page.p = page;
3058 frag->page_offset = first_offset;
3059 skb_frag_size_set(frag, first_size);
3060
3061 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3062 /* We dont need to clear skbinfo->nr_frags here */
3063
3064 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3065 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3066 goto done;
3067 }
3068 if (pinfo->frag_list)
3069 goto merge;
3070 if (skb_gro_len(p) != pinfo->gso_size)
3071 return -E2BIG;
3072
3073 headroom = skb_headroom(p);
3074 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3075 if (unlikely(!nskb))
3076 return -ENOMEM;
3077
3078 __copy_skb_header(nskb, p);
3079 nskb->mac_len = p->mac_len;
3080
3081 skb_reserve(nskb, headroom);
3082 __skb_put(nskb, skb_gro_offset(p));
3083
3084 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3085 skb_set_network_header(nskb, skb_network_offset(p));
3086 skb_set_transport_header(nskb, skb_transport_offset(p));
3087
3088 __skb_pull(p, skb_gro_offset(p));
3089 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3090 p->data - skb_mac_header(p));
3091
3092 skb_shinfo(nskb)->frag_list = p;
3093 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3094 pinfo->gso_size = 0;
3095 skb_header_release(p);
3096 NAPI_GRO_CB(nskb)->last = p;
3097
3098 nskb->data_len += p->len;
3099 nskb->truesize += p->truesize;
3100 nskb->len += p->len;
3101
3102 *head = nskb;
3103 nskb->next = p->next;
3104 p->next = NULL;
3105
3106 p = nskb;
3107
3108merge:
3109 delta_truesize = skb->truesize;
3110 if (offset > headlen) {
3111 unsigned int eat = offset - headlen;
3112
3113 skbinfo->frags[0].page_offset += eat;
3114 skb_frag_size_sub(&skbinfo->frags[0], eat);
3115 skb->data_len -= eat;
3116 skb->len -= eat;
3117 offset = headlen;
3118 }
3119
3120 __skb_pull(skb, offset);
3121
3122 if (!NAPI_GRO_CB(p)->last)
3123 skb_shinfo(p)->frag_list = skb;
3124 else
3125 NAPI_GRO_CB(p)->last->next = skb;
3126 NAPI_GRO_CB(p)->last = skb;
3127 skb_header_release(skb);
3128 lp = p;
3129
3130done:
3131 NAPI_GRO_CB(p)->count++;
3132 p->data_len += len;
3133 p->truesize += delta_truesize;
3134 p->len += len;
3135 if (lp != p) {
3136 lp->data_len += len;
3137 lp->truesize += delta_truesize;
3138 lp->len += len;
3139 }
3140 NAPI_GRO_CB(skb)->same_flow = 1;
3141 return 0;
3142}
3143EXPORT_SYMBOL_GPL(skb_gro_receive);
3144
3145void __init skb_init(void)
3146{
3147 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3148 sizeof(struct sk_buff),
3149 0,
3150 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3151 NULL);
3152 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3153 (2*sizeof(struct sk_buff)) +
3154 sizeof(atomic_t),
3155 0,
3156 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3157 NULL);
3158}
3159
3160/**
3161 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3162 * @skb: Socket buffer containing the buffers to be mapped
3163 * @sg: The scatter-gather list to map into
3164 * @offset: The offset into the buffer's contents to start mapping
3165 * @len: Length of buffer space to be mapped
3166 *
3167 * Fill the specified scatter-gather list with mappings/pointers into a
3168 * region of the buffer space attached to a socket buffer.
3169 */
3170static int
3171__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3172{
3173 int start = skb_headlen(skb);
3174 int i, copy = start - offset;
3175 struct sk_buff *frag_iter;
3176 int elt = 0;
3177
3178 if (copy > 0) {
3179 if (copy > len)
3180 copy = len;
3181 sg_set_buf(sg, skb->data + offset, copy);
3182 elt++;
3183 if ((len -= copy) == 0)
3184 return elt;
3185 offset += copy;
3186 }
3187
3188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3189 int end;
3190
3191 WARN_ON(start > offset + len);
3192
3193 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3194 if ((copy = end - offset) > 0) {
3195 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3196
3197 if (copy > len)
3198 copy = len;
3199 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3200 frag->page_offset+offset-start);
3201 elt++;
3202 if (!(len -= copy))
3203 return elt;
3204 offset += copy;
3205 }
3206 start = end;
3207 }
3208
3209 skb_walk_frags(skb, frag_iter) {
3210 int end;
3211
3212 WARN_ON(start > offset + len);
3213
3214 end = start + frag_iter->len;
3215 if ((copy = end - offset) > 0) {
3216 if (copy > len)
3217 copy = len;
3218 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3219 copy);
3220 if ((len -= copy) == 0)
3221 return elt;
3222 offset += copy;
3223 }
3224 start = end;
3225 }
3226 BUG_ON(len);
3227 return elt;
3228}
3229
3230int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3231{
3232 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3233
3234 sg_mark_end(&sg[nsg - 1]);
3235
3236 return nsg;
3237}
3238EXPORT_SYMBOL_GPL(skb_to_sgvec);
3239
3240/**
3241 * skb_cow_data - Check that a socket buffer's data buffers are writable
3242 * @skb: The socket buffer to check.
3243 * @tailbits: Amount of trailing space to be added
3244 * @trailer: Returned pointer to the skb where the @tailbits space begins
3245 *
3246 * Make sure that the data buffers attached to a socket buffer are
3247 * writable. If they are not, private copies are made of the data buffers
3248 * and the socket buffer is set to use these instead.
3249 *
3250 * If @tailbits is given, make sure that there is space to write @tailbits
3251 * bytes of data beyond current end of socket buffer. @trailer will be
3252 * set to point to the skb in which this space begins.
3253 *
3254 * The number of scatterlist elements required to completely map the
3255 * COW'd and extended socket buffer will be returned.
3256 */
3257int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3258{
3259 int copyflag;
3260 int elt;
3261 struct sk_buff *skb1, **skb_p;
3262
3263 /* If skb is cloned or its head is paged, reallocate
3264 * head pulling out all the pages (pages are considered not writable
3265 * at the moment even if they are anonymous).
3266 */
3267 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3268 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3269 return -ENOMEM;
3270
3271 /* Easy case. Most of packets will go this way. */
3272 if (!skb_has_frag_list(skb)) {
3273 /* A little of trouble, not enough of space for trailer.
3274 * This should not happen, when stack is tuned to generate
3275 * good frames. OK, on miss we reallocate and reserve even more
3276 * space, 128 bytes is fair. */
3277
3278 if (skb_tailroom(skb) < tailbits &&
3279 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3280 return -ENOMEM;
3281
3282 /* Voila! */
3283 *trailer = skb;
3284 return 1;
3285 }
3286
3287 /* Misery. We are in troubles, going to mincer fragments... */
3288
3289 elt = 1;
3290 skb_p = &skb_shinfo(skb)->frag_list;
3291 copyflag = 0;
3292
3293 while ((skb1 = *skb_p) != NULL) {
3294 int ntail = 0;
3295
3296 /* The fragment is partially pulled by someone,
3297 * this can happen on input. Copy it and everything
3298 * after it. */
3299
3300 if (skb_shared(skb1))
3301 copyflag = 1;
3302
3303 /* If the skb is the last, worry about trailer. */
3304
3305 if (skb1->next == NULL && tailbits) {
3306 if (skb_shinfo(skb1)->nr_frags ||
3307 skb_has_frag_list(skb1) ||
3308 skb_tailroom(skb1) < tailbits)
3309 ntail = tailbits + 128;
3310 }
3311
3312 if (copyflag ||
3313 skb_cloned(skb1) ||
3314 ntail ||
3315 skb_shinfo(skb1)->nr_frags ||
3316 skb_has_frag_list(skb1)) {
3317 struct sk_buff *skb2;
3318
3319 /* Fuck, we are miserable poor guys... */
3320 if (ntail == 0)
3321 skb2 = skb_copy(skb1, GFP_ATOMIC);
3322 else
3323 skb2 = skb_copy_expand(skb1,
3324 skb_headroom(skb1),
3325 ntail,
3326 GFP_ATOMIC);
3327 if (unlikely(skb2 == NULL))
3328 return -ENOMEM;
3329
3330 if (skb1->sk)
3331 skb_set_owner_w(skb2, skb1->sk);
3332
3333 /* Looking around. Are we still alive?
3334 * OK, link new skb, drop old one */
3335
3336 skb2->next = skb1->next;
3337 *skb_p = skb2;
3338 kfree_skb(skb1);
3339 skb1 = skb2;
3340 }
3341 elt++;
3342 *trailer = skb1;
3343 skb_p = &skb1->next;
3344 }
3345
3346 return elt;
3347}
3348EXPORT_SYMBOL_GPL(skb_cow_data);
3349
3350static void sock_rmem_free(struct sk_buff *skb)
3351{
3352 struct sock *sk = skb->sk;
3353
3354 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3355}
3356
3357/*
3358 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3359 */
3360int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3361{
3362 int len = skb->len;
3363
3364 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3365 (unsigned int)sk->sk_rcvbuf)
3366 return -ENOMEM;
3367
3368 skb_orphan(skb);
3369 skb->sk = sk;
3370 skb->destructor = sock_rmem_free;
3371 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3372
3373 /* before exiting rcu section, make sure dst is refcounted */
3374 skb_dst_force(skb);
3375
3376 skb_queue_tail(&sk->sk_error_queue, skb);
3377 if (!sock_flag(sk, SOCK_DEAD))
3378 sk->sk_data_ready(sk, len);
3379 return 0;
3380}
3381EXPORT_SYMBOL(sock_queue_err_skb);
3382
3383void skb_tstamp_tx(struct sk_buff *orig_skb,
3384 struct skb_shared_hwtstamps *hwtstamps)
3385{
3386 struct sock *sk = orig_skb->sk;
3387 struct sock_exterr_skb *serr;
3388 struct sk_buff *skb;
3389 int err;
3390
3391 if (!sk)
3392 return;
3393
3394 if (hwtstamps) {
3395 *skb_hwtstamps(orig_skb) =
3396 *hwtstamps;
3397 } else {
3398 /*
3399 * no hardware time stamps available,
3400 * so keep the shared tx_flags and only
3401 * store software time stamp
3402 */
3403 orig_skb->tstamp = ktime_get_real();
3404 }
3405
3406 skb = skb_clone(orig_skb, GFP_ATOMIC);
3407 if (!skb)
3408 return;
3409
3410 serr = SKB_EXT_ERR(skb);
3411 memset(serr, 0, sizeof(*serr));
3412 serr->ee.ee_errno = ENOMSG;
3413 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3414
3415 err = sock_queue_err_skb(sk, skb);
3416
3417 if (err)
3418 kfree_skb(skb);
3419}
3420EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3421
3422void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3423{
3424 struct sock *sk = skb->sk;
3425 struct sock_exterr_skb *serr;
3426 int err;
3427
3428 skb->wifi_acked_valid = 1;
3429 skb->wifi_acked = acked;
3430
3431 serr = SKB_EXT_ERR(skb);
3432 memset(serr, 0, sizeof(*serr));
3433 serr->ee.ee_errno = ENOMSG;
3434 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3435
3436 err = sock_queue_err_skb(sk, skb);
3437 if (err)
3438 kfree_skb(skb);
3439}
3440EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3441
3442
3443/**
3444 * skb_partial_csum_set - set up and verify partial csum values for packet
3445 * @skb: the skb to set
3446 * @start: the number of bytes after skb->data to start checksumming.
3447 * @off: the offset from start to place the checksum.
3448 *
3449 * For untrusted partially-checksummed packets, we need to make sure the values
3450 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3451 *
3452 * This function checks and sets those values and skb->ip_summed: if this
3453 * returns false you should drop the packet.
3454 */
3455bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3456{
3457 if (unlikely(start > skb_headlen(skb)) ||
3458 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3459 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3460 start, off, skb_headlen(skb));
3461 return false;
3462 }
3463 skb->ip_summed = CHECKSUM_PARTIAL;
3464 skb->csum_start = skb_headroom(skb) + start;
3465 skb->csum_offset = off;
3466 skb_set_transport_header(skb, start);
3467 return true;
3468}
3469EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3470
3471void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3472{
3473 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3474 skb->dev->name);
3475}
3476EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3477
3478void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3479{
3480 if (head_stolen) {
3481 skb_release_head_state(skb);
3482 kmem_cache_free(skbuff_head_cache, skb);
3483 } else {
3484 __kfree_skb(skb);
3485 }
3486}
3487EXPORT_SYMBOL(kfree_skb_partial);
3488
3489/**
3490 * skb_try_coalesce - try to merge skb to prior one
3491 * @to: prior buffer
3492 * @from: buffer to add
3493 * @fragstolen: pointer to boolean
3494 * @delta_truesize: how much more was allocated than was requested
3495 */
3496bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3497 bool *fragstolen, int *delta_truesize)
3498{
3499 int i, delta, len = from->len;
3500
3501 *fragstolen = false;
3502
3503 if (skb_cloned(to))
3504 return false;
3505
3506 if (len <= skb_tailroom(to)) {
3507 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3508 *delta_truesize = 0;
3509 return true;
3510 }
3511
3512 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3513 return false;
3514
3515 if (skb_headlen(from) != 0) {
3516 struct page *page;
3517 unsigned int offset;
3518
3519 if (skb_shinfo(to)->nr_frags +
3520 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3521 return false;
3522
3523 if (skb_head_is_locked(from))
3524 return false;
3525
3526 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3527
3528 page = virt_to_head_page(from->head);
3529 offset = from->data - (unsigned char *)page_address(page);
3530
3531 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3532 page, offset, skb_headlen(from));
3533 *fragstolen = true;
3534 } else {
3535 if (skb_shinfo(to)->nr_frags +
3536 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3537 return false;
3538
3539 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3540 }
3541
3542 WARN_ON_ONCE(delta < len);
3543
3544 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3545 skb_shinfo(from)->frags,
3546 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3547 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3548
3549 if (!skb_cloned(from))
3550 skb_shinfo(from)->nr_frags = 0;
3551
3552 /* if the skb is not cloned this does nothing
3553 * since we set nr_frags to 0.
3554 */
3555 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3556 skb_frag_ref(from, i);
3557
3558 to->truesize += delta;
3559 to->len += len;
3560 to->data_len += len;
3561
3562 *delta_truesize = delta;
3563 return true;
3564}
3565EXPORT_SYMBOL(skb_try_coalesce);
3566
3567/**
3568 * skb_scrub_packet - scrub an skb
3569 *
3570 * @skb: buffer to clean
3571 * @xnet: packet is crossing netns
3572 *
3573 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3574 * into/from a tunnel. Some information have to be cleared during these
3575 * operations.
3576 * skb_scrub_packet can also be used to clean a skb before injecting it in
3577 * another namespace (@xnet == true). We have to clear all information in the
3578 * skb that could impact namespace isolation.
3579 */
3580void skb_scrub_packet(struct sk_buff *skb, bool xnet)
3581{
3582 if (xnet)
3583 skb_orphan(skb);
3584 skb->tstamp.tv64 = 0;
3585 skb->pkt_type = PACKET_HOST;
3586 skb->skb_iif = 0;
3587 skb->local_df = 0;
3588 skb_dst_drop(skb);
3589 skb->mark = 0;
3590 secpath_reset(skb);
3591 nf_reset(skb);
3592 nf_reset_trace(skb);
3593}
3594EXPORT_SYMBOL_GPL(skb_scrub_packet);