at v3.13 80 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6 7struct sched_param { 8 int sched_priority; 9}; 10 11#include <asm/param.h> /* for HZ */ 12 13#include <linux/capability.h> 14#include <linux/threads.h> 15#include <linux/kernel.h> 16#include <linux/types.h> 17#include <linux/timex.h> 18#include <linux/jiffies.h> 19#include <linux/rbtree.h> 20#include <linux/thread_info.h> 21#include <linux/cpumask.h> 22#include <linux/errno.h> 23#include <linux/nodemask.h> 24#include <linux/mm_types.h> 25#include <linux/preempt_mask.h> 26 27#include <asm/page.h> 28#include <asm/ptrace.h> 29#include <asm/cputime.h> 30 31#include <linux/smp.h> 32#include <linux/sem.h> 33#include <linux/signal.h> 34#include <linux/compiler.h> 35#include <linux/completion.h> 36#include <linux/pid.h> 37#include <linux/percpu.h> 38#include <linux/topology.h> 39#include <linux/proportions.h> 40#include <linux/seccomp.h> 41#include <linux/rcupdate.h> 42#include <linux/rculist.h> 43#include <linux/rtmutex.h> 44 45#include <linux/time.h> 46#include <linux/param.h> 47#include <linux/resource.h> 48#include <linux/timer.h> 49#include <linux/hrtimer.h> 50#include <linux/task_io_accounting.h> 51#include <linux/latencytop.h> 52#include <linux/cred.h> 53#include <linux/llist.h> 54#include <linux/uidgid.h> 55#include <linux/gfp.h> 56 57#include <asm/processor.h> 58 59struct exec_domain; 60struct futex_pi_state; 61struct robust_list_head; 62struct bio_list; 63struct fs_struct; 64struct perf_event_context; 65struct blk_plug; 66 67/* 68 * List of flags we want to share for kernel threads, 69 * if only because they are not used by them anyway. 70 */ 71#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 72 73/* 74 * These are the constant used to fake the fixed-point load-average 75 * counting. Some notes: 76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 77 * a load-average precision of 10 bits integer + 11 bits fractional 78 * - if you want to count load-averages more often, you need more 79 * precision, or rounding will get you. With 2-second counting freq, 80 * the EXP_n values would be 1981, 2034 and 2043 if still using only 81 * 11 bit fractions. 82 */ 83extern unsigned long avenrun[]; /* Load averages */ 84extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 85 86#define FSHIFT 11 /* nr of bits of precision */ 87#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 88#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 89#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 90#define EXP_5 2014 /* 1/exp(5sec/5min) */ 91#define EXP_15 2037 /* 1/exp(5sec/15min) */ 92 93#define CALC_LOAD(load,exp,n) \ 94 load *= exp; \ 95 load += n*(FIXED_1-exp); \ 96 load >>= FSHIFT; 97 98extern unsigned long total_forks; 99extern int nr_threads; 100DECLARE_PER_CPU(unsigned long, process_counts); 101extern int nr_processes(void); 102extern unsigned long nr_running(void); 103extern unsigned long nr_iowait(void); 104extern unsigned long nr_iowait_cpu(int cpu); 105extern unsigned long this_cpu_load(void); 106 107 108extern void calc_global_load(unsigned long ticks); 109extern void update_cpu_load_nohz(void); 110 111extern unsigned long get_parent_ip(unsigned long addr); 112 113extern void dump_cpu_task(int cpu); 114 115struct seq_file; 116struct cfs_rq; 117struct task_group; 118#ifdef CONFIG_SCHED_DEBUG 119extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 120extern void proc_sched_set_task(struct task_struct *p); 121extern void 122print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 123#endif 124 125/* 126 * Task state bitmask. NOTE! These bits are also 127 * encoded in fs/proc/array.c: get_task_state(). 128 * 129 * We have two separate sets of flags: task->state 130 * is about runnability, while task->exit_state are 131 * about the task exiting. Confusing, but this way 132 * modifying one set can't modify the other one by 133 * mistake. 134 */ 135#define TASK_RUNNING 0 136#define TASK_INTERRUPTIBLE 1 137#define TASK_UNINTERRUPTIBLE 2 138#define __TASK_STOPPED 4 139#define __TASK_TRACED 8 140/* in tsk->exit_state */ 141#define EXIT_ZOMBIE 16 142#define EXIT_DEAD 32 143/* in tsk->state again */ 144#define TASK_DEAD 64 145#define TASK_WAKEKILL 128 146#define TASK_WAKING 256 147#define TASK_PARKED 512 148#define TASK_STATE_MAX 1024 149 150#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 151 152extern char ___assert_task_state[1 - 2*!!( 153 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 154 155/* Convenience macros for the sake of set_task_state */ 156#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 157#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 158#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 159 160/* Convenience macros for the sake of wake_up */ 161#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 162#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 163 164/* get_task_state() */ 165#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 166 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 167 __TASK_TRACED) 168 169#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 170#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 171#define task_is_dead(task) ((task)->exit_state != 0) 172#define task_is_stopped_or_traced(task) \ 173 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 174#define task_contributes_to_load(task) \ 175 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 176 (task->flags & PF_FROZEN) == 0) 177 178#define __set_task_state(tsk, state_value) \ 179 do { (tsk)->state = (state_value); } while (0) 180#define set_task_state(tsk, state_value) \ 181 set_mb((tsk)->state, (state_value)) 182 183/* 184 * set_current_state() includes a barrier so that the write of current->state 185 * is correctly serialised wrt the caller's subsequent test of whether to 186 * actually sleep: 187 * 188 * set_current_state(TASK_UNINTERRUPTIBLE); 189 * if (do_i_need_to_sleep()) 190 * schedule(); 191 * 192 * If the caller does not need such serialisation then use __set_current_state() 193 */ 194#define __set_current_state(state_value) \ 195 do { current->state = (state_value); } while (0) 196#define set_current_state(state_value) \ 197 set_mb(current->state, (state_value)) 198 199/* Task command name length */ 200#define TASK_COMM_LEN 16 201 202#include <linux/spinlock.h> 203 204/* 205 * This serializes "schedule()" and also protects 206 * the run-queue from deletions/modifications (but 207 * _adding_ to the beginning of the run-queue has 208 * a separate lock). 209 */ 210extern rwlock_t tasklist_lock; 211extern spinlock_t mmlist_lock; 212 213struct task_struct; 214 215#ifdef CONFIG_PROVE_RCU 216extern int lockdep_tasklist_lock_is_held(void); 217#endif /* #ifdef CONFIG_PROVE_RCU */ 218 219extern void sched_init(void); 220extern void sched_init_smp(void); 221extern asmlinkage void schedule_tail(struct task_struct *prev); 222extern void init_idle(struct task_struct *idle, int cpu); 223extern void init_idle_bootup_task(struct task_struct *idle); 224 225extern int runqueue_is_locked(int cpu); 226 227#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 228extern void nohz_balance_enter_idle(int cpu); 229extern void set_cpu_sd_state_idle(void); 230extern int get_nohz_timer_target(void); 231#else 232static inline void nohz_balance_enter_idle(int cpu) { } 233static inline void set_cpu_sd_state_idle(void) { } 234#endif 235 236/* 237 * Only dump TASK_* tasks. (0 for all tasks) 238 */ 239extern void show_state_filter(unsigned long state_filter); 240 241static inline void show_state(void) 242{ 243 show_state_filter(0); 244} 245 246extern void show_regs(struct pt_regs *); 247 248/* 249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 250 * task), SP is the stack pointer of the first frame that should be shown in the back 251 * trace (or NULL if the entire call-chain of the task should be shown). 252 */ 253extern void show_stack(struct task_struct *task, unsigned long *sp); 254 255void io_schedule(void); 256long io_schedule_timeout(long timeout); 257 258extern void cpu_init (void); 259extern void trap_init(void); 260extern void update_process_times(int user); 261extern void scheduler_tick(void); 262 263extern void sched_show_task(struct task_struct *p); 264 265#ifdef CONFIG_LOCKUP_DETECTOR 266extern void touch_softlockup_watchdog(void); 267extern void touch_softlockup_watchdog_sync(void); 268extern void touch_all_softlockup_watchdogs(void); 269extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 270 void __user *buffer, 271 size_t *lenp, loff_t *ppos); 272extern unsigned int softlockup_panic; 273void lockup_detector_init(void); 274#else 275static inline void touch_softlockup_watchdog(void) 276{ 277} 278static inline void touch_softlockup_watchdog_sync(void) 279{ 280} 281static inline void touch_all_softlockup_watchdogs(void) 282{ 283} 284static inline void lockup_detector_init(void) 285{ 286} 287#endif 288 289#ifdef CONFIG_DETECT_HUNG_TASK 290void reset_hung_task_detector(void); 291#else 292static inline void reset_hung_task_detector(void) 293{ 294} 295#endif 296 297/* Attach to any functions which should be ignored in wchan output. */ 298#define __sched __attribute__((__section__(".sched.text"))) 299 300/* Linker adds these: start and end of __sched functions */ 301extern char __sched_text_start[], __sched_text_end[]; 302 303/* Is this address in the __sched functions? */ 304extern int in_sched_functions(unsigned long addr); 305 306#define MAX_SCHEDULE_TIMEOUT LONG_MAX 307extern signed long schedule_timeout(signed long timeout); 308extern signed long schedule_timeout_interruptible(signed long timeout); 309extern signed long schedule_timeout_killable(signed long timeout); 310extern signed long schedule_timeout_uninterruptible(signed long timeout); 311asmlinkage void schedule(void); 312extern void schedule_preempt_disabled(void); 313 314struct nsproxy; 315struct user_namespace; 316 317#ifdef CONFIG_MMU 318extern void arch_pick_mmap_layout(struct mm_struct *mm); 319extern unsigned long 320arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 321 unsigned long, unsigned long); 322extern unsigned long 323arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 324 unsigned long len, unsigned long pgoff, 325 unsigned long flags); 326#else 327static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 328#endif 329 330 331extern void set_dumpable(struct mm_struct *mm, int value); 332extern int get_dumpable(struct mm_struct *mm); 333 334#define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 335#define SUID_DUMP_USER 1 /* Dump as user of process */ 336#define SUID_DUMP_ROOT 2 /* Dump as root */ 337 338/* mm flags */ 339/* dumpable bits */ 340#define MMF_DUMPABLE 0 /* core dump is permitted */ 341#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 342 343#define MMF_DUMPABLE_BITS 2 344#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 345 346/* coredump filter bits */ 347#define MMF_DUMP_ANON_PRIVATE 2 348#define MMF_DUMP_ANON_SHARED 3 349#define MMF_DUMP_MAPPED_PRIVATE 4 350#define MMF_DUMP_MAPPED_SHARED 5 351#define MMF_DUMP_ELF_HEADERS 6 352#define MMF_DUMP_HUGETLB_PRIVATE 7 353#define MMF_DUMP_HUGETLB_SHARED 8 354 355#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 356#define MMF_DUMP_FILTER_BITS 7 357#define MMF_DUMP_FILTER_MASK \ 358 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 359#define MMF_DUMP_FILTER_DEFAULT \ 360 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 361 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 362 363#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 364# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 365#else 366# define MMF_DUMP_MASK_DEFAULT_ELF 0 367#endif 368 /* leave room for more dump flags */ 369#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 370#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 371#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 372 373#define MMF_HAS_UPROBES 19 /* has uprobes */ 374#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 375 376#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 377 378struct sighand_struct { 379 atomic_t count; 380 struct k_sigaction action[_NSIG]; 381 spinlock_t siglock; 382 wait_queue_head_t signalfd_wqh; 383}; 384 385struct pacct_struct { 386 int ac_flag; 387 long ac_exitcode; 388 unsigned long ac_mem; 389 cputime_t ac_utime, ac_stime; 390 unsigned long ac_minflt, ac_majflt; 391}; 392 393struct cpu_itimer { 394 cputime_t expires; 395 cputime_t incr; 396 u32 error; 397 u32 incr_error; 398}; 399 400/** 401 * struct cputime - snaphsot of system and user cputime 402 * @utime: time spent in user mode 403 * @stime: time spent in system mode 404 * 405 * Gathers a generic snapshot of user and system time. 406 */ 407struct cputime { 408 cputime_t utime; 409 cputime_t stime; 410}; 411 412/** 413 * struct task_cputime - collected CPU time counts 414 * @utime: time spent in user mode, in &cputime_t units 415 * @stime: time spent in kernel mode, in &cputime_t units 416 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 417 * 418 * This is an extension of struct cputime that includes the total runtime 419 * spent by the task from the scheduler point of view. 420 * 421 * As a result, this structure groups together three kinds of CPU time 422 * that are tracked for threads and thread groups. Most things considering 423 * CPU time want to group these counts together and treat all three 424 * of them in parallel. 425 */ 426struct task_cputime { 427 cputime_t utime; 428 cputime_t stime; 429 unsigned long long sum_exec_runtime; 430}; 431/* Alternate field names when used to cache expirations. */ 432#define prof_exp stime 433#define virt_exp utime 434#define sched_exp sum_exec_runtime 435 436#define INIT_CPUTIME \ 437 (struct task_cputime) { \ 438 .utime = 0, \ 439 .stime = 0, \ 440 .sum_exec_runtime = 0, \ 441 } 442 443#ifdef CONFIG_PREEMPT_COUNT 444#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 445#else 446#define PREEMPT_DISABLED PREEMPT_ENABLED 447#endif 448 449/* 450 * Disable preemption until the scheduler is running. 451 * Reset by start_kernel()->sched_init()->init_idle(). 452 * 453 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 454 * before the scheduler is active -- see should_resched(). 455 */ 456#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 457 458/** 459 * struct thread_group_cputimer - thread group interval timer counts 460 * @cputime: thread group interval timers. 461 * @running: non-zero when there are timers running and 462 * @cputime receives updates. 463 * @lock: lock for fields in this struct. 464 * 465 * This structure contains the version of task_cputime, above, that is 466 * used for thread group CPU timer calculations. 467 */ 468struct thread_group_cputimer { 469 struct task_cputime cputime; 470 int running; 471 raw_spinlock_t lock; 472}; 473 474#include <linux/rwsem.h> 475struct autogroup; 476 477/* 478 * NOTE! "signal_struct" does not have its own 479 * locking, because a shared signal_struct always 480 * implies a shared sighand_struct, so locking 481 * sighand_struct is always a proper superset of 482 * the locking of signal_struct. 483 */ 484struct signal_struct { 485 atomic_t sigcnt; 486 atomic_t live; 487 int nr_threads; 488 489 wait_queue_head_t wait_chldexit; /* for wait4() */ 490 491 /* current thread group signal load-balancing target: */ 492 struct task_struct *curr_target; 493 494 /* shared signal handling: */ 495 struct sigpending shared_pending; 496 497 /* thread group exit support */ 498 int group_exit_code; 499 /* overloaded: 500 * - notify group_exit_task when ->count is equal to notify_count 501 * - everyone except group_exit_task is stopped during signal delivery 502 * of fatal signals, group_exit_task processes the signal. 503 */ 504 int notify_count; 505 struct task_struct *group_exit_task; 506 507 /* thread group stop support, overloads group_exit_code too */ 508 int group_stop_count; 509 unsigned int flags; /* see SIGNAL_* flags below */ 510 511 /* 512 * PR_SET_CHILD_SUBREAPER marks a process, like a service 513 * manager, to re-parent orphan (double-forking) child processes 514 * to this process instead of 'init'. The service manager is 515 * able to receive SIGCHLD signals and is able to investigate 516 * the process until it calls wait(). All children of this 517 * process will inherit a flag if they should look for a 518 * child_subreaper process at exit. 519 */ 520 unsigned int is_child_subreaper:1; 521 unsigned int has_child_subreaper:1; 522 523 /* POSIX.1b Interval Timers */ 524 int posix_timer_id; 525 struct list_head posix_timers; 526 527 /* ITIMER_REAL timer for the process */ 528 struct hrtimer real_timer; 529 struct pid *leader_pid; 530 ktime_t it_real_incr; 531 532 /* 533 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 534 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 535 * values are defined to 0 and 1 respectively 536 */ 537 struct cpu_itimer it[2]; 538 539 /* 540 * Thread group totals for process CPU timers. 541 * See thread_group_cputimer(), et al, for details. 542 */ 543 struct thread_group_cputimer cputimer; 544 545 /* Earliest-expiration cache. */ 546 struct task_cputime cputime_expires; 547 548 struct list_head cpu_timers[3]; 549 550 struct pid *tty_old_pgrp; 551 552 /* boolean value for session group leader */ 553 int leader; 554 555 struct tty_struct *tty; /* NULL if no tty */ 556 557#ifdef CONFIG_SCHED_AUTOGROUP 558 struct autogroup *autogroup; 559#endif 560 /* 561 * Cumulative resource counters for dead threads in the group, 562 * and for reaped dead child processes forked by this group. 563 * Live threads maintain their own counters and add to these 564 * in __exit_signal, except for the group leader. 565 */ 566 cputime_t utime, stime, cutime, cstime; 567 cputime_t gtime; 568 cputime_t cgtime; 569#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 570 struct cputime prev_cputime; 571#endif 572 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 573 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 574 unsigned long inblock, oublock, cinblock, coublock; 575 unsigned long maxrss, cmaxrss; 576 struct task_io_accounting ioac; 577 578 /* 579 * Cumulative ns of schedule CPU time fo dead threads in the 580 * group, not including a zombie group leader, (This only differs 581 * from jiffies_to_ns(utime + stime) if sched_clock uses something 582 * other than jiffies.) 583 */ 584 unsigned long long sum_sched_runtime; 585 586 /* 587 * We don't bother to synchronize most readers of this at all, 588 * because there is no reader checking a limit that actually needs 589 * to get both rlim_cur and rlim_max atomically, and either one 590 * alone is a single word that can safely be read normally. 591 * getrlimit/setrlimit use task_lock(current->group_leader) to 592 * protect this instead of the siglock, because they really 593 * have no need to disable irqs. 594 */ 595 struct rlimit rlim[RLIM_NLIMITS]; 596 597#ifdef CONFIG_BSD_PROCESS_ACCT 598 struct pacct_struct pacct; /* per-process accounting information */ 599#endif 600#ifdef CONFIG_TASKSTATS 601 struct taskstats *stats; 602#endif 603#ifdef CONFIG_AUDIT 604 unsigned audit_tty; 605 unsigned audit_tty_log_passwd; 606 struct tty_audit_buf *tty_audit_buf; 607#endif 608#ifdef CONFIG_CGROUPS 609 /* 610 * group_rwsem prevents new tasks from entering the threadgroup and 611 * member tasks from exiting,a more specifically, setting of 612 * PF_EXITING. fork and exit paths are protected with this rwsem 613 * using threadgroup_change_begin/end(). Users which require 614 * threadgroup to remain stable should use threadgroup_[un]lock() 615 * which also takes care of exec path. Currently, cgroup is the 616 * only user. 617 */ 618 struct rw_semaphore group_rwsem; 619#endif 620 621 oom_flags_t oom_flags; 622 short oom_score_adj; /* OOM kill score adjustment */ 623 short oom_score_adj_min; /* OOM kill score adjustment min value. 624 * Only settable by CAP_SYS_RESOURCE. */ 625 626 struct mutex cred_guard_mutex; /* guard against foreign influences on 627 * credential calculations 628 * (notably. ptrace) */ 629}; 630 631/* 632 * Bits in flags field of signal_struct. 633 */ 634#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 635#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 636#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 637#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 638/* 639 * Pending notifications to parent. 640 */ 641#define SIGNAL_CLD_STOPPED 0x00000010 642#define SIGNAL_CLD_CONTINUED 0x00000020 643#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 644 645#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 646 647/* If true, all threads except ->group_exit_task have pending SIGKILL */ 648static inline int signal_group_exit(const struct signal_struct *sig) 649{ 650 return (sig->flags & SIGNAL_GROUP_EXIT) || 651 (sig->group_exit_task != NULL); 652} 653 654/* 655 * Some day this will be a full-fledged user tracking system.. 656 */ 657struct user_struct { 658 atomic_t __count; /* reference count */ 659 atomic_t processes; /* How many processes does this user have? */ 660 atomic_t files; /* How many open files does this user have? */ 661 atomic_t sigpending; /* How many pending signals does this user have? */ 662#ifdef CONFIG_INOTIFY_USER 663 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 664 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 665#endif 666#ifdef CONFIG_FANOTIFY 667 atomic_t fanotify_listeners; 668#endif 669#ifdef CONFIG_EPOLL 670 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 671#endif 672#ifdef CONFIG_POSIX_MQUEUE 673 /* protected by mq_lock */ 674 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 675#endif 676 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 677 678#ifdef CONFIG_KEYS 679 struct key *uid_keyring; /* UID specific keyring */ 680 struct key *session_keyring; /* UID's default session keyring */ 681#endif 682 683 /* Hash table maintenance information */ 684 struct hlist_node uidhash_node; 685 kuid_t uid; 686 687#ifdef CONFIG_PERF_EVENTS 688 atomic_long_t locked_vm; 689#endif 690}; 691 692extern int uids_sysfs_init(void); 693 694extern struct user_struct *find_user(kuid_t); 695 696extern struct user_struct root_user; 697#define INIT_USER (&root_user) 698 699 700struct backing_dev_info; 701struct reclaim_state; 702 703#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 704struct sched_info { 705 /* cumulative counters */ 706 unsigned long pcount; /* # of times run on this cpu */ 707 unsigned long long run_delay; /* time spent waiting on a runqueue */ 708 709 /* timestamps */ 710 unsigned long long last_arrival,/* when we last ran on a cpu */ 711 last_queued; /* when we were last queued to run */ 712}; 713#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 714 715#ifdef CONFIG_TASK_DELAY_ACCT 716struct task_delay_info { 717 spinlock_t lock; 718 unsigned int flags; /* Private per-task flags */ 719 720 /* For each stat XXX, add following, aligned appropriately 721 * 722 * struct timespec XXX_start, XXX_end; 723 * u64 XXX_delay; 724 * u32 XXX_count; 725 * 726 * Atomicity of updates to XXX_delay, XXX_count protected by 727 * single lock above (split into XXX_lock if contention is an issue). 728 */ 729 730 /* 731 * XXX_count is incremented on every XXX operation, the delay 732 * associated with the operation is added to XXX_delay. 733 * XXX_delay contains the accumulated delay time in nanoseconds. 734 */ 735 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 736 u64 blkio_delay; /* wait for sync block io completion */ 737 u64 swapin_delay; /* wait for swapin block io completion */ 738 u32 blkio_count; /* total count of the number of sync block */ 739 /* io operations performed */ 740 u32 swapin_count; /* total count of the number of swapin block */ 741 /* io operations performed */ 742 743 struct timespec freepages_start, freepages_end; 744 u64 freepages_delay; /* wait for memory reclaim */ 745 u32 freepages_count; /* total count of memory reclaim */ 746}; 747#endif /* CONFIG_TASK_DELAY_ACCT */ 748 749static inline int sched_info_on(void) 750{ 751#ifdef CONFIG_SCHEDSTATS 752 return 1; 753#elif defined(CONFIG_TASK_DELAY_ACCT) 754 extern int delayacct_on; 755 return delayacct_on; 756#else 757 return 0; 758#endif 759} 760 761enum cpu_idle_type { 762 CPU_IDLE, 763 CPU_NOT_IDLE, 764 CPU_NEWLY_IDLE, 765 CPU_MAX_IDLE_TYPES 766}; 767 768/* 769 * Increase resolution of cpu_power calculations 770 */ 771#define SCHED_POWER_SHIFT 10 772#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 773 774/* 775 * sched-domains (multiprocessor balancing) declarations: 776 */ 777#ifdef CONFIG_SMP 778#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 779#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 780#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 781#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 782#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 783#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 784#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 785#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 786#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 787#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 788#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 789#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 790#define SD_NUMA 0x4000 /* cross-node balancing */ 791 792extern int __weak arch_sd_sibiling_asym_packing(void); 793 794struct sched_domain_attr { 795 int relax_domain_level; 796}; 797 798#define SD_ATTR_INIT (struct sched_domain_attr) { \ 799 .relax_domain_level = -1, \ 800} 801 802extern int sched_domain_level_max; 803 804struct sched_group; 805 806struct sched_domain { 807 /* These fields must be setup */ 808 struct sched_domain *parent; /* top domain must be null terminated */ 809 struct sched_domain *child; /* bottom domain must be null terminated */ 810 struct sched_group *groups; /* the balancing groups of the domain */ 811 unsigned long min_interval; /* Minimum balance interval ms */ 812 unsigned long max_interval; /* Maximum balance interval ms */ 813 unsigned int busy_factor; /* less balancing by factor if busy */ 814 unsigned int imbalance_pct; /* No balance until over watermark */ 815 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 816 unsigned int busy_idx; 817 unsigned int idle_idx; 818 unsigned int newidle_idx; 819 unsigned int wake_idx; 820 unsigned int forkexec_idx; 821 unsigned int smt_gain; 822 823 int nohz_idle; /* NOHZ IDLE status */ 824 int flags; /* See SD_* */ 825 int level; 826 827 /* Runtime fields. */ 828 unsigned long last_balance; /* init to jiffies. units in jiffies */ 829 unsigned int balance_interval; /* initialise to 1. units in ms. */ 830 unsigned int nr_balance_failed; /* initialise to 0 */ 831 832 /* idle_balance() stats */ 833 u64 max_newidle_lb_cost; 834 unsigned long next_decay_max_lb_cost; 835 836#ifdef CONFIG_SCHEDSTATS 837 /* load_balance() stats */ 838 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 839 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 840 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 841 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 842 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 843 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 844 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 845 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 846 847 /* Active load balancing */ 848 unsigned int alb_count; 849 unsigned int alb_failed; 850 unsigned int alb_pushed; 851 852 /* SD_BALANCE_EXEC stats */ 853 unsigned int sbe_count; 854 unsigned int sbe_balanced; 855 unsigned int sbe_pushed; 856 857 /* SD_BALANCE_FORK stats */ 858 unsigned int sbf_count; 859 unsigned int sbf_balanced; 860 unsigned int sbf_pushed; 861 862 /* try_to_wake_up() stats */ 863 unsigned int ttwu_wake_remote; 864 unsigned int ttwu_move_affine; 865 unsigned int ttwu_move_balance; 866#endif 867#ifdef CONFIG_SCHED_DEBUG 868 char *name; 869#endif 870 union { 871 void *private; /* used during construction */ 872 struct rcu_head rcu; /* used during destruction */ 873 }; 874 875 unsigned int span_weight; 876 /* 877 * Span of all CPUs in this domain. 878 * 879 * NOTE: this field is variable length. (Allocated dynamically 880 * by attaching extra space to the end of the structure, 881 * depending on how many CPUs the kernel has booted up with) 882 */ 883 unsigned long span[0]; 884}; 885 886static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 887{ 888 return to_cpumask(sd->span); 889} 890 891extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 892 struct sched_domain_attr *dattr_new); 893 894/* Allocate an array of sched domains, for partition_sched_domains(). */ 895cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 896void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 897 898bool cpus_share_cache(int this_cpu, int that_cpu); 899 900#else /* CONFIG_SMP */ 901 902struct sched_domain_attr; 903 904static inline void 905partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 906 struct sched_domain_attr *dattr_new) 907{ 908} 909 910static inline bool cpus_share_cache(int this_cpu, int that_cpu) 911{ 912 return true; 913} 914 915#endif /* !CONFIG_SMP */ 916 917 918struct io_context; /* See blkdev.h */ 919 920 921#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 922extern void prefetch_stack(struct task_struct *t); 923#else 924static inline void prefetch_stack(struct task_struct *t) { } 925#endif 926 927struct audit_context; /* See audit.c */ 928struct mempolicy; 929struct pipe_inode_info; 930struct uts_namespace; 931 932struct load_weight { 933 unsigned long weight; 934 u32 inv_weight; 935}; 936 937struct sched_avg { 938 /* 939 * These sums represent an infinite geometric series and so are bound 940 * above by 1024/(1-y). Thus we only need a u32 to store them for all 941 * choices of y < 1-2^(-32)*1024. 942 */ 943 u32 runnable_avg_sum, runnable_avg_period; 944 u64 last_runnable_update; 945 s64 decay_count; 946 unsigned long load_avg_contrib; 947}; 948 949#ifdef CONFIG_SCHEDSTATS 950struct sched_statistics { 951 u64 wait_start; 952 u64 wait_max; 953 u64 wait_count; 954 u64 wait_sum; 955 u64 iowait_count; 956 u64 iowait_sum; 957 958 u64 sleep_start; 959 u64 sleep_max; 960 s64 sum_sleep_runtime; 961 962 u64 block_start; 963 u64 block_max; 964 u64 exec_max; 965 u64 slice_max; 966 967 u64 nr_migrations_cold; 968 u64 nr_failed_migrations_affine; 969 u64 nr_failed_migrations_running; 970 u64 nr_failed_migrations_hot; 971 u64 nr_forced_migrations; 972 973 u64 nr_wakeups; 974 u64 nr_wakeups_sync; 975 u64 nr_wakeups_migrate; 976 u64 nr_wakeups_local; 977 u64 nr_wakeups_remote; 978 u64 nr_wakeups_affine; 979 u64 nr_wakeups_affine_attempts; 980 u64 nr_wakeups_passive; 981 u64 nr_wakeups_idle; 982}; 983#endif 984 985struct sched_entity { 986 struct load_weight load; /* for load-balancing */ 987 struct rb_node run_node; 988 struct list_head group_node; 989 unsigned int on_rq; 990 991 u64 exec_start; 992 u64 sum_exec_runtime; 993 u64 vruntime; 994 u64 prev_sum_exec_runtime; 995 996 u64 nr_migrations; 997 998#ifdef CONFIG_SCHEDSTATS 999 struct sched_statistics statistics; 1000#endif 1001 1002#ifdef CONFIG_FAIR_GROUP_SCHED 1003 struct sched_entity *parent; 1004 /* rq on which this entity is (to be) queued: */ 1005 struct cfs_rq *cfs_rq; 1006 /* rq "owned" by this entity/group: */ 1007 struct cfs_rq *my_q; 1008#endif 1009 1010#ifdef CONFIG_SMP 1011 /* Per-entity load-tracking */ 1012 struct sched_avg avg; 1013#endif 1014}; 1015 1016struct sched_rt_entity { 1017 struct list_head run_list; 1018 unsigned long timeout; 1019 unsigned long watchdog_stamp; 1020 unsigned int time_slice; 1021 1022 struct sched_rt_entity *back; 1023#ifdef CONFIG_RT_GROUP_SCHED 1024 struct sched_rt_entity *parent; 1025 /* rq on which this entity is (to be) queued: */ 1026 struct rt_rq *rt_rq; 1027 /* rq "owned" by this entity/group: */ 1028 struct rt_rq *my_q; 1029#endif 1030}; 1031 1032 1033struct rcu_node; 1034 1035enum perf_event_task_context { 1036 perf_invalid_context = -1, 1037 perf_hw_context = 0, 1038 perf_sw_context, 1039 perf_nr_task_contexts, 1040}; 1041 1042struct task_struct { 1043 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1044 void *stack; 1045 atomic_t usage; 1046 unsigned int flags; /* per process flags, defined below */ 1047 unsigned int ptrace; 1048 1049#ifdef CONFIG_SMP 1050 struct llist_node wake_entry; 1051 int on_cpu; 1052 struct task_struct *last_wakee; 1053 unsigned long wakee_flips; 1054 unsigned long wakee_flip_decay_ts; 1055 1056 int wake_cpu; 1057#endif 1058 int on_rq; 1059 1060 int prio, static_prio, normal_prio; 1061 unsigned int rt_priority; 1062 const struct sched_class *sched_class; 1063 struct sched_entity se; 1064 struct sched_rt_entity rt; 1065#ifdef CONFIG_CGROUP_SCHED 1066 struct task_group *sched_task_group; 1067#endif 1068 1069#ifdef CONFIG_PREEMPT_NOTIFIERS 1070 /* list of struct preempt_notifier: */ 1071 struct hlist_head preempt_notifiers; 1072#endif 1073 1074#ifdef CONFIG_BLK_DEV_IO_TRACE 1075 unsigned int btrace_seq; 1076#endif 1077 1078 unsigned int policy; 1079 int nr_cpus_allowed; 1080 cpumask_t cpus_allowed; 1081 1082#ifdef CONFIG_PREEMPT_RCU 1083 int rcu_read_lock_nesting; 1084 char rcu_read_unlock_special; 1085 struct list_head rcu_node_entry; 1086#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1087#ifdef CONFIG_TREE_PREEMPT_RCU 1088 struct rcu_node *rcu_blocked_node; 1089#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1090#ifdef CONFIG_RCU_BOOST 1091 struct rt_mutex *rcu_boost_mutex; 1092#endif /* #ifdef CONFIG_RCU_BOOST */ 1093 1094#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1095 struct sched_info sched_info; 1096#endif 1097 1098 struct list_head tasks; 1099#ifdef CONFIG_SMP 1100 struct plist_node pushable_tasks; 1101#endif 1102 1103 struct mm_struct *mm, *active_mm; 1104#ifdef CONFIG_COMPAT_BRK 1105 unsigned brk_randomized:1; 1106#endif 1107#if defined(SPLIT_RSS_COUNTING) 1108 struct task_rss_stat rss_stat; 1109#endif 1110/* task state */ 1111 int exit_state; 1112 int exit_code, exit_signal; 1113 int pdeath_signal; /* The signal sent when the parent dies */ 1114 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1115 1116 /* Used for emulating ABI behavior of previous Linux versions */ 1117 unsigned int personality; 1118 1119 unsigned did_exec:1; 1120 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1121 * execve */ 1122 unsigned in_iowait:1; 1123 1124 /* task may not gain privileges */ 1125 unsigned no_new_privs:1; 1126 1127 /* Revert to default priority/policy when forking */ 1128 unsigned sched_reset_on_fork:1; 1129 unsigned sched_contributes_to_load:1; 1130 1131 pid_t pid; 1132 pid_t tgid; 1133 1134#ifdef CONFIG_CC_STACKPROTECTOR 1135 /* Canary value for the -fstack-protector gcc feature */ 1136 unsigned long stack_canary; 1137#endif 1138 /* 1139 * pointers to (original) parent process, youngest child, younger sibling, 1140 * older sibling, respectively. (p->father can be replaced with 1141 * p->real_parent->pid) 1142 */ 1143 struct task_struct __rcu *real_parent; /* real parent process */ 1144 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1145 /* 1146 * children/sibling forms the list of my natural children 1147 */ 1148 struct list_head children; /* list of my children */ 1149 struct list_head sibling; /* linkage in my parent's children list */ 1150 struct task_struct *group_leader; /* threadgroup leader */ 1151 1152 /* 1153 * ptraced is the list of tasks this task is using ptrace on. 1154 * This includes both natural children and PTRACE_ATTACH targets. 1155 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1156 */ 1157 struct list_head ptraced; 1158 struct list_head ptrace_entry; 1159 1160 /* PID/PID hash table linkage. */ 1161 struct pid_link pids[PIDTYPE_MAX]; 1162 struct list_head thread_group; 1163 1164 struct completion *vfork_done; /* for vfork() */ 1165 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1166 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1167 1168 cputime_t utime, stime, utimescaled, stimescaled; 1169 cputime_t gtime; 1170#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1171 struct cputime prev_cputime; 1172#endif 1173#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1174 seqlock_t vtime_seqlock; 1175 unsigned long long vtime_snap; 1176 enum { 1177 VTIME_SLEEPING = 0, 1178 VTIME_USER, 1179 VTIME_SYS, 1180 } vtime_snap_whence; 1181#endif 1182 unsigned long nvcsw, nivcsw; /* context switch counts */ 1183 struct timespec start_time; /* monotonic time */ 1184 struct timespec real_start_time; /* boot based time */ 1185/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1186 unsigned long min_flt, maj_flt; 1187 1188 struct task_cputime cputime_expires; 1189 struct list_head cpu_timers[3]; 1190 1191/* process credentials */ 1192 const struct cred __rcu *real_cred; /* objective and real subjective task 1193 * credentials (COW) */ 1194 const struct cred __rcu *cred; /* effective (overridable) subjective task 1195 * credentials (COW) */ 1196 char comm[TASK_COMM_LEN]; /* executable name excluding path 1197 - access with [gs]et_task_comm (which lock 1198 it with task_lock()) 1199 - initialized normally by setup_new_exec */ 1200/* file system info */ 1201 int link_count, total_link_count; 1202#ifdef CONFIG_SYSVIPC 1203/* ipc stuff */ 1204 struct sysv_sem sysvsem; 1205#endif 1206#ifdef CONFIG_DETECT_HUNG_TASK 1207/* hung task detection */ 1208 unsigned long last_switch_count; 1209#endif 1210/* CPU-specific state of this task */ 1211 struct thread_struct thread; 1212/* filesystem information */ 1213 struct fs_struct *fs; 1214/* open file information */ 1215 struct files_struct *files; 1216/* namespaces */ 1217 struct nsproxy *nsproxy; 1218/* signal handlers */ 1219 struct signal_struct *signal; 1220 struct sighand_struct *sighand; 1221 1222 sigset_t blocked, real_blocked; 1223 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1224 struct sigpending pending; 1225 1226 unsigned long sas_ss_sp; 1227 size_t sas_ss_size; 1228 int (*notifier)(void *priv); 1229 void *notifier_data; 1230 sigset_t *notifier_mask; 1231 struct callback_head *task_works; 1232 1233 struct audit_context *audit_context; 1234#ifdef CONFIG_AUDITSYSCALL 1235 kuid_t loginuid; 1236 unsigned int sessionid; 1237#endif 1238 struct seccomp seccomp; 1239 1240/* Thread group tracking */ 1241 u32 parent_exec_id; 1242 u32 self_exec_id; 1243/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1244 * mempolicy */ 1245 spinlock_t alloc_lock; 1246 1247 /* Protection of the PI data structures: */ 1248 raw_spinlock_t pi_lock; 1249 1250#ifdef CONFIG_RT_MUTEXES 1251 /* PI waiters blocked on a rt_mutex held by this task */ 1252 struct plist_head pi_waiters; 1253 /* Deadlock detection and priority inheritance handling */ 1254 struct rt_mutex_waiter *pi_blocked_on; 1255#endif 1256 1257#ifdef CONFIG_DEBUG_MUTEXES 1258 /* mutex deadlock detection */ 1259 struct mutex_waiter *blocked_on; 1260#endif 1261#ifdef CONFIG_TRACE_IRQFLAGS 1262 unsigned int irq_events; 1263 unsigned long hardirq_enable_ip; 1264 unsigned long hardirq_disable_ip; 1265 unsigned int hardirq_enable_event; 1266 unsigned int hardirq_disable_event; 1267 int hardirqs_enabled; 1268 int hardirq_context; 1269 unsigned long softirq_disable_ip; 1270 unsigned long softirq_enable_ip; 1271 unsigned int softirq_disable_event; 1272 unsigned int softirq_enable_event; 1273 int softirqs_enabled; 1274 int softirq_context; 1275#endif 1276#ifdef CONFIG_LOCKDEP 1277# define MAX_LOCK_DEPTH 48UL 1278 u64 curr_chain_key; 1279 int lockdep_depth; 1280 unsigned int lockdep_recursion; 1281 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1282 gfp_t lockdep_reclaim_gfp; 1283#endif 1284 1285/* journalling filesystem info */ 1286 void *journal_info; 1287 1288/* stacked block device info */ 1289 struct bio_list *bio_list; 1290 1291#ifdef CONFIG_BLOCK 1292/* stack plugging */ 1293 struct blk_plug *plug; 1294#endif 1295 1296/* VM state */ 1297 struct reclaim_state *reclaim_state; 1298 1299 struct backing_dev_info *backing_dev_info; 1300 1301 struct io_context *io_context; 1302 1303 unsigned long ptrace_message; 1304 siginfo_t *last_siginfo; /* For ptrace use. */ 1305 struct task_io_accounting ioac; 1306#if defined(CONFIG_TASK_XACCT) 1307 u64 acct_rss_mem1; /* accumulated rss usage */ 1308 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1309 cputime_t acct_timexpd; /* stime + utime since last update */ 1310#endif 1311#ifdef CONFIG_CPUSETS 1312 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1313 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1314 int cpuset_mem_spread_rotor; 1315 int cpuset_slab_spread_rotor; 1316#endif 1317#ifdef CONFIG_CGROUPS 1318 /* Control Group info protected by css_set_lock */ 1319 struct css_set __rcu *cgroups; 1320 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1321 struct list_head cg_list; 1322#endif 1323#ifdef CONFIG_FUTEX 1324 struct robust_list_head __user *robust_list; 1325#ifdef CONFIG_COMPAT 1326 struct compat_robust_list_head __user *compat_robust_list; 1327#endif 1328 struct list_head pi_state_list; 1329 struct futex_pi_state *pi_state_cache; 1330#endif 1331#ifdef CONFIG_PERF_EVENTS 1332 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1333 struct mutex perf_event_mutex; 1334 struct list_head perf_event_list; 1335#endif 1336#ifdef CONFIG_NUMA 1337 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1338 short il_next; 1339 short pref_node_fork; 1340#endif 1341#ifdef CONFIG_NUMA_BALANCING 1342 int numa_scan_seq; 1343 unsigned int numa_scan_period; 1344 unsigned int numa_scan_period_max; 1345 int numa_preferred_nid; 1346 int numa_migrate_deferred; 1347 unsigned long numa_migrate_retry; 1348 u64 node_stamp; /* migration stamp */ 1349 struct callback_head numa_work; 1350 1351 struct list_head numa_entry; 1352 struct numa_group *numa_group; 1353 1354 /* 1355 * Exponential decaying average of faults on a per-node basis. 1356 * Scheduling placement decisions are made based on the these counts. 1357 * The values remain static for the duration of a PTE scan 1358 */ 1359 unsigned long *numa_faults; 1360 unsigned long total_numa_faults; 1361 1362 /* 1363 * numa_faults_buffer records faults per node during the current 1364 * scan window. When the scan completes, the counts in numa_faults 1365 * decay and these values are copied. 1366 */ 1367 unsigned long *numa_faults_buffer; 1368 1369 /* 1370 * numa_faults_locality tracks if faults recorded during the last 1371 * scan window were remote/local. The task scan period is adapted 1372 * based on the locality of the faults with different weights 1373 * depending on whether they were shared or private faults 1374 */ 1375 unsigned long numa_faults_locality[2]; 1376 1377 unsigned long numa_pages_migrated; 1378#endif /* CONFIG_NUMA_BALANCING */ 1379 1380 struct rcu_head rcu; 1381 1382 /* 1383 * cache last used pipe for splice 1384 */ 1385 struct pipe_inode_info *splice_pipe; 1386 1387 struct page_frag task_frag; 1388 1389#ifdef CONFIG_TASK_DELAY_ACCT 1390 struct task_delay_info *delays; 1391#endif 1392#ifdef CONFIG_FAULT_INJECTION 1393 int make_it_fail; 1394#endif 1395 /* 1396 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1397 * balance_dirty_pages() for some dirty throttling pause 1398 */ 1399 int nr_dirtied; 1400 int nr_dirtied_pause; 1401 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1402 1403#ifdef CONFIG_LATENCYTOP 1404 int latency_record_count; 1405 struct latency_record latency_record[LT_SAVECOUNT]; 1406#endif 1407 /* 1408 * time slack values; these are used to round up poll() and 1409 * select() etc timeout values. These are in nanoseconds. 1410 */ 1411 unsigned long timer_slack_ns; 1412 unsigned long default_timer_slack_ns; 1413 1414#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1415 /* Index of current stored address in ret_stack */ 1416 int curr_ret_stack; 1417 /* Stack of return addresses for return function tracing */ 1418 struct ftrace_ret_stack *ret_stack; 1419 /* time stamp for last schedule */ 1420 unsigned long long ftrace_timestamp; 1421 /* 1422 * Number of functions that haven't been traced 1423 * because of depth overrun. 1424 */ 1425 atomic_t trace_overrun; 1426 /* Pause for the tracing */ 1427 atomic_t tracing_graph_pause; 1428#endif 1429#ifdef CONFIG_TRACING 1430 /* state flags for use by tracers */ 1431 unsigned long trace; 1432 /* bitmask and counter of trace recursion */ 1433 unsigned long trace_recursion; 1434#endif /* CONFIG_TRACING */ 1435#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1436 struct memcg_batch_info { 1437 int do_batch; /* incremented when batch uncharge started */ 1438 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1439 unsigned long nr_pages; /* uncharged usage */ 1440 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1441 } memcg_batch; 1442 unsigned int memcg_kmem_skip_account; 1443 struct memcg_oom_info { 1444 struct mem_cgroup *memcg; 1445 gfp_t gfp_mask; 1446 int order; 1447 unsigned int may_oom:1; 1448 } memcg_oom; 1449#endif 1450#ifdef CONFIG_UPROBES 1451 struct uprobe_task *utask; 1452#endif 1453#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1454 unsigned int sequential_io; 1455 unsigned int sequential_io_avg; 1456#endif 1457}; 1458 1459/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1460#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1461 1462#define TNF_MIGRATED 0x01 1463#define TNF_NO_GROUP 0x02 1464#define TNF_SHARED 0x04 1465#define TNF_FAULT_LOCAL 0x08 1466 1467#ifdef CONFIG_NUMA_BALANCING 1468extern void task_numa_fault(int last_node, int node, int pages, int flags); 1469extern pid_t task_numa_group_id(struct task_struct *p); 1470extern void set_numabalancing_state(bool enabled); 1471extern void task_numa_free(struct task_struct *p); 1472 1473extern unsigned int sysctl_numa_balancing_migrate_deferred; 1474#else 1475static inline void task_numa_fault(int last_node, int node, int pages, 1476 int flags) 1477{ 1478} 1479static inline pid_t task_numa_group_id(struct task_struct *p) 1480{ 1481 return 0; 1482} 1483static inline void set_numabalancing_state(bool enabled) 1484{ 1485} 1486static inline void task_numa_free(struct task_struct *p) 1487{ 1488} 1489#endif 1490 1491static inline struct pid *task_pid(struct task_struct *task) 1492{ 1493 return task->pids[PIDTYPE_PID].pid; 1494} 1495 1496static inline struct pid *task_tgid(struct task_struct *task) 1497{ 1498 return task->group_leader->pids[PIDTYPE_PID].pid; 1499} 1500 1501/* 1502 * Without tasklist or rcu lock it is not safe to dereference 1503 * the result of task_pgrp/task_session even if task == current, 1504 * we can race with another thread doing sys_setsid/sys_setpgid. 1505 */ 1506static inline struct pid *task_pgrp(struct task_struct *task) 1507{ 1508 return task->group_leader->pids[PIDTYPE_PGID].pid; 1509} 1510 1511static inline struct pid *task_session(struct task_struct *task) 1512{ 1513 return task->group_leader->pids[PIDTYPE_SID].pid; 1514} 1515 1516struct pid_namespace; 1517 1518/* 1519 * the helpers to get the task's different pids as they are seen 1520 * from various namespaces 1521 * 1522 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1523 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1524 * current. 1525 * task_xid_nr_ns() : id seen from the ns specified; 1526 * 1527 * set_task_vxid() : assigns a virtual id to a task; 1528 * 1529 * see also pid_nr() etc in include/linux/pid.h 1530 */ 1531pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1532 struct pid_namespace *ns); 1533 1534static inline pid_t task_pid_nr(struct task_struct *tsk) 1535{ 1536 return tsk->pid; 1537} 1538 1539static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1540 struct pid_namespace *ns) 1541{ 1542 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1543} 1544 1545static inline pid_t task_pid_vnr(struct task_struct *tsk) 1546{ 1547 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1548} 1549 1550 1551static inline pid_t task_tgid_nr(struct task_struct *tsk) 1552{ 1553 return tsk->tgid; 1554} 1555 1556pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1557 1558static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1559{ 1560 return pid_vnr(task_tgid(tsk)); 1561} 1562 1563 1564static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1565 struct pid_namespace *ns) 1566{ 1567 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1568} 1569 1570static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1571{ 1572 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1573} 1574 1575 1576static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1577 struct pid_namespace *ns) 1578{ 1579 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1580} 1581 1582static inline pid_t task_session_vnr(struct task_struct *tsk) 1583{ 1584 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1585} 1586 1587/* obsolete, do not use */ 1588static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1589{ 1590 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1591} 1592 1593/** 1594 * pid_alive - check that a task structure is not stale 1595 * @p: Task structure to be checked. 1596 * 1597 * Test if a process is not yet dead (at most zombie state) 1598 * If pid_alive fails, then pointers within the task structure 1599 * can be stale and must not be dereferenced. 1600 * 1601 * Return: 1 if the process is alive. 0 otherwise. 1602 */ 1603static inline int pid_alive(struct task_struct *p) 1604{ 1605 return p->pids[PIDTYPE_PID].pid != NULL; 1606} 1607 1608/** 1609 * is_global_init - check if a task structure is init 1610 * @tsk: Task structure to be checked. 1611 * 1612 * Check if a task structure is the first user space task the kernel created. 1613 * 1614 * Return: 1 if the task structure is init. 0 otherwise. 1615 */ 1616static inline int is_global_init(struct task_struct *tsk) 1617{ 1618 return tsk->pid == 1; 1619} 1620 1621extern struct pid *cad_pid; 1622 1623extern void free_task(struct task_struct *tsk); 1624#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1625 1626extern void __put_task_struct(struct task_struct *t); 1627 1628static inline void put_task_struct(struct task_struct *t) 1629{ 1630 if (atomic_dec_and_test(&t->usage)) 1631 __put_task_struct(t); 1632} 1633 1634#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1635extern void task_cputime(struct task_struct *t, 1636 cputime_t *utime, cputime_t *stime); 1637extern void task_cputime_scaled(struct task_struct *t, 1638 cputime_t *utimescaled, cputime_t *stimescaled); 1639extern cputime_t task_gtime(struct task_struct *t); 1640#else 1641static inline void task_cputime(struct task_struct *t, 1642 cputime_t *utime, cputime_t *stime) 1643{ 1644 if (utime) 1645 *utime = t->utime; 1646 if (stime) 1647 *stime = t->stime; 1648} 1649 1650static inline void task_cputime_scaled(struct task_struct *t, 1651 cputime_t *utimescaled, 1652 cputime_t *stimescaled) 1653{ 1654 if (utimescaled) 1655 *utimescaled = t->utimescaled; 1656 if (stimescaled) 1657 *stimescaled = t->stimescaled; 1658} 1659 1660static inline cputime_t task_gtime(struct task_struct *t) 1661{ 1662 return t->gtime; 1663} 1664#endif 1665extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1666extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1667 1668/* 1669 * Per process flags 1670 */ 1671#define PF_EXITING 0x00000004 /* getting shut down */ 1672#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1673#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1674#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1675#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1676#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1677#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1678#define PF_DUMPCORE 0x00000200 /* dumped core */ 1679#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1680#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1681#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1682#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1683#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1684#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1685#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1686#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1687#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1688#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1689#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1690#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1691#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1692#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1693#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1694#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1695#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1696#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1697#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1698#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1699#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1700#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1701 1702/* 1703 * Only the _current_ task can read/write to tsk->flags, but other 1704 * tasks can access tsk->flags in readonly mode for example 1705 * with tsk_used_math (like during threaded core dumping). 1706 * There is however an exception to this rule during ptrace 1707 * or during fork: the ptracer task is allowed to write to the 1708 * child->flags of its traced child (same goes for fork, the parent 1709 * can write to the child->flags), because we're guaranteed the 1710 * child is not running and in turn not changing child->flags 1711 * at the same time the parent does it. 1712 */ 1713#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1714#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1715#define clear_used_math() clear_stopped_child_used_math(current) 1716#define set_used_math() set_stopped_child_used_math(current) 1717#define conditional_stopped_child_used_math(condition, child) \ 1718 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1719#define conditional_used_math(condition) \ 1720 conditional_stopped_child_used_math(condition, current) 1721#define copy_to_stopped_child_used_math(child) \ 1722 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1723/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1724#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1725#define used_math() tsk_used_math(current) 1726 1727/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1728static inline gfp_t memalloc_noio_flags(gfp_t flags) 1729{ 1730 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1731 flags &= ~__GFP_IO; 1732 return flags; 1733} 1734 1735static inline unsigned int memalloc_noio_save(void) 1736{ 1737 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1738 current->flags |= PF_MEMALLOC_NOIO; 1739 return flags; 1740} 1741 1742static inline void memalloc_noio_restore(unsigned int flags) 1743{ 1744 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1745} 1746 1747/* 1748 * task->jobctl flags 1749 */ 1750#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1751 1752#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1753#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1754#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1755#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1756#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1757#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1758#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1759 1760#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1761#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1762#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1763#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1764#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1765#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1766#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1767 1768#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1769#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1770 1771extern bool task_set_jobctl_pending(struct task_struct *task, 1772 unsigned int mask); 1773extern void task_clear_jobctl_trapping(struct task_struct *task); 1774extern void task_clear_jobctl_pending(struct task_struct *task, 1775 unsigned int mask); 1776 1777#ifdef CONFIG_PREEMPT_RCU 1778 1779#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1780#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1781 1782static inline void rcu_copy_process(struct task_struct *p) 1783{ 1784 p->rcu_read_lock_nesting = 0; 1785 p->rcu_read_unlock_special = 0; 1786#ifdef CONFIG_TREE_PREEMPT_RCU 1787 p->rcu_blocked_node = NULL; 1788#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1789#ifdef CONFIG_RCU_BOOST 1790 p->rcu_boost_mutex = NULL; 1791#endif /* #ifdef CONFIG_RCU_BOOST */ 1792 INIT_LIST_HEAD(&p->rcu_node_entry); 1793} 1794 1795#else 1796 1797static inline void rcu_copy_process(struct task_struct *p) 1798{ 1799} 1800 1801#endif 1802 1803static inline void tsk_restore_flags(struct task_struct *task, 1804 unsigned long orig_flags, unsigned long flags) 1805{ 1806 task->flags &= ~flags; 1807 task->flags |= orig_flags & flags; 1808} 1809 1810#ifdef CONFIG_SMP 1811extern void do_set_cpus_allowed(struct task_struct *p, 1812 const struct cpumask *new_mask); 1813 1814extern int set_cpus_allowed_ptr(struct task_struct *p, 1815 const struct cpumask *new_mask); 1816#else 1817static inline void do_set_cpus_allowed(struct task_struct *p, 1818 const struct cpumask *new_mask) 1819{ 1820} 1821static inline int set_cpus_allowed_ptr(struct task_struct *p, 1822 const struct cpumask *new_mask) 1823{ 1824 if (!cpumask_test_cpu(0, new_mask)) 1825 return -EINVAL; 1826 return 0; 1827} 1828#endif 1829 1830#ifdef CONFIG_NO_HZ_COMMON 1831void calc_load_enter_idle(void); 1832void calc_load_exit_idle(void); 1833#else 1834static inline void calc_load_enter_idle(void) { } 1835static inline void calc_load_exit_idle(void) { } 1836#endif /* CONFIG_NO_HZ_COMMON */ 1837 1838#ifndef CONFIG_CPUMASK_OFFSTACK 1839static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1840{ 1841 return set_cpus_allowed_ptr(p, &new_mask); 1842} 1843#endif 1844 1845/* 1846 * Do not use outside of architecture code which knows its limitations. 1847 * 1848 * sched_clock() has no promise of monotonicity or bounded drift between 1849 * CPUs, use (which you should not) requires disabling IRQs. 1850 * 1851 * Please use one of the three interfaces below. 1852 */ 1853extern unsigned long long notrace sched_clock(void); 1854/* 1855 * See the comment in kernel/sched/clock.c 1856 */ 1857extern u64 cpu_clock(int cpu); 1858extern u64 local_clock(void); 1859extern u64 sched_clock_cpu(int cpu); 1860 1861 1862extern void sched_clock_init(void); 1863 1864#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1865static inline void sched_clock_tick(void) 1866{ 1867} 1868 1869static inline void sched_clock_idle_sleep_event(void) 1870{ 1871} 1872 1873static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1874{ 1875} 1876#else 1877/* 1878 * Architectures can set this to 1 if they have specified 1879 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1880 * but then during bootup it turns out that sched_clock() 1881 * is reliable after all: 1882 */ 1883extern int sched_clock_stable; 1884 1885extern void sched_clock_tick(void); 1886extern void sched_clock_idle_sleep_event(void); 1887extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1888#endif 1889 1890#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1891/* 1892 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1893 * The reason for this explicit opt-in is not to have perf penalty with 1894 * slow sched_clocks. 1895 */ 1896extern void enable_sched_clock_irqtime(void); 1897extern void disable_sched_clock_irqtime(void); 1898#else 1899static inline void enable_sched_clock_irqtime(void) {} 1900static inline void disable_sched_clock_irqtime(void) {} 1901#endif 1902 1903extern unsigned long long 1904task_sched_runtime(struct task_struct *task); 1905 1906/* sched_exec is called by processes performing an exec */ 1907#ifdef CONFIG_SMP 1908extern void sched_exec(void); 1909#else 1910#define sched_exec() {} 1911#endif 1912 1913extern void sched_clock_idle_sleep_event(void); 1914extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1915 1916#ifdef CONFIG_HOTPLUG_CPU 1917extern void idle_task_exit(void); 1918#else 1919static inline void idle_task_exit(void) {} 1920#endif 1921 1922#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1923extern void wake_up_nohz_cpu(int cpu); 1924#else 1925static inline void wake_up_nohz_cpu(int cpu) { } 1926#endif 1927 1928#ifdef CONFIG_NO_HZ_FULL 1929extern bool sched_can_stop_tick(void); 1930extern u64 scheduler_tick_max_deferment(void); 1931#else 1932static inline bool sched_can_stop_tick(void) { return false; } 1933#endif 1934 1935#ifdef CONFIG_SCHED_AUTOGROUP 1936extern void sched_autogroup_create_attach(struct task_struct *p); 1937extern void sched_autogroup_detach(struct task_struct *p); 1938extern void sched_autogroup_fork(struct signal_struct *sig); 1939extern void sched_autogroup_exit(struct signal_struct *sig); 1940#ifdef CONFIG_PROC_FS 1941extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1942extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1943#endif 1944#else 1945static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1946static inline void sched_autogroup_detach(struct task_struct *p) { } 1947static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1948static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1949#endif 1950 1951extern bool yield_to(struct task_struct *p, bool preempt); 1952extern void set_user_nice(struct task_struct *p, long nice); 1953extern int task_prio(const struct task_struct *p); 1954extern int task_nice(const struct task_struct *p); 1955extern int can_nice(const struct task_struct *p, const int nice); 1956extern int task_curr(const struct task_struct *p); 1957extern int idle_cpu(int cpu); 1958extern int sched_setscheduler(struct task_struct *, int, 1959 const struct sched_param *); 1960extern int sched_setscheduler_nocheck(struct task_struct *, int, 1961 const struct sched_param *); 1962extern struct task_struct *idle_task(int cpu); 1963/** 1964 * is_idle_task - is the specified task an idle task? 1965 * @p: the task in question. 1966 * 1967 * Return: 1 if @p is an idle task. 0 otherwise. 1968 */ 1969static inline bool is_idle_task(const struct task_struct *p) 1970{ 1971 return p->pid == 0; 1972} 1973extern struct task_struct *curr_task(int cpu); 1974extern void set_curr_task(int cpu, struct task_struct *p); 1975 1976void yield(void); 1977 1978/* 1979 * The default (Linux) execution domain. 1980 */ 1981extern struct exec_domain default_exec_domain; 1982 1983union thread_union { 1984 struct thread_info thread_info; 1985 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1986}; 1987 1988#ifndef __HAVE_ARCH_KSTACK_END 1989static inline int kstack_end(void *addr) 1990{ 1991 /* Reliable end of stack detection: 1992 * Some APM bios versions misalign the stack 1993 */ 1994 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1995} 1996#endif 1997 1998extern union thread_union init_thread_union; 1999extern struct task_struct init_task; 2000 2001extern struct mm_struct init_mm; 2002 2003extern struct pid_namespace init_pid_ns; 2004 2005/* 2006 * find a task by one of its numerical ids 2007 * 2008 * find_task_by_pid_ns(): 2009 * finds a task by its pid in the specified namespace 2010 * find_task_by_vpid(): 2011 * finds a task by its virtual pid 2012 * 2013 * see also find_vpid() etc in include/linux/pid.h 2014 */ 2015 2016extern struct task_struct *find_task_by_vpid(pid_t nr); 2017extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2018 struct pid_namespace *ns); 2019 2020/* per-UID process charging. */ 2021extern struct user_struct * alloc_uid(kuid_t); 2022static inline struct user_struct *get_uid(struct user_struct *u) 2023{ 2024 atomic_inc(&u->__count); 2025 return u; 2026} 2027extern void free_uid(struct user_struct *); 2028 2029#include <asm/current.h> 2030 2031extern void xtime_update(unsigned long ticks); 2032 2033extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2034extern int wake_up_process(struct task_struct *tsk); 2035extern void wake_up_new_task(struct task_struct *tsk); 2036#ifdef CONFIG_SMP 2037 extern void kick_process(struct task_struct *tsk); 2038#else 2039 static inline void kick_process(struct task_struct *tsk) { } 2040#endif 2041extern void sched_fork(unsigned long clone_flags, struct task_struct *p); 2042extern void sched_dead(struct task_struct *p); 2043 2044extern void proc_caches_init(void); 2045extern void flush_signals(struct task_struct *); 2046extern void __flush_signals(struct task_struct *); 2047extern void ignore_signals(struct task_struct *); 2048extern void flush_signal_handlers(struct task_struct *, int force_default); 2049extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2050 2051static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2052{ 2053 unsigned long flags; 2054 int ret; 2055 2056 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2057 ret = dequeue_signal(tsk, mask, info); 2058 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2059 2060 return ret; 2061} 2062 2063extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2064 sigset_t *mask); 2065extern void unblock_all_signals(void); 2066extern void release_task(struct task_struct * p); 2067extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2068extern int force_sigsegv(int, struct task_struct *); 2069extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2070extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2071extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2072extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2073 const struct cred *, u32); 2074extern int kill_pgrp(struct pid *pid, int sig, int priv); 2075extern int kill_pid(struct pid *pid, int sig, int priv); 2076extern int kill_proc_info(int, struct siginfo *, pid_t); 2077extern __must_check bool do_notify_parent(struct task_struct *, int); 2078extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2079extern void force_sig(int, struct task_struct *); 2080extern int send_sig(int, struct task_struct *, int); 2081extern int zap_other_threads(struct task_struct *p); 2082extern struct sigqueue *sigqueue_alloc(void); 2083extern void sigqueue_free(struct sigqueue *); 2084extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2085extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2086 2087static inline void restore_saved_sigmask(void) 2088{ 2089 if (test_and_clear_restore_sigmask()) 2090 __set_current_blocked(&current->saved_sigmask); 2091} 2092 2093static inline sigset_t *sigmask_to_save(void) 2094{ 2095 sigset_t *res = &current->blocked; 2096 if (unlikely(test_restore_sigmask())) 2097 res = &current->saved_sigmask; 2098 return res; 2099} 2100 2101static inline int kill_cad_pid(int sig, int priv) 2102{ 2103 return kill_pid(cad_pid, sig, priv); 2104} 2105 2106/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2107#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2108#define SEND_SIG_PRIV ((struct siginfo *) 1) 2109#define SEND_SIG_FORCED ((struct siginfo *) 2) 2110 2111/* 2112 * True if we are on the alternate signal stack. 2113 */ 2114static inline int on_sig_stack(unsigned long sp) 2115{ 2116#ifdef CONFIG_STACK_GROWSUP 2117 return sp >= current->sas_ss_sp && 2118 sp - current->sas_ss_sp < current->sas_ss_size; 2119#else 2120 return sp > current->sas_ss_sp && 2121 sp - current->sas_ss_sp <= current->sas_ss_size; 2122#endif 2123} 2124 2125static inline int sas_ss_flags(unsigned long sp) 2126{ 2127 return (current->sas_ss_size == 0 ? SS_DISABLE 2128 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2129} 2130 2131static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2132{ 2133 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2134#ifdef CONFIG_STACK_GROWSUP 2135 return current->sas_ss_sp; 2136#else 2137 return current->sas_ss_sp + current->sas_ss_size; 2138#endif 2139 return sp; 2140} 2141 2142/* 2143 * Routines for handling mm_structs 2144 */ 2145extern struct mm_struct * mm_alloc(void); 2146 2147/* mmdrop drops the mm and the page tables */ 2148extern void __mmdrop(struct mm_struct *); 2149static inline void mmdrop(struct mm_struct * mm) 2150{ 2151 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2152 __mmdrop(mm); 2153} 2154 2155/* mmput gets rid of the mappings and all user-space */ 2156extern void mmput(struct mm_struct *); 2157/* Grab a reference to a task's mm, if it is not already going away */ 2158extern struct mm_struct *get_task_mm(struct task_struct *task); 2159/* 2160 * Grab a reference to a task's mm, if it is not already going away 2161 * and ptrace_may_access with the mode parameter passed to it 2162 * succeeds. 2163 */ 2164extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2165/* Remove the current tasks stale references to the old mm_struct */ 2166extern void mm_release(struct task_struct *, struct mm_struct *); 2167/* Allocate a new mm structure and copy contents from tsk->mm */ 2168extern struct mm_struct *dup_mm(struct task_struct *tsk); 2169 2170extern int copy_thread(unsigned long, unsigned long, unsigned long, 2171 struct task_struct *); 2172extern void flush_thread(void); 2173extern void exit_thread(void); 2174 2175extern void exit_files(struct task_struct *); 2176extern void __cleanup_sighand(struct sighand_struct *); 2177 2178extern void exit_itimers(struct signal_struct *); 2179extern void flush_itimer_signals(void); 2180 2181extern void do_group_exit(int); 2182 2183extern int allow_signal(int); 2184extern int disallow_signal(int); 2185 2186extern int do_execve(const char *, 2187 const char __user * const __user *, 2188 const char __user * const __user *); 2189extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2190struct task_struct *fork_idle(int); 2191extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2192 2193extern void set_task_comm(struct task_struct *tsk, char *from); 2194extern char *get_task_comm(char *to, struct task_struct *tsk); 2195 2196#ifdef CONFIG_SMP 2197void scheduler_ipi(void); 2198extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2199#else 2200static inline void scheduler_ipi(void) { } 2201static inline unsigned long wait_task_inactive(struct task_struct *p, 2202 long match_state) 2203{ 2204 return 1; 2205} 2206#endif 2207 2208#define next_task(p) \ 2209 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2210 2211#define for_each_process(p) \ 2212 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2213 2214extern bool current_is_single_threaded(void); 2215 2216/* 2217 * Careful: do_each_thread/while_each_thread is a double loop so 2218 * 'break' will not work as expected - use goto instead. 2219 */ 2220#define do_each_thread(g, t) \ 2221 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2222 2223#define while_each_thread(g, t) \ 2224 while ((t = next_thread(t)) != g) 2225 2226static inline int get_nr_threads(struct task_struct *tsk) 2227{ 2228 return tsk->signal->nr_threads; 2229} 2230 2231static inline bool thread_group_leader(struct task_struct *p) 2232{ 2233 return p->exit_signal >= 0; 2234} 2235 2236/* Do to the insanities of de_thread it is possible for a process 2237 * to have the pid of the thread group leader without actually being 2238 * the thread group leader. For iteration through the pids in proc 2239 * all we care about is that we have a task with the appropriate 2240 * pid, we don't actually care if we have the right task. 2241 */ 2242static inline bool has_group_leader_pid(struct task_struct *p) 2243{ 2244 return task_pid(p) == p->signal->leader_pid; 2245} 2246 2247static inline 2248bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2249{ 2250 return p1->signal == p2->signal; 2251} 2252 2253static inline struct task_struct *next_thread(const struct task_struct *p) 2254{ 2255 return list_entry_rcu(p->thread_group.next, 2256 struct task_struct, thread_group); 2257} 2258 2259static inline int thread_group_empty(struct task_struct *p) 2260{ 2261 return list_empty(&p->thread_group); 2262} 2263 2264#define delay_group_leader(p) \ 2265 (thread_group_leader(p) && !thread_group_empty(p)) 2266 2267/* 2268 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2269 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2270 * pins the final release of task.io_context. Also protects ->cpuset and 2271 * ->cgroup.subsys[]. And ->vfork_done. 2272 * 2273 * Nests both inside and outside of read_lock(&tasklist_lock). 2274 * It must not be nested with write_lock_irq(&tasklist_lock), 2275 * neither inside nor outside. 2276 */ 2277static inline void task_lock(struct task_struct *p) 2278{ 2279 spin_lock(&p->alloc_lock); 2280} 2281 2282static inline void task_unlock(struct task_struct *p) 2283{ 2284 spin_unlock(&p->alloc_lock); 2285} 2286 2287extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2288 unsigned long *flags); 2289 2290static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2291 unsigned long *flags) 2292{ 2293 struct sighand_struct *ret; 2294 2295 ret = __lock_task_sighand(tsk, flags); 2296 (void)__cond_lock(&tsk->sighand->siglock, ret); 2297 return ret; 2298} 2299 2300static inline void unlock_task_sighand(struct task_struct *tsk, 2301 unsigned long *flags) 2302{ 2303 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2304} 2305 2306#ifdef CONFIG_CGROUPS 2307static inline void threadgroup_change_begin(struct task_struct *tsk) 2308{ 2309 down_read(&tsk->signal->group_rwsem); 2310} 2311static inline void threadgroup_change_end(struct task_struct *tsk) 2312{ 2313 up_read(&tsk->signal->group_rwsem); 2314} 2315 2316/** 2317 * threadgroup_lock - lock threadgroup 2318 * @tsk: member task of the threadgroup to lock 2319 * 2320 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2321 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2322 * change ->group_leader/pid. This is useful for cases where the threadgroup 2323 * needs to stay stable across blockable operations. 2324 * 2325 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2326 * synchronization. While held, no new task will be added to threadgroup 2327 * and no existing live task will have its PF_EXITING set. 2328 * 2329 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2330 * sub-thread becomes a new leader. 2331 */ 2332static inline void threadgroup_lock(struct task_struct *tsk) 2333{ 2334 down_write(&tsk->signal->group_rwsem); 2335} 2336 2337/** 2338 * threadgroup_unlock - unlock threadgroup 2339 * @tsk: member task of the threadgroup to unlock 2340 * 2341 * Reverse threadgroup_lock(). 2342 */ 2343static inline void threadgroup_unlock(struct task_struct *tsk) 2344{ 2345 up_write(&tsk->signal->group_rwsem); 2346} 2347#else 2348static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2349static inline void threadgroup_change_end(struct task_struct *tsk) {} 2350static inline void threadgroup_lock(struct task_struct *tsk) {} 2351static inline void threadgroup_unlock(struct task_struct *tsk) {} 2352#endif 2353 2354#ifndef __HAVE_THREAD_FUNCTIONS 2355 2356#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2357#define task_stack_page(task) ((task)->stack) 2358 2359static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2360{ 2361 *task_thread_info(p) = *task_thread_info(org); 2362 task_thread_info(p)->task = p; 2363} 2364 2365static inline unsigned long *end_of_stack(struct task_struct *p) 2366{ 2367 return (unsigned long *)(task_thread_info(p) + 1); 2368} 2369 2370#endif 2371 2372static inline int object_is_on_stack(void *obj) 2373{ 2374 void *stack = task_stack_page(current); 2375 2376 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2377} 2378 2379extern void thread_info_cache_init(void); 2380 2381#ifdef CONFIG_DEBUG_STACK_USAGE 2382static inline unsigned long stack_not_used(struct task_struct *p) 2383{ 2384 unsigned long *n = end_of_stack(p); 2385 2386 do { /* Skip over canary */ 2387 n++; 2388 } while (!*n); 2389 2390 return (unsigned long)n - (unsigned long)end_of_stack(p); 2391} 2392#endif 2393 2394/* set thread flags in other task's structures 2395 * - see asm/thread_info.h for TIF_xxxx flags available 2396 */ 2397static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2398{ 2399 set_ti_thread_flag(task_thread_info(tsk), flag); 2400} 2401 2402static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2403{ 2404 clear_ti_thread_flag(task_thread_info(tsk), flag); 2405} 2406 2407static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2408{ 2409 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2410} 2411 2412static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2413{ 2414 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2415} 2416 2417static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2418{ 2419 return test_ti_thread_flag(task_thread_info(tsk), flag); 2420} 2421 2422static inline void set_tsk_need_resched(struct task_struct *tsk) 2423{ 2424 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2425} 2426 2427static inline void clear_tsk_need_resched(struct task_struct *tsk) 2428{ 2429 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2430} 2431 2432static inline int test_tsk_need_resched(struct task_struct *tsk) 2433{ 2434 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2435} 2436 2437static inline int restart_syscall(void) 2438{ 2439 set_tsk_thread_flag(current, TIF_SIGPENDING); 2440 return -ERESTARTNOINTR; 2441} 2442 2443static inline int signal_pending(struct task_struct *p) 2444{ 2445 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2446} 2447 2448static inline int __fatal_signal_pending(struct task_struct *p) 2449{ 2450 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2451} 2452 2453static inline int fatal_signal_pending(struct task_struct *p) 2454{ 2455 return signal_pending(p) && __fatal_signal_pending(p); 2456} 2457 2458static inline int signal_pending_state(long state, struct task_struct *p) 2459{ 2460 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2461 return 0; 2462 if (!signal_pending(p)) 2463 return 0; 2464 2465 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2466} 2467 2468/* 2469 * cond_resched() and cond_resched_lock(): latency reduction via 2470 * explicit rescheduling in places that are safe. The return 2471 * value indicates whether a reschedule was done in fact. 2472 * cond_resched_lock() will drop the spinlock before scheduling, 2473 * cond_resched_softirq() will enable bhs before scheduling. 2474 */ 2475extern int _cond_resched(void); 2476 2477#define cond_resched() ({ \ 2478 __might_sleep(__FILE__, __LINE__, 0); \ 2479 _cond_resched(); \ 2480}) 2481 2482extern int __cond_resched_lock(spinlock_t *lock); 2483 2484#ifdef CONFIG_PREEMPT_COUNT 2485#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2486#else 2487#define PREEMPT_LOCK_OFFSET 0 2488#endif 2489 2490#define cond_resched_lock(lock) ({ \ 2491 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2492 __cond_resched_lock(lock); \ 2493}) 2494 2495extern int __cond_resched_softirq(void); 2496 2497#define cond_resched_softirq() ({ \ 2498 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2499 __cond_resched_softirq(); \ 2500}) 2501 2502static inline void cond_resched_rcu(void) 2503{ 2504#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2505 rcu_read_unlock(); 2506 cond_resched(); 2507 rcu_read_lock(); 2508#endif 2509} 2510 2511/* 2512 * Does a critical section need to be broken due to another 2513 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2514 * but a general need for low latency) 2515 */ 2516static inline int spin_needbreak(spinlock_t *lock) 2517{ 2518#ifdef CONFIG_PREEMPT 2519 return spin_is_contended(lock); 2520#else 2521 return 0; 2522#endif 2523} 2524 2525/* 2526 * Idle thread specific functions to determine the need_resched 2527 * polling state. We have two versions, one based on TS_POLLING in 2528 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2529 * thread_info.flags 2530 */ 2531#ifdef TS_POLLING 2532static inline int tsk_is_polling(struct task_struct *p) 2533{ 2534 return task_thread_info(p)->status & TS_POLLING; 2535} 2536static inline void __current_set_polling(void) 2537{ 2538 current_thread_info()->status |= TS_POLLING; 2539} 2540 2541static inline bool __must_check current_set_polling_and_test(void) 2542{ 2543 __current_set_polling(); 2544 2545 /* 2546 * Polling state must be visible before we test NEED_RESCHED, 2547 * paired by resched_task() 2548 */ 2549 smp_mb(); 2550 2551 return unlikely(tif_need_resched()); 2552} 2553 2554static inline void __current_clr_polling(void) 2555{ 2556 current_thread_info()->status &= ~TS_POLLING; 2557} 2558 2559static inline bool __must_check current_clr_polling_and_test(void) 2560{ 2561 __current_clr_polling(); 2562 2563 /* 2564 * Polling state must be visible before we test NEED_RESCHED, 2565 * paired by resched_task() 2566 */ 2567 smp_mb(); 2568 2569 return unlikely(tif_need_resched()); 2570} 2571#elif defined(TIF_POLLING_NRFLAG) 2572static inline int tsk_is_polling(struct task_struct *p) 2573{ 2574 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2575} 2576 2577static inline void __current_set_polling(void) 2578{ 2579 set_thread_flag(TIF_POLLING_NRFLAG); 2580} 2581 2582static inline bool __must_check current_set_polling_and_test(void) 2583{ 2584 __current_set_polling(); 2585 2586 /* 2587 * Polling state must be visible before we test NEED_RESCHED, 2588 * paired by resched_task() 2589 * 2590 * XXX: assumes set/clear bit are identical barrier wise. 2591 */ 2592 smp_mb__after_clear_bit(); 2593 2594 return unlikely(tif_need_resched()); 2595} 2596 2597static inline void __current_clr_polling(void) 2598{ 2599 clear_thread_flag(TIF_POLLING_NRFLAG); 2600} 2601 2602static inline bool __must_check current_clr_polling_and_test(void) 2603{ 2604 __current_clr_polling(); 2605 2606 /* 2607 * Polling state must be visible before we test NEED_RESCHED, 2608 * paired by resched_task() 2609 */ 2610 smp_mb__after_clear_bit(); 2611 2612 return unlikely(tif_need_resched()); 2613} 2614 2615#else 2616static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2617static inline void __current_set_polling(void) { } 2618static inline void __current_clr_polling(void) { } 2619 2620static inline bool __must_check current_set_polling_and_test(void) 2621{ 2622 return unlikely(tif_need_resched()); 2623} 2624static inline bool __must_check current_clr_polling_and_test(void) 2625{ 2626 return unlikely(tif_need_resched()); 2627} 2628#endif 2629 2630static __always_inline bool need_resched(void) 2631{ 2632 return unlikely(tif_need_resched()); 2633} 2634 2635/* 2636 * Thread group CPU time accounting. 2637 */ 2638void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2639void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2640 2641static inline void thread_group_cputime_init(struct signal_struct *sig) 2642{ 2643 raw_spin_lock_init(&sig->cputimer.lock); 2644} 2645 2646/* 2647 * Reevaluate whether the task has signals pending delivery. 2648 * Wake the task if so. 2649 * This is required every time the blocked sigset_t changes. 2650 * callers must hold sighand->siglock. 2651 */ 2652extern void recalc_sigpending_and_wake(struct task_struct *t); 2653extern void recalc_sigpending(void); 2654 2655extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2656 2657static inline void signal_wake_up(struct task_struct *t, bool resume) 2658{ 2659 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2660} 2661static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2662{ 2663 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2664} 2665 2666/* 2667 * Wrappers for p->thread_info->cpu access. No-op on UP. 2668 */ 2669#ifdef CONFIG_SMP 2670 2671static inline unsigned int task_cpu(const struct task_struct *p) 2672{ 2673 return task_thread_info(p)->cpu; 2674} 2675 2676static inline int task_node(const struct task_struct *p) 2677{ 2678 return cpu_to_node(task_cpu(p)); 2679} 2680 2681extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2682 2683#else 2684 2685static inline unsigned int task_cpu(const struct task_struct *p) 2686{ 2687 return 0; 2688} 2689 2690static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2691{ 2692} 2693 2694#endif /* CONFIG_SMP */ 2695 2696extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2697extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2698 2699#ifdef CONFIG_CGROUP_SCHED 2700extern struct task_group root_task_group; 2701#endif /* CONFIG_CGROUP_SCHED */ 2702 2703extern int task_can_switch_user(struct user_struct *up, 2704 struct task_struct *tsk); 2705 2706#ifdef CONFIG_TASK_XACCT 2707static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2708{ 2709 tsk->ioac.rchar += amt; 2710} 2711 2712static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2713{ 2714 tsk->ioac.wchar += amt; 2715} 2716 2717static inline void inc_syscr(struct task_struct *tsk) 2718{ 2719 tsk->ioac.syscr++; 2720} 2721 2722static inline void inc_syscw(struct task_struct *tsk) 2723{ 2724 tsk->ioac.syscw++; 2725} 2726#else 2727static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2728{ 2729} 2730 2731static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2732{ 2733} 2734 2735static inline void inc_syscr(struct task_struct *tsk) 2736{ 2737} 2738 2739static inline void inc_syscw(struct task_struct *tsk) 2740{ 2741} 2742#endif 2743 2744#ifndef TASK_SIZE_OF 2745#define TASK_SIZE_OF(tsk) TASK_SIZE 2746#endif 2747 2748#ifdef CONFIG_MM_OWNER 2749extern void mm_update_next_owner(struct mm_struct *mm); 2750extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2751#else 2752static inline void mm_update_next_owner(struct mm_struct *mm) 2753{ 2754} 2755 2756static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2757{ 2758} 2759#endif /* CONFIG_MM_OWNER */ 2760 2761static inline unsigned long task_rlimit(const struct task_struct *tsk, 2762 unsigned int limit) 2763{ 2764 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2765} 2766 2767static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2768 unsigned int limit) 2769{ 2770 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2771} 2772 2773static inline unsigned long rlimit(unsigned int limit) 2774{ 2775 return task_rlimit(current, limit); 2776} 2777 2778static inline unsigned long rlimit_max(unsigned int limit) 2779{ 2780 return task_rlimit_max(current, limit); 2781} 2782 2783#endif