at v3.13 25 kB view raw
1#ifndef __LINUX_PERCPU_H 2#define __LINUX_PERCPU_H 3 4#include <linux/preempt.h> 5#include <linux/smp.h> 6#include <linux/cpumask.h> 7#include <linux/pfn.h> 8#include <linux/init.h> 9 10#include <asm/percpu.h> 11 12/* enough to cover all DEFINE_PER_CPUs in modules */ 13#ifdef CONFIG_MODULES 14#define PERCPU_MODULE_RESERVE (8 << 10) 15#else 16#define PERCPU_MODULE_RESERVE 0 17#endif 18 19#ifndef PERCPU_ENOUGH_ROOM 20#define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23#endif 24 25/* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29#define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33/* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37#define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40} while (0) 41 42#define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46#define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49} while (0) 50 51/* minimum unit size, also is the maximum supported allocation size */ 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54/* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61#define PERCPU_DYNAMIC_EARLY_SLOTS 128 62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64/* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75#if BITS_PER_LONG > 32 76#define PERCPU_DYNAMIC_RESERVE (20 << 10) 77#else 78#define PERCPU_DYNAMIC_RESERVE (12 << 10) 79#endif 80 81extern void *pcpu_base_addr; 82extern const unsigned long *pcpu_unit_offsets; 83 84struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89}; 90 91struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101}; 102 103enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109}; 110extern const char * const pcpu_fc_names[PCPU_FC_NR]; 111 112extern enum pcpu_fc pcpu_chosen_fc; 113 114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133#endif 134 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140#endif 141 142/* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147#ifdef CONFIG_SMP 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149#else 150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151#endif 152 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154extern bool is_kernel_percpu_address(unsigned long addr); 155 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157extern void __init setup_per_cpu_areas(void); 158#endif 159extern void __init percpu_init_late(void); 160 161extern void __percpu *__alloc_percpu(size_t size, size_t align); 162extern void free_percpu(void __percpu *__pdata); 163extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165#define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168/* 169 * Branching function to split up a function into a set of functions that 170 * are called for different scalar sizes of the objects handled. 171 */ 172 173extern void __bad_size_call_parameter(void); 174 175#define __pcpu_size_call_return(stem, variable) \ 176({ typeof(variable) pscr_ret__; \ 177 __verify_pcpu_ptr(&(variable)); \ 178 switch(sizeof(variable)) { \ 179 case 1: pscr_ret__ = stem##1(variable);break; \ 180 case 2: pscr_ret__ = stem##2(variable);break; \ 181 case 4: pscr_ret__ = stem##4(variable);break; \ 182 case 8: pscr_ret__ = stem##8(variable);break; \ 183 default: \ 184 __bad_size_call_parameter();break; \ 185 } \ 186 pscr_ret__; \ 187}) 188 189#define __pcpu_size_call_return2(stem, variable, ...) \ 190({ \ 191 typeof(variable) pscr2_ret__; \ 192 __verify_pcpu_ptr(&(variable)); \ 193 switch(sizeof(variable)) { \ 194 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 195 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 196 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 197 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 198 default: \ 199 __bad_size_call_parameter(); break; \ 200 } \ 201 pscr2_ret__; \ 202}) 203 204/* 205 * Special handling for cmpxchg_double. cmpxchg_double is passed two 206 * percpu variables. The first has to be aligned to a double word 207 * boundary and the second has to follow directly thereafter. 208 * We enforce this on all architectures even if they don't support 209 * a double cmpxchg instruction, since it's a cheap requirement, and it 210 * avoids breaking the requirement for architectures with the instruction. 211 */ 212#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 213({ \ 214 bool pdcrb_ret__; \ 215 __verify_pcpu_ptr(&pcp1); \ 216 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 217 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 218 VM_BUG_ON((unsigned long)(&pcp2) != \ 219 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 220 switch(sizeof(pcp1)) { \ 221 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 222 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 223 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 224 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 225 default: \ 226 __bad_size_call_parameter(); break; \ 227 } \ 228 pdcrb_ret__; \ 229}) 230 231#define __pcpu_size_call(stem, variable, ...) \ 232do { \ 233 __verify_pcpu_ptr(&(variable)); \ 234 switch(sizeof(variable)) { \ 235 case 1: stem##1(variable, __VA_ARGS__);break; \ 236 case 2: stem##2(variable, __VA_ARGS__);break; \ 237 case 4: stem##4(variable, __VA_ARGS__);break; \ 238 case 8: stem##8(variable, __VA_ARGS__);break; \ 239 default: \ 240 __bad_size_call_parameter();break; \ 241 } \ 242} while (0) 243 244/* 245 * Optimized manipulation for memory allocated through the per cpu 246 * allocator or for addresses of per cpu variables. 247 * 248 * These operation guarantee exclusivity of access for other operations 249 * on the *same* processor. The assumption is that per cpu data is only 250 * accessed by a single processor instance (the current one). 251 * 252 * The first group is used for accesses that must be done in a 253 * preemption safe way since we know that the context is not preempt 254 * safe. Interrupts may occur. If the interrupt modifies the variable 255 * too then RMW actions will not be reliable. 256 * 257 * The arch code can provide optimized functions in two ways: 258 * 259 * 1. Override the function completely. F.e. define this_cpu_add(). 260 * The arch must then ensure that the various scalar format passed 261 * are handled correctly. 262 * 263 * 2. Provide functions for certain scalar sizes. F.e. provide 264 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 265 * sized RMW actions. If arch code does not provide operations for 266 * a scalar size then the fallback in the generic code will be 267 * used. 268 */ 269 270#define _this_cpu_generic_read(pcp) \ 271({ typeof(pcp) ret__; \ 272 preempt_disable(); \ 273 ret__ = *this_cpu_ptr(&(pcp)); \ 274 preempt_enable(); \ 275 ret__; \ 276}) 277 278#ifndef this_cpu_read 279# ifndef this_cpu_read_1 280# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 281# endif 282# ifndef this_cpu_read_2 283# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 284# endif 285# ifndef this_cpu_read_4 286# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 287# endif 288# ifndef this_cpu_read_8 289# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 290# endif 291# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 292#endif 293 294#define _this_cpu_generic_to_op(pcp, val, op) \ 295do { \ 296 unsigned long flags; \ 297 raw_local_irq_save(flags); \ 298 *__this_cpu_ptr(&(pcp)) op val; \ 299 raw_local_irq_restore(flags); \ 300} while (0) 301 302#ifndef this_cpu_write 303# ifndef this_cpu_write_1 304# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 305# endif 306# ifndef this_cpu_write_2 307# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 308# endif 309# ifndef this_cpu_write_4 310# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 311# endif 312# ifndef this_cpu_write_8 313# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 314# endif 315# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 316#endif 317 318#ifndef this_cpu_add 319# ifndef this_cpu_add_1 320# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 321# endif 322# ifndef this_cpu_add_2 323# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 324# endif 325# ifndef this_cpu_add_4 326# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 327# endif 328# ifndef this_cpu_add_8 329# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 330# endif 331# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 332#endif 333 334#ifndef this_cpu_sub 335# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val)) 336#endif 337 338#ifndef this_cpu_inc 339# define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 340#endif 341 342#ifndef this_cpu_dec 343# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 344#endif 345 346#ifndef this_cpu_and 347# ifndef this_cpu_and_1 348# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 349# endif 350# ifndef this_cpu_and_2 351# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 352# endif 353# ifndef this_cpu_and_4 354# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 355# endif 356# ifndef this_cpu_and_8 357# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 358# endif 359# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 360#endif 361 362#ifndef this_cpu_or 363# ifndef this_cpu_or_1 364# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 365# endif 366# ifndef this_cpu_or_2 367# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 368# endif 369# ifndef this_cpu_or_4 370# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 371# endif 372# ifndef this_cpu_or_8 373# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 374# endif 375# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 376#endif 377 378#define _this_cpu_generic_add_return(pcp, val) \ 379({ \ 380 typeof(pcp) ret__; \ 381 unsigned long flags; \ 382 raw_local_irq_save(flags); \ 383 __this_cpu_add(pcp, val); \ 384 ret__ = __this_cpu_read(pcp); \ 385 raw_local_irq_restore(flags); \ 386 ret__; \ 387}) 388 389#ifndef this_cpu_add_return 390# ifndef this_cpu_add_return_1 391# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 392# endif 393# ifndef this_cpu_add_return_2 394# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 395# endif 396# ifndef this_cpu_add_return_4 397# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 398# endif 399# ifndef this_cpu_add_return_8 400# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 401# endif 402# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 403#endif 404 405#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) 406#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 407#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 408 409#define _this_cpu_generic_xchg(pcp, nval) \ 410({ typeof(pcp) ret__; \ 411 unsigned long flags; \ 412 raw_local_irq_save(flags); \ 413 ret__ = __this_cpu_read(pcp); \ 414 __this_cpu_write(pcp, nval); \ 415 raw_local_irq_restore(flags); \ 416 ret__; \ 417}) 418 419#ifndef this_cpu_xchg 420# ifndef this_cpu_xchg_1 421# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 422# endif 423# ifndef this_cpu_xchg_2 424# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 425# endif 426# ifndef this_cpu_xchg_4 427# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 428# endif 429# ifndef this_cpu_xchg_8 430# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 431# endif 432# define this_cpu_xchg(pcp, nval) \ 433 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 434#endif 435 436#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 437({ \ 438 typeof(pcp) ret__; \ 439 unsigned long flags; \ 440 raw_local_irq_save(flags); \ 441 ret__ = __this_cpu_read(pcp); \ 442 if (ret__ == (oval)) \ 443 __this_cpu_write(pcp, nval); \ 444 raw_local_irq_restore(flags); \ 445 ret__; \ 446}) 447 448#ifndef this_cpu_cmpxchg 449# ifndef this_cpu_cmpxchg_1 450# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 451# endif 452# ifndef this_cpu_cmpxchg_2 453# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 454# endif 455# ifndef this_cpu_cmpxchg_4 456# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 457# endif 458# ifndef this_cpu_cmpxchg_8 459# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 460# endif 461# define this_cpu_cmpxchg(pcp, oval, nval) \ 462 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 463#endif 464 465/* 466 * cmpxchg_double replaces two adjacent scalars at once. The first 467 * two parameters are per cpu variables which have to be of the same 468 * size. A truth value is returned to indicate success or failure 469 * (since a double register result is difficult to handle). There is 470 * very limited hardware support for these operations, so only certain 471 * sizes may work. 472 */ 473#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 474({ \ 475 int ret__; \ 476 unsigned long flags; \ 477 raw_local_irq_save(flags); \ 478 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 479 oval1, oval2, nval1, nval2); \ 480 raw_local_irq_restore(flags); \ 481 ret__; \ 482}) 483 484#ifndef this_cpu_cmpxchg_double 485# ifndef this_cpu_cmpxchg_double_1 486# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 487 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 488# endif 489# ifndef this_cpu_cmpxchg_double_2 490# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 491 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 492# endif 493# ifndef this_cpu_cmpxchg_double_4 494# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 495 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 496# endif 497# ifndef this_cpu_cmpxchg_double_8 498# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 499 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 500# endif 501# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 502 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 503#endif 504 505/* 506 * Generic percpu operations for context that are safe from preemption/interrupts. 507 * Either we do not care about races or the caller has the 508 * responsibility of handling preemption/interrupt issues. Arch code can still 509 * override these instructions since the arch per cpu code may be more 510 * efficient and may actually get race freeness for free (that is the 511 * case for x86 for example). 512 * 513 * If there is no other protection through preempt disable and/or 514 * disabling interupts then one of these RMW operations can show unexpected 515 * behavior because the execution thread was rescheduled on another processor 516 * or an interrupt occurred and the same percpu variable was modified from 517 * the interrupt context. 518 */ 519#ifndef __this_cpu_read 520# ifndef __this_cpu_read_1 521# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 522# endif 523# ifndef __this_cpu_read_2 524# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 525# endif 526# ifndef __this_cpu_read_4 527# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 528# endif 529# ifndef __this_cpu_read_8 530# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 531# endif 532# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 533#endif 534 535#define __this_cpu_generic_to_op(pcp, val, op) \ 536do { \ 537 *__this_cpu_ptr(&(pcp)) op val; \ 538} while (0) 539 540#ifndef __this_cpu_write 541# ifndef __this_cpu_write_1 542# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 543# endif 544# ifndef __this_cpu_write_2 545# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 546# endif 547# ifndef __this_cpu_write_4 548# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 549# endif 550# ifndef __this_cpu_write_8 551# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 552# endif 553# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 554#endif 555 556#ifndef __this_cpu_add 557# ifndef __this_cpu_add_1 558# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 559# endif 560# ifndef __this_cpu_add_2 561# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 562# endif 563# ifndef __this_cpu_add_4 564# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 565# endif 566# ifndef __this_cpu_add_8 567# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 568# endif 569# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 570#endif 571 572#ifndef __this_cpu_sub 573# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val)) 574#endif 575 576#ifndef __this_cpu_inc 577# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 578#endif 579 580#ifndef __this_cpu_dec 581# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 582#endif 583 584#ifndef __this_cpu_and 585# ifndef __this_cpu_and_1 586# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 587# endif 588# ifndef __this_cpu_and_2 589# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 590# endif 591# ifndef __this_cpu_and_4 592# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 593# endif 594# ifndef __this_cpu_and_8 595# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 596# endif 597# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 598#endif 599 600#ifndef __this_cpu_or 601# ifndef __this_cpu_or_1 602# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 603# endif 604# ifndef __this_cpu_or_2 605# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 606# endif 607# ifndef __this_cpu_or_4 608# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 609# endif 610# ifndef __this_cpu_or_8 611# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 612# endif 613# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 614#endif 615 616#define __this_cpu_generic_add_return(pcp, val) \ 617({ \ 618 __this_cpu_add(pcp, val); \ 619 __this_cpu_read(pcp); \ 620}) 621 622#ifndef __this_cpu_add_return 623# ifndef __this_cpu_add_return_1 624# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 625# endif 626# ifndef __this_cpu_add_return_2 627# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 628# endif 629# ifndef __this_cpu_add_return_4 630# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 631# endif 632# ifndef __this_cpu_add_return_8 633# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 634# endif 635# define __this_cpu_add_return(pcp, val) \ 636 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val) 637#endif 638 639#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) 640#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) 641#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) 642 643#define __this_cpu_generic_xchg(pcp, nval) \ 644({ typeof(pcp) ret__; \ 645 ret__ = __this_cpu_read(pcp); \ 646 __this_cpu_write(pcp, nval); \ 647 ret__; \ 648}) 649 650#ifndef __this_cpu_xchg 651# ifndef __this_cpu_xchg_1 652# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 653# endif 654# ifndef __this_cpu_xchg_2 655# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 656# endif 657# ifndef __this_cpu_xchg_4 658# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 659# endif 660# ifndef __this_cpu_xchg_8 661# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 662# endif 663# define __this_cpu_xchg(pcp, nval) \ 664 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 665#endif 666 667#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 668({ \ 669 typeof(pcp) ret__; \ 670 ret__ = __this_cpu_read(pcp); \ 671 if (ret__ == (oval)) \ 672 __this_cpu_write(pcp, nval); \ 673 ret__; \ 674}) 675 676#ifndef __this_cpu_cmpxchg 677# ifndef __this_cpu_cmpxchg_1 678# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 679# endif 680# ifndef __this_cpu_cmpxchg_2 681# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 682# endif 683# ifndef __this_cpu_cmpxchg_4 684# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 685# endif 686# ifndef __this_cpu_cmpxchg_8 687# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 688# endif 689# define __this_cpu_cmpxchg(pcp, oval, nval) \ 690 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 691#endif 692 693#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 694({ \ 695 int __ret = 0; \ 696 if (__this_cpu_read(pcp1) == (oval1) && \ 697 __this_cpu_read(pcp2) == (oval2)) { \ 698 __this_cpu_write(pcp1, (nval1)); \ 699 __this_cpu_write(pcp2, (nval2)); \ 700 __ret = 1; \ 701 } \ 702 (__ret); \ 703}) 704 705#ifndef __this_cpu_cmpxchg_double 706# ifndef __this_cpu_cmpxchg_double_1 707# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 708 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 709# endif 710# ifndef __this_cpu_cmpxchg_double_2 711# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 712 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 713# endif 714# ifndef __this_cpu_cmpxchg_double_4 715# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 716 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 717# endif 718# ifndef __this_cpu_cmpxchg_double_8 719# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 720 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 721# endif 722# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 723 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 724#endif 725 726#endif /* __LINUX_PERCPU_H */