at v3.13 36 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/bug.h> 27#include <linux/scatterlist.h> 28#include <linux/bitmap.h> 29#include <linux/types.h> 30#include <asm/page.h> 31 32/** 33 * typedef dma_cookie_t - an opaque DMA cookie 34 * 35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 36 */ 37typedef s32 dma_cookie_t; 38#define DMA_MIN_COOKIE 1 39#define DMA_MAX_COOKIE INT_MAX 40 41static inline int dma_submit_error(dma_cookie_t cookie) 42{ 43 return cookie < 0 ? cookie : 0; 44} 45 46/** 47 * enum dma_status - DMA transaction status 48 * @DMA_COMPLETE: transaction completed 49 * @DMA_IN_PROGRESS: transaction not yet processed 50 * @DMA_PAUSED: transaction is paused 51 * @DMA_ERROR: transaction failed 52 */ 53enum dma_status { 54 DMA_COMPLETE, 55 DMA_IN_PROGRESS, 56 DMA_PAUSED, 57 DMA_ERROR, 58}; 59 60/** 61 * enum dma_transaction_type - DMA transaction types/indexes 62 * 63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 64 * automatically set as dma devices are registered. 65 */ 66enum dma_transaction_type { 67 DMA_MEMCPY, 68 DMA_XOR, 69 DMA_PQ, 70 DMA_XOR_VAL, 71 DMA_PQ_VAL, 72 DMA_INTERRUPT, 73 DMA_SG, 74 DMA_PRIVATE, 75 DMA_ASYNC_TX, 76 DMA_SLAVE, 77 DMA_CYCLIC, 78 DMA_INTERLEAVE, 79/* last transaction type for creation of the capabilities mask */ 80 DMA_TX_TYPE_END, 81}; 82 83/** 84 * enum dma_transfer_direction - dma transfer mode and direction indicator 85 * @DMA_MEM_TO_MEM: Async/Memcpy mode 86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 89 */ 90enum dma_transfer_direction { 91 DMA_MEM_TO_MEM, 92 DMA_MEM_TO_DEV, 93 DMA_DEV_TO_MEM, 94 DMA_DEV_TO_DEV, 95 DMA_TRANS_NONE, 96}; 97 98/** 99 * Interleaved Transfer Request 100 * ---------------------------- 101 * A chunk is collection of contiguous bytes to be transfered. 102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 103 * ICGs may or maynot change between chunks. 104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 105 * that when repeated an integral number of times, specifies the transfer. 106 * A transfer template is specification of a Frame, the number of times 107 * it is to be repeated and other per-transfer attributes. 108 * 109 * Practically, a client driver would have ready a template for each 110 * type of transfer it is going to need during its lifetime and 111 * set only 'src_start' and 'dst_start' before submitting the requests. 112 * 113 * 114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 116 * 117 * == Chunk size 118 * ... ICG 119 */ 120 121/** 122 * struct data_chunk - Element of scatter-gather list that makes a frame. 123 * @size: Number of bytes to read from source. 124 * size_dst := fn(op, size_src), so doesn't mean much for destination. 125 * @icg: Number of bytes to jump after last src/dst address of this 126 * chunk and before first src/dst address for next chunk. 127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 129 */ 130struct data_chunk { 131 size_t size; 132 size_t icg; 133}; 134 135/** 136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 137 * and attributes. 138 * @src_start: Bus address of source for the first chunk. 139 * @dst_start: Bus address of destination for the first chunk. 140 * @dir: Specifies the type of Source and Destination. 141 * @src_inc: If the source address increments after reading from it. 142 * @dst_inc: If the destination address increments after writing to it. 143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 144 * Otherwise, source is read contiguously (icg ignored). 145 * Ignored if src_inc is false. 146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 147 * Otherwise, destination is filled contiguously (icg ignored). 148 * Ignored if dst_inc is false. 149 * @numf: Number of frames in this template. 150 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 151 * @sgl: Array of {chunk,icg} pairs that make up a frame. 152 */ 153struct dma_interleaved_template { 154 dma_addr_t src_start; 155 dma_addr_t dst_start; 156 enum dma_transfer_direction dir; 157 bool src_inc; 158 bool dst_inc; 159 bool src_sgl; 160 bool dst_sgl; 161 size_t numf; 162 size_t frame_size; 163 struct data_chunk sgl[0]; 164}; 165 166/** 167 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 168 * control completion, and communicate status. 169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 170 * this transaction 171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 172 * acknowledges receipt, i.e. has has a chance to establish any dependency 173 * chains 174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 177 * sources that were the result of a previous operation, in the case of a PQ 178 * operation it continues the calculation with new sources 179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 180 * on the result of this operation 181 */ 182enum dma_ctrl_flags { 183 DMA_PREP_INTERRUPT = (1 << 0), 184 DMA_CTRL_ACK = (1 << 1), 185 DMA_PREP_PQ_DISABLE_P = (1 << 2), 186 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 187 DMA_PREP_CONTINUE = (1 << 4), 188 DMA_PREP_FENCE = (1 << 5), 189}; 190 191/** 192 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 193 * on a running channel. 194 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 195 * @DMA_PAUSE: pause ongoing transfers 196 * @DMA_RESUME: resume paused transfer 197 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 198 * that need to runtime reconfigure the slave channels (as opposed to passing 199 * configuration data in statically from the platform). An additional 200 * argument of struct dma_slave_config must be passed in with this 201 * command. 202 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 203 * into external start mode. 204 */ 205enum dma_ctrl_cmd { 206 DMA_TERMINATE_ALL, 207 DMA_PAUSE, 208 DMA_RESUME, 209 DMA_SLAVE_CONFIG, 210 FSLDMA_EXTERNAL_START, 211}; 212 213/** 214 * enum sum_check_bits - bit position of pq_check_flags 215 */ 216enum sum_check_bits { 217 SUM_CHECK_P = 0, 218 SUM_CHECK_Q = 1, 219}; 220 221/** 222 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 223 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 224 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 225 */ 226enum sum_check_flags { 227 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 228 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 229}; 230 231 232/** 233 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 234 * See linux/cpumask.h 235 */ 236typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 237 238/** 239 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 240 * @memcpy_count: transaction counter 241 * @bytes_transferred: byte counter 242 */ 243 244struct dma_chan_percpu { 245 /* stats */ 246 unsigned long memcpy_count; 247 unsigned long bytes_transferred; 248}; 249 250/** 251 * struct dma_chan - devices supply DMA channels, clients use them 252 * @device: ptr to the dma device who supplies this channel, always !%NULL 253 * @cookie: last cookie value returned to client 254 * @completed_cookie: last completed cookie for this channel 255 * @chan_id: channel ID for sysfs 256 * @dev: class device for sysfs 257 * @device_node: used to add this to the device chan list 258 * @local: per-cpu pointer to a struct dma_chan_percpu 259 * @client-count: how many clients are using this channel 260 * @table_count: number of appearances in the mem-to-mem allocation table 261 * @private: private data for certain client-channel associations 262 */ 263struct dma_chan { 264 struct dma_device *device; 265 dma_cookie_t cookie; 266 dma_cookie_t completed_cookie; 267 268 /* sysfs */ 269 int chan_id; 270 struct dma_chan_dev *dev; 271 272 struct list_head device_node; 273 struct dma_chan_percpu __percpu *local; 274 int client_count; 275 int table_count; 276 void *private; 277}; 278 279/** 280 * struct dma_chan_dev - relate sysfs device node to backing channel device 281 * @chan - driver channel device 282 * @device - sysfs device 283 * @dev_id - parent dma_device dev_id 284 * @idr_ref - reference count to gate release of dma_device dev_id 285 */ 286struct dma_chan_dev { 287 struct dma_chan *chan; 288 struct device device; 289 int dev_id; 290 atomic_t *idr_ref; 291}; 292 293/** 294 * enum dma_slave_buswidth - defines bus with of the DMA slave 295 * device, source or target buses 296 */ 297enum dma_slave_buswidth { 298 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 299 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 300 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 301 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 302 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 303}; 304 305/** 306 * struct dma_slave_config - dma slave channel runtime config 307 * @direction: whether the data shall go in or out on this slave 308 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 309 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 310 * need to differentiate source and target addresses. 311 * @src_addr: this is the physical address where DMA slave data 312 * should be read (RX), if the source is memory this argument is 313 * ignored. 314 * @dst_addr: this is the physical address where DMA slave data 315 * should be written (TX), if the source is memory this argument 316 * is ignored. 317 * @src_addr_width: this is the width in bytes of the source (RX) 318 * register where DMA data shall be read. If the source 319 * is memory this may be ignored depending on architecture. 320 * Legal values: 1, 2, 4, 8. 321 * @dst_addr_width: same as src_addr_width but for destination 322 * target (TX) mutatis mutandis. 323 * @src_maxburst: the maximum number of words (note: words, as in 324 * units of the src_addr_width member, not bytes) that can be sent 325 * in one burst to the device. Typically something like half the 326 * FIFO depth on I/O peripherals so you don't overflow it. This 327 * may or may not be applicable on memory sources. 328 * @dst_maxburst: same as src_maxburst but for destination target 329 * mutatis mutandis. 330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 331 * with 'true' if peripheral should be flow controller. Direction will be 332 * selected at Runtime. 333 * @slave_id: Slave requester id. Only valid for slave channels. The dma 334 * slave peripheral will have unique id as dma requester which need to be 335 * pass as slave config. 336 * 337 * This struct is passed in as configuration data to a DMA engine 338 * in order to set up a certain channel for DMA transport at runtime. 339 * The DMA device/engine has to provide support for an additional 340 * command in the channel config interface, DMA_SLAVE_CONFIG 341 * and this struct will then be passed in as an argument to the 342 * DMA engine device_control() function. 343 * 344 * The rationale for adding configuration information to this struct 345 * is as follows: if it is likely that most DMA slave controllers in 346 * the world will support the configuration option, then make it 347 * generic. If not: if it is fixed so that it be sent in static from 348 * the platform data, then prefer to do that. Else, if it is neither 349 * fixed at runtime, nor generic enough (such as bus mastership on 350 * some CPU family and whatnot) then create a custom slave config 351 * struct and pass that, then make this config a member of that 352 * struct, if applicable. 353 */ 354struct dma_slave_config { 355 enum dma_transfer_direction direction; 356 dma_addr_t src_addr; 357 dma_addr_t dst_addr; 358 enum dma_slave_buswidth src_addr_width; 359 enum dma_slave_buswidth dst_addr_width; 360 u32 src_maxburst; 361 u32 dst_maxburst; 362 bool device_fc; 363 unsigned int slave_id; 364}; 365 366/* struct dma_slave_caps - expose capabilities of a slave channel only 367 * 368 * @src_addr_widths: bit mask of src addr widths the channel supports 369 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports 370 * @directions: bit mask of slave direction the channel supported 371 * since the enum dma_transfer_direction is not defined as bits for each 372 * type of direction, the dma controller should fill (1 << <TYPE>) and same 373 * should be checked by controller as well 374 * @cmd_pause: true, if pause and thereby resume is supported 375 * @cmd_terminate: true, if terminate cmd is supported 376 */ 377struct dma_slave_caps { 378 u32 src_addr_widths; 379 u32 dstn_addr_widths; 380 u32 directions; 381 bool cmd_pause; 382 bool cmd_terminate; 383}; 384 385static inline const char *dma_chan_name(struct dma_chan *chan) 386{ 387 return dev_name(&chan->dev->device); 388} 389 390void dma_chan_cleanup(struct kref *kref); 391 392/** 393 * typedef dma_filter_fn - callback filter for dma_request_channel 394 * @chan: channel to be reviewed 395 * @filter_param: opaque parameter passed through dma_request_channel 396 * 397 * When this optional parameter is specified in a call to dma_request_channel a 398 * suitable channel is passed to this routine for further dispositioning before 399 * being returned. Where 'suitable' indicates a non-busy channel that 400 * satisfies the given capability mask. It returns 'true' to indicate that the 401 * channel is suitable. 402 */ 403typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 404 405typedef void (*dma_async_tx_callback)(void *dma_async_param); 406 407struct dmaengine_unmap_data { 408 u8 to_cnt; 409 u8 from_cnt; 410 u8 bidi_cnt; 411 struct device *dev; 412 struct kref kref; 413 size_t len; 414 dma_addr_t addr[0]; 415}; 416 417/** 418 * struct dma_async_tx_descriptor - async transaction descriptor 419 * ---dma generic offload fields--- 420 * @cookie: tracking cookie for this transaction, set to -EBUSY if 421 * this tx is sitting on a dependency list 422 * @flags: flags to augment operation preparation, control completion, and 423 * communicate status 424 * @phys: physical address of the descriptor 425 * @chan: target channel for this operation 426 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 427 * @callback: routine to call after this operation is complete 428 * @callback_param: general parameter to pass to the callback routine 429 * ---async_tx api specific fields--- 430 * @next: at completion submit this descriptor 431 * @parent: pointer to the next level up in the dependency chain 432 * @lock: protect the parent and next pointers 433 */ 434struct dma_async_tx_descriptor { 435 dma_cookie_t cookie; 436 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 437 dma_addr_t phys; 438 struct dma_chan *chan; 439 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 440 dma_async_tx_callback callback; 441 void *callback_param; 442 struct dmaengine_unmap_data *unmap; 443#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 444 struct dma_async_tx_descriptor *next; 445 struct dma_async_tx_descriptor *parent; 446 spinlock_t lock; 447#endif 448}; 449 450#ifdef CONFIG_DMA_ENGINE 451static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 452 struct dmaengine_unmap_data *unmap) 453{ 454 kref_get(&unmap->kref); 455 tx->unmap = unmap; 456} 457 458struct dmaengine_unmap_data * 459dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 460void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 461#else 462static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 463 struct dmaengine_unmap_data *unmap) 464{ 465} 466static inline struct dmaengine_unmap_data * 467dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 468{ 469 return NULL; 470} 471static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 472{ 473} 474#endif 475 476static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 477{ 478 if (tx->unmap) { 479 dmaengine_unmap_put(tx->unmap); 480 tx->unmap = NULL; 481 } 482} 483 484#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 485static inline void txd_lock(struct dma_async_tx_descriptor *txd) 486{ 487} 488static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 489{ 490} 491static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 492{ 493 BUG(); 494} 495static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 496{ 497} 498static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 499{ 500} 501static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 502{ 503 return NULL; 504} 505static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 506{ 507 return NULL; 508} 509 510#else 511static inline void txd_lock(struct dma_async_tx_descriptor *txd) 512{ 513 spin_lock_bh(&txd->lock); 514} 515static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 516{ 517 spin_unlock_bh(&txd->lock); 518} 519static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 520{ 521 txd->next = next; 522 next->parent = txd; 523} 524static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 525{ 526 txd->parent = NULL; 527} 528static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 529{ 530 txd->next = NULL; 531} 532static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 533{ 534 return txd->parent; 535} 536static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 537{ 538 return txd->next; 539} 540#endif 541 542/** 543 * struct dma_tx_state - filled in to report the status of 544 * a transfer. 545 * @last: last completed DMA cookie 546 * @used: last issued DMA cookie (i.e. the one in progress) 547 * @residue: the remaining number of bytes left to transmit 548 * on the selected transfer for states DMA_IN_PROGRESS and 549 * DMA_PAUSED if this is implemented in the driver, else 0 550 */ 551struct dma_tx_state { 552 dma_cookie_t last; 553 dma_cookie_t used; 554 u32 residue; 555}; 556 557/** 558 * struct dma_device - info on the entity supplying DMA services 559 * @chancnt: how many DMA channels are supported 560 * @privatecnt: how many DMA channels are requested by dma_request_channel 561 * @channels: the list of struct dma_chan 562 * @global_node: list_head for global dma_device_list 563 * @cap_mask: one or more dma_capability flags 564 * @max_xor: maximum number of xor sources, 0 if no capability 565 * @max_pq: maximum number of PQ sources and PQ-continue capability 566 * @copy_align: alignment shift for memcpy operations 567 * @xor_align: alignment shift for xor operations 568 * @pq_align: alignment shift for pq operations 569 * @fill_align: alignment shift for memset operations 570 * @dev_id: unique device ID 571 * @dev: struct device reference for dma mapping api 572 * @device_alloc_chan_resources: allocate resources and return the 573 * number of allocated descriptors 574 * @device_free_chan_resources: release DMA channel's resources 575 * @device_prep_dma_memcpy: prepares a memcpy operation 576 * @device_prep_dma_xor: prepares a xor operation 577 * @device_prep_dma_xor_val: prepares a xor validation operation 578 * @device_prep_dma_pq: prepares a pq operation 579 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 580 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 581 * @device_prep_slave_sg: prepares a slave dma operation 582 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 583 * The function takes a buffer of size buf_len. The callback function will 584 * be called after period_len bytes have been transferred. 585 * @device_prep_interleaved_dma: Transfer expression in a generic way. 586 * @device_control: manipulate all pending operations on a channel, returns 587 * zero or error code 588 * @device_tx_status: poll for transaction completion, the optional 589 * txstate parameter can be supplied with a pointer to get a 590 * struct with auxiliary transfer status information, otherwise the call 591 * will just return a simple status code 592 * @device_issue_pending: push pending transactions to hardware 593 * @device_slave_caps: return the slave channel capabilities 594 */ 595struct dma_device { 596 597 unsigned int chancnt; 598 unsigned int privatecnt; 599 struct list_head channels; 600 struct list_head global_node; 601 dma_cap_mask_t cap_mask; 602 unsigned short max_xor; 603 unsigned short max_pq; 604 u8 copy_align; 605 u8 xor_align; 606 u8 pq_align; 607 u8 fill_align; 608 #define DMA_HAS_PQ_CONTINUE (1 << 15) 609 610 int dev_id; 611 struct device *dev; 612 613 int (*device_alloc_chan_resources)(struct dma_chan *chan); 614 void (*device_free_chan_resources)(struct dma_chan *chan); 615 616 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 617 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 618 size_t len, unsigned long flags); 619 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 620 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 621 unsigned int src_cnt, size_t len, unsigned long flags); 622 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 623 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 624 size_t len, enum sum_check_flags *result, unsigned long flags); 625 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 626 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 627 unsigned int src_cnt, const unsigned char *scf, 628 size_t len, unsigned long flags); 629 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 630 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 631 unsigned int src_cnt, const unsigned char *scf, size_t len, 632 enum sum_check_flags *pqres, unsigned long flags); 633 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 634 struct dma_chan *chan, unsigned long flags); 635 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 636 struct dma_chan *chan, 637 struct scatterlist *dst_sg, unsigned int dst_nents, 638 struct scatterlist *src_sg, unsigned int src_nents, 639 unsigned long flags); 640 641 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 642 struct dma_chan *chan, struct scatterlist *sgl, 643 unsigned int sg_len, enum dma_transfer_direction direction, 644 unsigned long flags, void *context); 645 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 646 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 647 size_t period_len, enum dma_transfer_direction direction, 648 unsigned long flags, void *context); 649 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 650 struct dma_chan *chan, struct dma_interleaved_template *xt, 651 unsigned long flags); 652 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 653 unsigned long arg); 654 655 enum dma_status (*device_tx_status)(struct dma_chan *chan, 656 dma_cookie_t cookie, 657 struct dma_tx_state *txstate); 658 void (*device_issue_pending)(struct dma_chan *chan); 659 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 660}; 661 662static inline int dmaengine_device_control(struct dma_chan *chan, 663 enum dma_ctrl_cmd cmd, 664 unsigned long arg) 665{ 666 if (chan->device->device_control) 667 return chan->device->device_control(chan, cmd, arg); 668 669 return -ENOSYS; 670} 671 672static inline int dmaengine_slave_config(struct dma_chan *chan, 673 struct dma_slave_config *config) 674{ 675 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 676 (unsigned long)config); 677} 678 679static inline bool is_slave_direction(enum dma_transfer_direction direction) 680{ 681 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 682} 683 684static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 685 struct dma_chan *chan, dma_addr_t buf, size_t len, 686 enum dma_transfer_direction dir, unsigned long flags) 687{ 688 struct scatterlist sg; 689 sg_init_table(&sg, 1); 690 sg_dma_address(&sg) = buf; 691 sg_dma_len(&sg) = len; 692 693 return chan->device->device_prep_slave_sg(chan, &sg, 1, 694 dir, flags, NULL); 695} 696 697static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 698 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 699 enum dma_transfer_direction dir, unsigned long flags) 700{ 701 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 702 dir, flags, NULL); 703} 704 705#ifdef CONFIG_RAPIDIO_DMA_ENGINE 706struct rio_dma_ext; 707static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 708 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 709 enum dma_transfer_direction dir, unsigned long flags, 710 struct rio_dma_ext *rio_ext) 711{ 712 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 713 dir, flags, rio_ext); 714} 715#endif 716 717static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 718 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 719 size_t period_len, enum dma_transfer_direction dir, 720 unsigned long flags) 721{ 722 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 723 period_len, dir, flags, NULL); 724} 725 726static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 727 struct dma_chan *chan, struct dma_interleaved_template *xt, 728 unsigned long flags) 729{ 730 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 731} 732 733static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 734{ 735 if (!chan || !caps) 736 return -EINVAL; 737 738 /* check if the channel supports slave transactions */ 739 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits)) 740 return -ENXIO; 741 742 if (chan->device->device_slave_caps) 743 return chan->device->device_slave_caps(chan, caps); 744 745 return -ENXIO; 746} 747 748static inline int dmaengine_terminate_all(struct dma_chan *chan) 749{ 750 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 751} 752 753static inline int dmaengine_pause(struct dma_chan *chan) 754{ 755 return dmaengine_device_control(chan, DMA_PAUSE, 0); 756} 757 758static inline int dmaengine_resume(struct dma_chan *chan) 759{ 760 return dmaengine_device_control(chan, DMA_RESUME, 0); 761} 762 763static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 764 dma_cookie_t cookie, struct dma_tx_state *state) 765{ 766 return chan->device->device_tx_status(chan, cookie, state); 767} 768 769static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 770{ 771 return desc->tx_submit(desc); 772} 773 774static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 775{ 776 size_t mask; 777 778 if (!align) 779 return true; 780 mask = (1 << align) - 1; 781 if (mask & (off1 | off2 | len)) 782 return false; 783 return true; 784} 785 786static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 787 size_t off2, size_t len) 788{ 789 return dmaengine_check_align(dev->copy_align, off1, off2, len); 790} 791 792static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 793 size_t off2, size_t len) 794{ 795 return dmaengine_check_align(dev->xor_align, off1, off2, len); 796} 797 798static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 799 size_t off2, size_t len) 800{ 801 return dmaengine_check_align(dev->pq_align, off1, off2, len); 802} 803 804static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 805 size_t off2, size_t len) 806{ 807 return dmaengine_check_align(dev->fill_align, off1, off2, len); 808} 809 810static inline void 811dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 812{ 813 dma->max_pq = maxpq; 814 if (has_pq_continue) 815 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 816} 817 818static inline bool dmaf_continue(enum dma_ctrl_flags flags) 819{ 820 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 821} 822 823static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 824{ 825 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 826 827 return (flags & mask) == mask; 828} 829 830static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 831{ 832 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 833} 834 835static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 836{ 837 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 838} 839 840/* dma_maxpq - reduce maxpq in the face of continued operations 841 * @dma - dma device with PQ capability 842 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 843 * 844 * When an engine does not support native continuation we need 3 extra 845 * source slots to reuse P and Q with the following coefficients: 846 * 1/ {00} * P : remove P from Q', but use it as a source for P' 847 * 2/ {01} * Q : use Q to continue Q' calculation 848 * 3/ {00} * Q : subtract Q from P' to cancel (2) 849 * 850 * In the case where P is disabled we only need 1 extra source: 851 * 1/ {01} * Q : use Q to continue Q' calculation 852 */ 853static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 854{ 855 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 856 return dma_dev_to_maxpq(dma); 857 else if (dmaf_p_disabled_continue(flags)) 858 return dma_dev_to_maxpq(dma) - 1; 859 else if (dmaf_continue(flags)) 860 return dma_dev_to_maxpq(dma) - 3; 861 BUG(); 862} 863 864/* --- public DMA engine API --- */ 865 866#ifdef CONFIG_DMA_ENGINE 867void dmaengine_get(void); 868void dmaengine_put(void); 869#else 870static inline void dmaengine_get(void) 871{ 872} 873static inline void dmaengine_put(void) 874{ 875} 876#endif 877 878#ifdef CONFIG_NET_DMA 879#define net_dmaengine_get() dmaengine_get() 880#define net_dmaengine_put() dmaengine_put() 881#else 882static inline void net_dmaengine_get(void) 883{ 884} 885static inline void net_dmaengine_put(void) 886{ 887} 888#endif 889 890#ifdef CONFIG_ASYNC_TX_DMA 891#define async_dmaengine_get() dmaengine_get() 892#define async_dmaengine_put() dmaengine_put() 893#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 894#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 895#else 896#define async_dma_find_channel(type) dma_find_channel(type) 897#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 898#else 899static inline void async_dmaengine_get(void) 900{ 901} 902static inline void async_dmaengine_put(void) 903{ 904} 905static inline struct dma_chan * 906async_dma_find_channel(enum dma_transaction_type type) 907{ 908 return NULL; 909} 910#endif /* CONFIG_ASYNC_TX_DMA */ 911 912dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 913 void *dest, void *src, size_t len); 914dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 915 struct page *page, unsigned int offset, void *kdata, size_t len); 916dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 917 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 918 unsigned int src_off, size_t len); 919void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 920 struct dma_chan *chan); 921 922static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 923{ 924 tx->flags |= DMA_CTRL_ACK; 925} 926 927static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 928{ 929 tx->flags &= ~DMA_CTRL_ACK; 930} 931 932static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 933{ 934 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 935} 936 937#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 938static inline void 939__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 940{ 941 set_bit(tx_type, dstp->bits); 942} 943 944#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 945static inline void 946__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 947{ 948 clear_bit(tx_type, dstp->bits); 949} 950 951#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 952static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 953{ 954 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 955} 956 957#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 958static inline int 959__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 960{ 961 return test_bit(tx_type, srcp->bits); 962} 963 964#define for_each_dma_cap_mask(cap, mask) \ 965 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 966 967/** 968 * dma_async_issue_pending - flush pending transactions to HW 969 * @chan: target DMA channel 970 * 971 * This allows drivers to push copies to HW in batches, 972 * reducing MMIO writes where possible. 973 */ 974static inline void dma_async_issue_pending(struct dma_chan *chan) 975{ 976 chan->device->device_issue_pending(chan); 977} 978 979/** 980 * dma_async_is_tx_complete - poll for transaction completion 981 * @chan: DMA channel 982 * @cookie: transaction identifier to check status of 983 * @last: returns last completed cookie, can be NULL 984 * @used: returns last issued cookie, can be NULL 985 * 986 * If @last and @used are passed in, upon return they reflect the driver 987 * internal state and can be used with dma_async_is_complete() to check 988 * the status of multiple cookies without re-checking hardware state. 989 */ 990static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 991 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 992{ 993 struct dma_tx_state state; 994 enum dma_status status; 995 996 status = chan->device->device_tx_status(chan, cookie, &state); 997 if (last) 998 *last = state.last; 999 if (used) 1000 *used = state.used; 1001 return status; 1002} 1003 1004/** 1005 * dma_async_is_complete - test a cookie against chan state 1006 * @cookie: transaction identifier to test status of 1007 * @last_complete: last know completed transaction 1008 * @last_used: last cookie value handed out 1009 * 1010 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1011 * the test logic is separated for lightweight testing of multiple cookies 1012 */ 1013static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1014 dma_cookie_t last_complete, dma_cookie_t last_used) 1015{ 1016 if (last_complete <= last_used) { 1017 if ((cookie <= last_complete) || (cookie > last_used)) 1018 return DMA_COMPLETE; 1019 } else { 1020 if ((cookie <= last_complete) && (cookie > last_used)) 1021 return DMA_COMPLETE; 1022 } 1023 return DMA_IN_PROGRESS; 1024} 1025 1026static inline void 1027dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1028{ 1029 if (st) { 1030 st->last = last; 1031 st->used = used; 1032 st->residue = residue; 1033 } 1034} 1035 1036#ifdef CONFIG_DMA_ENGINE 1037struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1038enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1039enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1040void dma_issue_pending_all(void); 1041struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1042 dma_filter_fn fn, void *fn_param); 1043struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1044void dma_release_channel(struct dma_chan *chan); 1045#else 1046static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1047{ 1048 return NULL; 1049} 1050static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1051{ 1052 return DMA_COMPLETE; 1053} 1054static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1055{ 1056 return DMA_COMPLETE; 1057} 1058static inline void dma_issue_pending_all(void) 1059{ 1060} 1061static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1062 dma_filter_fn fn, void *fn_param) 1063{ 1064 return NULL; 1065} 1066static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1067 const char *name) 1068{ 1069 return NULL; 1070} 1071static inline void dma_release_channel(struct dma_chan *chan) 1072{ 1073} 1074#endif 1075 1076/* --- DMA device --- */ 1077 1078int dma_async_device_register(struct dma_device *device); 1079void dma_async_device_unregister(struct dma_device *device); 1080void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1081struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1082struct dma_chan *net_dma_find_channel(void); 1083#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1084#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1085 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1086 1087static inline struct dma_chan 1088*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1089 dma_filter_fn fn, void *fn_param, 1090 struct device *dev, char *name) 1091{ 1092 struct dma_chan *chan; 1093 1094 chan = dma_request_slave_channel(dev, name); 1095 if (chan) 1096 return chan; 1097 1098 return __dma_request_channel(mask, fn, fn_param); 1099} 1100 1101/* --- Helper iov-locking functions --- */ 1102 1103struct dma_page_list { 1104 char __user *base_address; 1105 int nr_pages; 1106 struct page **pages; 1107}; 1108 1109struct dma_pinned_list { 1110 int nr_iovecs; 1111 struct dma_page_list page_list[0]; 1112}; 1113 1114struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1115void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1116 1117dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1118 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1119dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1120 struct dma_pinned_list *pinned_list, struct page *page, 1121 unsigned int offset, size_t len); 1122 1123#endif /* DMAENGINE_H */