at v3.13 20 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 22 */ 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69/* Flag to prevent checks on free */ 70#ifdef CONFIG_DEBUG_OBJECTS 71# define SLAB_DEBUG_OBJECTS 0x00400000UL 72#else 73# define SLAB_DEBUG_OBJECTS 0x00000000UL 74#endif 75 76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78/* Don't track use of uninitialized memory */ 79#ifdef CONFIG_KMEMCHECK 80# define SLAB_NOTRACK 0x01000000UL 81#else 82# define SLAB_NOTRACK 0x00000000UL 83#endif 84#ifdef CONFIG_FAILSLAB 85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86#else 87# define SLAB_FAILSLAB 0x00000000UL 88#endif 89 90/* The following flags affect the page allocator grouping pages by mobility */ 91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 93/* 94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 95 * 96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 97 * 98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 99 * Both make kfree a no-op. 100 */ 101#define ZERO_SIZE_PTR ((void *)16) 102 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 104 (unsigned long)ZERO_SIZE_PTR) 105 106#include <linux/kmemleak.h> 107 108struct mem_cgroup; 109/* 110 * struct kmem_cache related prototypes 111 */ 112void __init kmem_cache_init(void); 113int slab_is_available(void); 114 115struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 116 unsigned long, 117 void (*)(void *)); 118struct kmem_cache * 119kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t, 120 unsigned long, void (*)(void *), struct kmem_cache *); 121void kmem_cache_destroy(struct kmem_cache *); 122int kmem_cache_shrink(struct kmem_cache *); 123void kmem_cache_free(struct kmem_cache *, void *); 124 125/* 126 * Please use this macro to create slab caches. Simply specify the 127 * name of the structure and maybe some flags that are listed above. 128 * 129 * The alignment of the struct determines object alignment. If you 130 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 131 * then the objects will be properly aligned in SMP configurations. 132 */ 133#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 134 sizeof(struct __struct), __alignof__(struct __struct),\ 135 (__flags), NULL) 136 137/* 138 * Common kmalloc functions provided by all allocators 139 */ 140void * __must_check __krealloc(const void *, size_t, gfp_t); 141void * __must_check krealloc(const void *, size_t, gfp_t); 142void kfree(const void *); 143void kzfree(const void *); 144size_t ksize(const void *); 145 146/* 147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 148 * alignment larger than the alignment of a 64-bit integer. 149 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 150 */ 151#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 152#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 153#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 154#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 155#else 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 157#endif 158 159#ifdef CONFIG_SLOB 160/* 161 * Common fields provided in kmem_cache by all slab allocators 162 * This struct is either used directly by the allocator (SLOB) 163 * or the allocator must include definitions for all fields 164 * provided in kmem_cache_common in their definition of kmem_cache. 165 * 166 * Once we can do anonymous structs (C11 standard) we could put a 167 * anonymous struct definition in these allocators so that the 168 * separate allocations in the kmem_cache structure of SLAB and 169 * SLUB is no longer needed. 170 */ 171struct kmem_cache { 172 unsigned int object_size;/* The original size of the object */ 173 unsigned int size; /* The aligned/padded/added on size */ 174 unsigned int align; /* Alignment as calculated */ 175 unsigned long flags; /* Active flags on the slab */ 176 const char *name; /* Slab name for sysfs */ 177 int refcount; /* Use counter */ 178 void (*ctor)(void *); /* Called on object slot creation */ 179 struct list_head list; /* List of all slab caches on the system */ 180}; 181 182#endif /* CONFIG_SLOB */ 183 184/* 185 * Kmalloc array related definitions 186 */ 187 188#ifdef CONFIG_SLAB 189/* 190 * The largest kmalloc size supported by the SLAB allocators is 191 * 32 megabyte (2^25) or the maximum allocatable page order if that is 192 * less than 32 MB. 193 * 194 * WARNING: Its not easy to increase this value since the allocators have 195 * to do various tricks to work around compiler limitations in order to 196 * ensure proper constant folding. 197 */ 198#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 199 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 200#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 201#ifndef KMALLOC_SHIFT_LOW 202#define KMALLOC_SHIFT_LOW 5 203#endif 204#endif 205 206#ifdef CONFIG_SLUB 207/* 208 * SLUB allocates up to order 2 pages directly and otherwise 209 * passes the request to the page allocator. 210 */ 211#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 212#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 213#ifndef KMALLOC_SHIFT_LOW 214#define KMALLOC_SHIFT_LOW 3 215#endif 216#endif 217 218#ifdef CONFIG_SLOB 219/* 220 * SLOB passes all page size and larger requests to the page allocator. 221 * No kmalloc array is necessary since objects of different sizes can 222 * be allocated from the same page. 223 */ 224#define KMALLOC_SHIFT_MAX 30 225#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 226#ifndef KMALLOC_SHIFT_LOW 227#define KMALLOC_SHIFT_LOW 3 228#endif 229#endif 230 231/* Maximum allocatable size */ 232#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 233/* Maximum size for which we actually use a slab cache */ 234#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 235/* Maximum order allocatable via the slab allocagtor */ 236#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 237 238/* 239 * Kmalloc subsystem. 240 */ 241#ifndef KMALLOC_MIN_SIZE 242#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 243#endif 244 245#ifndef CONFIG_SLOB 246extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 247#ifdef CONFIG_ZONE_DMA 248extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 249#endif 250 251/* 252 * Figure out which kmalloc slab an allocation of a certain size 253 * belongs to. 254 * 0 = zero alloc 255 * 1 = 65 .. 96 bytes 256 * 2 = 120 .. 192 bytes 257 * n = 2^(n-1) .. 2^n -1 258 */ 259static __always_inline int kmalloc_index(size_t size) 260{ 261 if (!size) 262 return 0; 263 264 if (size <= KMALLOC_MIN_SIZE) 265 return KMALLOC_SHIFT_LOW; 266 267 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 268 return 1; 269 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 270 return 2; 271 if (size <= 8) return 3; 272 if (size <= 16) return 4; 273 if (size <= 32) return 5; 274 if (size <= 64) return 6; 275 if (size <= 128) return 7; 276 if (size <= 256) return 8; 277 if (size <= 512) return 9; 278 if (size <= 1024) return 10; 279 if (size <= 2 * 1024) return 11; 280 if (size <= 4 * 1024) return 12; 281 if (size <= 8 * 1024) return 13; 282 if (size <= 16 * 1024) return 14; 283 if (size <= 32 * 1024) return 15; 284 if (size <= 64 * 1024) return 16; 285 if (size <= 128 * 1024) return 17; 286 if (size <= 256 * 1024) return 18; 287 if (size <= 512 * 1024) return 19; 288 if (size <= 1024 * 1024) return 20; 289 if (size <= 2 * 1024 * 1024) return 21; 290 if (size <= 4 * 1024 * 1024) return 22; 291 if (size <= 8 * 1024 * 1024) return 23; 292 if (size <= 16 * 1024 * 1024) return 24; 293 if (size <= 32 * 1024 * 1024) return 25; 294 if (size <= 64 * 1024 * 1024) return 26; 295 BUG(); 296 297 /* Will never be reached. Needed because the compiler may complain */ 298 return -1; 299} 300#endif /* !CONFIG_SLOB */ 301 302void *__kmalloc(size_t size, gfp_t flags); 303void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags); 304 305#ifdef CONFIG_NUMA 306void *__kmalloc_node(size_t size, gfp_t flags, int node); 307void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 308#else 309static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 310{ 311 return __kmalloc(size, flags); 312} 313 314static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 315{ 316 return kmem_cache_alloc(s, flags); 317} 318#endif 319 320#ifdef CONFIG_TRACING 321extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t); 322 323#ifdef CONFIG_NUMA 324extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 325 gfp_t gfpflags, 326 int node, size_t size); 327#else 328static __always_inline void * 329kmem_cache_alloc_node_trace(struct kmem_cache *s, 330 gfp_t gfpflags, 331 int node, size_t size) 332{ 333 return kmem_cache_alloc_trace(s, gfpflags, size); 334} 335#endif /* CONFIG_NUMA */ 336 337#else /* CONFIG_TRACING */ 338static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 339 gfp_t flags, size_t size) 340{ 341 return kmem_cache_alloc(s, flags); 342} 343 344static __always_inline void * 345kmem_cache_alloc_node_trace(struct kmem_cache *s, 346 gfp_t gfpflags, 347 int node, size_t size) 348{ 349 return kmem_cache_alloc_node(s, gfpflags, node); 350} 351#endif /* CONFIG_TRACING */ 352 353#ifdef CONFIG_SLAB 354#include <linux/slab_def.h> 355#endif 356 357#ifdef CONFIG_SLUB 358#include <linux/slub_def.h> 359#endif 360 361static __always_inline void * 362kmalloc_order(size_t size, gfp_t flags, unsigned int order) 363{ 364 void *ret; 365 366 flags |= (__GFP_COMP | __GFP_KMEMCG); 367 ret = (void *) __get_free_pages(flags, order); 368 kmemleak_alloc(ret, size, 1, flags); 369 return ret; 370} 371 372#ifdef CONFIG_TRACING 373extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 374#else 375static __always_inline void * 376kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 377{ 378 return kmalloc_order(size, flags, order); 379} 380#endif 381 382static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 383{ 384 unsigned int order = get_order(size); 385 return kmalloc_order_trace(size, flags, order); 386} 387 388/** 389 * kmalloc - allocate memory 390 * @size: how many bytes of memory are required. 391 * @flags: the type of memory to allocate. 392 * 393 * kmalloc is the normal method of allocating memory 394 * for objects smaller than page size in the kernel. 395 * 396 * The @flags argument may be one of: 397 * 398 * %GFP_USER - Allocate memory on behalf of user. May sleep. 399 * 400 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 401 * 402 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 403 * For example, use this inside interrupt handlers. 404 * 405 * %GFP_HIGHUSER - Allocate pages from high memory. 406 * 407 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 408 * 409 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 410 * 411 * %GFP_NOWAIT - Allocation will not sleep. 412 * 413 * %GFP_THISNODE - Allocate node-local memory only. 414 * 415 * %GFP_DMA - Allocation suitable for DMA. 416 * Should only be used for kmalloc() caches. Otherwise, use a 417 * slab created with SLAB_DMA. 418 * 419 * Also it is possible to set different flags by OR'ing 420 * in one or more of the following additional @flags: 421 * 422 * %__GFP_COLD - Request cache-cold pages instead of 423 * trying to return cache-warm pages. 424 * 425 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 426 * 427 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 428 * (think twice before using). 429 * 430 * %__GFP_NORETRY - If memory is not immediately available, 431 * then give up at once. 432 * 433 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 434 * 435 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 436 * 437 * There are other flags available as well, but these are not intended 438 * for general use, and so are not documented here. For a full list of 439 * potential flags, always refer to linux/gfp.h. 440 */ 441static __always_inline void *kmalloc(size_t size, gfp_t flags) 442{ 443 if (__builtin_constant_p(size)) { 444 if (size > KMALLOC_MAX_CACHE_SIZE) 445 return kmalloc_large(size, flags); 446#ifndef CONFIG_SLOB 447 if (!(flags & GFP_DMA)) { 448 int index = kmalloc_index(size); 449 450 if (!index) 451 return ZERO_SIZE_PTR; 452 453 return kmem_cache_alloc_trace(kmalloc_caches[index], 454 flags, size); 455 } 456#endif 457 } 458 return __kmalloc(size, flags); 459} 460 461/* 462 * Determine size used for the nth kmalloc cache. 463 * return size or 0 if a kmalloc cache for that 464 * size does not exist 465 */ 466static __always_inline int kmalloc_size(int n) 467{ 468#ifndef CONFIG_SLOB 469 if (n > 2) 470 return 1 << n; 471 472 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 473 return 96; 474 475 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 476 return 192; 477#endif 478 return 0; 479} 480 481static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 482{ 483#ifndef CONFIG_SLOB 484 if (__builtin_constant_p(size) && 485 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 486 int i = kmalloc_index(size); 487 488 if (!i) 489 return ZERO_SIZE_PTR; 490 491 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 492 flags, node, size); 493 } 494#endif 495 return __kmalloc_node(size, flags, node); 496} 497 498/* 499 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 500 * Intended for arches that get misalignment faults even for 64 bit integer 501 * aligned buffers. 502 */ 503#ifndef ARCH_SLAB_MINALIGN 504#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 505#endif 506/* 507 * This is the main placeholder for memcg-related information in kmem caches. 508 * struct kmem_cache will hold a pointer to it, so the memory cost while 509 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it 510 * would otherwise be if that would be bundled in kmem_cache: we'll need an 511 * extra pointer chase. But the trade off clearly lays in favor of not 512 * penalizing non-users. 513 * 514 * Both the root cache and the child caches will have it. For the root cache, 515 * this will hold a dynamically allocated array large enough to hold 516 * information about the currently limited memcgs in the system. 517 * 518 * Child caches will hold extra metadata needed for its operation. Fields are: 519 * 520 * @memcg: pointer to the memcg this cache belongs to 521 * @list: list_head for the list of all caches in this memcg 522 * @root_cache: pointer to the global, root cache, this cache was derived from 523 * @dead: set to true after the memcg dies; the cache may still be around. 524 * @nr_pages: number of pages that belongs to this cache. 525 * @destroy: worker to be called whenever we are ready, or believe we may be 526 * ready, to destroy this cache. 527 */ 528struct memcg_cache_params { 529 bool is_root_cache; 530 union { 531 struct kmem_cache *memcg_caches[0]; 532 struct { 533 struct mem_cgroup *memcg; 534 struct list_head list; 535 struct kmem_cache *root_cache; 536 bool dead; 537 atomic_t nr_pages; 538 struct work_struct destroy; 539 }; 540 }; 541}; 542 543int memcg_update_all_caches(int num_memcgs); 544 545struct seq_file; 546int cache_show(struct kmem_cache *s, struct seq_file *m); 547void print_slabinfo_header(struct seq_file *m); 548 549/** 550 * kmalloc_array - allocate memory for an array. 551 * @n: number of elements. 552 * @size: element size. 553 * @flags: the type of memory to allocate (see kmalloc). 554 */ 555static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 556{ 557 if (size != 0 && n > SIZE_MAX / size) 558 return NULL; 559 return __kmalloc(n * size, flags); 560} 561 562/** 563 * kcalloc - allocate memory for an array. The memory is set to zero. 564 * @n: number of elements. 565 * @size: element size. 566 * @flags: the type of memory to allocate (see kmalloc). 567 */ 568static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 569{ 570 return kmalloc_array(n, size, flags | __GFP_ZERO); 571} 572 573/* 574 * kmalloc_track_caller is a special version of kmalloc that records the 575 * calling function of the routine calling it for slab leak tracking instead 576 * of just the calling function (confusing, eh?). 577 * It's useful when the call to kmalloc comes from a widely-used standard 578 * allocator where we care about the real place the memory allocation 579 * request comes from. 580 */ 581#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 582 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 583 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 584extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 585#define kmalloc_track_caller(size, flags) \ 586 __kmalloc_track_caller(size, flags, _RET_IP_) 587#else 588#define kmalloc_track_caller(size, flags) \ 589 __kmalloc(size, flags) 590#endif /* DEBUG_SLAB */ 591 592#ifdef CONFIG_NUMA 593/* 594 * kmalloc_node_track_caller is a special version of kmalloc_node that 595 * records the calling function of the routine calling it for slab leak 596 * tracking instead of just the calling function (confusing, eh?). 597 * It's useful when the call to kmalloc_node comes from a widely-used 598 * standard allocator where we care about the real place the memory 599 * allocation request comes from. 600 */ 601#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 602 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 603 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 604extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 605#define kmalloc_node_track_caller(size, flags, node) \ 606 __kmalloc_node_track_caller(size, flags, node, \ 607 _RET_IP_) 608#else 609#define kmalloc_node_track_caller(size, flags, node) \ 610 __kmalloc_node(size, flags, node) 611#endif 612 613#else /* CONFIG_NUMA */ 614 615#define kmalloc_node_track_caller(size, flags, node) \ 616 kmalloc_track_caller(size, flags) 617 618#endif /* CONFIG_NUMA */ 619 620/* 621 * Shortcuts 622 */ 623static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 624{ 625 return kmem_cache_alloc(k, flags | __GFP_ZERO); 626} 627 628/** 629 * kzalloc - allocate memory. The memory is set to zero. 630 * @size: how many bytes of memory are required. 631 * @flags: the type of memory to allocate (see kmalloc). 632 */ 633static inline void *kzalloc(size_t size, gfp_t flags) 634{ 635 return kmalloc(size, flags | __GFP_ZERO); 636} 637 638/** 639 * kzalloc_node - allocate zeroed memory from a particular memory node. 640 * @size: how many bytes of memory are required. 641 * @flags: the type of memory to allocate (see kmalloc). 642 * @node: memory node from which to allocate 643 */ 644static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 645{ 646 return kmalloc_node(size, flags | __GFP_ZERO, node); 647} 648 649/* 650 * Determine the size of a slab object 651 */ 652static inline unsigned int kmem_cache_size(struct kmem_cache *s) 653{ 654 return s->object_size; 655} 656 657void __init kmem_cache_init_late(void); 658 659#endif /* _LINUX_SLAB_H */