at v3.13 80 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35#include <net/flow_keys.h> 36 37/* Don't change this without changing skb_csum_unnecessary! */ 38#define CHECKSUM_NONE 0 39#define CHECKSUM_UNNECESSARY 1 40#define CHECKSUM_COMPLETE 2 41#define CHECKSUM_PARTIAL 3 42 43#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45#define SKB_WITH_OVERHEAD(X) \ 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 47#define SKB_MAX_ORDER(X, ORDER) \ 48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 49#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 50#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 51 52/* return minimum truesize of one skb containing X bytes of data */ 53#define SKB_TRUESIZE(X) ((X) + \ 54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 56 57/* A. Checksumming of received packets by device. 58 * 59 * NONE: device failed to checksum this packet. 60 * skb->csum is undefined. 61 * 62 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 63 * skb->csum is undefined. 64 * It is bad option, but, unfortunately, many of vendors do this. 65 * Apparently with secret goal to sell you new device, when you 66 * will add new protocol to your host. F.e. IPv6. 8) 67 * 68 * COMPLETE: the most generic way. Device supplied checksum of _all_ 69 * the packet as seen by netif_rx in skb->csum. 70 * NOTE: Even if device supports only some protocols, but 71 * is able to produce some skb->csum, it MUST use COMPLETE, 72 * not UNNECESSARY. 73 * 74 * PARTIAL: identical to the case for output below. This may occur 75 * on a packet received directly from another Linux OS, e.g., 76 * a virtualised Linux kernel on the same host. The packet can 77 * be treated in the same way as UNNECESSARY except that on 78 * output (i.e., forwarding) the checksum must be filled in 79 * by the OS or the hardware. 80 * 81 * B. Checksumming on output. 82 * 83 * NONE: skb is checksummed by protocol or csum is not required. 84 * 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 86 * from skb->csum_start to the end and to record the checksum 87 * at skb->csum_start + skb->csum_offset. 88 * 89 * Device must show its capabilities in dev->features, set 90 * at device setup time. 91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 92 * everything. 93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 94 * TCP/UDP over IPv4. Sigh. Vendors like this 95 * way by an unknown reason. Though, see comment above 96 * about CHECKSUM_UNNECESSARY. 8) 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 98 * 99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 100 * that do not want net to perform the checksum calculation should use 101 * this flag in their outgoing skbs. 102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109struct net_device; 110struct scatterlist; 111struct pipe_inode_info; 112 113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 114struct nf_conntrack { 115 atomic_t use; 116}; 117#endif 118 119#ifdef CONFIG_BRIDGE_NETFILTER 120struct nf_bridge_info { 121 atomic_t use; 122 unsigned int mask; 123 struct net_device *physindev; 124 struct net_device *physoutdev; 125 unsigned long data[32 / sizeof(unsigned long)]; 126}; 127#endif 128 129struct sk_buff_head { 130 /* These two members must be first. */ 131 struct sk_buff *next; 132 struct sk_buff *prev; 133 134 __u32 qlen; 135 spinlock_t lock; 136}; 137 138struct sk_buff; 139 140/* To allow 64K frame to be packed as single skb without frag_list we 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 142 * buffers which do not start on a page boundary. 143 * 144 * Since GRO uses frags we allocate at least 16 regardless of page 145 * size. 146 */ 147#if (65536/PAGE_SIZE + 1) < 16 148#define MAX_SKB_FRAGS 16UL 149#else 150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 151#endif 152 153typedef struct skb_frag_struct skb_frag_t; 154 155struct skb_frag_struct { 156 struct { 157 struct page *p; 158 } page; 159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 160 __u32 page_offset; 161 __u32 size; 162#else 163 __u16 page_offset; 164 __u16 size; 165#endif 166}; 167 168static inline unsigned int skb_frag_size(const skb_frag_t *frag) 169{ 170 return frag->size; 171} 172 173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 174{ 175 frag->size = size; 176} 177 178static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 179{ 180 frag->size += delta; 181} 182 183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 184{ 185 frag->size -= delta; 186} 187 188#define HAVE_HW_TIME_STAMP 189 190/** 191 * struct skb_shared_hwtstamps - hardware time stamps 192 * @hwtstamp: hardware time stamp transformed into duration 193 * since arbitrary point in time 194 * @syststamp: hwtstamp transformed to system time base 195 * 196 * Software time stamps generated by ktime_get_real() are stored in 197 * skb->tstamp. The relation between the different kinds of time 198 * stamps is as follows: 199 * 200 * syststamp and tstamp can be compared against each other in 201 * arbitrary combinations. The accuracy of a 202 * syststamp/tstamp/"syststamp from other device" comparison is 203 * limited by the accuracy of the transformation into system time 204 * base. This depends on the device driver and its underlying 205 * hardware. 206 * 207 * hwtstamps can only be compared against other hwtstamps from 208 * the same device. 209 * 210 * This structure is attached to packets as part of the 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 212 */ 213struct skb_shared_hwtstamps { 214 ktime_t hwtstamp; 215 ktime_t syststamp; 216}; 217 218/* Definitions for tx_flags in struct skb_shared_info */ 219enum { 220 /* generate hardware time stamp */ 221 SKBTX_HW_TSTAMP = 1 << 0, 222 223 /* generate software time stamp */ 224 SKBTX_SW_TSTAMP = 1 << 1, 225 226 /* device driver is going to provide hardware time stamp */ 227 SKBTX_IN_PROGRESS = 1 << 2, 228 229 /* device driver supports TX zero-copy buffers */ 230 SKBTX_DEV_ZEROCOPY = 1 << 3, 231 232 /* generate wifi status information (where possible) */ 233 SKBTX_WIFI_STATUS = 1 << 4, 234 235 /* This indicates at least one fragment might be overwritten 236 * (as in vmsplice(), sendfile() ...) 237 * If we need to compute a TX checksum, we'll need to copy 238 * all frags to avoid possible bad checksum 239 */ 240 SKBTX_SHARED_FRAG = 1 << 5, 241}; 242 243/* 244 * The callback notifies userspace to release buffers when skb DMA is done in 245 * lower device, the skb last reference should be 0 when calling this. 246 * The zerocopy_success argument is true if zero copy transmit occurred, 247 * false on data copy or out of memory error caused by data copy attempt. 248 * The ctx field is used to track device context. 249 * The desc field is used to track userspace buffer index. 250 */ 251struct ubuf_info { 252 void (*callback)(struct ubuf_info *, bool zerocopy_success); 253 void *ctx; 254 unsigned long desc; 255}; 256 257/* This data is invariant across clones and lives at 258 * the end of the header data, ie. at skb->end. 259 */ 260struct skb_shared_info { 261 unsigned char nr_frags; 262 __u8 tx_flags; 263 unsigned short gso_size; 264 /* Warning: this field is not always filled in (UFO)! */ 265 unsigned short gso_segs; 266 unsigned short gso_type; 267 struct sk_buff *frag_list; 268 struct skb_shared_hwtstamps hwtstamps; 269 __be32 ip6_frag_id; 270 271 /* 272 * Warning : all fields before dataref are cleared in __alloc_skb() 273 */ 274 atomic_t dataref; 275 276 /* Intermediate layers must ensure that destructor_arg 277 * remains valid until skb destructor */ 278 void * destructor_arg; 279 280 /* must be last field, see pskb_expand_head() */ 281 skb_frag_t frags[MAX_SKB_FRAGS]; 282}; 283 284/* We divide dataref into two halves. The higher 16 bits hold references 285 * to the payload part of skb->data. The lower 16 bits hold references to 286 * the entire skb->data. A clone of a headerless skb holds the length of 287 * the header in skb->hdr_len. 288 * 289 * All users must obey the rule that the skb->data reference count must be 290 * greater than or equal to the payload reference count. 291 * 292 * Holding a reference to the payload part means that the user does not 293 * care about modifications to the header part of skb->data. 294 */ 295#define SKB_DATAREF_SHIFT 16 296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 297 298 299enum { 300 SKB_FCLONE_UNAVAILABLE, 301 SKB_FCLONE_ORIG, 302 SKB_FCLONE_CLONE, 303}; 304 305enum { 306 SKB_GSO_TCPV4 = 1 << 0, 307 SKB_GSO_UDP = 1 << 1, 308 309 /* This indicates the skb is from an untrusted source. */ 310 SKB_GSO_DODGY = 1 << 2, 311 312 /* This indicates the tcp segment has CWR set. */ 313 SKB_GSO_TCP_ECN = 1 << 3, 314 315 SKB_GSO_TCPV6 = 1 << 4, 316 317 SKB_GSO_FCOE = 1 << 5, 318 319 SKB_GSO_GRE = 1 << 6, 320 321 SKB_GSO_IPIP = 1 << 7, 322 323 SKB_GSO_SIT = 1 << 8, 324 325 SKB_GSO_UDP_TUNNEL = 1 << 9, 326 327 SKB_GSO_MPLS = 1 << 10, 328}; 329 330#if BITS_PER_LONG > 32 331#define NET_SKBUFF_DATA_USES_OFFSET 1 332#endif 333 334#ifdef NET_SKBUFF_DATA_USES_OFFSET 335typedef unsigned int sk_buff_data_t; 336#else 337typedef unsigned char *sk_buff_data_t; 338#endif 339 340/** 341 * struct sk_buff - socket buffer 342 * @next: Next buffer in list 343 * @prev: Previous buffer in list 344 * @tstamp: Time we arrived 345 * @sk: Socket we are owned by 346 * @dev: Device we arrived on/are leaving by 347 * @cb: Control buffer. Free for use by every layer. Put private vars here 348 * @_skb_refdst: destination entry (with norefcount bit) 349 * @sp: the security path, used for xfrm 350 * @len: Length of actual data 351 * @data_len: Data length 352 * @mac_len: Length of link layer header 353 * @hdr_len: writable header length of cloned skb 354 * @csum: Checksum (must include start/offset pair) 355 * @csum_start: Offset from skb->head where checksumming should start 356 * @csum_offset: Offset from csum_start where checksum should be stored 357 * @priority: Packet queueing priority 358 * @local_df: allow local fragmentation 359 * @cloned: Head may be cloned (check refcnt to be sure) 360 * @ip_summed: Driver fed us an IP checksum 361 * @nohdr: Payload reference only, must not modify header 362 * @nfctinfo: Relationship of this skb to the connection 363 * @pkt_type: Packet class 364 * @fclone: skbuff clone status 365 * @ipvs_property: skbuff is owned by ipvs 366 * @peeked: this packet has been seen already, so stats have been 367 * done for it, don't do them again 368 * @nf_trace: netfilter packet trace flag 369 * @protocol: Packet protocol from driver 370 * @destructor: Destruct function 371 * @nfct: Associated connection, if any 372 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 373 * @skb_iif: ifindex of device we arrived on 374 * @tc_index: Traffic control index 375 * @tc_verd: traffic control verdict 376 * @rxhash: the packet hash computed on receive 377 * @queue_mapping: Queue mapping for multiqueue devices 378 * @ndisc_nodetype: router type (from link layer) 379 * @ooo_okay: allow the mapping of a socket to a queue to be changed 380 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 381 * ports. 382 * @wifi_acked_valid: wifi_acked was set 383 * @wifi_acked: whether frame was acked on wifi or not 384 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 385 * @dma_cookie: a cookie to one of several possible DMA operations 386 * done by skb DMA functions 387 * @napi_id: id of the NAPI struct this skb came from 388 * @secmark: security marking 389 * @mark: Generic packet mark 390 * @dropcount: total number of sk_receive_queue overflows 391 * @vlan_proto: vlan encapsulation protocol 392 * @vlan_tci: vlan tag control information 393 * @inner_protocol: Protocol (encapsulation) 394 * @inner_transport_header: Inner transport layer header (encapsulation) 395 * @inner_network_header: Network layer header (encapsulation) 396 * @inner_mac_header: Link layer header (encapsulation) 397 * @transport_header: Transport layer header 398 * @network_header: Network layer header 399 * @mac_header: Link layer header 400 * @tail: Tail pointer 401 * @end: End pointer 402 * @head: Head of buffer 403 * @data: Data head pointer 404 * @truesize: Buffer size 405 * @users: User count - see {datagram,tcp}.c 406 */ 407 408struct sk_buff { 409 /* These two members must be first. */ 410 struct sk_buff *next; 411 struct sk_buff *prev; 412 413 ktime_t tstamp; 414 415 struct sock *sk; 416 struct net_device *dev; 417 418 /* 419 * This is the control buffer. It is free to use for every 420 * layer. Please put your private variables there. If you 421 * want to keep them across layers you have to do a skb_clone() 422 * first. This is owned by whoever has the skb queued ATM. 423 */ 424 char cb[48] __aligned(8); 425 426 unsigned long _skb_refdst; 427#ifdef CONFIG_XFRM 428 struct sec_path *sp; 429#endif 430 unsigned int len, 431 data_len; 432 __u16 mac_len, 433 hdr_len; 434 union { 435 __wsum csum; 436 struct { 437 __u16 csum_start; 438 __u16 csum_offset; 439 }; 440 }; 441 __u32 priority; 442 kmemcheck_bitfield_begin(flags1); 443 __u8 local_df:1, 444 cloned:1, 445 ip_summed:2, 446 nohdr:1, 447 nfctinfo:3; 448 __u8 pkt_type:3, 449 fclone:2, 450 ipvs_property:1, 451 peeked:1, 452 nf_trace:1; 453 kmemcheck_bitfield_end(flags1); 454 __be16 protocol; 455 456 void (*destructor)(struct sk_buff *skb); 457#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 458 struct nf_conntrack *nfct; 459#endif 460#ifdef CONFIG_BRIDGE_NETFILTER 461 struct nf_bridge_info *nf_bridge; 462#endif 463 464 int skb_iif; 465 466 __u32 rxhash; 467 468 __be16 vlan_proto; 469 __u16 vlan_tci; 470 471#ifdef CONFIG_NET_SCHED 472 __u16 tc_index; /* traffic control index */ 473#ifdef CONFIG_NET_CLS_ACT 474 __u16 tc_verd; /* traffic control verdict */ 475#endif 476#endif 477 478 __u16 queue_mapping; 479 kmemcheck_bitfield_begin(flags2); 480#ifdef CONFIG_IPV6_NDISC_NODETYPE 481 __u8 ndisc_nodetype:2; 482#endif 483 __u8 pfmemalloc:1; 484 __u8 ooo_okay:1; 485 __u8 l4_rxhash:1; 486 __u8 wifi_acked_valid:1; 487 __u8 wifi_acked:1; 488 __u8 no_fcs:1; 489 __u8 head_frag:1; 490 /* Encapsulation protocol and NIC drivers should use 491 * this flag to indicate to each other if the skb contains 492 * encapsulated packet or not and maybe use the inner packet 493 * headers if needed 494 */ 495 __u8 encapsulation:1; 496 /* 6/8 bit hole (depending on ndisc_nodetype presence) */ 497 kmemcheck_bitfield_end(flags2); 498 499#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL 500 union { 501 unsigned int napi_id; 502 dma_cookie_t dma_cookie; 503 }; 504#endif 505#ifdef CONFIG_NETWORK_SECMARK 506 __u32 secmark; 507#endif 508 union { 509 __u32 mark; 510 __u32 dropcount; 511 __u32 reserved_tailroom; 512 }; 513 514 __be16 inner_protocol; 515 __u16 inner_transport_header; 516 __u16 inner_network_header; 517 __u16 inner_mac_header; 518 __u16 transport_header; 519 __u16 network_header; 520 __u16 mac_header; 521 /* These elements must be at the end, see alloc_skb() for details. */ 522 sk_buff_data_t tail; 523 sk_buff_data_t end; 524 unsigned char *head, 525 *data; 526 unsigned int truesize; 527 atomic_t users; 528}; 529 530#ifdef __KERNEL__ 531/* 532 * Handling routines are only of interest to the kernel 533 */ 534#include <linux/slab.h> 535 536 537#define SKB_ALLOC_FCLONE 0x01 538#define SKB_ALLOC_RX 0x02 539 540/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 541static inline bool skb_pfmemalloc(const struct sk_buff *skb) 542{ 543 return unlikely(skb->pfmemalloc); 544} 545 546/* 547 * skb might have a dst pointer attached, refcounted or not. 548 * _skb_refdst low order bit is set if refcount was _not_ taken 549 */ 550#define SKB_DST_NOREF 1UL 551#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 552 553/** 554 * skb_dst - returns skb dst_entry 555 * @skb: buffer 556 * 557 * Returns skb dst_entry, regardless of reference taken or not. 558 */ 559static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 560{ 561 /* If refdst was not refcounted, check we still are in a 562 * rcu_read_lock section 563 */ 564 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 565 !rcu_read_lock_held() && 566 !rcu_read_lock_bh_held()); 567 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 568} 569 570/** 571 * skb_dst_set - sets skb dst 572 * @skb: buffer 573 * @dst: dst entry 574 * 575 * Sets skb dst, assuming a reference was taken on dst and should 576 * be released by skb_dst_drop() 577 */ 578static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 579{ 580 skb->_skb_refdst = (unsigned long)dst; 581} 582 583void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 584 bool force); 585 586/** 587 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 588 * @skb: buffer 589 * @dst: dst entry 590 * 591 * Sets skb dst, assuming a reference was not taken on dst. 592 * If dst entry is cached, we do not take reference and dst_release 593 * will be avoided by refdst_drop. If dst entry is not cached, we take 594 * reference, so that last dst_release can destroy the dst immediately. 595 */ 596static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 597{ 598 __skb_dst_set_noref(skb, dst, false); 599} 600 601/** 602 * skb_dst_set_noref_force - sets skb dst, without taking reference 603 * @skb: buffer 604 * @dst: dst entry 605 * 606 * Sets skb dst, assuming a reference was not taken on dst. 607 * No reference is taken and no dst_release will be called. While for 608 * cached dsts deferred reclaim is a basic feature, for entries that are 609 * not cached it is caller's job to guarantee that last dst_release for 610 * provided dst happens when nobody uses it, eg. after a RCU grace period. 611 */ 612static inline void skb_dst_set_noref_force(struct sk_buff *skb, 613 struct dst_entry *dst) 614{ 615 __skb_dst_set_noref(skb, dst, true); 616} 617 618/** 619 * skb_dst_is_noref - Test if skb dst isn't refcounted 620 * @skb: buffer 621 */ 622static inline bool skb_dst_is_noref(const struct sk_buff *skb) 623{ 624 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 625} 626 627static inline struct rtable *skb_rtable(const struct sk_buff *skb) 628{ 629 return (struct rtable *)skb_dst(skb); 630} 631 632void kfree_skb(struct sk_buff *skb); 633void kfree_skb_list(struct sk_buff *segs); 634void skb_tx_error(struct sk_buff *skb); 635void consume_skb(struct sk_buff *skb); 636void __kfree_skb(struct sk_buff *skb); 637extern struct kmem_cache *skbuff_head_cache; 638 639void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 640bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 641 bool *fragstolen, int *delta_truesize); 642 643struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 644 int node); 645struct sk_buff *build_skb(void *data, unsigned int frag_size); 646static inline struct sk_buff *alloc_skb(unsigned int size, 647 gfp_t priority) 648{ 649 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 650} 651 652static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 653 gfp_t priority) 654{ 655 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 656} 657 658struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 659static inline struct sk_buff *alloc_skb_head(gfp_t priority) 660{ 661 return __alloc_skb_head(priority, -1); 662} 663 664struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 665int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 666struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 667struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 668struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); 669 670int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 671struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 672 unsigned int headroom); 673struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 674 int newtailroom, gfp_t priority); 675int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 676 int len); 677int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 678int skb_pad(struct sk_buff *skb, int pad); 679#define dev_kfree_skb(a) consume_skb(a) 680 681int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 682 int getfrag(void *from, char *to, int offset, 683 int len, int odd, struct sk_buff *skb), 684 void *from, int length); 685 686struct skb_seq_state { 687 __u32 lower_offset; 688 __u32 upper_offset; 689 __u32 frag_idx; 690 __u32 stepped_offset; 691 struct sk_buff *root_skb; 692 struct sk_buff *cur_skb; 693 __u8 *frag_data; 694}; 695 696void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 697 unsigned int to, struct skb_seq_state *st); 698unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 699 struct skb_seq_state *st); 700void skb_abort_seq_read(struct skb_seq_state *st); 701 702unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 703 unsigned int to, struct ts_config *config, 704 struct ts_state *state); 705 706void __skb_get_rxhash(struct sk_buff *skb); 707static inline __u32 skb_get_rxhash(struct sk_buff *skb) 708{ 709 if (!skb->l4_rxhash) 710 __skb_get_rxhash(skb); 711 712 return skb->rxhash; 713} 714 715#ifdef NET_SKBUFF_DATA_USES_OFFSET 716static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 717{ 718 return skb->head + skb->end; 719} 720 721static inline unsigned int skb_end_offset(const struct sk_buff *skb) 722{ 723 return skb->end; 724} 725#else 726static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 727{ 728 return skb->end; 729} 730 731static inline unsigned int skb_end_offset(const struct sk_buff *skb) 732{ 733 return skb->end - skb->head; 734} 735#endif 736 737/* Internal */ 738#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 739 740static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 741{ 742 return &skb_shinfo(skb)->hwtstamps; 743} 744 745/** 746 * skb_queue_empty - check if a queue is empty 747 * @list: queue head 748 * 749 * Returns true if the queue is empty, false otherwise. 750 */ 751static inline int skb_queue_empty(const struct sk_buff_head *list) 752{ 753 return list->next == (struct sk_buff *)list; 754} 755 756/** 757 * skb_queue_is_last - check if skb is the last entry in the queue 758 * @list: queue head 759 * @skb: buffer 760 * 761 * Returns true if @skb is the last buffer on the list. 762 */ 763static inline bool skb_queue_is_last(const struct sk_buff_head *list, 764 const struct sk_buff *skb) 765{ 766 return skb->next == (struct sk_buff *)list; 767} 768 769/** 770 * skb_queue_is_first - check if skb is the first entry in the queue 771 * @list: queue head 772 * @skb: buffer 773 * 774 * Returns true if @skb is the first buffer on the list. 775 */ 776static inline bool skb_queue_is_first(const struct sk_buff_head *list, 777 const struct sk_buff *skb) 778{ 779 return skb->prev == (struct sk_buff *)list; 780} 781 782/** 783 * skb_queue_next - return the next packet in the queue 784 * @list: queue head 785 * @skb: current buffer 786 * 787 * Return the next packet in @list after @skb. It is only valid to 788 * call this if skb_queue_is_last() evaluates to false. 789 */ 790static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 791 const struct sk_buff *skb) 792{ 793 /* This BUG_ON may seem severe, but if we just return then we 794 * are going to dereference garbage. 795 */ 796 BUG_ON(skb_queue_is_last(list, skb)); 797 return skb->next; 798} 799 800/** 801 * skb_queue_prev - return the prev packet in the queue 802 * @list: queue head 803 * @skb: current buffer 804 * 805 * Return the prev packet in @list before @skb. It is only valid to 806 * call this if skb_queue_is_first() evaluates to false. 807 */ 808static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 809 const struct sk_buff *skb) 810{ 811 /* This BUG_ON may seem severe, but if we just return then we 812 * are going to dereference garbage. 813 */ 814 BUG_ON(skb_queue_is_first(list, skb)); 815 return skb->prev; 816} 817 818/** 819 * skb_get - reference buffer 820 * @skb: buffer to reference 821 * 822 * Makes another reference to a socket buffer and returns a pointer 823 * to the buffer. 824 */ 825static inline struct sk_buff *skb_get(struct sk_buff *skb) 826{ 827 atomic_inc(&skb->users); 828 return skb; 829} 830 831/* 832 * If users == 1, we are the only owner and are can avoid redundant 833 * atomic change. 834 */ 835 836/** 837 * skb_cloned - is the buffer a clone 838 * @skb: buffer to check 839 * 840 * Returns true if the buffer was generated with skb_clone() and is 841 * one of multiple shared copies of the buffer. Cloned buffers are 842 * shared data so must not be written to under normal circumstances. 843 */ 844static inline int skb_cloned(const struct sk_buff *skb) 845{ 846 return skb->cloned && 847 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 848} 849 850static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 851{ 852 might_sleep_if(pri & __GFP_WAIT); 853 854 if (skb_cloned(skb)) 855 return pskb_expand_head(skb, 0, 0, pri); 856 857 return 0; 858} 859 860/** 861 * skb_header_cloned - is the header a clone 862 * @skb: buffer to check 863 * 864 * Returns true if modifying the header part of the buffer requires 865 * the data to be copied. 866 */ 867static inline int skb_header_cloned(const struct sk_buff *skb) 868{ 869 int dataref; 870 871 if (!skb->cloned) 872 return 0; 873 874 dataref = atomic_read(&skb_shinfo(skb)->dataref); 875 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 876 return dataref != 1; 877} 878 879/** 880 * skb_header_release - release reference to header 881 * @skb: buffer to operate on 882 * 883 * Drop a reference to the header part of the buffer. This is done 884 * by acquiring a payload reference. You must not read from the header 885 * part of skb->data after this. 886 */ 887static inline void skb_header_release(struct sk_buff *skb) 888{ 889 BUG_ON(skb->nohdr); 890 skb->nohdr = 1; 891 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 892} 893 894/** 895 * skb_shared - is the buffer shared 896 * @skb: buffer to check 897 * 898 * Returns true if more than one person has a reference to this 899 * buffer. 900 */ 901static inline int skb_shared(const struct sk_buff *skb) 902{ 903 return atomic_read(&skb->users) != 1; 904} 905 906/** 907 * skb_share_check - check if buffer is shared and if so clone it 908 * @skb: buffer to check 909 * @pri: priority for memory allocation 910 * 911 * If the buffer is shared the buffer is cloned and the old copy 912 * drops a reference. A new clone with a single reference is returned. 913 * If the buffer is not shared the original buffer is returned. When 914 * being called from interrupt status or with spinlocks held pri must 915 * be GFP_ATOMIC. 916 * 917 * NULL is returned on a memory allocation failure. 918 */ 919static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 920{ 921 might_sleep_if(pri & __GFP_WAIT); 922 if (skb_shared(skb)) { 923 struct sk_buff *nskb = skb_clone(skb, pri); 924 925 if (likely(nskb)) 926 consume_skb(skb); 927 else 928 kfree_skb(skb); 929 skb = nskb; 930 } 931 return skb; 932} 933 934/* 935 * Copy shared buffers into a new sk_buff. We effectively do COW on 936 * packets to handle cases where we have a local reader and forward 937 * and a couple of other messy ones. The normal one is tcpdumping 938 * a packet thats being forwarded. 939 */ 940 941/** 942 * skb_unshare - make a copy of a shared buffer 943 * @skb: buffer to check 944 * @pri: priority for memory allocation 945 * 946 * If the socket buffer is a clone then this function creates a new 947 * copy of the data, drops a reference count on the old copy and returns 948 * the new copy with the reference count at 1. If the buffer is not a clone 949 * the original buffer is returned. When called with a spinlock held or 950 * from interrupt state @pri must be %GFP_ATOMIC 951 * 952 * %NULL is returned on a memory allocation failure. 953 */ 954static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 955 gfp_t pri) 956{ 957 might_sleep_if(pri & __GFP_WAIT); 958 if (skb_cloned(skb)) { 959 struct sk_buff *nskb = skb_copy(skb, pri); 960 kfree_skb(skb); /* Free our shared copy */ 961 skb = nskb; 962 } 963 return skb; 964} 965 966/** 967 * skb_peek - peek at the head of an &sk_buff_head 968 * @list_: list to peek at 969 * 970 * Peek an &sk_buff. Unlike most other operations you _MUST_ 971 * be careful with this one. A peek leaves the buffer on the 972 * list and someone else may run off with it. You must hold 973 * the appropriate locks or have a private queue to do this. 974 * 975 * Returns %NULL for an empty list or a pointer to the head element. 976 * The reference count is not incremented and the reference is therefore 977 * volatile. Use with caution. 978 */ 979static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 980{ 981 struct sk_buff *skb = list_->next; 982 983 if (skb == (struct sk_buff *)list_) 984 skb = NULL; 985 return skb; 986} 987 988/** 989 * skb_peek_next - peek skb following the given one from a queue 990 * @skb: skb to start from 991 * @list_: list to peek at 992 * 993 * Returns %NULL when the end of the list is met or a pointer to the 994 * next element. The reference count is not incremented and the 995 * reference is therefore volatile. Use with caution. 996 */ 997static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 998 const struct sk_buff_head *list_) 999{ 1000 struct sk_buff *next = skb->next; 1001 1002 if (next == (struct sk_buff *)list_) 1003 next = NULL; 1004 return next; 1005} 1006 1007/** 1008 * skb_peek_tail - peek at the tail of an &sk_buff_head 1009 * @list_: list to peek at 1010 * 1011 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1012 * be careful with this one. A peek leaves the buffer on the 1013 * list and someone else may run off with it. You must hold 1014 * the appropriate locks or have a private queue to do this. 1015 * 1016 * Returns %NULL for an empty list or a pointer to the tail element. 1017 * The reference count is not incremented and the reference is therefore 1018 * volatile. Use with caution. 1019 */ 1020static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1021{ 1022 struct sk_buff *skb = list_->prev; 1023 1024 if (skb == (struct sk_buff *)list_) 1025 skb = NULL; 1026 return skb; 1027 1028} 1029 1030/** 1031 * skb_queue_len - get queue length 1032 * @list_: list to measure 1033 * 1034 * Return the length of an &sk_buff queue. 1035 */ 1036static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1037{ 1038 return list_->qlen; 1039} 1040 1041/** 1042 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1043 * @list: queue to initialize 1044 * 1045 * This initializes only the list and queue length aspects of 1046 * an sk_buff_head object. This allows to initialize the list 1047 * aspects of an sk_buff_head without reinitializing things like 1048 * the spinlock. It can also be used for on-stack sk_buff_head 1049 * objects where the spinlock is known to not be used. 1050 */ 1051static inline void __skb_queue_head_init(struct sk_buff_head *list) 1052{ 1053 list->prev = list->next = (struct sk_buff *)list; 1054 list->qlen = 0; 1055} 1056 1057/* 1058 * This function creates a split out lock class for each invocation; 1059 * this is needed for now since a whole lot of users of the skb-queue 1060 * infrastructure in drivers have different locking usage (in hardirq) 1061 * than the networking core (in softirq only). In the long run either the 1062 * network layer or drivers should need annotation to consolidate the 1063 * main types of usage into 3 classes. 1064 */ 1065static inline void skb_queue_head_init(struct sk_buff_head *list) 1066{ 1067 spin_lock_init(&list->lock); 1068 __skb_queue_head_init(list); 1069} 1070 1071static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1072 struct lock_class_key *class) 1073{ 1074 skb_queue_head_init(list); 1075 lockdep_set_class(&list->lock, class); 1076} 1077 1078/* 1079 * Insert an sk_buff on a list. 1080 * 1081 * The "__skb_xxxx()" functions are the non-atomic ones that 1082 * can only be called with interrupts disabled. 1083 */ 1084void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1085 struct sk_buff_head *list); 1086static inline void __skb_insert(struct sk_buff *newsk, 1087 struct sk_buff *prev, struct sk_buff *next, 1088 struct sk_buff_head *list) 1089{ 1090 newsk->next = next; 1091 newsk->prev = prev; 1092 next->prev = prev->next = newsk; 1093 list->qlen++; 1094} 1095 1096static inline void __skb_queue_splice(const struct sk_buff_head *list, 1097 struct sk_buff *prev, 1098 struct sk_buff *next) 1099{ 1100 struct sk_buff *first = list->next; 1101 struct sk_buff *last = list->prev; 1102 1103 first->prev = prev; 1104 prev->next = first; 1105 1106 last->next = next; 1107 next->prev = last; 1108} 1109 1110/** 1111 * skb_queue_splice - join two skb lists, this is designed for stacks 1112 * @list: the new list to add 1113 * @head: the place to add it in the first list 1114 */ 1115static inline void skb_queue_splice(const struct sk_buff_head *list, 1116 struct sk_buff_head *head) 1117{ 1118 if (!skb_queue_empty(list)) { 1119 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1120 head->qlen += list->qlen; 1121 } 1122} 1123 1124/** 1125 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1126 * @list: the new list to add 1127 * @head: the place to add it in the first list 1128 * 1129 * The list at @list is reinitialised 1130 */ 1131static inline void skb_queue_splice_init(struct sk_buff_head *list, 1132 struct sk_buff_head *head) 1133{ 1134 if (!skb_queue_empty(list)) { 1135 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1136 head->qlen += list->qlen; 1137 __skb_queue_head_init(list); 1138 } 1139} 1140 1141/** 1142 * skb_queue_splice_tail - join two skb lists, each list being a queue 1143 * @list: the new list to add 1144 * @head: the place to add it in the first list 1145 */ 1146static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1147 struct sk_buff_head *head) 1148{ 1149 if (!skb_queue_empty(list)) { 1150 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1151 head->qlen += list->qlen; 1152 } 1153} 1154 1155/** 1156 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1157 * @list: the new list to add 1158 * @head: the place to add it in the first list 1159 * 1160 * Each of the lists is a queue. 1161 * The list at @list is reinitialised 1162 */ 1163static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1164 struct sk_buff_head *head) 1165{ 1166 if (!skb_queue_empty(list)) { 1167 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1168 head->qlen += list->qlen; 1169 __skb_queue_head_init(list); 1170 } 1171} 1172 1173/** 1174 * __skb_queue_after - queue a buffer at the list head 1175 * @list: list to use 1176 * @prev: place after this buffer 1177 * @newsk: buffer to queue 1178 * 1179 * Queue a buffer int the middle of a list. This function takes no locks 1180 * and you must therefore hold required locks before calling it. 1181 * 1182 * A buffer cannot be placed on two lists at the same time. 1183 */ 1184static inline void __skb_queue_after(struct sk_buff_head *list, 1185 struct sk_buff *prev, 1186 struct sk_buff *newsk) 1187{ 1188 __skb_insert(newsk, prev, prev->next, list); 1189} 1190 1191void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1192 struct sk_buff_head *list); 1193 1194static inline void __skb_queue_before(struct sk_buff_head *list, 1195 struct sk_buff *next, 1196 struct sk_buff *newsk) 1197{ 1198 __skb_insert(newsk, next->prev, next, list); 1199} 1200 1201/** 1202 * __skb_queue_head - queue a buffer at the list head 1203 * @list: list to use 1204 * @newsk: buffer to queue 1205 * 1206 * Queue a buffer at the start of a list. This function takes no locks 1207 * and you must therefore hold required locks before calling it. 1208 * 1209 * A buffer cannot be placed on two lists at the same time. 1210 */ 1211void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1212static inline void __skb_queue_head(struct sk_buff_head *list, 1213 struct sk_buff *newsk) 1214{ 1215 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1216} 1217 1218/** 1219 * __skb_queue_tail - queue a buffer at the list tail 1220 * @list: list to use 1221 * @newsk: buffer to queue 1222 * 1223 * Queue a buffer at the end of a list. This function takes no locks 1224 * and you must therefore hold required locks before calling it. 1225 * 1226 * A buffer cannot be placed on two lists at the same time. 1227 */ 1228void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1229static inline void __skb_queue_tail(struct sk_buff_head *list, 1230 struct sk_buff *newsk) 1231{ 1232 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1233} 1234 1235/* 1236 * remove sk_buff from list. _Must_ be called atomically, and with 1237 * the list known.. 1238 */ 1239void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1240static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1241{ 1242 struct sk_buff *next, *prev; 1243 1244 list->qlen--; 1245 next = skb->next; 1246 prev = skb->prev; 1247 skb->next = skb->prev = NULL; 1248 next->prev = prev; 1249 prev->next = next; 1250} 1251 1252/** 1253 * __skb_dequeue - remove from the head of the queue 1254 * @list: list to dequeue from 1255 * 1256 * Remove the head of the list. This function does not take any locks 1257 * so must be used with appropriate locks held only. The head item is 1258 * returned or %NULL if the list is empty. 1259 */ 1260struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1261static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1262{ 1263 struct sk_buff *skb = skb_peek(list); 1264 if (skb) 1265 __skb_unlink(skb, list); 1266 return skb; 1267} 1268 1269/** 1270 * __skb_dequeue_tail - remove from the tail of the queue 1271 * @list: list to dequeue from 1272 * 1273 * Remove the tail of the list. This function does not take any locks 1274 * so must be used with appropriate locks held only. The tail item is 1275 * returned or %NULL if the list is empty. 1276 */ 1277struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1278static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1279{ 1280 struct sk_buff *skb = skb_peek_tail(list); 1281 if (skb) 1282 __skb_unlink(skb, list); 1283 return skb; 1284} 1285 1286 1287static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1288{ 1289 return skb->data_len; 1290} 1291 1292static inline unsigned int skb_headlen(const struct sk_buff *skb) 1293{ 1294 return skb->len - skb->data_len; 1295} 1296 1297static inline int skb_pagelen(const struct sk_buff *skb) 1298{ 1299 int i, len = 0; 1300 1301 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1302 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1303 return len + skb_headlen(skb); 1304} 1305 1306/** 1307 * __skb_fill_page_desc - initialise a paged fragment in an skb 1308 * @skb: buffer containing fragment to be initialised 1309 * @i: paged fragment index to initialise 1310 * @page: the page to use for this fragment 1311 * @off: the offset to the data with @page 1312 * @size: the length of the data 1313 * 1314 * Initialises the @i'th fragment of @skb to point to &size bytes at 1315 * offset @off within @page. 1316 * 1317 * Does not take any additional reference on the fragment. 1318 */ 1319static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1320 struct page *page, int off, int size) 1321{ 1322 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1323 1324 /* 1325 * Propagate page->pfmemalloc to the skb if we can. The problem is 1326 * that not all callers have unique ownership of the page. If 1327 * pfmemalloc is set, we check the mapping as a mapping implies 1328 * page->index is set (index and pfmemalloc share space). 1329 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1330 * do not lose pfmemalloc information as the pages would not be 1331 * allocated using __GFP_MEMALLOC. 1332 */ 1333 frag->page.p = page; 1334 frag->page_offset = off; 1335 skb_frag_size_set(frag, size); 1336 1337 page = compound_head(page); 1338 if (page->pfmemalloc && !page->mapping) 1339 skb->pfmemalloc = true; 1340} 1341 1342/** 1343 * skb_fill_page_desc - initialise a paged fragment in an skb 1344 * @skb: buffer containing fragment to be initialised 1345 * @i: paged fragment index to initialise 1346 * @page: the page to use for this fragment 1347 * @off: the offset to the data with @page 1348 * @size: the length of the data 1349 * 1350 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1351 * @skb to point to @size bytes at offset @off within @page. In 1352 * addition updates @skb such that @i is the last fragment. 1353 * 1354 * Does not take any additional reference on the fragment. 1355 */ 1356static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1357 struct page *page, int off, int size) 1358{ 1359 __skb_fill_page_desc(skb, i, page, off, size); 1360 skb_shinfo(skb)->nr_frags = i + 1; 1361} 1362 1363void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1364 int size, unsigned int truesize); 1365 1366void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1367 unsigned int truesize); 1368 1369#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1370#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1371#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1372 1373#ifdef NET_SKBUFF_DATA_USES_OFFSET 1374static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1375{ 1376 return skb->head + skb->tail; 1377} 1378 1379static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1380{ 1381 skb->tail = skb->data - skb->head; 1382} 1383 1384static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1385{ 1386 skb_reset_tail_pointer(skb); 1387 skb->tail += offset; 1388} 1389 1390#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1391static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1392{ 1393 return skb->tail; 1394} 1395 1396static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1397{ 1398 skb->tail = skb->data; 1399} 1400 1401static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1402{ 1403 skb->tail = skb->data + offset; 1404} 1405 1406#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1407 1408/* 1409 * Add data to an sk_buff 1410 */ 1411unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1412unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1413static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1414{ 1415 unsigned char *tmp = skb_tail_pointer(skb); 1416 SKB_LINEAR_ASSERT(skb); 1417 skb->tail += len; 1418 skb->len += len; 1419 return tmp; 1420} 1421 1422unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1423static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1424{ 1425 skb->data -= len; 1426 skb->len += len; 1427 return skb->data; 1428} 1429 1430unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1431static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1432{ 1433 skb->len -= len; 1434 BUG_ON(skb->len < skb->data_len); 1435 return skb->data += len; 1436} 1437 1438static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1439{ 1440 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1441} 1442 1443unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1444 1445static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1446{ 1447 if (len > skb_headlen(skb) && 1448 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1449 return NULL; 1450 skb->len -= len; 1451 return skb->data += len; 1452} 1453 1454static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1455{ 1456 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1457} 1458 1459static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1460{ 1461 if (likely(len <= skb_headlen(skb))) 1462 return 1; 1463 if (unlikely(len > skb->len)) 1464 return 0; 1465 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1466} 1467 1468/** 1469 * skb_headroom - bytes at buffer head 1470 * @skb: buffer to check 1471 * 1472 * Return the number of bytes of free space at the head of an &sk_buff. 1473 */ 1474static inline unsigned int skb_headroom(const struct sk_buff *skb) 1475{ 1476 return skb->data - skb->head; 1477} 1478 1479/** 1480 * skb_tailroom - bytes at buffer end 1481 * @skb: buffer to check 1482 * 1483 * Return the number of bytes of free space at the tail of an sk_buff 1484 */ 1485static inline int skb_tailroom(const struct sk_buff *skb) 1486{ 1487 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1488} 1489 1490/** 1491 * skb_availroom - bytes at buffer end 1492 * @skb: buffer to check 1493 * 1494 * Return the number of bytes of free space at the tail of an sk_buff 1495 * allocated by sk_stream_alloc() 1496 */ 1497static inline int skb_availroom(const struct sk_buff *skb) 1498{ 1499 if (skb_is_nonlinear(skb)) 1500 return 0; 1501 1502 return skb->end - skb->tail - skb->reserved_tailroom; 1503} 1504 1505/** 1506 * skb_reserve - adjust headroom 1507 * @skb: buffer to alter 1508 * @len: bytes to move 1509 * 1510 * Increase the headroom of an empty &sk_buff by reducing the tail 1511 * room. This is only allowed for an empty buffer. 1512 */ 1513static inline void skb_reserve(struct sk_buff *skb, int len) 1514{ 1515 skb->data += len; 1516 skb->tail += len; 1517} 1518 1519static inline void skb_reset_inner_headers(struct sk_buff *skb) 1520{ 1521 skb->inner_mac_header = skb->mac_header; 1522 skb->inner_network_header = skb->network_header; 1523 skb->inner_transport_header = skb->transport_header; 1524} 1525 1526static inline void skb_reset_mac_len(struct sk_buff *skb) 1527{ 1528 skb->mac_len = skb->network_header - skb->mac_header; 1529} 1530 1531static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1532 *skb) 1533{ 1534 return skb->head + skb->inner_transport_header; 1535} 1536 1537static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1538{ 1539 skb->inner_transport_header = skb->data - skb->head; 1540} 1541 1542static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1543 const int offset) 1544{ 1545 skb_reset_inner_transport_header(skb); 1546 skb->inner_transport_header += offset; 1547} 1548 1549static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1550{ 1551 return skb->head + skb->inner_network_header; 1552} 1553 1554static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1555{ 1556 skb->inner_network_header = skb->data - skb->head; 1557} 1558 1559static inline void skb_set_inner_network_header(struct sk_buff *skb, 1560 const int offset) 1561{ 1562 skb_reset_inner_network_header(skb); 1563 skb->inner_network_header += offset; 1564} 1565 1566static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1567{ 1568 return skb->head + skb->inner_mac_header; 1569} 1570 1571static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1572{ 1573 skb->inner_mac_header = skb->data - skb->head; 1574} 1575 1576static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1577 const int offset) 1578{ 1579 skb_reset_inner_mac_header(skb); 1580 skb->inner_mac_header += offset; 1581} 1582static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1583{ 1584 return skb->transport_header != (typeof(skb->transport_header))~0U; 1585} 1586 1587static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1588{ 1589 return skb->head + skb->transport_header; 1590} 1591 1592static inline void skb_reset_transport_header(struct sk_buff *skb) 1593{ 1594 skb->transport_header = skb->data - skb->head; 1595} 1596 1597static inline void skb_set_transport_header(struct sk_buff *skb, 1598 const int offset) 1599{ 1600 skb_reset_transport_header(skb); 1601 skb->transport_header += offset; 1602} 1603 1604static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1605{ 1606 return skb->head + skb->network_header; 1607} 1608 1609static inline void skb_reset_network_header(struct sk_buff *skb) 1610{ 1611 skb->network_header = skb->data - skb->head; 1612} 1613 1614static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1615{ 1616 skb_reset_network_header(skb); 1617 skb->network_header += offset; 1618} 1619 1620static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1621{ 1622 return skb->head + skb->mac_header; 1623} 1624 1625static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1626{ 1627 return skb->mac_header != (typeof(skb->mac_header))~0U; 1628} 1629 1630static inline void skb_reset_mac_header(struct sk_buff *skb) 1631{ 1632 skb->mac_header = skb->data - skb->head; 1633} 1634 1635static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1636{ 1637 skb_reset_mac_header(skb); 1638 skb->mac_header += offset; 1639} 1640 1641static inline void skb_pop_mac_header(struct sk_buff *skb) 1642{ 1643 skb->mac_header = skb->network_header; 1644} 1645 1646static inline void skb_probe_transport_header(struct sk_buff *skb, 1647 const int offset_hint) 1648{ 1649 struct flow_keys keys; 1650 1651 if (skb_transport_header_was_set(skb)) 1652 return; 1653 else if (skb_flow_dissect(skb, &keys)) 1654 skb_set_transport_header(skb, keys.thoff); 1655 else 1656 skb_set_transport_header(skb, offset_hint); 1657} 1658 1659static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1660{ 1661 if (skb_mac_header_was_set(skb)) { 1662 const unsigned char *old_mac = skb_mac_header(skb); 1663 1664 skb_set_mac_header(skb, -skb->mac_len); 1665 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1666 } 1667} 1668 1669static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1670{ 1671 return skb->csum_start - skb_headroom(skb); 1672} 1673 1674static inline int skb_transport_offset(const struct sk_buff *skb) 1675{ 1676 return skb_transport_header(skb) - skb->data; 1677} 1678 1679static inline u32 skb_network_header_len(const struct sk_buff *skb) 1680{ 1681 return skb->transport_header - skb->network_header; 1682} 1683 1684static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1685{ 1686 return skb->inner_transport_header - skb->inner_network_header; 1687} 1688 1689static inline int skb_network_offset(const struct sk_buff *skb) 1690{ 1691 return skb_network_header(skb) - skb->data; 1692} 1693 1694static inline int skb_inner_network_offset(const struct sk_buff *skb) 1695{ 1696 return skb_inner_network_header(skb) - skb->data; 1697} 1698 1699static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1700{ 1701 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1702} 1703 1704/* 1705 * CPUs often take a performance hit when accessing unaligned memory 1706 * locations. The actual performance hit varies, it can be small if the 1707 * hardware handles it or large if we have to take an exception and fix it 1708 * in software. 1709 * 1710 * Since an ethernet header is 14 bytes network drivers often end up with 1711 * the IP header at an unaligned offset. The IP header can be aligned by 1712 * shifting the start of the packet by 2 bytes. Drivers should do this 1713 * with: 1714 * 1715 * skb_reserve(skb, NET_IP_ALIGN); 1716 * 1717 * The downside to this alignment of the IP header is that the DMA is now 1718 * unaligned. On some architectures the cost of an unaligned DMA is high 1719 * and this cost outweighs the gains made by aligning the IP header. 1720 * 1721 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1722 * to be overridden. 1723 */ 1724#ifndef NET_IP_ALIGN 1725#define NET_IP_ALIGN 2 1726#endif 1727 1728/* 1729 * The networking layer reserves some headroom in skb data (via 1730 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1731 * the header has to grow. In the default case, if the header has to grow 1732 * 32 bytes or less we avoid the reallocation. 1733 * 1734 * Unfortunately this headroom changes the DMA alignment of the resulting 1735 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1736 * on some architectures. An architecture can override this value, 1737 * perhaps setting it to a cacheline in size (since that will maintain 1738 * cacheline alignment of the DMA). It must be a power of 2. 1739 * 1740 * Various parts of the networking layer expect at least 32 bytes of 1741 * headroom, you should not reduce this. 1742 * 1743 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1744 * to reduce average number of cache lines per packet. 1745 * get_rps_cpus() for example only access one 64 bytes aligned block : 1746 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1747 */ 1748#ifndef NET_SKB_PAD 1749#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1750#endif 1751 1752int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1753 1754static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1755{ 1756 if (unlikely(skb_is_nonlinear(skb))) { 1757 WARN_ON(1); 1758 return; 1759 } 1760 skb->len = len; 1761 skb_set_tail_pointer(skb, len); 1762} 1763 1764void skb_trim(struct sk_buff *skb, unsigned int len); 1765 1766static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1767{ 1768 if (skb->data_len) 1769 return ___pskb_trim(skb, len); 1770 __skb_trim(skb, len); 1771 return 0; 1772} 1773 1774static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1775{ 1776 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1777} 1778 1779/** 1780 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1781 * @skb: buffer to alter 1782 * @len: new length 1783 * 1784 * This is identical to pskb_trim except that the caller knows that 1785 * the skb is not cloned so we should never get an error due to out- 1786 * of-memory. 1787 */ 1788static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1789{ 1790 int err = pskb_trim(skb, len); 1791 BUG_ON(err); 1792} 1793 1794/** 1795 * skb_orphan - orphan a buffer 1796 * @skb: buffer to orphan 1797 * 1798 * If a buffer currently has an owner then we call the owner's 1799 * destructor function and make the @skb unowned. The buffer continues 1800 * to exist but is no longer charged to its former owner. 1801 */ 1802static inline void skb_orphan(struct sk_buff *skb) 1803{ 1804 if (skb->destructor) { 1805 skb->destructor(skb); 1806 skb->destructor = NULL; 1807 skb->sk = NULL; 1808 } else { 1809 BUG_ON(skb->sk); 1810 } 1811} 1812 1813/** 1814 * skb_orphan_frags - orphan the frags contained in a buffer 1815 * @skb: buffer to orphan frags from 1816 * @gfp_mask: allocation mask for replacement pages 1817 * 1818 * For each frag in the SKB which needs a destructor (i.e. has an 1819 * owner) create a copy of that frag and release the original 1820 * page by calling the destructor. 1821 */ 1822static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1823{ 1824 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1825 return 0; 1826 return skb_copy_ubufs(skb, gfp_mask); 1827} 1828 1829/** 1830 * __skb_queue_purge - empty a list 1831 * @list: list to empty 1832 * 1833 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1834 * the list and one reference dropped. This function does not take the 1835 * list lock and the caller must hold the relevant locks to use it. 1836 */ 1837void skb_queue_purge(struct sk_buff_head *list); 1838static inline void __skb_queue_purge(struct sk_buff_head *list) 1839{ 1840 struct sk_buff *skb; 1841 while ((skb = __skb_dequeue(list)) != NULL) 1842 kfree_skb(skb); 1843} 1844 1845#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1846#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1847#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1848 1849void *netdev_alloc_frag(unsigned int fragsz); 1850 1851struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 1852 gfp_t gfp_mask); 1853 1854/** 1855 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1856 * @dev: network device to receive on 1857 * @length: length to allocate 1858 * 1859 * Allocate a new &sk_buff and assign it a usage count of one. The 1860 * buffer has unspecified headroom built in. Users should allocate 1861 * the headroom they think they need without accounting for the 1862 * built in space. The built in space is used for optimisations. 1863 * 1864 * %NULL is returned if there is no free memory. Although this function 1865 * allocates memory it can be called from an interrupt. 1866 */ 1867static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1868 unsigned int length) 1869{ 1870 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1871} 1872 1873/* legacy helper around __netdev_alloc_skb() */ 1874static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1875 gfp_t gfp_mask) 1876{ 1877 return __netdev_alloc_skb(NULL, length, gfp_mask); 1878} 1879 1880/* legacy helper around netdev_alloc_skb() */ 1881static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1882{ 1883 return netdev_alloc_skb(NULL, length); 1884} 1885 1886 1887static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1888 unsigned int length, gfp_t gfp) 1889{ 1890 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1891 1892 if (NET_IP_ALIGN && skb) 1893 skb_reserve(skb, NET_IP_ALIGN); 1894 return skb; 1895} 1896 1897static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1898 unsigned int length) 1899{ 1900 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1901} 1902 1903/** 1904 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1905 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1906 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1907 * @order: size of the allocation 1908 * 1909 * Allocate a new page. 1910 * 1911 * %NULL is returned if there is no free memory. 1912*/ 1913static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1914 struct sk_buff *skb, 1915 unsigned int order) 1916{ 1917 struct page *page; 1918 1919 gfp_mask |= __GFP_COLD; 1920 1921 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1922 gfp_mask |= __GFP_MEMALLOC; 1923 1924 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1925 if (skb && page && page->pfmemalloc) 1926 skb->pfmemalloc = true; 1927 1928 return page; 1929} 1930 1931/** 1932 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1933 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1934 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1935 * 1936 * Allocate a new page. 1937 * 1938 * %NULL is returned if there is no free memory. 1939 */ 1940static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1941 struct sk_buff *skb) 1942{ 1943 return __skb_alloc_pages(gfp_mask, skb, 0); 1944} 1945 1946/** 1947 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1948 * @page: The page that was allocated from skb_alloc_page 1949 * @skb: The skb that may need pfmemalloc set 1950 */ 1951static inline void skb_propagate_pfmemalloc(struct page *page, 1952 struct sk_buff *skb) 1953{ 1954 if (page && page->pfmemalloc) 1955 skb->pfmemalloc = true; 1956} 1957 1958/** 1959 * skb_frag_page - retrieve the page refered to by a paged fragment 1960 * @frag: the paged fragment 1961 * 1962 * Returns the &struct page associated with @frag. 1963 */ 1964static inline struct page *skb_frag_page(const skb_frag_t *frag) 1965{ 1966 return frag->page.p; 1967} 1968 1969/** 1970 * __skb_frag_ref - take an addition reference on a paged fragment. 1971 * @frag: the paged fragment 1972 * 1973 * Takes an additional reference on the paged fragment @frag. 1974 */ 1975static inline void __skb_frag_ref(skb_frag_t *frag) 1976{ 1977 get_page(skb_frag_page(frag)); 1978} 1979 1980/** 1981 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1982 * @skb: the buffer 1983 * @f: the fragment offset. 1984 * 1985 * Takes an additional reference on the @f'th paged fragment of @skb. 1986 */ 1987static inline void skb_frag_ref(struct sk_buff *skb, int f) 1988{ 1989 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1990} 1991 1992/** 1993 * __skb_frag_unref - release a reference on a paged fragment. 1994 * @frag: the paged fragment 1995 * 1996 * Releases a reference on the paged fragment @frag. 1997 */ 1998static inline void __skb_frag_unref(skb_frag_t *frag) 1999{ 2000 put_page(skb_frag_page(frag)); 2001} 2002 2003/** 2004 * skb_frag_unref - release a reference on a paged fragment of an skb. 2005 * @skb: the buffer 2006 * @f: the fragment offset 2007 * 2008 * Releases a reference on the @f'th paged fragment of @skb. 2009 */ 2010static inline void skb_frag_unref(struct sk_buff *skb, int f) 2011{ 2012 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2013} 2014 2015/** 2016 * skb_frag_address - gets the address of the data contained in a paged fragment 2017 * @frag: the paged fragment buffer 2018 * 2019 * Returns the address of the data within @frag. The page must already 2020 * be mapped. 2021 */ 2022static inline void *skb_frag_address(const skb_frag_t *frag) 2023{ 2024 return page_address(skb_frag_page(frag)) + frag->page_offset; 2025} 2026 2027/** 2028 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2029 * @frag: the paged fragment buffer 2030 * 2031 * Returns the address of the data within @frag. Checks that the page 2032 * is mapped and returns %NULL otherwise. 2033 */ 2034static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2035{ 2036 void *ptr = page_address(skb_frag_page(frag)); 2037 if (unlikely(!ptr)) 2038 return NULL; 2039 2040 return ptr + frag->page_offset; 2041} 2042 2043/** 2044 * __skb_frag_set_page - sets the page contained in a paged fragment 2045 * @frag: the paged fragment 2046 * @page: the page to set 2047 * 2048 * Sets the fragment @frag to contain @page. 2049 */ 2050static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2051{ 2052 frag->page.p = page; 2053} 2054 2055/** 2056 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2057 * @skb: the buffer 2058 * @f: the fragment offset 2059 * @page: the page to set 2060 * 2061 * Sets the @f'th fragment of @skb to contain @page. 2062 */ 2063static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2064 struct page *page) 2065{ 2066 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2067} 2068 2069bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2070 2071/** 2072 * skb_frag_dma_map - maps a paged fragment via the DMA API 2073 * @dev: the device to map the fragment to 2074 * @frag: the paged fragment to map 2075 * @offset: the offset within the fragment (starting at the 2076 * fragment's own offset) 2077 * @size: the number of bytes to map 2078 * @dir: the direction of the mapping (%PCI_DMA_*) 2079 * 2080 * Maps the page associated with @frag to @device. 2081 */ 2082static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2083 const skb_frag_t *frag, 2084 size_t offset, size_t size, 2085 enum dma_data_direction dir) 2086{ 2087 return dma_map_page(dev, skb_frag_page(frag), 2088 frag->page_offset + offset, size, dir); 2089} 2090 2091static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2092 gfp_t gfp_mask) 2093{ 2094 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2095} 2096 2097/** 2098 * skb_clone_writable - is the header of a clone writable 2099 * @skb: buffer to check 2100 * @len: length up to which to write 2101 * 2102 * Returns true if modifying the header part of the cloned buffer 2103 * does not requires the data to be copied. 2104 */ 2105static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2106{ 2107 return !skb_header_cloned(skb) && 2108 skb_headroom(skb) + len <= skb->hdr_len; 2109} 2110 2111static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2112 int cloned) 2113{ 2114 int delta = 0; 2115 2116 if (headroom > skb_headroom(skb)) 2117 delta = headroom - skb_headroom(skb); 2118 2119 if (delta || cloned) 2120 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2121 GFP_ATOMIC); 2122 return 0; 2123} 2124 2125/** 2126 * skb_cow - copy header of skb when it is required 2127 * @skb: buffer to cow 2128 * @headroom: needed headroom 2129 * 2130 * If the skb passed lacks sufficient headroom or its data part 2131 * is shared, data is reallocated. If reallocation fails, an error 2132 * is returned and original skb is not changed. 2133 * 2134 * The result is skb with writable area skb->head...skb->tail 2135 * and at least @headroom of space at head. 2136 */ 2137static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2138{ 2139 return __skb_cow(skb, headroom, skb_cloned(skb)); 2140} 2141 2142/** 2143 * skb_cow_head - skb_cow but only making the head writable 2144 * @skb: buffer to cow 2145 * @headroom: needed headroom 2146 * 2147 * This function is identical to skb_cow except that we replace the 2148 * skb_cloned check by skb_header_cloned. It should be used when 2149 * you only need to push on some header and do not need to modify 2150 * the data. 2151 */ 2152static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2153{ 2154 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2155} 2156 2157/** 2158 * skb_padto - pad an skbuff up to a minimal size 2159 * @skb: buffer to pad 2160 * @len: minimal length 2161 * 2162 * Pads up a buffer to ensure the trailing bytes exist and are 2163 * blanked. If the buffer already contains sufficient data it 2164 * is untouched. Otherwise it is extended. Returns zero on 2165 * success. The skb is freed on error. 2166 */ 2167 2168static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2169{ 2170 unsigned int size = skb->len; 2171 if (likely(size >= len)) 2172 return 0; 2173 return skb_pad(skb, len - size); 2174} 2175 2176static inline int skb_add_data(struct sk_buff *skb, 2177 char __user *from, int copy) 2178{ 2179 const int off = skb->len; 2180 2181 if (skb->ip_summed == CHECKSUM_NONE) { 2182 int err = 0; 2183 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2184 copy, 0, &err); 2185 if (!err) { 2186 skb->csum = csum_block_add(skb->csum, csum, off); 2187 return 0; 2188 } 2189 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2190 return 0; 2191 2192 __skb_trim(skb, off); 2193 return -EFAULT; 2194} 2195 2196static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2197 const struct page *page, int off) 2198{ 2199 if (i) { 2200 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2201 2202 return page == skb_frag_page(frag) && 2203 off == frag->page_offset + skb_frag_size(frag); 2204 } 2205 return false; 2206} 2207 2208static inline int __skb_linearize(struct sk_buff *skb) 2209{ 2210 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2211} 2212 2213/** 2214 * skb_linearize - convert paged skb to linear one 2215 * @skb: buffer to linarize 2216 * 2217 * If there is no free memory -ENOMEM is returned, otherwise zero 2218 * is returned and the old skb data released. 2219 */ 2220static inline int skb_linearize(struct sk_buff *skb) 2221{ 2222 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2223} 2224 2225/** 2226 * skb_has_shared_frag - can any frag be overwritten 2227 * @skb: buffer to test 2228 * 2229 * Return true if the skb has at least one frag that might be modified 2230 * by an external entity (as in vmsplice()/sendfile()) 2231 */ 2232static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2233{ 2234 return skb_is_nonlinear(skb) && 2235 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2236} 2237 2238/** 2239 * skb_linearize_cow - make sure skb is linear and writable 2240 * @skb: buffer to process 2241 * 2242 * If there is no free memory -ENOMEM is returned, otherwise zero 2243 * is returned and the old skb data released. 2244 */ 2245static inline int skb_linearize_cow(struct sk_buff *skb) 2246{ 2247 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2248 __skb_linearize(skb) : 0; 2249} 2250 2251/** 2252 * skb_postpull_rcsum - update checksum for received skb after pull 2253 * @skb: buffer to update 2254 * @start: start of data before pull 2255 * @len: length of data pulled 2256 * 2257 * After doing a pull on a received packet, you need to call this to 2258 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2259 * CHECKSUM_NONE so that it can be recomputed from scratch. 2260 */ 2261 2262static inline void skb_postpull_rcsum(struct sk_buff *skb, 2263 const void *start, unsigned int len) 2264{ 2265 if (skb->ip_summed == CHECKSUM_COMPLETE) 2266 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2267} 2268 2269unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2270 2271/** 2272 * pskb_trim_rcsum - trim received skb and update checksum 2273 * @skb: buffer to trim 2274 * @len: new length 2275 * 2276 * This is exactly the same as pskb_trim except that it ensures the 2277 * checksum of received packets are still valid after the operation. 2278 */ 2279 2280static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2281{ 2282 if (likely(len >= skb->len)) 2283 return 0; 2284 if (skb->ip_summed == CHECKSUM_COMPLETE) 2285 skb->ip_summed = CHECKSUM_NONE; 2286 return __pskb_trim(skb, len); 2287} 2288 2289#define skb_queue_walk(queue, skb) \ 2290 for (skb = (queue)->next; \ 2291 skb != (struct sk_buff *)(queue); \ 2292 skb = skb->next) 2293 2294#define skb_queue_walk_safe(queue, skb, tmp) \ 2295 for (skb = (queue)->next, tmp = skb->next; \ 2296 skb != (struct sk_buff *)(queue); \ 2297 skb = tmp, tmp = skb->next) 2298 2299#define skb_queue_walk_from(queue, skb) \ 2300 for (; skb != (struct sk_buff *)(queue); \ 2301 skb = skb->next) 2302 2303#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2304 for (tmp = skb->next; \ 2305 skb != (struct sk_buff *)(queue); \ 2306 skb = tmp, tmp = skb->next) 2307 2308#define skb_queue_reverse_walk(queue, skb) \ 2309 for (skb = (queue)->prev; \ 2310 skb != (struct sk_buff *)(queue); \ 2311 skb = skb->prev) 2312 2313#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2314 for (skb = (queue)->prev, tmp = skb->prev; \ 2315 skb != (struct sk_buff *)(queue); \ 2316 skb = tmp, tmp = skb->prev) 2317 2318#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2319 for (tmp = skb->prev; \ 2320 skb != (struct sk_buff *)(queue); \ 2321 skb = tmp, tmp = skb->prev) 2322 2323static inline bool skb_has_frag_list(const struct sk_buff *skb) 2324{ 2325 return skb_shinfo(skb)->frag_list != NULL; 2326} 2327 2328static inline void skb_frag_list_init(struct sk_buff *skb) 2329{ 2330 skb_shinfo(skb)->frag_list = NULL; 2331} 2332 2333static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2334{ 2335 frag->next = skb_shinfo(skb)->frag_list; 2336 skb_shinfo(skb)->frag_list = frag; 2337} 2338 2339#define skb_walk_frags(skb, iter) \ 2340 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2341 2342struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2343 int *peeked, int *off, int *err); 2344struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2345 int *err); 2346unsigned int datagram_poll(struct file *file, struct socket *sock, 2347 struct poll_table_struct *wait); 2348int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2349 struct iovec *to, int size); 2350int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2351 struct iovec *iov); 2352int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2353 const struct iovec *from, int from_offset, 2354 int len); 2355int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2356 int offset, size_t count); 2357int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2358 const struct iovec *to, int to_offset, 2359 int size); 2360void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2361void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2362int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2363int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2364int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2365__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2366 int len, __wsum csum); 2367int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2368 struct pipe_inode_info *pipe, unsigned int len, 2369 unsigned int flags); 2370void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2371void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2372int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2373void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2374struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2375 2376struct skb_checksum_ops { 2377 __wsum (*update)(const void *mem, int len, __wsum wsum); 2378 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2379}; 2380 2381__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2382 __wsum csum, const struct skb_checksum_ops *ops); 2383__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2384 __wsum csum); 2385 2386static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2387 int len, void *buffer) 2388{ 2389 int hlen = skb_headlen(skb); 2390 2391 if (hlen - offset >= len) 2392 return skb->data + offset; 2393 2394 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2395 return NULL; 2396 2397 return buffer; 2398} 2399 2400static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2401 void *to, 2402 const unsigned int len) 2403{ 2404 memcpy(to, skb->data, len); 2405} 2406 2407static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2408 const int offset, void *to, 2409 const unsigned int len) 2410{ 2411 memcpy(to, skb->data + offset, len); 2412} 2413 2414static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2415 const void *from, 2416 const unsigned int len) 2417{ 2418 memcpy(skb->data, from, len); 2419} 2420 2421static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2422 const int offset, 2423 const void *from, 2424 const unsigned int len) 2425{ 2426 memcpy(skb->data + offset, from, len); 2427} 2428 2429void skb_init(void); 2430 2431static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2432{ 2433 return skb->tstamp; 2434} 2435 2436/** 2437 * skb_get_timestamp - get timestamp from a skb 2438 * @skb: skb to get stamp from 2439 * @stamp: pointer to struct timeval to store stamp in 2440 * 2441 * Timestamps are stored in the skb as offsets to a base timestamp. 2442 * This function converts the offset back to a struct timeval and stores 2443 * it in stamp. 2444 */ 2445static inline void skb_get_timestamp(const struct sk_buff *skb, 2446 struct timeval *stamp) 2447{ 2448 *stamp = ktime_to_timeval(skb->tstamp); 2449} 2450 2451static inline void skb_get_timestampns(const struct sk_buff *skb, 2452 struct timespec *stamp) 2453{ 2454 *stamp = ktime_to_timespec(skb->tstamp); 2455} 2456 2457static inline void __net_timestamp(struct sk_buff *skb) 2458{ 2459 skb->tstamp = ktime_get_real(); 2460} 2461 2462static inline ktime_t net_timedelta(ktime_t t) 2463{ 2464 return ktime_sub(ktime_get_real(), t); 2465} 2466 2467static inline ktime_t net_invalid_timestamp(void) 2468{ 2469 return ktime_set(0, 0); 2470} 2471 2472void skb_timestamping_init(void); 2473 2474#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2475 2476void skb_clone_tx_timestamp(struct sk_buff *skb); 2477bool skb_defer_rx_timestamp(struct sk_buff *skb); 2478 2479#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2480 2481static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2482{ 2483} 2484 2485static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2486{ 2487 return false; 2488} 2489 2490#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2491 2492/** 2493 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2494 * 2495 * PHY drivers may accept clones of transmitted packets for 2496 * timestamping via their phy_driver.txtstamp method. These drivers 2497 * must call this function to return the skb back to the stack, with 2498 * or without a timestamp. 2499 * 2500 * @skb: clone of the the original outgoing packet 2501 * @hwtstamps: hardware time stamps, may be NULL if not available 2502 * 2503 */ 2504void skb_complete_tx_timestamp(struct sk_buff *skb, 2505 struct skb_shared_hwtstamps *hwtstamps); 2506 2507/** 2508 * skb_tstamp_tx - queue clone of skb with send time stamps 2509 * @orig_skb: the original outgoing packet 2510 * @hwtstamps: hardware time stamps, may be NULL if not available 2511 * 2512 * If the skb has a socket associated, then this function clones the 2513 * skb (thus sharing the actual data and optional structures), stores 2514 * the optional hardware time stamping information (if non NULL) or 2515 * generates a software time stamp (otherwise), then queues the clone 2516 * to the error queue of the socket. Errors are silently ignored. 2517 */ 2518void skb_tstamp_tx(struct sk_buff *orig_skb, 2519 struct skb_shared_hwtstamps *hwtstamps); 2520 2521static inline void sw_tx_timestamp(struct sk_buff *skb) 2522{ 2523 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2524 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2525 skb_tstamp_tx(skb, NULL); 2526} 2527 2528/** 2529 * skb_tx_timestamp() - Driver hook for transmit timestamping 2530 * 2531 * Ethernet MAC Drivers should call this function in their hard_xmit() 2532 * function immediately before giving the sk_buff to the MAC hardware. 2533 * 2534 * Specifically, one should make absolutely sure that this function is 2535 * called before TX completion of this packet can trigger. Otherwise 2536 * the packet could potentially already be freed. 2537 * 2538 * @skb: A socket buffer. 2539 */ 2540static inline void skb_tx_timestamp(struct sk_buff *skb) 2541{ 2542 skb_clone_tx_timestamp(skb); 2543 sw_tx_timestamp(skb); 2544} 2545 2546/** 2547 * skb_complete_wifi_ack - deliver skb with wifi status 2548 * 2549 * @skb: the original outgoing packet 2550 * @acked: ack status 2551 * 2552 */ 2553void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2554 2555__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2556__sum16 __skb_checksum_complete(struct sk_buff *skb); 2557 2558static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2559{ 2560 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2561} 2562 2563/** 2564 * skb_checksum_complete - Calculate checksum of an entire packet 2565 * @skb: packet to process 2566 * 2567 * This function calculates the checksum over the entire packet plus 2568 * the value of skb->csum. The latter can be used to supply the 2569 * checksum of a pseudo header as used by TCP/UDP. It returns the 2570 * checksum. 2571 * 2572 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2573 * this function can be used to verify that checksum on received 2574 * packets. In that case the function should return zero if the 2575 * checksum is correct. In particular, this function will return zero 2576 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2577 * hardware has already verified the correctness of the checksum. 2578 */ 2579static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2580{ 2581 return skb_csum_unnecessary(skb) ? 2582 0 : __skb_checksum_complete(skb); 2583} 2584 2585#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2586void nf_conntrack_destroy(struct nf_conntrack *nfct); 2587static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2588{ 2589 if (nfct && atomic_dec_and_test(&nfct->use)) 2590 nf_conntrack_destroy(nfct); 2591} 2592static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2593{ 2594 if (nfct) 2595 atomic_inc(&nfct->use); 2596} 2597#endif 2598#ifdef CONFIG_BRIDGE_NETFILTER 2599static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2600{ 2601 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2602 kfree(nf_bridge); 2603} 2604static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2605{ 2606 if (nf_bridge) 2607 atomic_inc(&nf_bridge->use); 2608} 2609#endif /* CONFIG_BRIDGE_NETFILTER */ 2610static inline void nf_reset(struct sk_buff *skb) 2611{ 2612#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2613 nf_conntrack_put(skb->nfct); 2614 skb->nfct = NULL; 2615#endif 2616#ifdef CONFIG_BRIDGE_NETFILTER 2617 nf_bridge_put(skb->nf_bridge); 2618 skb->nf_bridge = NULL; 2619#endif 2620} 2621 2622static inline void nf_reset_trace(struct sk_buff *skb) 2623{ 2624#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2625 skb->nf_trace = 0; 2626#endif 2627} 2628 2629/* Note: This doesn't put any conntrack and bridge info in dst. */ 2630static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2631{ 2632#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2633 dst->nfct = src->nfct; 2634 nf_conntrack_get(src->nfct); 2635 dst->nfctinfo = src->nfctinfo; 2636#endif 2637#ifdef CONFIG_BRIDGE_NETFILTER 2638 dst->nf_bridge = src->nf_bridge; 2639 nf_bridge_get(src->nf_bridge); 2640#endif 2641} 2642 2643static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2644{ 2645#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2646 nf_conntrack_put(dst->nfct); 2647#endif 2648#ifdef CONFIG_BRIDGE_NETFILTER 2649 nf_bridge_put(dst->nf_bridge); 2650#endif 2651 __nf_copy(dst, src); 2652} 2653 2654#ifdef CONFIG_NETWORK_SECMARK 2655static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2656{ 2657 to->secmark = from->secmark; 2658} 2659 2660static inline void skb_init_secmark(struct sk_buff *skb) 2661{ 2662 skb->secmark = 0; 2663} 2664#else 2665static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2666{ } 2667 2668static inline void skb_init_secmark(struct sk_buff *skb) 2669{ } 2670#endif 2671 2672static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2673{ 2674 skb->queue_mapping = queue_mapping; 2675} 2676 2677static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2678{ 2679 return skb->queue_mapping; 2680} 2681 2682static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2683{ 2684 to->queue_mapping = from->queue_mapping; 2685} 2686 2687static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2688{ 2689 skb->queue_mapping = rx_queue + 1; 2690} 2691 2692static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2693{ 2694 return skb->queue_mapping - 1; 2695} 2696 2697static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2698{ 2699 return skb->queue_mapping != 0; 2700} 2701 2702u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2703 unsigned int num_tx_queues); 2704 2705static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2706{ 2707#ifdef CONFIG_XFRM 2708 return skb->sp; 2709#else 2710 return NULL; 2711#endif 2712} 2713 2714/* Keeps track of mac header offset relative to skb->head. 2715 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2716 * For non-tunnel skb it points to skb_mac_header() and for 2717 * tunnel skb it points to outer mac header. 2718 * Keeps track of level of encapsulation of network headers. 2719 */ 2720struct skb_gso_cb { 2721 int mac_offset; 2722 int encap_level; 2723}; 2724#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2725 2726static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2727{ 2728 return (skb_mac_header(inner_skb) - inner_skb->head) - 2729 SKB_GSO_CB(inner_skb)->mac_offset; 2730} 2731 2732static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 2733{ 2734 int new_headroom, headroom; 2735 int ret; 2736 2737 headroom = skb_headroom(skb); 2738 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 2739 if (ret) 2740 return ret; 2741 2742 new_headroom = skb_headroom(skb); 2743 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 2744 return 0; 2745} 2746 2747static inline bool skb_is_gso(const struct sk_buff *skb) 2748{ 2749 return skb_shinfo(skb)->gso_size; 2750} 2751 2752/* Note: Should be called only if skb_is_gso(skb) is true */ 2753static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2754{ 2755 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2756} 2757 2758void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2759 2760static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2761{ 2762 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2763 * wanted then gso_type will be set. */ 2764 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2765 2766 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2767 unlikely(shinfo->gso_type == 0)) { 2768 __skb_warn_lro_forwarding(skb); 2769 return true; 2770 } 2771 return false; 2772} 2773 2774static inline void skb_forward_csum(struct sk_buff *skb) 2775{ 2776 /* Unfortunately we don't support this one. Any brave souls? */ 2777 if (skb->ip_summed == CHECKSUM_COMPLETE) 2778 skb->ip_summed = CHECKSUM_NONE; 2779} 2780 2781/** 2782 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2783 * @skb: skb to check 2784 * 2785 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2786 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2787 * use this helper, to document places where we make this assertion. 2788 */ 2789static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2790{ 2791#ifdef DEBUG 2792 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2793#endif 2794} 2795 2796bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2797 2798u32 __skb_get_poff(const struct sk_buff *skb); 2799 2800/** 2801 * skb_head_is_locked - Determine if the skb->head is locked down 2802 * @skb: skb to check 2803 * 2804 * The head on skbs build around a head frag can be removed if they are 2805 * not cloned. This function returns true if the skb head is locked down 2806 * due to either being allocated via kmalloc, or by being a clone with 2807 * multiple references to the head. 2808 */ 2809static inline bool skb_head_is_locked(const struct sk_buff *skb) 2810{ 2811 return !skb->head_frag || skb_cloned(skb); 2812} 2813#endif /* __KERNEL__ */ 2814#endif /* _LINUX_SKBUFF_H */