at v3.13 65 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/bit_spinlock.h> 19#include <linux/shrinker.h> 20 21struct mempolicy; 22struct anon_vma; 23struct anon_vma_chain; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30 31static inline void set_max_mapnr(unsigned long limit) 32{ 33 max_mapnr = limit; 34} 35#else 36static inline void set_max_mapnr(unsigned long limit) { } 37#endif 38 39extern unsigned long totalram_pages; 40extern void * high_memory; 41extern int page_cluster; 42 43#ifdef CONFIG_SYSCTL 44extern int sysctl_legacy_va_layout; 45#else 46#define sysctl_legacy_va_layout 0 47#endif 48 49#include <asm/page.h> 50#include <asm/pgtable.h> 51#include <asm/processor.h> 52 53#ifndef __pa_symbol 54#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 55#endif 56 57extern unsigned long sysctl_user_reserve_kbytes; 58extern unsigned long sysctl_admin_reserve_kbytes; 59 60#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 61 62/* to align the pointer to the (next) page boundary */ 63#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 64 65/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 66#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 67 68/* 69 * Linux kernel virtual memory manager primitives. 70 * The idea being to have a "virtual" mm in the same way 71 * we have a virtual fs - giving a cleaner interface to the 72 * mm details, and allowing different kinds of memory mappings 73 * (from shared memory to executable loading to arbitrary 74 * mmap() functions). 75 */ 76 77extern struct kmem_cache *vm_area_cachep; 78 79#ifndef CONFIG_MMU 80extern struct rb_root nommu_region_tree; 81extern struct rw_semaphore nommu_region_sem; 82 83extern unsigned int kobjsize(const void *objp); 84#endif 85 86/* 87 * vm_flags in vm_area_struct, see mm_types.h. 88 */ 89#define VM_NONE 0x00000000 90 91#define VM_READ 0x00000001 /* currently active flags */ 92#define VM_WRITE 0x00000002 93#define VM_EXEC 0x00000004 94#define VM_SHARED 0x00000008 95 96/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 97#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 98#define VM_MAYWRITE 0x00000020 99#define VM_MAYEXEC 0x00000040 100#define VM_MAYSHARE 0x00000080 101 102#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 103#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 104#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 105 106#define VM_LOCKED 0x00002000 107#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 108 109 /* Used by sys_madvise() */ 110#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 111#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 112 113#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 114#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 115#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 116#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 117#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 118#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 119#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 120#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 121 122#ifdef CONFIG_MEM_SOFT_DIRTY 123# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 124#else 125# define VM_SOFTDIRTY 0 126#endif 127 128#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 129#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 130#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 131#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 132 133#if defined(CONFIG_X86) 134# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 135#elif defined(CONFIG_PPC) 136# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 137#elif defined(CONFIG_PARISC) 138# define VM_GROWSUP VM_ARCH_1 139#elif defined(CONFIG_METAG) 140# define VM_GROWSUP VM_ARCH_1 141#elif defined(CONFIG_IA64) 142# define VM_GROWSUP VM_ARCH_1 143#elif !defined(CONFIG_MMU) 144# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 145#endif 146 147#ifndef VM_GROWSUP 148# define VM_GROWSUP VM_NONE 149#endif 150 151/* Bits set in the VMA until the stack is in its final location */ 152#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 153 154#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 155#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 156#endif 157 158#ifdef CONFIG_STACK_GROWSUP 159#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 160#else 161#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 162#endif 163 164/* 165 * Special vmas that are non-mergable, non-mlock()able. 166 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 167 */ 168#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 169 170/* 171 * mapping from the currently active vm_flags protection bits (the 172 * low four bits) to a page protection mask.. 173 */ 174extern pgprot_t protection_map[16]; 175 176#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 177#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 178#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 179#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 180#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 181#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 182#define FAULT_FLAG_TRIED 0x40 /* second try */ 183#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 184 185/* 186 * vm_fault is filled by the the pagefault handler and passed to the vma's 187 * ->fault function. The vma's ->fault is responsible for returning a bitmask 188 * of VM_FAULT_xxx flags that give details about how the fault was handled. 189 * 190 * pgoff should be used in favour of virtual_address, if possible. If pgoff 191 * is used, one may implement ->remap_pages to get nonlinear mapping support. 192 */ 193struct vm_fault { 194 unsigned int flags; /* FAULT_FLAG_xxx flags */ 195 pgoff_t pgoff; /* Logical page offset based on vma */ 196 void __user *virtual_address; /* Faulting virtual address */ 197 198 struct page *page; /* ->fault handlers should return a 199 * page here, unless VM_FAULT_NOPAGE 200 * is set (which is also implied by 201 * VM_FAULT_ERROR). 202 */ 203}; 204 205/* 206 * These are the virtual MM functions - opening of an area, closing and 207 * unmapping it (needed to keep files on disk up-to-date etc), pointer 208 * to the functions called when a no-page or a wp-page exception occurs. 209 */ 210struct vm_operations_struct { 211 void (*open)(struct vm_area_struct * area); 212 void (*close)(struct vm_area_struct * area); 213 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 214 215 /* notification that a previously read-only page is about to become 216 * writable, if an error is returned it will cause a SIGBUS */ 217 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 218 219 /* called by access_process_vm when get_user_pages() fails, typically 220 * for use by special VMAs that can switch between memory and hardware 221 */ 222 int (*access)(struct vm_area_struct *vma, unsigned long addr, 223 void *buf, int len, int write); 224#ifdef CONFIG_NUMA 225 /* 226 * set_policy() op must add a reference to any non-NULL @new mempolicy 227 * to hold the policy upon return. Caller should pass NULL @new to 228 * remove a policy and fall back to surrounding context--i.e. do not 229 * install a MPOL_DEFAULT policy, nor the task or system default 230 * mempolicy. 231 */ 232 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 233 234 /* 235 * get_policy() op must add reference [mpol_get()] to any policy at 236 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 237 * in mm/mempolicy.c will do this automatically. 238 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 239 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 240 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 241 * must return NULL--i.e., do not "fallback" to task or system default 242 * policy. 243 */ 244 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 245 unsigned long addr); 246 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 247 const nodemask_t *to, unsigned long flags); 248#endif 249 /* called by sys_remap_file_pages() to populate non-linear mapping */ 250 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 251 unsigned long size, pgoff_t pgoff); 252}; 253 254struct mmu_gather; 255struct inode; 256 257#define page_private(page) ((page)->private) 258#define set_page_private(page, v) ((page)->private = (v)) 259 260/* It's valid only if the page is free path or free_list */ 261static inline void set_freepage_migratetype(struct page *page, int migratetype) 262{ 263 page->index = migratetype; 264} 265 266/* It's valid only if the page is free path or free_list */ 267static inline int get_freepage_migratetype(struct page *page) 268{ 269 return page->index; 270} 271 272/* 273 * FIXME: take this include out, include page-flags.h in 274 * files which need it (119 of them) 275 */ 276#include <linux/page-flags.h> 277#include <linux/huge_mm.h> 278 279/* 280 * Methods to modify the page usage count. 281 * 282 * What counts for a page usage: 283 * - cache mapping (page->mapping) 284 * - private data (page->private) 285 * - page mapped in a task's page tables, each mapping 286 * is counted separately 287 * 288 * Also, many kernel routines increase the page count before a critical 289 * routine so they can be sure the page doesn't go away from under them. 290 */ 291 292/* 293 * Drop a ref, return true if the refcount fell to zero (the page has no users) 294 */ 295static inline int put_page_testzero(struct page *page) 296{ 297 VM_BUG_ON(atomic_read(&page->_count) == 0); 298 return atomic_dec_and_test(&page->_count); 299} 300 301/* 302 * Try to grab a ref unless the page has a refcount of zero, return false if 303 * that is the case. 304 * This can be called when MMU is off so it must not access 305 * any of the virtual mappings. 306 */ 307static inline int get_page_unless_zero(struct page *page) 308{ 309 return atomic_inc_not_zero(&page->_count); 310} 311 312/* 313 * Try to drop a ref unless the page has a refcount of one, return false if 314 * that is the case. 315 * This is to make sure that the refcount won't become zero after this drop. 316 * This can be called when MMU is off so it must not access 317 * any of the virtual mappings. 318 */ 319static inline int put_page_unless_one(struct page *page) 320{ 321 return atomic_add_unless(&page->_count, -1, 1); 322} 323 324extern int page_is_ram(unsigned long pfn); 325 326/* Support for virtually mapped pages */ 327struct page *vmalloc_to_page(const void *addr); 328unsigned long vmalloc_to_pfn(const void *addr); 329 330/* 331 * Determine if an address is within the vmalloc range 332 * 333 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 334 * is no special casing required. 335 */ 336static inline int is_vmalloc_addr(const void *x) 337{ 338#ifdef CONFIG_MMU 339 unsigned long addr = (unsigned long)x; 340 341 return addr >= VMALLOC_START && addr < VMALLOC_END; 342#else 343 return 0; 344#endif 345} 346#ifdef CONFIG_MMU 347extern int is_vmalloc_or_module_addr(const void *x); 348#else 349static inline int is_vmalloc_or_module_addr(const void *x) 350{ 351 return 0; 352} 353#endif 354 355static inline void compound_lock(struct page *page) 356{ 357#ifdef CONFIG_TRANSPARENT_HUGEPAGE 358 VM_BUG_ON(PageSlab(page)); 359 bit_spin_lock(PG_compound_lock, &page->flags); 360#endif 361} 362 363static inline void compound_unlock(struct page *page) 364{ 365#ifdef CONFIG_TRANSPARENT_HUGEPAGE 366 VM_BUG_ON(PageSlab(page)); 367 bit_spin_unlock(PG_compound_lock, &page->flags); 368#endif 369} 370 371static inline unsigned long compound_lock_irqsave(struct page *page) 372{ 373 unsigned long uninitialized_var(flags); 374#ifdef CONFIG_TRANSPARENT_HUGEPAGE 375 local_irq_save(flags); 376 compound_lock(page); 377#endif 378 return flags; 379} 380 381static inline void compound_unlock_irqrestore(struct page *page, 382 unsigned long flags) 383{ 384#ifdef CONFIG_TRANSPARENT_HUGEPAGE 385 compound_unlock(page); 386 local_irq_restore(flags); 387#endif 388} 389 390static inline struct page *compound_head(struct page *page) 391{ 392 if (unlikely(PageTail(page))) 393 return page->first_page; 394 return page; 395} 396 397/* 398 * The atomic page->_mapcount, starts from -1: so that transitions 399 * both from it and to it can be tracked, using atomic_inc_and_test 400 * and atomic_add_negative(-1). 401 */ 402static inline void page_mapcount_reset(struct page *page) 403{ 404 atomic_set(&(page)->_mapcount, -1); 405} 406 407static inline int page_mapcount(struct page *page) 408{ 409 return atomic_read(&(page)->_mapcount) + 1; 410} 411 412static inline int page_count(struct page *page) 413{ 414 return atomic_read(&compound_head(page)->_count); 415} 416 417static inline void get_huge_page_tail(struct page *page) 418{ 419 /* 420 * __split_huge_page_refcount() cannot run 421 * from under us. 422 */ 423 VM_BUG_ON(page_mapcount(page) < 0); 424 VM_BUG_ON(atomic_read(&page->_count) != 0); 425 atomic_inc(&page->_mapcount); 426} 427 428extern bool __get_page_tail(struct page *page); 429 430static inline void get_page(struct page *page) 431{ 432 if (unlikely(PageTail(page))) 433 if (likely(__get_page_tail(page))) 434 return; 435 /* 436 * Getting a normal page or the head of a compound page 437 * requires to already have an elevated page->_count. 438 */ 439 VM_BUG_ON(atomic_read(&page->_count) <= 0); 440 atomic_inc(&page->_count); 441} 442 443static inline struct page *virt_to_head_page(const void *x) 444{ 445 struct page *page = virt_to_page(x); 446 return compound_head(page); 447} 448 449/* 450 * Setup the page count before being freed into the page allocator for 451 * the first time (boot or memory hotplug) 452 */ 453static inline void init_page_count(struct page *page) 454{ 455 atomic_set(&page->_count, 1); 456} 457 458/* 459 * PageBuddy() indicate that the page is free and in the buddy system 460 * (see mm/page_alloc.c). 461 * 462 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 463 * -2 so that an underflow of the page_mapcount() won't be mistaken 464 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 465 * efficiently by most CPU architectures. 466 */ 467#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 468 469static inline int PageBuddy(struct page *page) 470{ 471 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 472} 473 474static inline void __SetPageBuddy(struct page *page) 475{ 476 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 477 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 478} 479 480static inline void __ClearPageBuddy(struct page *page) 481{ 482 VM_BUG_ON(!PageBuddy(page)); 483 atomic_set(&page->_mapcount, -1); 484} 485 486void put_page(struct page *page); 487void put_pages_list(struct list_head *pages); 488 489void split_page(struct page *page, unsigned int order); 490int split_free_page(struct page *page); 491 492/* 493 * Compound pages have a destructor function. Provide a 494 * prototype for that function and accessor functions. 495 * These are _only_ valid on the head of a PG_compound page. 496 */ 497typedef void compound_page_dtor(struct page *); 498 499static inline void set_compound_page_dtor(struct page *page, 500 compound_page_dtor *dtor) 501{ 502 page[1].lru.next = (void *)dtor; 503} 504 505static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 506{ 507 return (compound_page_dtor *)page[1].lru.next; 508} 509 510static inline int compound_order(struct page *page) 511{ 512 if (!PageHead(page)) 513 return 0; 514 return (unsigned long)page[1].lru.prev; 515} 516 517static inline void set_compound_order(struct page *page, unsigned long order) 518{ 519 page[1].lru.prev = (void *)order; 520} 521 522#ifdef CONFIG_MMU 523/* 524 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 525 * servicing faults for write access. In the normal case, do always want 526 * pte_mkwrite. But get_user_pages can cause write faults for mappings 527 * that do not have writing enabled, when used by access_process_vm. 528 */ 529static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 530{ 531 if (likely(vma->vm_flags & VM_WRITE)) 532 pte = pte_mkwrite(pte); 533 return pte; 534} 535#endif 536 537/* 538 * Multiple processes may "see" the same page. E.g. for untouched 539 * mappings of /dev/null, all processes see the same page full of 540 * zeroes, and text pages of executables and shared libraries have 541 * only one copy in memory, at most, normally. 542 * 543 * For the non-reserved pages, page_count(page) denotes a reference count. 544 * page_count() == 0 means the page is free. page->lru is then used for 545 * freelist management in the buddy allocator. 546 * page_count() > 0 means the page has been allocated. 547 * 548 * Pages are allocated by the slab allocator in order to provide memory 549 * to kmalloc and kmem_cache_alloc. In this case, the management of the 550 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 551 * unless a particular usage is carefully commented. (the responsibility of 552 * freeing the kmalloc memory is the caller's, of course). 553 * 554 * A page may be used by anyone else who does a __get_free_page(). 555 * In this case, page_count still tracks the references, and should only 556 * be used through the normal accessor functions. The top bits of page->flags 557 * and page->virtual store page management information, but all other fields 558 * are unused and could be used privately, carefully. The management of this 559 * page is the responsibility of the one who allocated it, and those who have 560 * subsequently been given references to it. 561 * 562 * The other pages (we may call them "pagecache pages") are completely 563 * managed by the Linux memory manager: I/O, buffers, swapping etc. 564 * The following discussion applies only to them. 565 * 566 * A pagecache page contains an opaque `private' member, which belongs to the 567 * page's address_space. Usually, this is the address of a circular list of 568 * the page's disk buffers. PG_private must be set to tell the VM to call 569 * into the filesystem to release these pages. 570 * 571 * A page may belong to an inode's memory mapping. In this case, page->mapping 572 * is the pointer to the inode, and page->index is the file offset of the page, 573 * in units of PAGE_CACHE_SIZE. 574 * 575 * If pagecache pages are not associated with an inode, they are said to be 576 * anonymous pages. These may become associated with the swapcache, and in that 577 * case PG_swapcache is set, and page->private is an offset into the swapcache. 578 * 579 * In either case (swapcache or inode backed), the pagecache itself holds one 580 * reference to the page. Setting PG_private should also increment the 581 * refcount. The each user mapping also has a reference to the page. 582 * 583 * The pagecache pages are stored in a per-mapping radix tree, which is 584 * rooted at mapping->page_tree, and indexed by offset. 585 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 586 * lists, we instead now tag pages as dirty/writeback in the radix tree. 587 * 588 * All pagecache pages may be subject to I/O: 589 * - inode pages may need to be read from disk, 590 * - inode pages which have been modified and are MAP_SHARED may need 591 * to be written back to the inode on disk, 592 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 593 * modified may need to be swapped out to swap space and (later) to be read 594 * back into memory. 595 */ 596 597/* 598 * The zone field is never updated after free_area_init_core() 599 * sets it, so none of the operations on it need to be atomic. 600 */ 601 602/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 603#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 604#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 605#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 606#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 607 608/* 609 * Define the bit shifts to access each section. For non-existent 610 * sections we define the shift as 0; that plus a 0 mask ensures 611 * the compiler will optimise away reference to them. 612 */ 613#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 614#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 615#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 616#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 617 618/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 619#ifdef NODE_NOT_IN_PAGE_FLAGS 620#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 621#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 622 SECTIONS_PGOFF : ZONES_PGOFF) 623#else 624#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 625#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 626 NODES_PGOFF : ZONES_PGOFF) 627#endif 628 629#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 630 631#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 632#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 633#endif 634 635#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 636#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 637#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 638#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1) 639#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 640 641static inline enum zone_type page_zonenum(const struct page *page) 642{ 643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 644} 645 646#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 647#define SECTION_IN_PAGE_FLAGS 648#endif 649 650/* 651 * The identification function is mainly used by the buddy allocator for 652 * determining if two pages could be buddies. We are not really identifying 653 * the zone since we could be using the section number id if we do not have 654 * node id available in page flags. 655 * We only guarantee that it will return the same value for two combinable 656 * pages in a zone. 657 */ 658static inline int page_zone_id(struct page *page) 659{ 660 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 661} 662 663static inline int zone_to_nid(struct zone *zone) 664{ 665#ifdef CONFIG_NUMA 666 return zone->node; 667#else 668 return 0; 669#endif 670} 671 672#ifdef NODE_NOT_IN_PAGE_FLAGS 673extern int page_to_nid(const struct page *page); 674#else 675static inline int page_to_nid(const struct page *page) 676{ 677 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 678} 679#endif 680 681#ifdef CONFIG_NUMA_BALANCING 682static inline int cpu_pid_to_cpupid(int cpu, int pid) 683{ 684 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 685} 686 687static inline int cpupid_to_pid(int cpupid) 688{ 689 return cpupid & LAST__PID_MASK; 690} 691 692static inline int cpupid_to_cpu(int cpupid) 693{ 694 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 695} 696 697static inline int cpupid_to_nid(int cpupid) 698{ 699 return cpu_to_node(cpupid_to_cpu(cpupid)); 700} 701 702static inline bool cpupid_pid_unset(int cpupid) 703{ 704 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 705} 706 707static inline bool cpupid_cpu_unset(int cpupid) 708{ 709 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 710} 711 712static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 713{ 714 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 715} 716 717#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 718#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 719static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 720{ 721 return xchg(&page->_last_cpupid, cpupid); 722} 723 724static inline int page_cpupid_last(struct page *page) 725{ 726 return page->_last_cpupid; 727} 728static inline void page_cpupid_reset_last(struct page *page) 729{ 730 page->_last_cpupid = -1; 731} 732#else 733static inline int page_cpupid_last(struct page *page) 734{ 735 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 736} 737 738extern int page_cpupid_xchg_last(struct page *page, int cpupid); 739 740static inline void page_cpupid_reset_last(struct page *page) 741{ 742 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 743 744 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 745 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 746} 747#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 748#else /* !CONFIG_NUMA_BALANCING */ 749static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 750{ 751 return page_to_nid(page); /* XXX */ 752} 753 754static inline int page_cpupid_last(struct page *page) 755{ 756 return page_to_nid(page); /* XXX */ 757} 758 759static inline int cpupid_to_nid(int cpupid) 760{ 761 return -1; 762} 763 764static inline int cpupid_to_pid(int cpupid) 765{ 766 return -1; 767} 768 769static inline int cpupid_to_cpu(int cpupid) 770{ 771 return -1; 772} 773 774static inline int cpu_pid_to_cpupid(int nid, int pid) 775{ 776 return -1; 777} 778 779static inline bool cpupid_pid_unset(int cpupid) 780{ 781 return 1; 782} 783 784static inline void page_cpupid_reset_last(struct page *page) 785{ 786} 787 788static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 789{ 790 return false; 791} 792#endif /* CONFIG_NUMA_BALANCING */ 793 794static inline struct zone *page_zone(const struct page *page) 795{ 796 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 797} 798 799#ifdef SECTION_IN_PAGE_FLAGS 800static inline void set_page_section(struct page *page, unsigned long section) 801{ 802 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 803 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 804} 805 806static inline unsigned long page_to_section(const struct page *page) 807{ 808 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 809} 810#endif 811 812static inline void set_page_zone(struct page *page, enum zone_type zone) 813{ 814 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 815 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 816} 817 818static inline void set_page_node(struct page *page, unsigned long node) 819{ 820 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 821 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 822} 823 824static inline void set_page_links(struct page *page, enum zone_type zone, 825 unsigned long node, unsigned long pfn) 826{ 827 set_page_zone(page, zone); 828 set_page_node(page, node); 829#ifdef SECTION_IN_PAGE_FLAGS 830 set_page_section(page, pfn_to_section_nr(pfn)); 831#endif 832} 833 834/* 835 * Some inline functions in vmstat.h depend on page_zone() 836 */ 837#include <linux/vmstat.h> 838 839static __always_inline void *lowmem_page_address(const struct page *page) 840{ 841 return __va(PFN_PHYS(page_to_pfn(page))); 842} 843 844#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 845#define HASHED_PAGE_VIRTUAL 846#endif 847 848#if defined(WANT_PAGE_VIRTUAL) 849#define page_address(page) ((page)->virtual) 850#define set_page_address(page, address) \ 851 do { \ 852 (page)->virtual = (address); \ 853 } while(0) 854#define page_address_init() do { } while(0) 855#endif 856 857#if defined(HASHED_PAGE_VIRTUAL) 858void *page_address(const struct page *page); 859void set_page_address(struct page *page, void *virtual); 860void page_address_init(void); 861#endif 862 863#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 864#define page_address(page) lowmem_page_address(page) 865#define set_page_address(page, address) do { } while(0) 866#define page_address_init() do { } while(0) 867#endif 868 869/* 870 * On an anonymous page mapped into a user virtual memory area, 871 * page->mapping points to its anon_vma, not to a struct address_space; 872 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 873 * 874 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 875 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 876 * and then page->mapping points, not to an anon_vma, but to a private 877 * structure which KSM associates with that merged page. See ksm.h. 878 * 879 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 880 * 881 * Please note that, confusingly, "page_mapping" refers to the inode 882 * address_space which maps the page from disk; whereas "page_mapped" 883 * refers to user virtual address space into which the page is mapped. 884 */ 885#define PAGE_MAPPING_ANON 1 886#define PAGE_MAPPING_KSM 2 887#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 888 889extern struct address_space *page_mapping(struct page *page); 890 891/* Neutral page->mapping pointer to address_space or anon_vma or other */ 892static inline void *page_rmapping(struct page *page) 893{ 894 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 895} 896 897extern struct address_space *__page_file_mapping(struct page *); 898 899static inline 900struct address_space *page_file_mapping(struct page *page) 901{ 902 if (unlikely(PageSwapCache(page))) 903 return __page_file_mapping(page); 904 905 return page->mapping; 906} 907 908static inline int PageAnon(struct page *page) 909{ 910 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 911} 912 913/* 914 * Return the pagecache index of the passed page. Regular pagecache pages 915 * use ->index whereas swapcache pages use ->private 916 */ 917static inline pgoff_t page_index(struct page *page) 918{ 919 if (unlikely(PageSwapCache(page))) 920 return page_private(page); 921 return page->index; 922} 923 924extern pgoff_t __page_file_index(struct page *page); 925 926/* 927 * Return the file index of the page. Regular pagecache pages use ->index 928 * whereas swapcache pages use swp_offset(->private) 929 */ 930static inline pgoff_t page_file_index(struct page *page) 931{ 932 if (unlikely(PageSwapCache(page))) 933 return __page_file_index(page); 934 935 return page->index; 936} 937 938/* 939 * Return true if this page is mapped into pagetables. 940 */ 941static inline int page_mapped(struct page *page) 942{ 943 return atomic_read(&(page)->_mapcount) >= 0; 944} 945 946/* 947 * Different kinds of faults, as returned by handle_mm_fault(). 948 * Used to decide whether a process gets delivered SIGBUS or 949 * just gets major/minor fault counters bumped up. 950 */ 951 952#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 953 954#define VM_FAULT_OOM 0x0001 955#define VM_FAULT_SIGBUS 0x0002 956#define VM_FAULT_MAJOR 0x0004 957#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 958#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 959#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 960 961#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 962#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 963#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 964#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 965 966#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 967 968#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 969 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 970 971/* Encode hstate index for a hwpoisoned large page */ 972#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 973#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 974 975/* 976 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 977 */ 978extern void pagefault_out_of_memory(void); 979 980#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 981 982/* 983 * Flags passed to show_mem() and show_free_areas() to suppress output in 984 * various contexts. 985 */ 986#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 987#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */ 988 989extern void show_free_areas(unsigned int flags); 990extern bool skip_free_areas_node(unsigned int flags, int nid); 991 992int shmem_zero_setup(struct vm_area_struct *); 993 994extern int can_do_mlock(void); 995extern int user_shm_lock(size_t, struct user_struct *); 996extern void user_shm_unlock(size_t, struct user_struct *); 997 998/* 999 * Parameter block passed down to zap_pte_range in exceptional cases. 1000 */ 1001struct zap_details { 1002 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1003 struct address_space *check_mapping; /* Check page->mapping if set */ 1004 pgoff_t first_index; /* Lowest page->index to unmap */ 1005 pgoff_t last_index; /* Highest page->index to unmap */ 1006}; 1007 1008struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1009 pte_t pte); 1010 1011int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1012 unsigned long size); 1013void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1014 unsigned long size, struct zap_details *); 1015void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1016 unsigned long start, unsigned long end); 1017 1018/** 1019 * mm_walk - callbacks for walk_page_range 1020 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1021 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1022 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1023 * this handler is required to be able to handle 1024 * pmd_trans_huge() pmds. They may simply choose to 1025 * split_huge_page() instead of handling it explicitly. 1026 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1027 * @pte_hole: if set, called for each hole at all levels 1028 * @hugetlb_entry: if set, called for each hugetlb entry 1029 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1030 * is used. 1031 * 1032 * (see walk_page_range for more details) 1033 */ 1034struct mm_walk { 1035 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1036 unsigned long next, struct mm_walk *walk); 1037 int (*pud_entry)(pud_t *pud, unsigned long addr, 1038 unsigned long next, struct mm_walk *walk); 1039 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1040 unsigned long next, struct mm_walk *walk); 1041 int (*pte_entry)(pte_t *pte, unsigned long addr, 1042 unsigned long next, struct mm_walk *walk); 1043 int (*pte_hole)(unsigned long addr, unsigned long next, 1044 struct mm_walk *walk); 1045 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1046 unsigned long addr, unsigned long next, 1047 struct mm_walk *walk); 1048 struct mm_struct *mm; 1049 void *private; 1050}; 1051 1052int walk_page_range(unsigned long addr, unsigned long end, 1053 struct mm_walk *walk); 1054void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1055 unsigned long end, unsigned long floor, unsigned long ceiling); 1056int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1057 struct vm_area_struct *vma); 1058void unmap_mapping_range(struct address_space *mapping, 1059 loff_t const holebegin, loff_t const holelen, int even_cows); 1060int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1061 unsigned long *pfn); 1062int follow_phys(struct vm_area_struct *vma, unsigned long address, 1063 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1064int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1065 void *buf, int len, int write); 1066 1067static inline void unmap_shared_mapping_range(struct address_space *mapping, 1068 loff_t const holebegin, loff_t const holelen) 1069{ 1070 unmap_mapping_range(mapping, holebegin, holelen, 0); 1071} 1072 1073extern void truncate_pagecache(struct inode *inode, loff_t new); 1074extern void truncate_setsize(struct inode *inode, loff_t newsize); 1075void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1076int truncate_inode_page(struct address_space *mapping, struct page *page); 1077int generic_error_remove_page(struct address_space *mapping, struct page *page); 1078int invalidate_inode_page(struct page *page); 1079 1080#ifdef CONFIG_MMU 1081extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1082 unsigned long address, unsigned int flags); 1083extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1084 unsigned long address, unsigned int fault_flags); 1085#else 1086static inline int handle_mm_fault(struct mm_struct *mm, 1087 struct vm_area_struct *vma, unsigned long address, 1088 unsigned int flags) 1089{ 1090 /* should never happen if there's no MMU */ 1091 BUG(); 1092 return VM_FAULT_SIGBUS; 1093} 1094static inline int fixup_user_fault(struct task_struct *tsk, 1095 struct mm_struct *mm, unsigned long address, 1096 unsigned int fault_flags) 1097{ 1098 /* should never happen if there's no MMU */ 1099 BUG(); 1100 return -EFAULT; 1101} 1102#endif 1103 1104extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1105extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1106 void *buf, int len, int write); 1107 1108long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1109 unsigned long start, unsigned long nr_pages, 1110 unsigned int foll_flags, struct page **pages, 1111 struct vm_area_struct **vmas, int *nonblocking); 1112long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1113 unsigned long start, unsigned long nr_pages, 1114 int write, int force, struct page **pages, 1115 struct vm_area_struct **vmas); 1116int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1117 struct page **pages); 1118struct kvec; 1119int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1120 struct page **pages); 1121int get_kernel_page(unsigned long start, int write, struct page **pages); 1122struct page *get_dump_page(unsigned long addr); 1123 1124extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1125extern void do_invalidatepage(struct page *page, unsigned int offset, 1126 unsigned int length); 1127 1128int __set_page_dirty_nobuffers(struct page *page); 1129int __set_page_dirty_no_writeback(struct page *page); 1130int redirty_page_for_writepage(struct writeback_control *wbc, 1131 struct page *page); 1132void account_page_dirtied(struct page *page, struct address_space *mapping); 1133void account_page_writeback(struct page *page); 1134int set_page_dirty(struct page *page); 1135int set_page_dirty_lock(struct page *page); 1136int clear_page_dirty_for_io(struct page *page); 1137 1138/* Is the vma a continuation of the stack vma above it? */ 1139static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1140{ 1141 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1142} 1143 1144static inline int stack_guard_page_start(struct vm_area_struct *vma, 1145 unsigned long addr) 1146{ 1147 return (vma->vm_flags & VM_GROWSDOWN) && 1148 (vma->vm_start == addr) && 1149 !vma_growsdown(vma->vm_prev, addr); 1150} 1151 1152/* Is the vma a continuation of the stack vma below it? */ 1153static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1154{ 1155 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1156} 1157 1158static inline int stack_guard_page_end(struct vm_area_struct *vma, 1159 unsigned long addr) 1160{ 1161 return (vma->vm_flags & VM_GROWSUP) && 1162 (vma->vm_end == addr) && 1163 !vma_growsup(vma->vm_next, addr); 1164} 1165 1166extern pid_t 1167vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1168 1169extern unsigned long move_page_tables(struct vm_area_struct *vma, 1170 unsigned long old_addr, struct vm_area_struct *new_vma, 1171 unsigned long new_addr, unsigned long len, 1172 bool need_rmap_locks); 1173extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1174 unsigned long end, pgprot_t newprot, 1175 int dirty_accountable, int prot_numa); 1176extern int mprotect_fixup(struct vm_area_struct *vma, 1177 struct vm_area_struct **pprev, unsigned long start, 1178 unsigned long end, unsigned long newflags); 1179 1180/* 1181 * doesn't attempt to fault and will return short. 1182 */ 1183int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1184 struct page **pages); 1185/* 1186 * per-process(per-mm_struct) statistics. 1187 */ 1188static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1189{ 1190 long val = atomic_long_read(&mm->rss_stat.count[member]); 1191 1192#ifdef SPLIT_RSS_COUNTING 1193 /* 1194 * counter is updated in asynchronous manner and may go to minus. 1195 * But it's never be expected number for users. 1196 */ 1197 if (val < 0) 1198 val = 0; 1199#endif 1200 return (unsigned long)val; 1201} 1202 1203static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1204{ 1205 atomic_long_add(value, &mm->rss_stat.count[member]); 1206} 1207 1208static inline void inc_mm_counter(struct mm_struct *mm, int member) 1209{ 1210 atomic_long_inc(&mm->rss_stat.count[member]); 1211} 1212 1213static inline void dec_mm_counter(struct mm_struct *mm, int member) 1214{ 1215 atomic_long_dec(&mm->rss_stat.count[member]); 1216} 1217 1218static inline unsigned long get_mm_rss(struct mm_struct *mm) 1219{ 1220 return get_mm_counter(mm, MM_FILEPAGES) + 1221 get_mm_counter(mm, MM_ANONPAGES); 1222} 1223 1224static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1225{ 1226 return max(mm->hiwater_rss, get_mm_rss(mm)); 1227} 1228 1229static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1230{ 1231 return max(mm->hiwater_vm, mm->total_vm); 1232} 1233 1234static inline void update_hiwater_rss(struct mm_struct *mm) 1235{ 1236 unsigned long _rss = get_mm_rss(mm); 1237 1238 if ((mm)->hiwater_rss < _rss) 1239 (mm)->hiwater_rss = _rss; 1240} 1241 1242static inline void update_hiwater_vm(struct mm_struct *mm) 1243{ 1244 if (mm->hiwater_vm < mm->total_vm) 1245 mm->hiwater_vm = mm->total_vm; 1246} 1247 1248static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1249 struct mm_struct *mm) 1250{ 1251 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1252 1253 if (*maxrss < hiwater_rss) 1254 *maxrss = hiwater_rss; 1255} 1256 1257#if defined(SPLIT_RSS_COUNTING) 1258void sync_mm_rss(struct mm_struct *mm); 1259#else 1260static inline void sync_mm_rss(struct mm_struct *mm) 1261{ 1262} 1263#endif 1264 1265int vma_wants_writenotify(struct vm_area_struct *vma); 1266 1267extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1268 spinlock_t **ptl); 1269static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1270 spinlock_t **ptl) 1271{ 1272 pte_t *ptep; 1273 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1274 return ptep; 1275} 1276 1277#ifdef __PAGETABLE_PUD_FOLDED 1278static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1279 unsigned long address) 1280{ 1281 return 0; 1282} 1283#else 1284int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1285#endif 1286 1287#ifdef __PAGETABLE_PMD_FOLDED 1288static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1289 unsigned long address) 1290{ 1291 return 0; 1292} 1293#else 1294int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1295#endif 1296 1297int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1298 pmd_t *pmd, unsigned long address); 1299int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1300 1301/* 1302 * The following ifdef needed to get the 4level-fixup.h header to work. 1303 * Remove it when 4level-fixup.h has been removed. 1304 */ 1305#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1306static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1307{ 1308 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1309 NULL: pud_offset(pgd, address); 1310} 1311 1312static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1313{ 1314 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1315 NULL: pmd_offset(pud, address); 1316} 1317#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1318 1319#if USE_SPLIT_PTE_PTLOCKS 1320#if ALLOC_SPLIT_PTLOCKS 1321extern bool ptlock_alloc(struct page *page); 1322extern void ptlock_free(struct page *page); 1323 1324static inline spinlock_t *ptlock_ptr(struct page *page) 1325{ 1326 return page->ptl; 1327} 1328#else /* ALLOC_SPLIT_PTLOCKS */ 1329static inline bool ptlock_alloc(struct page *page) 1330{ 1331 return true; 1332} 1333 1334static inline void ptlock_free(struct page *page) 1335{ 1336} 1337 1338static inline spinlock_t *ptlock_ptr(struct page *page) 1339{ 1340 return &page->ptl; 1341} 1342#endif /* ALLOC_SPLIT_PTLOCKS */ 1343 1344static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1345{ 1346 return ptlock_ptr(pmd_page(*pmd)); 1347} 1348 1349static inline bool ptlock_init(struct page *page) 1350{ 1351 /* 1352 * prep_new_page() initialize page->private (and therefore page->ptl) 1353 * with 0. Make sure nobody took it in use in between. 1354 * 1355 * It can happen if arch try to use slab for page table allocation: 1356 * slab code uses page->slab_cache and page->first_page (for tail 1357 * pages), which share storage with page->ptl. 1358 */ 1359 VM_BUG_ON(*(unsigned long *)&page->ptl); 1360 if (!ptlock_alloc(page)) 1361 return false; 1362 spin_lock_init(ptlock_ptr(page)); 1363 return true; 1364} 1365 1366/* Reset page->mapping so free_pages_check won't complain. */ 1367static inline void pte_lock_deinit(struct page *page) 1368{ 1369 page->mapping = NULL; 1370 ptlock_free(page); 1371} 1372 1373#else /* !USE_SPLIT_PTE_PTLOCKS */ 1374/* 1375 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1376 */ 1377static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1378{ 1379 return &mm->page_table_lock; 1380} 1381static inline bool ptlock_init(struct page *page) { return true; } 1382static inline void pte_lock_deinit(struct page *page) {} 1383#endif /* USE_SPLIT_PTE_PTLOCKS */ 1384 1385static inline bool pgtable_page_ctor(struct page *page) 1386{ 1387 inc_zone_page_state(page, NR_PAGETABLE); 1388 return ptlock_init(page); 1389} 1390 1391static inline void pgtable_page_dtor(struct page *page) 1392{ 1393 pte_lock_deinit(page); 1394 dec_zone_page_state(page, NR_PAGETABLE); 1395} 1396 1397#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1398({ \ 1399 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1400 pte_t *__pte = pte_offset_map(pmd, address); \ 1401 *(ptlp) = __ptl; \ 1402 spin_lock(__ptl); \ 1403 __pte; \ 1404}) 1405 1406#define pte_unmap_unlock(pte, ptl) do { \ 1407 spin_unlock(ptl); \ 1408 pte_unmap(pte); \ 1409} while (0) 1410 1411#define pte_alloc_map(mm, vma, pmd, address) \ 1412 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1413 pmd, address))? \ 1414 NULL: pte_offset_map(pmd, address)) 1415 1416#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1417 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1418 pmd, address))? \ 1419 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1420 1421#define pte_alloc_kernel(pmd, address) \ 1422 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1423 NULL: pte_offset_kernel(pmd, address)) 1424 1425#if USE_SPLIT_PMD_PTLOCKS 1426 1427static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1428{ 1429 return ptlock_ptr(virt_to_page(pmd)); 1430} 1431 1432static inline bool pgtable_pmd_page_ctor(struct page *page) 1433{ 1434#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1435 page->pmd_huge_pte = NULL; 1436#endif 1437 return ptlock_init(page); 1438} 1439 1440static inline void pgtable_pmd_page_dtor(struct page *page) 1441{ 1442#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1443 VM_BUG_ON(page->pmd_huge_pte); 1444#endif 1445 ptlock_free(page); 1446} 1447 1448#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte) 1449 1450#else 1451 1452static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1453{ 1454 return &mm->page_table_lock; 1455} 1456 1457static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1458static inline void pgtable_pmd_page_dtor(struct page *page) {} 1459 1460#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1461 1462#endif 1463 1464static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1465{ 1466 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1467 spin_lock(ptl); 1468 return ptl; 1469} 1470 1471extern void free_area_init(unsigned long * zones_size); 1472extern void free_area_init_node(int nid, unsigned long * zones_size, 1473 unsigned long zone_start_pfn, unsigned long *zholes_size); 1474extern void free_initmem(void); 1475 1476/* 1477 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1478 * into the buddy system. The freed pages will be poisoned with pattern 1479 * "poison" if it's within range [0, UCHAR_MAX]. 1480 * Return pages freed into the buddy system. 1481 */ 1482extern unsigned long free_reserved_area(void *start, void *end, 1483 int poison, char *s); 1484 1485#ifdef CONFIG_HIGHMEM 1486/* 1487 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1488 * and totalram_pages. 1489 */ 1490extern void free_highmem_page(struct page *page); 1491#endif 1492 1493extern void adjust_managed_page_count(struct page *page, long count); 1494extern void mem_init_print_info(const char *str); 1495 1496/* Free the reserved page into the buddy system, so it gets managed. */ 1497static inline void __free_reserved_page(struct page *page) 1498{ 1499 ClearPageReserved(page); 1500 init_page_count(page); 1501 __free_page(page); 1502} 1503 1504static inline void free_reserved_page(struct page *page) 1505{ 1506 __free_reserved_page(page); 1507 adjust_managed_page_count(page, 1); 1508} 1509 1510static inline void mark_page_reserved(struct page *page) 1511{ 1512 SetPageReserved(page); 1513 adjust_managed_page_count(page, -1); 1514} 1515 1516/* 1517 * Default method to free all the __init memory into the buddy system. 1518 * The freed pages will be poisoned with pattern "poison" if it's within 1519 * range [0, UCHAR_MAX]. 1520 * Return pages freed into the buddy system. 1521 */ 1522static inline unsigned long free_initmem_default(int poison) 1523{ 1524 extern char __init_begin[], __init_end[]; 1525 1526 return free_reserved_area(&__init_begin, &__init_end, 1527 poison, "unused kernel"); 1528} 1529 1530static inline unsigned long get_num_physpages(void) 1531{ 1532 int nid; 1533 unsigned long phys_pages = 0; 1534 1535 for_each_online_node(nid) 1536 phys_pages += node_present_pages(nid); 1537 1538 return phys_pages; 1539} 1540 1541#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1542/* 1543 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1544 * zones, allocate the backing mem_map and account for memory holes in a more 1545 * architecture independent manner. This is a substitute for creating the 1546 * zone_sizes[] and zholes_size[] arrays and passing them to 1547 * free_area_init_node() 1548 * 1549 * An architecture is expected to register range of page frames backed by 1550 * physical memory with memblock_add[_node]() before calling 1551 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1552 * usage, an architecture is expected to do something like 1553 * 1554 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1555 * max_highmem_pfn}; 1556 * for_each_valid_physical_page_range() 1557 * memblock_add_node(base, size, nid) 1558 * free_area_init_nodes(max_zone_pfns); 1559 * 1560 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1561 * registered physical page range. Similarly 1562 * sparse_memory_present_with_active_regions() calls memory_present() for 1563 * each range when SPARSEMEM is enabled. 1564 * 1565 * See mm/page_alloc.c for more information on each function exposed by 1566 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1567 */ 1568extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1569unsigned long node_map_pfn_alignment(void); 1570unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1571 unsigned long end_pfn); 1572extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1573 unsigned long end_pfn); 1574extern void get_pfn_range_for_nid(unsigned int nid, 1575 unsigned long *start_pfn, unsigned long *end_pfn); 1576extern unsigned long find_min_pfn_with_active_regions(void); 1577extern void free_bootmem_with_active_regions(int nid, 1578 unsigned long max_low_pfn); 1579extern void sparse_memory_present_with_active_regions(int nid); 1580 1581#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1582 1583#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1584 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1585static inline int __early_pfn_to_nid(unsigned long pfn) 1586{ 1587 return 0; 1588} 1589#else 1590/* please see mm/page_alloc.c */ 1591extern int __meminit early_pfn_to_nid(unsigned long pfn); 1592#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1593/* there is a per-arch backend function. */ 1594extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1595#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1596#endif 1597 1598extern void set_dma_reserve(unsigned long new_dma_reserve); 1599extern void memmap_init_zone(unsigned long, int, unsigned long, 1600 unsigned long, enum memmap_context); 1601extern void setup_per_zone_wmarks(void); 1602extern int __meminit init_per_zone_wmark_min(void); 1603extern void mem_init(void); 1604extern void __init mmap_init(void); 1605extern void show_mem(unsigned int flags); 1606extern void si_meminfo(struct sysinfo * val); 1607extern void si_meminfo_node(struct sysinfo *val, int nid); 1608 1609extern __printf(3, 4) 1610void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1611 1612extern void setup_per_cpu_pageset(void); 1613 1614extern void zone_pcp_update(struct zone *zone); 1615extern void zone_pcp_reset(struct zone *zone); 1616 1617/* page_alloc.c */ 1618extern int min_free_kbytes; 1619 1620/* nommu.c */ 1621extern atomic_long_t mmap_pages_allocated; 1622extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1623 1624/* interval_tree.c */ 1625void vma_interval_tree_insert(struct vm_area_struct *node, 1626 struct rb_root *root); 1627void vma_interval_tree_insert_after(struct vm_area_struct *node, 1628 struct vm_area_struct *prev, 1629 struct rb_root *root); 1630void vma_interval_tree_remove(struct vm_area_struct *node, 1631 struct rb_root *root); 1632struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1633 unsigned long start, unsigned long last); 1634struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1635 unsigned long start, unsigned long last); 1636 1637#define vma_interval_tree_foreach(vma, root, start, last) \ 1638 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1639 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1640 1641static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1642 struct list_head *list) 1643{ 1644 list_add_tail(&vma->shared.nonlinear, list); 1645} 1646 1647void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1648 struct rb_root *root); 1649void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1650 struct rb_root *root); 1651struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1652 struct rb_root *root, unsigned long start, unsigned long last); 1653struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1654 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1655#ifdef CONFIG_DEBUG_VM_RB 1656void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1657#endif 1658 1659#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1660 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1661 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1662 1663/* mmap.c */ 1664extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1665extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1666 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1667extern struct vm_area_struct *vma_merge(struct mm_struct *, 1668 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1669 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1670 struct mempolicy *); 1671extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1672extern int split_vma(struct mm_struct *, 1673 struct vm_area_struct *, unsigned long addr, int new_below); 1674extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1675extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1676 struct rb_node **, struct rb_node *); 1677extern void unlink_file_vma(struct vm_area_struct *); 1678extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1679 unsigned long addr, unsigned long len, pgoff_t pgoff, 1680 bool *need_rmap_locks); 1681extern void exit_mmap(struct mm_struct *); 1682 1683extern int mm_take_all_locks(struct mm_struct *mm); 1684extern void mm_drop_all_locks(struct mm_struct *mm); 1685 1686extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1687extern struct file *get_mm_exe_file(struct mm_struct *mm); 1688 1689extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1690extern int install_special_mapping(struct mm_struct *mm, 1691 unsigned long addr, unsigned long len, 1692 unsigned long flags, struct page **pages); 1693 1694extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1695 1696extern unsigned long mmap_region(struct file *file, unsigned long addr, 1697 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1698extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1699 unsigned long len, unsigned long prot, unsigned long flags, 1700 unsigned long pgoff, unsigned long *populate); 1701extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1702 1703#ifdef CONFIG_MMU 1704extern int __mm_populate(unsigned long addr, unsigned long len, 1705 int ignore_errors); 1706static inline void mm_populate(unsigned long addr, unsigned long len) 1707{ 1708 /* Ignore errors */ 1709 (void) __mm_populate(addr, len, 1); 1710} 1711#else 1712static inline void mm_populate(unsigned long addr, unsigned long len) {} 1713#endif 1714 1715/* These take the mm semaphore themselves */ 1716extern unsigned long vm_brk(unsigned long, unsigned long); 1717extern int vm_munmap(unsigned long, size_t); 1718extern unsigned long vm_mmap(struct file *, unsigned long, 1719 unsigned long, unsigned long, 1720 unsigned long, unsigned long); 1721 1722struct vm_unmapped_area_info { 1723#define VM_UNMAPPED_AREA_TOPDOWN 1 1724 unsigned long flags; 1725 unsigned long length; 1726 unsigned long low_limit; 1727 unsigned long high_limit; 1728 unsigned long align_mask; 1729 unsigned long align_offset; 1730}; 1731 1732extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1733extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1734 1735/* 1736 * Search for an unmapped address range. 1737 * 1738 * We are looking for a range that: 1739 * - does not intersect with any VMA; 1740 * - is contained within the [low_limit, high_limit) interval; 1741 * - is at least the desired size. 1742 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1743 */ 1744static inline unsigned long 1745vm_unmapped_area(struct vm_unmapped_area_info *info) 1746{ 1747 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1748 return unmapped_area(info); 1749 else 1750 return unmapped_area_topdown(info); 1751} 1752 1753/* truncate.c */ 1754extern void truncate_inode_pages(struct address_space *, loff_t); 1755extern void truncate_inode_pages_range(struct address_space *, 1756 loff_t lstart, loff_t lend); 1757 1758/* generic vm_area_ops exported for stackable file systems */ 1759extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1760extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1761 1762/* mm/page-writeback.c */ 1763int write_one_page(struct page *page, int wait); 1764void task_dirty_inc(struct task_struct *tsk); 1765 1766/* readahead.c */ 1767#define VM_MAX_READAHEAD 128 /* kbytes */ 1768#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1769 1770int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1771 pgoff_t offset, unsigned long nr_to_read); 1772 1773void page_cache_sync_readahead(struct address_space *mapping, 1774 struct file_ra_state *ra, 1775 struct file *filp, 1776 pgoff_t offset, 1777 unsigned long size); 1778 1779void page_cache_async_readahead(struct address_space *mapping, 1780 struct file_ra_state *ra, 1781 struct file *filp, 1782 struct page *pg, 1783 pgoff_t offset, 1784 unsigned long size); 1785 1786unsigned long max_sane_readahead(unsigned long nr); 1787unsigned long ra_submit(struct file_ra_state *ra, 1788 struct address_space *mapping, 1789 struct file *filp); 1790 1791/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1792extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1793 1794/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1795extern int expand_downwards(struct vm_area_struct *vma, 1796 unsigned long address); 1797#if VM_GROWSUP 1798extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1799#else 1800 #define expand_upwards(vma, address) do { } while (0) 1801#endif 1802 1803/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1804extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1805extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1806 struct vm_area_struct **pprev); 1807 1808/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1809 NULL if none. Assume start_addr < end_addr. */ 1810static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1811{ 1812 struct vm_area_struct * vma = find_vma(mm,start_addr); 1813 1814 if (vma && end_addr <= vma->vm_start) 1815 vma = NULL; 1816 return vma; 1817} 1818 1819static inline unsigned long vma_pages(struct vm_area_struct *vma) 1820{ 1821 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1822} 1823 1824/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1825static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1826 unsigned long vm_start, unsigned long vm_end) 1827{ 1828 struct vm_area_struct *vma = find_vma(mm, vm_start); 1829 1830 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1831 vma = NULL; 1832 1833 return vma; 1834} 1835 1836#ifdef CONFIG_MMU 1837pgprot_t vm_get_page_prot(unsigned long vm_flags); 1838#else 1839static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1840{ 1841 return __pgprot(0); 1842} 1843#endif 1844 1845#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1846unsigned long change_prot_numa(struct vm_area_struct *vma, 1847 unsigned long start, unsigned long end); 1848#endif 1849 1850struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1851int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1852 unsigned long pfn, unsigned long size, pgprot_t); 1853int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1854int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1855 unsigned long pfn); 1856int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1857 unsigned long pfn); 1858int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1859 1860 1861struct page *follow_page_mask(struct vm_area_struct *vma, 1862 unsigned long address, unsigned int foll_flags, 1863 unsigned int *page_mask); 1864 1865static inline struct page *follow_page(struct vm_area_struct *vma, 1866 unsigned long address, unsigned int foll_flags) 1867{ 1868 unsigned int unused_page_mask; 1869 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1870} 1871 1872#define FOLL_WRITE 0x01 /* check pte is writable */ 1873#define FOLL_TOUCH 0x02 /* mark page accessed */ 1874#define FOLL_GET 0x04 /* do get_page on page */ 1875#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1876#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1877#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1878 * and return without waiting upon it */ 1879#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1880#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1881#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1882#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1883#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1884 1885typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1886 void *data); 1887extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1888 unsigned long size, pte_fn_t fn, void *data); 1889 1890#ifdef CONFIG_PROC_FS 1891void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1892#else 1893static inline void vm_stat_account(struct mm_struct *mm, 1894 unsigned long flags, struct file *file, long pages) 1895{ 1896 mm->total_vm += pages; 1897} 1898#endif /* CONFIG_PROC_FS */ 1899 1900#ifdef CONFIG_DEBUG_PAGEALLOC 1901extern void kernel_map_pages(struct page *page, int numpages, int enable); 1902#ifdef CONFIG_HIBERNATION 1903extern bool kernel_page_present(struct page *page); 1904#endif /* CONFIG_HIBERNATION */ 1905#else 1906static inline void 1907kernel_map_pages(struct page *page, int numpages, int enable) {} 1908#ifdef CONFIG_HIBERNATION 1909static inline bool kernel_page_present(struct page *page) { return true; } 1910#endif /* CONFIG_HIBERNATION */ 1911#endif 1912 1913extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1914#ifdef __HAVE_ARCH_GATE_AREA 1915int in_gate_area_no_mm(unsigned long addr); 1916int in_gate_area(struct mm_struct *mm, unsigned long addr); 1917#else 1918int in_gate_area_no_mm(unsigned long addr); 1919#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1920#endif /* __HAVE_ARCH_GATE_AREA */ 1921 1922#ifdef CONFIG_SYSCTL 1923extern int sysctl_drop_caches; 1924int drop_caches_sysctl_handler(struct ctl_table *, int, 1925 void __user *, size_t *, loff_t *); 1926#endif 1927 1928unsigned long shrink_slab(struct shrink_control *shrink, 1929 unsigned long nr_pages_scanned, 1930 unsigned long lru_pages); 1931 1932#ifndef CONFIG_MMU 1933#define randomize_va_space 0 1934#else 1935extern int randomize_va_space; 1936#endif 1937 1938const char * arch_vma_name(struct vm_area_struct *vma); 1939void print_vma_addr(char *prefix, unsigned long rip); 1940 1941void sparse_mem_maps_populate_node(struct page **map_map, 1942 unsigned long pnum_begin, 1943 unsigned long pnum_end, 1944 unsigned long map_count, 1945 int nodeid); 1946 1947struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1948pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1949pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1950pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1951pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1952void *vmemmap_alloc_block(unsigned long size, int node); 1953void *vmemmap_alloc_block_buf(unsigned long size, int node); 1954void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1955int vmemmap_populate_basepages(unsigned long start, unsigned long end, 1956 int node); 1957int vmemmap_populate(unsigned long start, unsigned long end, int node); 1958void vmemmap_populate_print_last(void); 1959#ifdef CONFIG_MEMORY_HOTPLUG 1960void vmemmap_free(unsigned long start, unsigned long end); 1961#endif 1962void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1963 unsigned long size); 1964 1965enum mf_flags { 1966 MF_COUNT_INCREASED = 1 << 0, 1967 MF_ACTION_REQUIRED = 1 << 1, 1968 MF_MUST_KILL = 1 << 2, 1969 MF_SOFT_OFFLINE = 1 << 3, 1970}; 1971extern int memory_failure(unsigned long pfn, int trapno, int flags); 1972extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1973extern int unpoison_memory(unsigned long pfn); 1974extern int sysctl_memory_failure_early_kill; 1975extern int sysctl_memory_failure_recovery; 1976extern void shake_page(struct page *p, int access); 1977extern atomic_long_t num_poisoned_pages; 1978extern int soft_offline_page(struct page *page, int flags); 1979 1980extern void dump_page(struct page *page); 1981 1982#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1983extern void clear_huge_page(struct page *page, 1984 unsigned long addr, 1985 unsigned int pages_per_huge_page); 1986extern void copy_user_huge_page(struct page *dst, struct page *src, 1987 unsigned long addr, struct vm_area_struct *vma, 1988 unsigned int pages_per_huge_page); 1989#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1990 1991#ifdef CONFIG_DEBUG_PAGEALLOC 1992extern unsigned int _debug_guardpage_minorder; 1993 1994static inline unsigned int debug_guardpage_minorder(void) 1995{ 1996 return _debug_guardpage_minorder; 1997} 1998 1999static inline bool page_is_guard(struct page *page) 2000{ 2001 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 2002} 2003#else 2004static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2005static inline bool page_is_guard(struct page *page) { return false; } 2006#endif /* CONFIG_DEBUG_PAGEALLOC */ 2007 2008#if MAX_NUMNODES > 1 2009void __init setup_nr_node_ids(void); 2010#else 2011static inline void setup_nr_node_ids(void) {} 2012#endif 2013 2014#endif /* __KERNEL__ */ 2015#endif /* _LINUX_MM_H */