at v3.13 38 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <linux/types.h> 29 30/* 31 * Framework version for util services. 32 */ 33#define UTIL_FW_MINOR 0 34 35#define UTIL_WS2K8_FW_MAJOR 1 36#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38#define UTIL_FW_MAJOR 3 39#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 40 41 42/* 43 * Implementation of host controlled snapshot of the guest. 44 */ 45 46#define VSS_OP_REGISTER 128 47 48enum hv_vss_op { 49 VSS_OP_CREATE = 0, 50 VSS_OP_DELETE, 51 VSS_OP_HOT_BACKUP, 52 VSS_OP_GET_DM_INFO, 53 VSS_OP_BU_COMPLETE, 54 /* 55 * Following operations are only supported with IC version >= 5.0 56 */ 57 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 58 VSS_OP_THAW, /* Unfreeze the file systems */ 59 VSS_OP_AUTO_RECOVER, 60 VSS_OP_COUNT /* Number of operations, must be last */ 61}; 62 63 64/* 65 * Header for all VSS messages. 66 */ 67struct hv_vss_hdr { 68 __u8 operation; 69 __u8 reserved[7]; 70} __attribute__((packed)); 71 72 73/* 74 * Flag values for the hv_vss_check_feature. Linux supports only 75 * one value. 76 */ 77#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 78 79struct hv_vss_check_feature { 80 __u32 flags; 81} __attribute__((packed)); 82 83struct hv_vss_check_dm_info { 84 __u32 flags; 85} __attribute__((packed)); 86 87struct hv_vss_msg { 88 union { 89 struct hv_vss_hdr vss_hdr; 90 int error; 91 }; 92 union { 93 struct hv_vss_check_feature vss_cf; 94 struct hv_vss_check_dm_info dm_info; 95 }; 96} __attribute__((packed)); 97 98/* 99 * An implementation of HyperV key value pair (KVP) functionality for Linux. 100 * 101 * 102 * Copyright (C) 2010, Novell, Inc. 103 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 104 * 105 */ 106 107/* 108 * Maximum value size - used for both key names and value data, and includes 109 * any applicable NULL terminators. 110 * 111 * Note: This limit is somewhat arbitrary, but falls easily within what is 112 * supported for all native guests (back to Win 2000) and what is reasonable 113 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 114 * limited to 255 character key names. 115 * 116 * MSDN recommends not storing data values larger than 2048 bytes in the 117 * registry. 118 * 119 * Note: This value is used in defining the KVP exchange message - this value 120 * cannot be modified without affecting the message size and compatibility. 121 */ 122 123/* 124 * bytes, including any null terminators 125 */ 126#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 127 128 129/* 130 * Maximum key size - the registry limit for the length of an entry name 131 * is 256 characters, including the null terminator 132 */ 133 134#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 135 136/* 137 * In Linux, we implement the KVP functionality in two components: 138 * 1) The kernel component which is packaged as part of the hv_utils driver 139 * is responsible for communicating with the host and responsible for 140 * implementing the host/guest protocol. 2) A user level daemon that is 141 * responsible for data gathering. 142 * 143 * Host/Guest Protocol: The host iterates over an index and expects the guest 144 * to assign a key name to the index and also return the value corresponding to 145 * the key. The host will have atmost one KVP transaction outstanding at any 146 * given point in time. The host side iteration stops when the guest returns 147 * an error. Microsoft has specified the following mapping of key names to 148 * host specified index: 149 * 150 * Index Key Name 151 * 0 FullyQualifiedDomainName 152 * 1 IntegrationServicesVersion 153 * 2 NetworkAddressIPv4 154 * 3 NetworkAddressIPv6 155 * 4 OSBuildNumber 156 * 5 OSName 157 * 6 OSMajorVersion 158 * 7 OSMinorVersion 159 * 8 OSVersion 160 * 9 ProcessorArchitecture 161 * 162 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 163 * 164 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 165 * data gathering functionality in a user mode daemon. The user level daemon 166 * is also responsible for binding the key name to the index as well. The 167 * kernel and user-level daemon communicate using a connector channel. 168 * 169 * The user mode component first registers with the 170 * the kernel component. Subsequently, the kernel component requests, data 171 * for the specified keys. In response to this message the user mode component 172 * fills in the value corresponding to the specified key. We overload the 173 * sequence field in the cn_msg header to define our KVP message types. 174 * 175 * 176 * The kernel component simply acts as a conduit for communication between the 177 * Windows host and the user-level daemon. The kernel component passes up the 178 * index received from the Host to the user-level daemon. If the index is 179 * valid (supported), the corresponding key as well as its 180 * value (both are strings) is returned. If the index is invalid 181 * (not supported), a NULL key string is returned. 182 */ 183 184 185/* 186 * Registry value types. 187 */ 188 189#define REG_SZ 1 190#define REG_U32 4 191#define REG_U64 8 192 193/* 194 * As we look at expanding the KVP functionality to include 195 * IP injection functionality, we need to maintain binary 196 * compatibility with older daemons. 197 * 198 * The KVP opcodes are defined by the host and it was unfortunate 199 * that I chose to treat the registration operation as part of the 200 * KVP operations defined by the host. 201 * Here is the level of compatibility 202 * (between the user level daemon and the kernel KVP driver) that we 203 * will implement: 204 * 205 * An older daemon will always be supported on a newer driver. 206 * A given user level daemon will require a minimal version of the 207 * kernel driver. 208 * If we cannot handle the version differences, we will fail gracefully 209 * (this can happen when we have a user level daemon that is more 210 * advanced than the KVP driver. 211 * 212 * We will use values used in this handshake for determining if we have 213 * workable user level daemon and the kernel driver. We begin by taking the 214 * registration opcode out of the KVP opcode namespace. We will however, 215 * maintain compatibility with the existing user-level daemon code. 216 */ 217 218/* 219 * Daemon code not supporting IP injection (legacy daemon). 220 */ 221 222#define KVP_OP_REGISTER 4 223 224/* 225 * Daemon code supporting IP injection. 226 * The KVP opcode field is used to communicate the 227 * registration information; so define a namespace that 228 * will be distinct from the host defined KVP opcode. 229 */ 230 231#define KVP_OP_REGISTER1 100 232 233enum hv_kvp_exchg_op { 234 KVP_OP_GET = 0, 235 KVP_OP_SET, 236 KVP_OP_DELETE, 237 KVP_OP_ENUMERATE, 238 KVP_OP_GET_IP_INFO, 239 KVP_OP_SET_IP_INFO, 240 KVP_OP_COUNT /* Number of operations, must be last. */ 241}; 242 243enum hv_kvp_exchg_pool { 244 KVP_POOL_EXTERNAL = 0, 245 KVP_POOL_GUEST, 246 KVP_POOL_AUTO, 247 KVP_POOL_AUTO_EXTERNAL, 248 KVP_POOL_AUTO_INTERNAL, 249 KVP_POOL_COUNT /* Number of pools, must be last. */ 250}; 251 252/* 253 * Some Hyper-V status codes. 254 */ 255 256#define HV_S_OK 0x00000000 257#define HV_E_FAIL 0x80004005 258#define HV_S_CONT 0x80070103 259#define HV_ERROR_NOT_SUPPORTED 0x80070032 260#define HV_ERROR_MACHINE_LOCKED 0x800704F7 261#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 262#define HV_INVALIDARG 0x80070057 263#define HV_GUID_NOTFOUND 0x80041002 264 265#define ADDR_FAMILY_NONE 0x00 266#define ADDR_FAMILY_IPV4 0x01 267#define ADDR_FAMILY_IPV6 0x02 268 269#define MAX_ADAPTER_ID_SIZE 128 270#define MAX_IP_ADDR_SIZE 1024 271#define MAX_GATEWAY_SIZE 512 272 273 274struct hv_kvp_ipaddr_value { 275 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 276 __u8 addr_family; 277 __u8 dhcp_enabled; 278 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 279 __u16 sub_net[MAX_IP_ADDR_SIZE]; 280 __u16 gate_way[MAX_GATEWAY_SIZE]; 281 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 282} __attribute__((packed)); 283 284 285struct hv_kvp_hdr { 286 __u8 operation; 287 __u8 pool; 288 __u16 pad; 289} __attribute__((packed)); 290 291struct hv_kvp_exchg_msg_value { 292 __u32 value_type; 293 __u32 key_size; 294 __u32 value_size; 295 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 296 union { 297 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 298 __u32 value_u32; 299 __u64 value_u64; 300 }; 301} __attribute__((packed)); 302 303struct hv_kvp_msg_enumerate { 304 __u32 index; 305 struct hv_kvp_exchg_msg_value data; 306} __attribute__((packed)); 307 308struct hv_kvp_msg_get { 309 struct hv_kvp_exchg_msg_value data; 310}; 311 312struct hv_kvp_msg_set { 313 struct hv_kvp_exchg_msg_value data; 314}; 315 316struct hv_kvp_msg_delete { 317 __u32 key_size; 318 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 319}; 320 321struct hv_kvp_register { 322 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 323}; 324 325struct hv_kvp_msg { 326 union { 327 struct hv_kvp_hdr kvp_hdr; 328 int error; 329 }; 330 union { 331 struct hv_kvp_msg_get kvp_get; 332 struct hv_kvp_msg_set kvp_set; 333 struct hv_kvp_msg_delete kvp_delete; 334 struct hv_kvp_msg_enumerate kvp_enum_data; 335 struct hv_kvp_ipaddr_value kvp_ip_val; 336 struct hv_kvp_register kvp_register; 337 } body; 338} __attribute__((packed)); 339 340struct hv_kvp_ip_msg { 341 __u8 operation; 342 __u8 pool; 343 struct hv_kvp_ipaddr_value kvp_ip_val; 344} __attribute__((packed)); 345 346#ifdef __KERNEL__ 347#include <linux/scatterlist.h> 348#include <linux/list.h> 349#include <linux/uuid.h> 350#include <linux/timer.h> 351#include <linux/workqueue.h> 352#include <linux/completion.h> 353#include <linux/device.h> 354#include <linux/mod_devicetable.h> 355 356 357#define MAX_PAGE_BUFFER_COUNT 19 358#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 359 360#pragma pack(push, 1) 361 362/* Single-page buffer */ 363struct hv_page_buffer { 364 u32 len; 365 u32 offset; 366 u64 pfn; 367}; 368 369/* Multiple-page buffer */ 370struct hv_multipage_buffer { 371 /* Length and Offset determines the # of pfns in the array */ 372 u32 len; 373 u32 offset; 374 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 375}; 376 377/* 0x18 includes the proprietary packet header */ 378#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 379 (sizeof(struct hv_page_buffer) * \ 380 MAX_PAGE_BUFFER_COUNT)) 381#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 382 sizeof(struct hv_multipage_buffer)) 383 384 385#pragma pack(pop) 386 387struct hv_ring_buffer { 388 /* Offset in bytes from the start of ring data below */ 389 u32 write_index; 390 391 /* Offset in bytes from the start of ring data below */ 392 u32 read_index; 393 394 u32 interrupt_mask; 395 396 /* 397 * Win8 uses some of the reserved bits to implement 398 * interrupt driven flow management. On the send side 399 * we can request that the receiver interrupt the sender 400 * when the ring transitions from being full to being able 401 * to handle a message of size "pending_send_sz". 402 * 403 * Add necessary state for this enhancement. 404 */ 405 u32 pending_send_sz; 406 407 u32 reserved1[12]; 408 409 union { 410 struct { 411 u32 feat_pending_send_sz:1; 412 }; 413 u32 value; 414 } feature_bits; 415 416 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 417 u8 reserved2[4028]; 418 419 /* 420 * Ring data starts here + RingDataStartOffset 421 * !!! DO NOT place any fields below this !!! 422 */ 423 u8 buffer[0]; 424} __packed; 425 426struct hv_ring_buffer_info { 427 struct hv_ring_buffer *ring_buffer; 428 u32 ring_size; /* Include the shared header */ 429 spinlock_t ring_lock; 430 431 u32 ring_datasize; /* < ring_size */ 432 u32 ring_data_startoffset; 433}; 434 435/* 436 * 437 * hv_get_ringbuffer_availbytes() 438 * 439 * Get number of bytes available to read and to write to 440 * for the specified ring buffer 441 */ 442static inline void 443hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 444 u32 *read, u32 *write) 445{ 446 u32 read_loc, write_loc, dsize; 447 448 smp_read_barrier_depends(); 449 450 /* Capture the read/write indices before they changed */ 451 read_loc = rbi->ring_buffer->read_index; 452 write_loc = rbi->ring_buffer->write_index; 453 dsize = rbi->ring_datasize; 454 455 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 456 read_loc - write_loc; 457 *read = dsize - *write; 458} 459 460/* 461 * VMBUS version is 32 bit entity broken up into 462 * two 16 bit quantities: major_number. minor_number. 463 * 464 * 0 . 13 (Windows Server 2008) 465 * 1 . 1 (Windows 7) 466 * 2 . 4 (Windows 8) 467 */ 468 469#define VERSION_WS2008 ((0 << 16) | (13)) 470#define VERSION_WIN7 ((1 << 16) | (1)) 471#define VERSION_WIN8 ((2 << 16) | (4)) 472 473#define VERSION_INVAL -1 474 475#define VERSION_CURRENT VERSION_WIN8 476 477/* Make maximum size of pipe payload of 16K */ 478#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 479 480/* Define PipeMode values. */ 481#define VMBUS_PIPE_TYPE_BYTE 0x00000000 482#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 483 484/* The size of the user defined data buffer for non-pipe offers. */ 485#define MAX_USER_DEFINED_BYTES 120 486 487/* The size of the user defined data buffer for pipe offers. */ 488#define MAX_PIPE_USER_DEFINED_BYTES 116 489 490/* 491 * At the center of the Channel Management library is the Channel Offer. This 492 * struct contains the fundamental information about an offer. 493 */ 494struct vmbus_channel_offer { 495 uuid_le if_type; 496 uuid_le if_instance; 497 498 /* 499 * These two fields are not currently used. 500 */ 501 u64 reserved1; 502 u64 reserved2; 503 504 u16 chn_flags; 505 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 506 507 union { 508 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 509 struct { 510 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 511 } std; 512 513 /* 514 * Pipes: 515 * The following sructure is an integrated pipe protocol, which 516 * is implemented on top of standard user-defined data. Pipe 517 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 518 * use. 519 */ 520 struct { 521 u32 pipe_mode; 522 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 523 } pipe; 524 } u; 525 /* 526 * The sub_channel_index is defined in win8. 527 */ 528 u16 sub_channel_index; 529 u16 reserved3; 530} __packed; 531 532/* Server Flags */ 533#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 534#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 535#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 536#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 537#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 538#define VMBUS_CHANNEL_PARENT_OFFER 0x200 539#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 540 541struct vmpacket_descriptor { 542 u16 type; 543 u16 offset8; 544 u16 len8; 545 u16 flags; 546 u64 trans_id; 547} __packed; 548 549struct vmpacket_header { 550 u32 prev_pkt_start_offset; 551 struct vmpacket_descriptor descriptor; 552} __packed; 553 554struct vmtransfer_page_range { 555 u32 byte_count; 556 u32 byte_offset; 557} __packed; 558 559struct vmtransfer_page_packet_header { 560 struct vmpacket_descriptor d; 561 u16 xfer_pageset_id; 562 u8 sender_owns_set; 563 u8 reserved; 564 u32 range_cnt; 565 struct vmtransfer_page_range ranges[1]; 566} __packed; 567 568struct vmgpadl_packet_header { 569 struct vmpacket_descriptor d; 570 u32 gpadl; 571 u32 reserved; 572} __packed; 573 574struct vmadd_remove_transfer_page_set { 575 struct vmpacket_descriptor d; 576 u32 gpadl; 577 u16 xfer_pageset_id; 578 u16 reserved; 579} __packed; 580 581/* 582 * This structure defines a range in guest physical space that can be made to 583 * look virtually contiguous. 584 */ 585struct gpa_range { 586 u32 byte_count; 587 u32 byte_offset; 588 u64 pfn_array[0]; 589}; 590 591/* 592 * This is the format for an Establish Gpadl packet, which contains a handle by 593 * which this GPADL will be known and a set of GPA ranges associated with it. 594 * This can be converted to a MDL by the guest OS. If there are multiple GPA 595 * ranges, then the resulting MDL will be "chained," representing multiple VA 596 * ranges. 597 */ 598struct vmestablish_gpadl { 599 struct vmpacket_descriptor d; 600 u32 gpadl; 601 u32 range_cnt; 602 struct gpa_range range[1]; 603} __packed; 604 605/* 606 * This is the format for a Teardown Gpadl packet, which indicates that the 607 * GPADL handle in the Establish Gpadl packet will never be referenced again. 608 */ 609struct vmteardown_gpadl { 610 struct vmpacket_descriptor d; 611 u32 gpadl; 612 u32 reserved; /* for alignment to a 8-byte boundary */ 613} __packed; 614 615/* 616 * This is the format for a GPA-Direct packet, which contains a set of GPA 617 * ranges, in addition to commands and/or data. 618 */ 619struct vmdata_gpa_direct { 620 struct vmpacket_descriptor d; 621 u32 reserved; 622 u32 range_cnt; 623 struct gpa_range range[1]; 624} __packed; 625 626/* This is the format for a Additional Data Packet. */ 627struct vmadditional_data { 628 struct vmpacket_descriptor d; 629 u64 total_bytes; 630 u32 offset; 631 u32 byte_cnt; 632 unsigned char data[1]; 633} __packed; 634 635union vmpacket_largest_possible_header { 636 struct vmpacket_descriptor simple_hdr; 637 struct vmtransfer_page_packet_header xfer_page_hdr; 638 struct vmgpadl_packet_header gpadl_hdr; 639 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 640 struct vmestablish_gpadl establish_gpadl_hdr; 641 struct vmteardown_gpadl teardown_gpadl_hdr; 642 struct vmdata_gpa_direct data_gpa_direct_hdr; 643}; 644 645#define VMPACKET_DATA_START_ADDRESS(__packet) \ 646 (void *)(((unsigned char *)__packet) + \ 647 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 648 649#define VMPACKET_DATA_LENGTH(__packet) \ 650 ((((struct vmpacket_descriptor)__packet)->len8 - \ 651 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 652 653#define VMPACKET_TRANSFER_MODE(__packet) \ 654 (((struct IMPACT)__packet)->type) 655 656enum vmbus_packet_type { 657 VM_PKT_INVALID = 0x0, 658 VM_PKT_SYNCH = 0x1, 659 VM_PKT_ADD_XFER_PAGESET = 0x2, 660 VM_PKT_RM_XFER_PAGESET = 0x3, 661 VM_PKT_ESTABLISH_GPADL = 0x4, 662 VM_PKT_TEARDOWN_GPADL = 0x5, 663 VM_PKT_DATA_INBAND = 0x6, 664 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 665 VM_PKT_DATA_USING_GPADL = 0x8, 666 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 667 VM_PKT_CANCEL_REQUEST = 0xa, 668 VM_PKT_COMP = 0xb, 669 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 670 VM_PKT_ADDITIONAL_DATA = 0xd 671}; 672 673#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 674 675 676/* Version 1 messages */ 677enum vmbus_channel_message_type { 678 CHANNELMSG_INVALID = 0, 679 CHANNELMSG_OFFERCHANNEL = 1, 680 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 681 CHANNELMSG_REQUESTOFFERS = 3, 682 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 683 CHANNELMSG_OPENCHANNEL = 5, 684 CHANNELMSG_OPENCHANNEL_RESULT = 6, 685 CHANNELMSG_CLOSECHANNEL = 7, 686 CHANNELMSG_GPADL_HEADER = 8, 687 CHANNELMSG_GPADL_BODY = 9, 688 CHANNELMSG_GPADL_CREATED = 10, 689 CHANNELMSG_GPADL_TEARDOWN = 11, 690 CHANNELMSG_GPADL_TORNDOWN = 12, 691 CHANNELMSG_RELID_RELEASED = 13, 692 CHANNELMSG_INITIATE_CONTACT = 14, 693 CHANNELMSG_VERSION_RESPONSE = 15, 694 CHANNELMSG_UNLOAD = 16, 695#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 696 CHANNELMSG_VIEWRANGE_ADD = 17, 697 CHANNELMSG_VIEWRANGE_REMOVE = 18, 698#endif 699 CHANNELMSG_COUNT 700}; 701 702struct vmbus_channel_message_header { 703 enum vmbus_channel_message_type msgtype; 704 u32 padding; 705} __packed; 706 707/* Query VMBus Version parameters */ 708struct vmbus_channel_query_vmbus_version { 709 struct vmbus_channel_message_header header; 710 u32 version; 711} __packed; 712 713/* VMBus Version Supported parameters */ 714struct vmbus_channel_version_supported { 715 struct vmbus_channel_message_header header; 716 u8 version_supported; 717} __packed; 718 719/* Offer Channel parameters */ 720struct vmbus_channel_offer_channel { 721 struct vmbus_channel_message_header header; 722 struct vmbus_channel_offer offer; 723 u32 child_relid; 724 u8 monitorid; 725 /* 726 * win7 and beyond splits this field into a bit field. 727 */ 728 u8 monitor_allocated:1; 729 u8 reserved:7; 730 /* 731 * These are new fields added in win7 and later. 732 * Do not access these fields without checking the 733 * negotiated protocol. 734 * 735 * If "is_dedicated_interrupt" is set, we must not set the 736 * associated bit in the channel bitmap while sending the 737 * interrupt to the host. 738 * 739 * connection_id is to be used in signaling the host. 740 */ 741 u16 is_dedicated_interrupt:1; 742 u16 reserved1:15; 743 u32 connection_id; 744} __packed; 745 746/* Rescind Offer parameters */ 747struct vmbus_channel_rescind_offer { 748 struct vmbus_channel_message_header header; 749 u32 child_relid; 750} __packed; 751 752/* 753 * Request Offer -- no parameters, SynIC message contains the partition ID 754 * Set Snoop -- no parameters, SynIC message contains the partition ID 755 * Clear Snoop -- no parameters, SynIC message contains the partition ID 756 * All Offers Delivered -- no parameters, SynIC message contains the partition 757 * ID 758 * Flush Client -- no parameters, SynIC message contains the partition ID 759 */ 760 761/* Open Channel parameters */ 762struct vmbus_channel_open_channel { 763 struct vmbus_channel_message_header header; 764 765 /* Identifies the specific VMBus channel that is being opened. */ 766 u32 child_relid; 767 768 /* ID making a particular open request at a channel offer unique. */ 769 u32 openid; 770 771 /* GPADL for the channel's ring buffer. */ 772 u32 ringbuffer_gpadlhandle; 773 774 /* 775 * Starting with win8, this field will be used to specify 776 * the target virtual processor on which to deliver the interrupt for 777 * the host to guest communication. 778 * Prior to win8, incoming channel interrupts would only 779 * be delivered on cpu 0. Setting this value to 0 would 780 * preserve the earlier behavior. 781 */ 782 u32 target_vp; 783 784 /* 785 * The upstream ring buffer begins at offset zero in the memory 786 * described by RingBufferGpadlHandle. The downstream ring buffer 787 * follows it at this offset (in pages). 788 */ 789 u32 downstream_ringbuffer_pageoffset; 790 791 /* User-specific data to be passed along to the server endpoint. */ 792 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 793} __packed; 794 795/* Open Channel Result parameters */ 796struct vmbus_channel_open_result { 797 struct vmbus_channel_message_header header; 798 u32 child_relid; 799 u32 openid; 800 u32 status; 801} __packed; 802 803/* Close channel parameters; */ 804struct vmbus_channel_close_channel { 805 struct vmbus_channel_message_header header; 806 u32 child_relid; 807} __packed; 808 809/* Channel Message GPADL */ 810#define GPADL_TYPE_RING_BUFFER 1 811#define GPADL_TYPE_SERVER_SAVE_AREA 2 812#define GPADL_TYPE_TRANSACTION 8 813 814/* 815 * The number of PFNs in a GPADL message is defined by the number of 816 * pages that would be spanned by ByteCount and ByteOffset. If the 817 * implied number of PFNs won't fit in this packet, there will be a 818 * follow-up packet that contains more. 819 */ 820struct vmbus_channel_gpadl_header { 821 struct vmbus_channel_message_header header; 822 u32 child_relid; 823 u32 gpadl; 824 u16 range_buflen; 825 u16 rangecount; 826 struct gpa_range range[0]; 827} __packed; 828 829/* This is the followup packet that contains more PFNs. */ 830struct vmbus_channel_gpadl_body { 831 struct vmbus_channel_message_header header; 832 u32 msgnumber; 833 u32 gpadl; 834 u64 pfn[0]; 835} __packed; 836 837struct vmbus_channel_gpadl_created { 838 struct vmbus_channel_message_header header; 839 u32 child_relid; 840 u32 gpadl; 841 u32 creation_status; 842} __packed; 843 844struct vmbus_channel_gpadl_teardown { 845 struct vmbus_channel_message_header header; 846 u32 child_relid; 847 u32 gpadl; 848} __packed; 849 850struct vmbus_channel_gpadl_torndown { 851 struct vmbus_channel_message_header header; 852 u32 gpadl; 853} __packed; 854 855#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 856struct vmbus_channel_view_range_add { 857 struct vmbus_channel_message_header header; 858 PHYSICAL_ADDRESS viewrange_base; 859 u64 viewrange_length; 860 u32 child_relid; 861} __packed; 862 863struct vmbus_channel_view_range_remove { 864 struct vmbus_channel_message_header header; 865 PHYSICAL_ADDRESS viewrange_base; 866 u32 child_relid; 867} __packed; 868#endif 869 870struct vmbus_channel_relid_released { 871 struct vmbus_channel_message_header header; 872 u32 child_relid; 873} __packed; 874 875struct vmbus_channel_initiate_contact { 876 struct vmbus_channel_message_header header; 877 u32 vmbus_version_requested; 878 u32 padding2; 879 u64 interrupt_page; 880 u64 monitor_page1; 881 u64 monitor_page2; 882} __packed; 883 884struct vmbus_channel_version_response { 885 struct vmbus_channel_message_header header; 886 u8 version_supported; 887} __packed; 888 889enum vmbus_channel_state { 890 CHANNEL_OFFER_STATE, 891 CHANNEL_OPENING_STATE, 892 CHANNEL_OPEN_STATE, 893 CHANNEL_OPENED_STATE, 894}; 895 896/* 897 * Represents each channel msg on the vmbus connection This is a 898 * variable-size data structure depending on the msg type itself 899 */ 900struct vmbus_channel_msginfo { 901 /* Bookkeeping stuff */ 902 struct list_head msglistentry; 903 904 /* So far, this is only used to handle gpadl body message */ 905 struct list_head submsglist; 906 907 /* Synchronize the request/response if needed */ 908 struct completion waitevent; 909 union { 910 struct vmbus_channel_version_supported version_supported; 911 struct vmbus_channel_open_result open_result; 912 struct vmbus_channel_gpadl_torndown gpadl_torndown; 913 struct vmbus_channel_gpadl_created gpadl_created; 914 struct vmbus_channel_version_response version_response; 915 } response; 916 917 u32 msgsize; 918 /* 919 * The channel message that goes out on the "wire". 920 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 921 */ 922 unsigned char msg[0]; 923}; 924 925struct vmbus_close_msg { 926 struct vmbus_channel_msginfo info; 927 struct vmbus_channel_close_channel msg; 928}; 929 930/* Define connection identifier type. */ 931union hv_connection_id { 932 u32 asu32; 933 struct { 934 u32 id:24; 935 u32 reserved:8; 936 } u; 937}; 938 939/* Definition of the hv_signal_event hypercall input structure. */ 940struct hv_input_signal_event { 941 union hv_connection_id connectionid; 942 u16 flag_number; 943 u16 rsvdz; 944}; 945 946struct hv_input_signal_event_buffer { 947 u64 align8; 948 struct hv_input_signal_event event; 949}; 950 951struct vmbus_channel { 952 struct list_head listentry; 953 954 struct hv_device *device_obj; 955 956 struct work_struct work; 957 958 enum vmbus_channel_state state; 959 960 struct vmbus_channel_offer_channel offermsg; 961 /* 962 * These are based on the OfferMsg.MonitorId. 963 * Save it here for easy access. 964 */ 965 u8 monitor_grp; 966 u8 monitor_bit; 967 968 u32 ringbuffer_gpadlhandle; 969 970 /* Allocated memory for ring buffer */ 971 void *ringbuffer_pages; 972 u32 ringbuffer_pagecount; 973 struct hv_ring_buffer_info outbound; /* send to parent */ 974 struct hv_ring_buffer_info inbound; /* receive from parent */ 975 spinlock_t inbound_lock; 976 struct workqueue_struct *controlwq; 977 978 struct vmbus_close_msg close_msg; 979 980 /* Channel callback are invoked in this workqueue context */ 981 /* HANDLE dataWorkQueue; */ 982 983 void (*onchannel_callback)(void *context); 984 void *channel_callback_context; 985 986 /* 987 * A channel can be marked for efficient (batched) 988 * reading: 989 * If batched_reading is set to "true", we read until the 990 * channel is empty and hold off interrupts from the host 991 * during the entire read process. 992 * If batched_reading is set to "false", the client is not 993 * going to perform batched reading. 994 * 995 * By default we will enable batched reading; specific 996 * drivers that don't want this behavior can turn it off. 997 */ 998 999 bool batched_reading; 1000 1001 bool is_dedicated_interrupt; 1002 struct hv_input_signal_event_buffer sig_buf; 1003 struct hv_input_signal_event *sig_event; 1004 1005 /* 1006 * Starting with win8, this field will be used to specify 1007 * the target virtual processor on which to deliver the interrupt for 1008 * the host to guest communication. 1009 * Prior to win8, incoming channel interrupts would only 1010 * be delivered on cpu 0. Setting this value to 0 would 1011 * preserve the earlier behavior. 1012 */ 1013 u32 target_vp; 1014 /* 1015 * Support for sub-channels. For high performance devices, 1016 * it will be useful to have multiple sub-channels to support 1017 * a scalable communication infrastructure with the host. 1018 * The support for sub-channels is implemented as an extention 1019 * to the current infrastructure. 1020 * The initial offer is considered the primary channel and this 1021 * offer message will indicate if the host supports sub-channels. 1022 * The guest is free to ask for sub-channels to be offerred and can 1023 * open these sub-channels as a normal "primary" channel. However, 1024 * all sub-channels will have the same type and instance guids as the 1025 * primary channel. Requests sent on a given channel will result in a 1026 * response on the same channel. 1027 */ 1028 1029 /* 1030 * Sub-channel creation callback. This callback will be called in 1031 * process context when a sub-channel offer is received from the host. 1032 * The guest can open the sub-channel in the context of this callback. 1033 */ 1034 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 1035 1036 spinlock_t sc_lock; 1037 /* 1038 * All Sub-channels of a primary channel are linked here. 1039 */ 1040 struct list_head sc_list; 1041 /* 1042 * The primary channel this sub-channel belongs to. 1043 * This will be NULL for the primary channel. 1044 */ 1045 struct vmbus_channel *primary_channel; 1046}; 1047 1048static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 1049{ 1050 c->batched_reading = state; 1051} 1052 1053void vmbus_onmessage(void *context); 1054 1055int vmbus_request_offers(void); 1056 1057/* 1058 * APIs for managing sub-channels. 1059 */ 1060 1061void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1062 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1063 1064/* 1065 * Retrieve the (sub) channel on which to send an outgoing request. 1066 * When a primary channel has multiple sub-channels, we choose a 1067 * channel whose VCPU binding is closest to the VCPU on which 1068 * this call is being made. 1069 */ 1070struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 1071 1072/* 1073 * Check if sub-channels have already been offerred. This API will be useful 1074 * when the driver is unloaded after establishing sub-channels. In this case, 1075 * when the driver is re-loaded, the driver would have to check if the 1076 * subchannels have already been established before attempting to request 1077 * the creation of sub-channels. 1078 * This function returns TRUE to indicate that subchannels have already been 1079 * created. 1080 * This function should be invoked after setting the callback function for 1081 * sub-channel creation. 1082 */ 1083bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1084 1085/* The format must be the same as struct vmdata_gpa_direct */ 1086struct vmbus_channel_packet_page_buffer { 1087 u16 type; 1088 u16 dataoffset8; 1089 u16 length8; 1090 u16 flags; 1091 u64 transactionid; 1092 u32 reserved; 1093 u32 rangecount; 1094 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1095} __packed; 1096 1097/* The format must be the same as struct vmdata_gpa_direct */ 1098struct vmbus_channel_packet_multipage_buffer { 1099 u16 type; 1100 u16 dataoffset8; 1101 u16 length8; 1102 u16 flags; 1103 u64 transactionid; 1104 u32 reserved; 1105 u32 rangecount; /* Always 1 in this case */ 1106 struct hv_multipage_buffer range; 1107} __packed; 1108 1109 1110extern int vmbus_open(struct vmbus_channel *channel, 1111 u32 send_ringbuffersize, 1112 u32 recv_ringbuffersize, 1113 void *userdata, 1114 u32 userdatalen, 1115 void(*onchannel_callback)(void *context), 1116 void *context); 1117 1118extern void vmbus_close(struct vmbus_channel *channel); 1119 1120extern int vmbus_sendpacket(struct vmbus_channel *channel, 1121 const void *buffer, 1122 u32 bufferLen, 1123 u64 requestid, 1124 enum vmbus_packet_type type, 1125 u32 flags); 1126 1127extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1128 struct hv_page_buffer pagebuffers[], 1129 u32 pagecount, 1130 void *buffer, 1131 u32 bufferlen, 1132 u64 requestid); 1133 1134extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1135 struct hv_multipage_buffer *mpb, 1136 void *buffer, 1137 u32 bufferlen, 1138 u64 requestid); 1139 1140extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1141 void *kbuffer, 1142 u32 size, 1143 u32 *gpadl_handle); 1144 1145extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1146 u32 gpadl_handle); 1147 1148extern int vmbus_recvpacket(struct vmbus_channel *channel, 1149 void *buffer, 1150 u32 bufferlen, 1151 u32 *buffer_actual_len, 1152 u64 *requestid); 1153 1154extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1155 void *buffer, 1156 u32 bufferlen, 1157 u32 *buffer_actual_len, 1158 u64 *requestid); 1159 1160 1161extern void vmbus_ontimer(unsigned long data); 1162 1163/* Base driver object */ 1164struct hv_driver { 1165 const char *name; 1166 1167 /* the device type supported by this driver */ 1168 uuid_le dev_type; 1169 const struct hv_vmbus_device_id *id_table; 1170 1171 struct device_driver driver; 1172 1173 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1174 int (*remove)(struct hv_device *); 1175 void (*shutdown)(struct hv_device *); 1176 1177}; 1178 1179/* Base device object */ 1180struct hv_device { 1181 /* the device type id of this device */ 1182 uuid_le dev_type; 1183 1184 /* the device instance id of this device */ 1185 uuid_le dev_instance; 1186 1187 struct device device; 1188 1189 struct vmbus_channel *channel; 1190}; 1191 1192 1193static inline struct hv_device *device_to_hv_device(struct device *d) 1194{ 1195 return container_of(d, struct hv_device, device); 1196} 1197 1198static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1199{ 1200 return container_of(d, struct hv_driver, driver); 1201} 1202 1203static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1204{ 1205 dev_set_drvdata(&dev->device, data); 1206} 1207 1208static inline void *hv_get_drvdata(struct hv_device *dev) 1209{ 1210 return dev_get_drvdata(&dev->device); 1211} 1212 1213/* Vmbus interface */ 1214#define vmbus_driver_register(driver) \ 1215 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1216int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1217 struct module *owner, 1218 const char *mod_name); 1219void vmbus_driver_unregister(struct hv_driver *hv_driver); 1220 1221/** 1222 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 1223 * 1224 * This macro is used to create a struct hv_vmbus_device_id that matches a 1225 * specific device. 1226 */ 1227#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 1228 g8, g9, ga, gb, gc, gd, ge, gf) \ 1229 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 1230 g8, g9, ga, gb, gc, gd, ge, gf }, 1231 1232/* 1233 * GUID definitions of various offer types - services offered to the guest. 1234 */ 1235 1236/* 1237 * Network GUID 1238 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1239 */ 1240#define HV_NIC_GUID \ 1241 .guid = { \ 1242 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \ 1243 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \ 1244 } 1245 1246/* 1247 * IDE GUID 1248 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1249 */ 1250#define HV_IDE_GUID \ 1251 .guid = { \ 1252 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 1253 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \ 1254 } 1255 1256/* 1257 * SCSI GUID 1258 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1259 */ 1260#define HV_SCSI_GUID \ 1261 .guid = { \ 1262 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 1263 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \ 1264 } 1265 1266/* 1267 * Shutdown GUID 1268 * {0e0b6031-5213-4934-818b-38d90ced39db} 1269 */ 1270#define HV_SHUTDOWN_GUID \ 1271 .guid = { \ 1272 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \ 1273 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \ 1274 } 1275 1276/* 1277 * Time Synch GUID 1278 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1279 */ 1280#define HV_TS_GUID \ 1281 .guid = { \ 1282 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \ 1283 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \ 1284 } 1285 1286/* 1287 * Heartbeat GUID 1288 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1289 */ 1290#define HV_HEART_BEAT_GUID \ 1291 .guid = { \ 1292 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \ 1293 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \ 1294 } 1295 1296/* 1297 * KVP GUID 1298 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1299 */ 1300#define HV_KVP_GUID \ 1301 .guid = { \ 1302 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \ 1303 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \ 1304 } 1305 1306/* 1307 * Dynamic memory GUID 1308 * {525074dc-8985-46e2-8057-a307dc18a502} 1309 */ 1310#define HV_DM_GUID \ 1311 .guid = { \ 1312 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \ 1313 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \ 1314 } 1315 1316/* 1317 * Mouse GUID 1318 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1319 */ 1320#define HV_MOUSE_GUID \ 1321 .guid = { \ 1322 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \ 1323 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \ 1324 } 1325 1326/* 1327 * VSS (Backup/Restore) GUID 1328 */ 1329#define HV_VSS_GUID \ 1330 .guid = { \ 1331 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \ 1332 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \ 1333 } 1334/* 1335 * Synthetic Video GUID 1336 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1337 */ 1338#define HV_SYNTHVID_GUID \ 1339 .guid = { \ 1340 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \ 1341 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \ 1342 } 1343 1344/* 1345 * Synthetic FC GUID 1346 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1347 */ 1348#define HV_SYNTHFC_GUID \ 1349 .guid = { \ 1350 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \ 1351 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \ 1352 } 1353 1354/* 1355 * Common header for Hyper-V ICs 1356 */ 1357 1358#define ICMSGTYPE_NEGOTIATE 0 1359#define ICMSGTYPE_HEARTBEAT 1 1360#define ICMSGTYPE_KVPEXCHANGE 2 1361#define ICMSGTYPE_SHUTDOWN 3 1362#define ICMSGTYPE_TIMESYNC 4 1363#define ICMSGTYPE_VSS 5 1364 1365#define ICMSGHDRFLAG_TRANSACTION 1 1366#define ICMSGHDRFLAG_REQUEST 2 1367#define ICMSGHDRFLAG_RESPONSE 4 1368 1369 1370/* 1371 * While we want to handle util services as regular devices, 1372 * there is only one instance of each of these services; so 1373 * we statically allocate the service specific state. 1374 */ 1375 1376struct hv_util_service { 1377 u8 *recv_buffer; 1378 void (*util_cb)(void *); 1379 int (*util_init)(struct hv_util_service *); 1380 void (*util_deinit)(void); 1381}; 1382 1383struct vmbuspipe_hdr { 1384 u32 flags; 1385 u32 msgsize; 1386} __packed; 1387 1388struct ic_version { 1389 u16 major; 1390 u16 minor; 1391} __packed; 1392 1393struct icmsg_hdr { 1394 struct ic_version icverframe; 1395 u16 icmsgtype; 1396 struct ic_version icvermsg; 1397 u16 icmsgsize; 1398 u32 status; 1399 u8 ictransaction_id; 1400 u8 icflags; 1401 u8 reserved[2]; 1402} __packed; 1403 1404struct icmsg_negotiate { 1405 u16 icframe_vercnt; 1406 u16 icmsg_vercnt; 1407 u32 reserved; 1408 struct ic_version icversion_data[1]; /* any size array */ 1409} __packed; 1410 1411struct shutdown_msg_data { 1412 u32 reason_code; 1413 u32 timeout_seconds; 1414 u32 flags; 1415 u8 display_message[2048]; 1416} __packed; 1417 1418struct heartbeat_msg_data { 1419 u64 seq_num; 1420 u32 reserved[8]; 1421} __packed; 1422 1423/* Time Sync IC defs */ 1424#define ICTIMESYNCFLAG_PROBE 0 1425#define ICTIMESYNCFLAG_SYNC 1 1426#define ICTIMESYNCFLAG_SAMPLE 2 1427 1428#ifdef __x86_64__ 1429#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1430#else 1431#define WLTIMEDELTA 116444736000000000LL 1432#endif 1433 1434struct ictimesync_data { 1435 u64 parenttime; 1436 u64 childtime; 1437 u64 roundtriptime; 1438 u8 flags; 1439} __packed; 1440 1441struct hyperv_service_callback { 1442 u8 msg_type; 1443 char *log_msg; 1444 uuid_le data; 1445 struct vmbus_channel *channel; 1446 void (*callback) (void *context); 1447}; 1448 1449#define MAX_SRV_VER 0x7ffffff 1450extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1451 struct icmsg_negotiate *, u8 *, int, 1452 int); 1453 1454int hv_kvp_init(struct hv_util_service *); 1455void hv_kvp_deinit(void); 1456void hv_kvp_onchannelcallback(void *); 1457 1458int hv_vss_init(struct hv_util_service *); 1459void hv_vss_deinit(void); 1460void hv_vss_onchannelcallback(void *); 1461 1462/* 1463 * Negotiated version with the Host. 1464 */ 1465 1466extern __u32 vmbus_proto_version; 1467 1468#endif /* __KERNEL__ */ 1469#endif /* _HYPERV_H */