at v3.13 20 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9 10/* 11 * On almost all architectures and configurations, 0 can be used as the 12 * upper ceiling to free_pgtables(): on many architectures it has the same 13 * effect as using TASK_SIZE. However, there is one configuration which 14 * must impose a more careful limit, to avoid freeing kernel pgtables. 15 */ 16#ifndef USER_PGTABLES_CEILING 17#define USER_PGTABLES_CEILING 0UL 18#endif 19 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 21extern int ptep_set_access_flags(struct vm_area_struct *vma, 22 unsigned long address, pte_t *ptep, 23 pte_t entry, int dirty); 24#endif 25 26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 27extern int pmdp_set_access_flags(struct vm_area_struct *vma, 28 unsigned long address, pmd_t *pmdp, 29 pmd_t entry, int dirty); 30#endif 31 32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 34 unsigned long address, 35 pte_t *ptep) 36{ 37 pte_t pte = *ptep; 38 int r = 1; 39 if (!pte_young(pte)) 40 r = 0; 41 else 42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 43 return r; 44} 45#endif 46 47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 48#ifdef CONFIG_TRANSPARENT_HUGEPAGE 49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 50 unsigned long address, 51 pmd_t *pmdp) 52{ 53 pmd_t pmd = *pmdp; 54 int r = 1; 55 if (!pmd_young(pmd)) 56 r = 0; 57 else 58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 59 return r; 60} 61#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pmd_t *pmdp) 65{ 66 BUG(); 67 return 0; 68} 69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 70#endif 71 72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 73int ptep_clear_flush_young(struct vm_area_struct *vma, 74 unsigned long address, pte_t *ptep); 75#endif 76 77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 78int pmdp_clear_flush_young(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmdp); 80#endif 81 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 83static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 84 unsigned long address, 85 pte_t *ptep) 86{ 87 pte_t pte = *ptep; 88 pte_clear(mm, address, ptep); 89 return pte; 90} 91#endif 92 93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE 95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 96 unsigned long address, 97 pmd_t *pmdp) 98{ 99 pmd_t pmd = *pmdp; 100 pmd_clear(pmdp); 101 return pmd; 102} 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 104#endif 105 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 108 unsigned long address, pte_t *ptep, 109 int full) 110{ 111 pte_t pte; 112 pte = ptep_get_and_clear(mm, address, ptep); 113 return pte; 114} 115#endif 116 117/* 118 * Some architectures may be able to avoid expensive synchronization 119 * primitives when modifications are made to PTE's which are already 120 * not present, or in the process of an address space destruction. 121 */ 122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 123static inline void pte_clear_not_present_full(struct mm_struct *mm, 124 unsigned long address, 125 pte_t *ptep, 126 int full) 127{ 128 pte_clear(mm, address, ptep); 129} 130#endif 131 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 133extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 134 unsigned long address, 135 pte_t *ptep); 136#endif 137 138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH 139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 140 unsigned long address, 141 pmd_t *pmdp); 142#endif 143 144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 145struct mm_struct; 146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 147{ 148 pte_t old_pte = *ptep; 149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 150} 151#endif 152 153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 154#ifdef CONFIG_TRANSPARENT_HUGEPAGE 155static inline void pmdp_set_wrprotect(struct mm_struct *mm, 156 unsigned long address, pmd_t *pmdp) 157{ 158 pmd_t old_pmd = *pmdp; 159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 160} 161#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 162static inline void pmdp_set_wrprotect(struct mm_struct *mm, 163 unsigned long address, pmd_t *pmdp) 164{ 165 BUG(); 166} 167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 168#endif 169 170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 171extern void pmdp_splitting_flush(struct vm_area_struct *vma, 172 unsigned long address, pmd_t *pmdp); 173#endif 174 175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 177 pgtable_t pgtable); 178#endif 179 180#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 181extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 182#endif 183 184#ifndef __HAVE_ARCH_PMDP_INVALIDATE 185extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 186 pmd_t *pmdp); 187#endif 188 189#ifndef __HAVE_ARCH_PTE_SAME 190static inline int pte_same(pte_t pte_a, pte_t pte_b) 191{ 192 return pte_val(pte_a) == pte_val(pte_b); 193} 194#endif 195 196#ifndef __HAVE_ARCH_PMD_SAME 197#ifdef CONFIG_TRANSPARENT_HUGEPAGE 198static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 199{ 200 return pmd_val(pmd_a) == pmd_val(pmd_b); 201} 202#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 203static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 204{ 205 BUG(); 206 return 0; 207} 208#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 209#endif 210 211#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 212#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 213#endif 214 215#ifndef __HAVE_ARCH_MOVE_PTE 216#define move_pte(pte, prot, old_addr, new_addr) (pte) 217#endif 218 219#ifndef pte_accessible 220# define pte_accessible(mm, pte) ((void)(pte), 1) 221#endif 222 223#ifndef flush_tlb_fix_spurious_fault 224#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 225#endif 226 227#ifndef pgprot_noncached 228#define pgprot_noncached(prot) (prot) 229#endif 230 231#ifndef pgprot_writecombine 232#define pgprot_writecombine pgprot_noncached 233#endif 234 235/* 236 * When walking page tables, get the address of the next boundary, 237 * or the end address of the range if that comes earlier. Although no 238 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 239 */ 240 241#define pgd_addr_end(addr, end) \ 242({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 243 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 244}) 245 246#ifndef pud_addr_end 247#define pud_addr_end(addr, end) \ 248({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 249 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 250}) 251#endif 252 253#ifndef pmd_addr_end 254#define pmd_addr_end(addr, end) \ 255({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 256 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 257}) 258#endif 259 260/* 261 * When walking page tables, we usually want to skip any p?d_none entries; 262 * and any p?d_bad entries - reporting the error before resetting to none. 263 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 264 */ 265void pgd_clear_bad(pgd_t *); 266void pud_clear_bad(pud_t *); 267void pmd_clear_bad(pmd_t *); 268 269static inline int pgd_none_or_clear_bad(pgd_t *pgd) 270{ 271 if (pgd_none(*pgd)) 272 return 1; 273 if (unlikely(pgd_bad(*pgd))) { 274 pgd_clear_bad(pgd); 275 return 1; 276 } 277 return 0; 278} 279 280static inline int pud_none_or_clear_bad(pud_t *pud) 281{ 282 if (pud_none(*pud)) 283 return 1; 284 if (unlikely(pud_bad(*pud))) { 285 pud_clear_bad(pud); 286 return 1; 287 } 288 return 0; 289} 290 291static inline int pmd_none_or_clear_bad(pmd_t *pmd) 292{ 293 if (pmd_none(*pmd)) 294 return 1; 295 if (unlikely(pmd_bad(*pmd))) { 296 pmd_clear_bad(pmd); 297 return 1; 298 } 299 return 0; 300} 301 302static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 303 unsigned long addr, 304 pte_t *ptep) 305{ 306 /* 307 * Get the current pte state, but zero it out to make it 308 * non-present, preventing the hardware from asynchronously 309 * updating it. 310 */ 311 return ptep_get_and_clear(mm, addr, ptep); 312} 313 314static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 315 unsigned long addr, 316 pte_t *ptep, pte_t pte) 317{ 318 /* 319 * The pte is non-present, so there's no hardware state to 320 * preserve. 321 */ 322 set_pte_at(mm, addr, ptep, pte); 323} 324 325#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 326/* 327 * Start a pte protection read-modify-write transaction, which 328 * protects against asynchronous hardware modifications to the pte. 329 * The intention is not to prevent the hardware from making pte 330 * updates, but to prevent any updates it may make from being lost. 331 * 332 * This does not protect against other software modifications of the 333 * pte; the appropriate pte lock must be held over the transation. 334 * 335 * Note that this interface is intended to be batchable, meaning that 336 * ptep_modify_prot_commit may not actually update the pte, but merely 337 * queue the update to be done at some later time. The update must be 338 * actually committed before the pte lock is released, however. 339 */ 340static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 341 unsigned long addr, 342 pte_t *ptep) 343{ 344 return __ptep_modify_prot_start(mm, addr, ptep); 345} 346 347/* 348 * Commit an update to a pte, leaving any hardware-controlled bits in 349 * the PTE unmodified. 350 */ 351static inline void ptep_modify_prot_commit(struct mm_struct *mm, 352 unsigned long addr, 353 pte_t *ptep, pte_t pte) 354{ 355 __ptep_modify_prot_commit(mm, addr, ptep, pte); 356} 357#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 358#endif /* CONFIG_MMU */ 359 360/* 361 * A facility to provide lazy MMU batching. This allows PTE updates and 362 * page invalidations to be delayed until a call to leave lazy MMU mode 363 * is issued. Some architectures may benefit from doing this, and it is 364 * beneficial for both shadow and direct mode hypervisors, which may batch 365 * the PTE updates which happen during this window. Note that using this 366 * interface requires that read hazards be removed from the code. A read 367 * hazard could result in the direct mode hypervisor case, since the actual 368 * write to the page tables may not yet have taken place, so reads though 369 * a raw PTE pointer after it has been modified are not guaranteed to be 370 * up to date. This mode can only be entered and left under the protection of 371 * the page table locks for all page tables which may be modified. In the UP 372 * case, this is required so that preemption is disabled, and in the SMP case, 373 * it must synchronize the delayed page table writes properly on other CPUs. 374 */ 375#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 376#define arch_enter_lazy_mmu_mode() do {} while (0) 377#define arch_leave_lazy_mmu_mode() do {} while (0) 378#define arch_flush_lazy_mmu_mode() do {} while (0) 379#endif 380 381/* 382 * A facility to provide batching of the reload of page tables and 383 * other process state with the actual context switch code for 384 * paravirtualized guests. By convention, only one of the batched 385 * update (lazy) modes (CPU, MMU) should be active at any given time, 386 * entry should never be nested, and entry and exits should always be 387 * paired. This is for sanity of maintaining and reasoning about the 388 * kernel code. In this case, the exit (end of the context switch) is 389 * in architecture-specific code, and so doesn't need a generic 390 * definition. 391 */ 392#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 393#define arch_start_context_switch(prev) do {} while (0) 394#endif 395 396#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY 397static inline int pte_soft_dirty(pte_t pte) 398{ 399 return 0; 400} 401 402static inline int pmd_soft_dirty(pmd_t pmd) 403{ 404 return 0; 405} 406 407static inline pte_t pte_mksoft_dirty(pte_t pte) 408{ 409 return pte; 410} 411 412static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 413{ 414 return pmd; 415} 416 417static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 418{ 419 return pte; 420} 421 422static inline int pte_swp_soft_dirty(pte_t pte) 423{ 424 return 0; 425} 426 427static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 428{ 429 return pte; 430} 431 432static inline pte_t pte_file_clear_soft_dirty(pte_t pte) 433{ 434 return pte; 435} 436 437static inline pte_t pte_file_mksoft_dirty(pte_t pte) 438{ 439 return pte; 440} 441 442static inline int pte_file_soft_dirty(pte_t pte) 443{ 444 return 0; 445} 446#endif 447 448#ifndef __HAVE_PFNMAP_TRACKING 449/* 450 * Interfaces that can be used by architecture code to keep track of 451 * memory type of pfn mappings specified by the remap_pfn_range, 452 * vm_insert_pfn. 453 */ 454 455/* 456 * track_pfn_remap is called when a _new_ pfn mapping is being established 457 * by remap_pfn_range() for physical range indicated by pfn and size. 458 */ 459static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 460 unsigned long pfn, unsigned long addr, 461 unsigned long size) 462{ 463 return 0; 464} 465 466/* 467 * track_pfn_insert is called when a _new_ single pfn is established 468 * by vm_insert_pfn(). 469 */ 470static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 471 unsigned long pfn) 472{ 473 return 0; 474} 475 476/* 477 * track_pfn_copy is called when vma that is covering the pfnmap gets 478 * copied through copy_page_range(). 479 */ 480static inline int track_pfn_copy(struct vm_area_struct *vma) 481{ 482 return 0; 483} 484 485/* 486 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 487 * untrack can be called for a specific region indicated by pfn and size or 488 * can be for the entire vma (in which case pfn, size are zero). 489 */ 490static inline void untrack_pfn(struct vm_area_struct *vma, 491 unsigned long pfn, unsigned long size) 492{ 493} 494#else 495extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 496 unsigned long pfn, unsigned long addr, 497 unsigned long size); 498extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 499 unsigned long pfn); 500extern int track_pfn_copy(struct vm_area_struct *vma); 501extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 502 unsigned long size); 503#endif 504 505#ifdef __HAVE_COLOR_ZERO_PAGE 506static inline int is_zero_pfn(unsigned long pfn) 507{ 508 extern unsigned long zero_pfn; 509 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 510 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 511} 512 513#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 514 515#else 516static inline int is_zero_pfn(unsigned long pfn) 517{ 518 extern unsigned long zero_pfn; 519 return pfn == zero_pfn; 520} 521 522static inline unsigned long my_zero_pfn(unsigned long addr) 523{ 524 extern unsigned long zero_pfn; 525 return zero_pfn; 526} 527#endif 528 529#ifdef CONFIG_MMU 530 531#ifndef CONFIG_TRANSPARENT_HUGEPAGE 532static inline int pmd_trans_huge(pmd_t pmd) 533{ 534 return 0; 535} 536static inline int pmd_trans_splitting(pmd_t pmd) 537{ 538 return 0; 539} 540#ifndef __HAVE_ARCH_PMD_WRITE 541static inline int pmd_write(pmd_t pmd) 542{ 543 BUG(); 544 return 0; 545} 546#endif /* __HAVE_ARCH_PMD_WRITE */ 547#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 548 549#ifndef pmd_read_atomic 550static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 551{ 552 /* 553 * Depend on compiler for an atomic pmd read. NOTE: this is 554 * only going to work, if the pmdval_t isn't larger than 555 * an unsigned long. 556 */ 557 return *pmdp; 558} 559#endif 560 561/* 562 * This function is meant to be used by sites walking pagetables with 563 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 564 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 565 * into a null pmd and the transhuge page fault can convert a null pmd 566 * into an hugepmd or into a regular pmd (if the hugepage allocation 567 * fails). While holding the mmap_sem in read mode the pmd becomes 568 * stable and stops changing under us only if it's not null and not a 569 * transhuge pmd. When those races occurs and this function makes a 570 * difference vs the standard pmd_none_or_clear_bad, the result is 571 * undefined so behaving like if the pmd was none is safe (because it 572 * can return none anyway). The compiler level barrier() is critically 573 * important to compute the two checks atomically on the same pmdval. 574 * 575 * For 32bit kernels with a 64bit large pmd_t this automatically takes 576 * care of reading the pmd atomically to avoid SMP race conditions 577 * against pmd_populate() when the mmap_sem is hold for reading by the 578 * caller (a special atomic read not done by "gcc" as in the generic 579 * version above, is also needed when THP is disabled because the page 580 * fault can populate the pmd from under us). 581 */ 582static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 583{ 584 pmd_t pmdval = pmd_read_atomic(pmd); 585 /* 586 * The barrier will stabilize the pmdval in a register or on 587 * the stack so that it will stop changing under the code. 588 * 589 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 590 * pmd_read_atomic is allowed to return a not atomic pmdval 591 * (for example pointing to an hugepage that has never been 592 * mapped in the pmd). The below checks will only care about 593 * the low part of the pmd with 32bit PAE x86 anyway, with the 594 * exception of pmd_none(). So the important thing is that if 595 * the low part of the pmd is found null, the high part will 596 * be also null or the pmd_none() check below would be 597 * confused. 598 */ 599#ifdef CONFIG_TRANSPARENT_HUGEPAGE 600 barrier(); 601#endif 602 if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) 603 return 1; 604 if (unlikely(pmd_bad(pmdval))) { 605 pmd_clear_bad(pmd); 606 return 1; 607 } 608 return 0; 609} 610 611/* 612 * This is a noop if Transparent Hugepage Support is not built into 613 * the kernel. Otherwise it is equivalent to 614 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 615 * places that already verified the pmd is not none and they want to 616 * walk ptes while holding the mmap sem in read mode (write mode don't 617 * need this). If THP is not enabled, the pmd can't go away under the 618 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 619 * run a pmd_trans_unstable before walking the ptes after 620 * split_huge_page_pmd returns (because it may have run when the pmd 621 * become null, but then a page fault can map in a THP and not a 622 * regular page). 623 */ 624static inline int pmd_trans_unstable(pmd_t *pmd) 625{ 626#ifdef CONFIG_TRANSPARENT_HUGEPAGE 627 return pmd_none_or_trans_huge_or_clear_bad(pmd); 628#else 629 return 0; 630#endif 631} 632 633#ifdef CONFIG_NUMA_BALANCING 634#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 635/* 636 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the 637 * same bit too). It's set only when _PAGE_PRESET is not set and it's 638 * never set if _PAGE_PRESENT is set. 639 * 640 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page 641 * fault triggers on those regions if pte/pmd_numa returns true 642 * (because _PAGE_PRESENT is not set). 643 */ 644#ifndef pte_numa 645static inline int pte_numa(pte_t pte) 646{ 647 return (pte_flags(pte) & 648 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 649} 650#endif 651 652#ifndef pmd_numa 653static inline int pmd_numa(pmd_t pmd) 654{ 655 return (pmd_flags(pmd) & 656 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; 657} 658#endif 659 660/* 661 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically 662 * because they're called by the NUMA hinting minor page fault. If we 663 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler 664 * would be forced to set it later while filling the TLB after we 665 * return to userland. That would trigger a second write to memory 666 * that we optimize away by setting _PAGE_ACCESSED here. 667 */ 668#ifndef pte_mknonnuma 669static inline pte_t pte_mknonnuma(pte_t pte) 670{ 671 pte = pte_clear_flags(pte, _PAGE_NUMA); 672 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED); 673} 674#endif 675 676#ifndef pmd_mknonnuma 677static inline pmd_t pmd_mknonnuma(pmd_t pmd) 678{ 679 pmd = pmd_clear_flags(pmd, _PAGE_NUMA); 680 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED); 681} 682#endif 683 684#ifndef pte_mknuma 685static inline pte_t pte_mknuma(pte_t pte) 686{ 687 pte = pte_set_flags(pte, _PAGE_NUMA); 688 return pte_clear_flags(pte, _PAGE_PRESENT); 689} 690#endif 691 692#ifndef pmd_mknuma 693static inline pmd_t pmd_mknuma(pmd_t pmd) 694{ 695 pmd = pmd_set_flags(pmd, _PAGE_NUMA); 696 return pmd_clear_flags(pmd, _PAGE_PRESENT); 697} 698#endif 699#else 700extern int pte_numa(pte_t pte); 701extern int pmd_numa(pmd_t pmd); 702extern pte_t pte_mknonnuma(pte_t pte); 703extern pmd_t pmd_mknonnuma(pmd_t pmd); 704extern pte_t pte_mknuma(pte_t pte); 705extern pmd_t pmd_mknuma(pmd_t pmd); 706#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ 707#else 708static inline int pmd_numa(pmd_t pmd) 709{ 710 return 0; 711} 712 713static inline int pte_numa(pte_t pte) 714{ 715 return 0; 716} 717 718static inline pte_t pte_mknonnuma(pte_t pte) 719{ 720 return pte; 721} 722 723static inline pmd_t pmd_mknonnuma(pmd_t pmd) 724{ 725 return pmd; 726} 727 728static inline pte_t pte_mknuma(pte_t pte) 729{ 730 return pte; 731} 732 733static inline pmd_t pmd_mknuma(pmd_t pmd) 734{ 735 return pmd; 736} 737#endif /* CONFIG_NUMA_BALANCING */ 738 739#endif /* CONFIG_MMU */ 740 741#endif /* !__ASSEMBLY__ */ 742 743#ifndef io_remap_pfn_range 744#define io_remap_pfn_range remap_pfn_range 745#endif 746 747#endif /* _ASM_GENERIC_PGTABLE_H */