at v3.13 7047 lines 201 kB view raw
1/* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21/* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46#include <linux/blkdev.h> 47#include <linux/kthread.h> 48#include <linux/raid/pq.h> 49#include <linux/async_tx.h> 50#include <linux/module.h> 51#include <linux/async.h> 52#include <linux/seq_file.h> 53#include <linux/cpu.h> 54#include <linux/slab.h> 55#include <linux/ratelimit.h> 56#include <linux/nodemask.h> 57#include <trace/events/block.h> 58 59#include "md.h" 60#include "raid5.h" 61#include "raid0.h" 62#include "bitmap.h" 63 64#define cpu_to_group(cpu) cpu_to_node(cpu) 65#define ANY_GROUP NUMA_NO_NODE 66 67static struct workqueue_struct *raid5_wq; 68/* 69 * Stripe cache 70 */ 71 72#define NR_STRIPES 256 73#define STRIPE_SIZE PAGE_SIZE 74#define STRIPE_SHIFT (PAGE_SHIFT - 9) 75#define STRIPE_SECTORS (STRIPE_SIZE>>9) 76#define IO_THRESHOLD 1 77#define BYPASS_THRESHOLD 1 78#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 79#define HASH_MASK (NR_HASH - 1) 80#define MAX_STRIPE_BATCH 8 81 82static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 83{ 84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 85 return &conf->stripe_hashtbl[hash]; 86} 87 88static inline int stripe_hash_locks_hash(sector_t sect) 89{ 90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 91} 92 93static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 94{ 95 spin_lock_irq(conf->hash_locks + hash); 96 spin_lock(&conf->device_lock); 97} 98 99static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 100{ 101 spin_unlock(&conf->device_lock); 102 spin_unlock_irq(conf->hash_locks + hash); 103} 104 105static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 106{ 107 int i; 108 local_irq_disable(); 109 spin_lock(conf->hash_locks); 110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 112 spin_lock(&conf->device_lock); 113} 114 115static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 116{ 117 int i; 118 spin_unlock(&conf->device_lock); 119 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 120 spin_unlock(conf->hash_locks + i - 1); 121 local_irq_enable(); 122} 123 124/* bio's attached to a stripe+device for I/O are linked together in bi_sector 125 * order without overlap. There may be several bio's per stripe+device, and 126 * a bio could span several devices. 127 * When walking this list for a particular stripe+device, we must never proceed 128 * beyond a bio that extends past this device, as the next bio might no longer 129 * be valid. 130 * This function is used to determine the 'next' bio in the list, given the sector 131 * of the current stripe+device 132 */ 133static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 134{ 135 int sectors = bio_sectors(bio); 136 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 137 return bio->bi_next; 138 else 139 return NULL; 140} 141 142/* 143 * We maintain a biased count of active stripes in the bottom 16 bits of 144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 145 */ 146static inline int raid5_bi_processed_stripes(struct bio *bio) 147{ 148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 149 return (atomic_read(segments) >> 16) & 0xffff; 150} 151 152static inline int raid5_dec_bi_active_stripes(struct bio *bio) 153{ 154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 155 return atomic_sub_return(1, segments) & 0xffff; 156} 157 158static inline void raid5_inc_bi_active_stripes(struct bio *bio) 159{ 160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 161 atomic_inc(segments); 162} 163 164static inline void raid5_set_bi_processed_stripes(struct bio *bio, 165 unsigned int cnt) 166{ 167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 168 int old, new; 169 170 do { 171 old = atomic_read(segments); 172 new = (old & 0xffff) | (cnt << 16); 173 } while (atomic_cmpxchg(segments, old, new) != old); 174} 175 176static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 177{ 178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 179 atomic_set(segments, cnt); 180} 181 182/* Find first data disk in a raid6 stripe */ 183static inline int raid6_d0(struct stripe_head *sh) 184{ 185 if (sh->ddf_layout) 186 /* ddf always start from first device */ 187 return 0; 188 /* md starts just after Q block */ 189 if (sh->qd_idx == sh->disks - 1) 190 return 0; 191 else 192 return sh->qd_idx + 1; 193} 194static inline int raid6_next_disk(int disk, int raid_disks) 195{ 196 disk++; 197 return (disk < raid_disks) ? disk : 0; 198} 199 200/* When walking through the disks in a raid5, starting at raid6_d0, 201 * We need to map each disk to a 'slot', where the data disks are slot 202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 203 * is raid_disks-1. This help does that mapping. 204 */ 205static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 206 int *count, int syndrome_disks) 207{ 208 int slot = *count; 209 210 if (sh->ddf_layout) 211 (*count)++; 212 if (idx == sh->pd_idx) 213 return syndrome_disks; 214 if (idx == sh->qd_idx) 215 return syndrome_disks + 1; 216 if (!sh->ddf_layout) 217 (*count)++; 218 return slot; 219} 220 221static void return_io(struct bio *return_bi) 222{ 223 struct bio *bi = return_bi; 224 while (bi) { 225 226 return_bi = bi->bi_next; 227 bi->bi_next = NULL; 228 bi->bi_size = 0; 229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 230 bi, 0); 231 bio_endio(bi, 0); 232 bi = return_bi; 233 } 234} 235 236static void print_raid5_conf (struct r5conf *conf); 237 238static int stripe_operations_active(struct stripe_head *sh) 239{ 240 return sh->check_state || sh->reconstruct_state || 241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 242 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 243} 244 245static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 246{ 247 struct r5conf *conf = sh->raid_conf; 248 struct r5worker_group *group; 249 int thread_cnt; 250 int i, cpu = sh->cpu; 251 252 if (!cpu_online(cpu)) { 253 cpu = cpumask_any(cpu_online_mask); 254 sh->cpu = cpu; 255 } 256 257 if (list_empty(&sh->lru)) { 258 struct r5worker_group *group; 259 group = conf->worker_groups + cpu_to_group(cpu); 260 list_add_tail(&sh->lru, &group->handle_list); 261 group->stripes_cnt++; 262 sh->group = group; 263 } 264 265 if (conf->worker_cnt_per_group == 0) { 266 md_wakeup_thread(conf->mddev->thread); 267 return; 268 } 269 270 group = conf->worker_groups + cpu_to_group(sh->cpu); 271 272 group->workers[0].working = true; 273 /* at least one worker should run to avoid race */ 274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 275 276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 277 /* wakeup more workers */ 278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 279 if (group->workers[i].working == false) { 280 group->workers[i].working = true; 281 queue_work_on(sh->cpu, raid5_wq, 282 &group->workers[i].work); 283 thread_cnt--; 284 } 285 } 286} 287 288static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 289 struct list_head *temp_inactive_list) 290{ 291 BUG_ON(!list_empty(&sh->lru)); 292 BUG_ON(atomic_read(&conf->active_stripes)==0); 293 if (test_bit(STRIPE_HANDLE, &sh->state)) { 294 if (test_bit(STRIPE_DELAYED, &sh->state) && 295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 296 list_add_tail(&sh->lru, &conf->delayed_list); 297 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 298 sh->bm_seq - conf->seq_write > 0) 299 list_add_tail(&sh->lru, &conf->bitmap_list); 300 else { 301 clear_bit(STRIPE_DELAYED, &sh->state); 302 clear_bit(STRIPE_BIT_DELAY, &sh->state); 303 if (conf->worker_cnt_per_group == 0) { 304 list_add_tail(&sh->lru, &conf->handle_list); 305 } else { 306 raid5_wakeup_stripe_thread(sh); 307 return; 308 } 309 } 310 md_wakeup_thread(conf->mddev->thread); 311 } else { 312 BUG_ON(stripe_operations_active(sh)); 313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 314 if (atomic_dec_return(&conf->preread_active_stripes) 315 < IO_THRESHOLD) 316 md_wakeup_thread(conf->mddev->thread); 317 atomic_dec(&conf->active_stripes); 318 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 319 list_add_tail(&sh->lru, temp_inactive_list); 320 } 321} 322 323static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 324 struct list_head *temp_inactive_list) 325{ 326 if (atomic_dec_and_test(&sh->count)) 327 do_release_stripe(conf, sh, temp_inactive_list); 328} 329 330/* 331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 332 * 333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 334 * given time. Adding stripes only takes device lock, while deleting stripes 335 * only takes hash lock. 336 */ 337static void release_inactive_stripe_list(struct r5conf *conf, 338 struct list_head *temp_inactive_list, 339 int hash) 340{ 341 int size; 342 bool do_wakeup = false; 343 unsigned long flags; 344 345 if (hash == NR_STRIPE_HASH_LOCKS) { 346 size = NR_STRIPE_HASH_LOCKS; 347 hash = NR_STRIPE_HASH_LOCKS - 1; 348 } else 349 size = 1; 350 while (size) { 351 struct list_head *list = &temp_inactive_list[size - 1]; 352 353 /* 354 * We don't hold any lock here yet, get_active_stripe() might 355 * remove stripes from the list 356 */ 357 if (!list_empty_careful(list)) { 358 spin_lock_irqsave(conf->hash_locks + hash, flags); 359 if (list_empty(conf->inactive_list + hash) && 360 !list_empty(list)) 361 atomic_dec(&conf->empty_inactive_list_nr); 362 list_splice_tail_init(list, conf->inactive_list + hash); 363 do_wakeup = true; 364 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 365 } 366 size--; 367 hash--; 368 } 369 370 if (do_wakeup) { 371 wake_up(&conf->wait_for_stripe); 372 if (conf->retry_read_aligned) 373 md_wakeup_thread(conf->mddev->thread); 374 } 375} 376 377/* should hold conf->device_lock already */ 378static int release_stripe_list(struct r5conf *conf, 379 struct list_head *temp_inactive_list) 380{ 381 struct stripe_head *sh; 382 int count = 0; 383 struct llist_node *head; 384 385 head = llist_del_all(&conf->released_stripes); 386 head = llist_reverse_order(head); 387 while (head) { 388 int hash; 389 390 sh = llist_entry(head, struct stripe_head, release_list); 391 head = llist_next(head); 392 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 393 smp_mb(); 394 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 395 /* 396 * Don't worry the bit is set here, because if the bit is set 397 * again, the count is always > 1. This is true for 398 * STRIPE_ON_UNPLUG_LIST bit too. 399 */ 400 hash = sh->hash_lock_index; 401 __release_stripe(conf, sh, &temp_inactive_list[hash]); 402 count++; 403 } 404 405 return count; 406} 407 408static void release_stripe(struct stripe_head *sh) 409{ 410 struct r5conf *conf = sh->raid_conf; 411 unsigned long flags; 412 struct list_head list; 413 int hash; 414 bool wakeup; 415 416 if (unlikely(!conf->mddev->thread) || 417 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 418 goto slow_path; 419 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 420 if (wakeup) 421 md_wakeup_thread(conf->mddev->thread); 422 return; 423slow_path: 424 local_irq_save(flags); 425 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 426 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 427 INIT_LIST_HEAD(&list); 428 hash = sh->hash_lock_index; 429 do_release_stripe(conf, sh, &list); 430 spin_unlock(&conf->device_lock); 431 release_inactive_stripe_list(conf, &list, hash); 432 } 433 local_irq_restore(flags); 434} 435 436static inline void remove_hash(struct stripe_head *sh) 437{ 438 pr_debug("remove_hash(), stripe %llu\n", 439 (unsigned long long)sh->sector); 440 441 hlist_del_init(&sh->hash); 442} 443 444static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 445{ 446 struct hlist_head *hp = stripe_hash(conf, sh->sector); 447 448 pr_debug("insert_hash(), stripe %llu\n", 449 (unsigned long long)sh->sector); 450 451 hlist_add_head(&sh->hash, hp); 452} 453 454 455/* find an idle stripe, make sure it is unhashed, and return it. */ 456static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 457{ 458 struct stripe_head *sh = NULL; 459 struct list_head *first; 460 461 if (list_empty(conf->inactive_list + hash)) 462 goto out; 463 first = (conf->inactive_list + hash)->next; 464 sh = list_entry(first, struct stripe_head, lru); 465 list_del_init(first); 466 remove_hash(sh); 467 atomic_inc(&conf->active_stripes); 468 BUG_ON(hash != sh->hash_lock_index); 469 if (list_empty(conf->inactive_list + hash)) 470 atomic_inc(&conf->empty_inactive_list_nr); 471out: 472 return sh; 473} 474 475static void shrink_buffers(struct stripe_head *sh) 476{ 477 struct page *p; 478 int i; 479 int num = sh->raid_conf->pool_size; 480 481 for (i = 0; i < num ; i++) { 482 p = sh->dev[i].page; 483 if (!p) 484 continue; 485 sh->dev[i].page = NULL; 486 put_page(p); 487 } 488} 489 490static int grow_buffers(struct stripe_head *sh) 491{ 492 int i; 493 int num = sh->raid_conf->pool_size; 494 495 for (i = 0; i < num; i++) { 496 struct page *page; 497 498 if (!(page = alloc_page(GFP_KERNEL))) { 499 return 1; 500 } 501 sh->dev[i].page = page; 502 } 503 return 0; 504} 505 506static void raid5_build_block(struct stripe_head *sh, int i, int previous); 507static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 508 struct stripe_head *sh); 509 510static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 511{ 512 struct r5conf *conf = sh->raid_conf; 513 int i, seq; 514 515 BUG_ON(atomic_read(&sh->count) != 0); 516 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 517 BUG_ON(stripe_operations_active(sh)); 518 519 pr_debug("init_stripe called, stripe %llu\n", 520 (unsigned long long)sh->sector); 521 522 remove_hash(sh); 523retry: 524 seq = read_seqcount_begin(&conf->gen_lock); 525 sh->generation = conf->generation - previous; 526 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 527 sh->sector = sector; 528 stripe_set_idx(sector, conf, previous, sh); 529 sh->state = 0; 530 531 532 for (i = sh->disks; i--; ) { 533 struct r5dev *dev = &sh->dev[i]; 534 535 if (dev->toread || dev->read || dev->towrite || dev->written || 536 test_bit(R5_LOCKED, &dev->flags)) { 537 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 538 (unsigned long long)sh->sector, i, dev->toread, 539 dev->read, dev->towrite, dev->written, 540 test_bit(R5_LOCKED, &dev->flags)); 541 WARN_ON(1); 542 } 543 dev->flags = 0; 544 raid5_build_block(sh, i, previous); 545 } 546 if (read_seqcount_retry(&conf->gen_lock, seq)) 547 goto retry; 548 insert_hash(conf, sh); 549 sh->cpu = smp_processor_id(); 550} 551 552static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 553 short generation) 554{ 555 struct stripe_head *sh; 556 557 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 558 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 559 if (sh->sector == sector && sh->generation == generation) 560 return sh; 561 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 562 return NULL; 563} 564 565/* 566 * Need to check if array has failed when deciding whether to: 567 * - start an array 568 * - remove non-faulty devices 569 * - add a spare 570 * - allow a reshape 571 * This determination is simple when no reshape is happening. 572 * However if there is a reshape, we need to carefully check 573 * both the before and after sections. 574 * This is because some failed devices may only affect one 575 * of the two sections, and some non-in_sync devices may 576 * be insync in the section most affected by failed devices. 577 */ 578static int calc_degraded(struct r5conf *conf) 579{ 580 int degraded, degraded2; 581 int i; 582 583 rcu_read_lock(); 584 degraded = 0; 585 for (i = 0; i < conf->previous_raid_disks; i++) { 586 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 587 if (rdev && test_bit(Faulty, &rdev->flags)) 588 rdev = rcu_dereference(conf->disks[i].replacement); 589 if (!rdev || test_bit(Faulty, &rdev->flags)) 590 degraded++; 591 else if (test_bit(In_sync, &rdev->flags)) 592 ; 593 else 594 /* not in-sync or faulty. 595 * If the reshape increases the number of devices, 596 * this is being recovered by the reshape, so 597 * this 'previous' section is not in_sync. 598 * If the number of devices is being reduced however, 599 * the device can only be part of the array if 600 * we are reverting a reshape, so this section will 601 * be in-sync. 602 */ 603 if (conf->raid_disks >= conf->previous_raid_disks) 604 degraded++; 605 } 606 rcu_read_unlock(); 607 if (conf->raid_disks == conf->previous_raid_disks) 608 return degraded; 609 rcu_read_lock(); 610 degraded2 = 0; 611 for (i = 0; i < conf->raid_disks; i++) { 612 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 613 if (rdev && test_bit(Faulty, &rdev->flags)) 614 rdev = rcu_dereference(conf->disks[i].replacement); 615 if (!rdev || test_bit(Faulty, &rdev->flags)) 616 degraded2++; 617 else if (test_bit(In_sync, &rdev->flags)) 618 ; 619 else 620 /* not in-sync or faulty. 621 * If reshape increases the number of devices, this 622 * section has already been recovered, else it 623 * almost certainly hasn't. 624 */ 625 if (conf->raid_disks <= conf->previous_raid_disks) 626 degraded2++; 627 } 628 rcu_read_unlock(); 629 if (degraded2 > degraded) 630 return degraded2; 631 return degraded; 632} 633 634static int has_failed(struct r5conf *conf) 635{ 636 int degraded; 637 638 if (conf->mddev->reshape_position == MaxSector) 639 return conf->mddev->degraded > conf->max_degraded; 640 641 degraded = calc_degraded(conf); 642 if (degraded > conf->max_degraded) 643 return 1; 644 return 0; 645} 646 647static struct stripe_head * 648get_active_stripe(struct r5conf *conf, sector_t sector, 649 int previous, int noblock, int noquiesce) 650{ 651 struct stripe_head *sh; 652 int hash = stripe_hash_locks_hash(sector); 653 654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 655 656 spin_lock_irq(conf->hash_locks + hash); 657 658 do { 659 wait_event_lock_irq(conf->wait_for_stripe, 660 conf->quiesce == 0 || noquiesce, 661 *(conf->hash_locks + hash)); 662 sh = __find_stripe(conf, sector, conf->generation - previous); 663 if (!sh) { 664 if (!conf->inactive_blocked) 665 sh = get_free_stripe(conf, hash); 666 if (noblock && sh == NULL) 667 break; 668 if (!sh) { 669 conf->inactive_blocked = 1; 670 wait_event_lock_irq( 671 conf->wait_for_stripe, 672 !list_empty(conf->inactive_list + hash) && 673 (atomic_read(&conf->active_stripes) 674 < (conf->max_nr_stripes * 3 / 4) 675 || !conf->inactive_blocked), 676 *(conf->hash_locks + hash)); 677 conf->inactive_blocked = 0; 678 } else 679 init_stripe(sh, sector, previous); 680 } else { 681 spin_lock(&conf->device_lock); 682 if (atomic_read(&sh->count)) { 683 BUG_ON(!list_empty(&sh->lru) 684 && !test_bit(STRIPE_EXPANDING, &sh->state) 685 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state) 686 ); 687 } else { 688 if (!test_bit(STRIPE_HANDLE, &sh->state)) 689 atomic_inc(&conf->active_stripes); 690 BUG_ON(list_empty(&sh->lru) && 691 !test_bit(STRIPE_EXPANDING, &sh->state)); 692 list_del_init(&sh->lru); 693 if (sh->group) { 694 sh->group->stripes_cnt--; 695 sh->group = NULL; 696 } 697 } 698 spin_unlock(&conf->device_lock); 699 } 700 } while (sh == NULL); 701 702 if (sh) 703 atomic_inc(&sh->count); 704 705 spin_unlock_irq(conf->hash_locks + hash); 706 return sh; 707} 708 709/* Determine if 'data_offset' or 'new_data_offset' should be used 710 * in this stripe_head. 711 */ 712static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 713{ 714 sector_t progress = conf->reshape_progress; 715 /* Need a memory barrier to make sure we see the value 716 * of conf->generation, or ->data_offset that was set before 717 * reshape_progress was updated. 718 */ 719 smp_rmb(); 720 if (progress == MaxSector) 721 return 0; 722 if (sh->generation == conf->generation - 1) 723 return 0; 724 /* We are in a reshape, and this is a new-generation stripe, 725 * so use new_data_offset. 726 */ 727 return 1; 728} 729 730static void 731raid5_end_read_request(struct bio *bi, int error); 732static void 733raid5_end_write_request(struct bio *bi, int error); 734 735static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 736{ 737 struct r5conf *conf = sh->raid_conf; 738 int i, disks = sh->disks; 739 740 might_sleep(); 741 742 for (i = disks; i--; ) { 743 int rw; 744 int replace_only = 0; 745 struct bio *bi, *rbi; 746 struct md_rdev *rdev, *rrdev = NULL; 747 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 748 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 749 rw = WRITE_FUA; 750 else 751 rw = WRITE; 752 if (test_bit(R5_Discard, &sh->dev[i].flags)) 753 rw |= REQ_DISCARD; 754 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 755 rw = READ; 756 else if (test_and_clear_bit(R5_WantReplace, 757 &sh->dev[i].flags)) { 758 rw = WRITE; 759 replace_only = 1; 760 } else 761 continue; 762 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 763 rw |= REQ_SYNC; 764 765 bi = &sh->dev[i].req; 766 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 767 768 rcu_read_lock(); 769 rrdev = rcu_dereference(conf->disks[i].replacement); 770 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 771 rdev = rcu_dereference(conf->disks[i].rdev); 772 if (!rdev) { 773 rdev = rrdev; 774 rrdev = NULL; 775 } 776 if (rw & WRITE) { 777 if (replace_only) 778 rdev = NULL; 779 if (rdev == rrdev) 780 /* We raced and saw duplicates */ 781 rrdev = NULL; 782 } else { 783 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 784 rdev = rrdev; 785 rrdev = NULL; 786 } 787 788 if (rdev && test_bit(Faulty, &rdev->flags)) 789 rdev = NULL; 790 if (rdev) 791 atomic_inc(&rdev->nr_pending); 792 if (rrdev && test_bit(Faulty, &rrdev->flags)) 793 rrdev = NULL; 794 if (rrdev) 795 atomic_inc(&rrdev->nr_pending); 796 rcu_read_unlock(); 797 798 /* We have already checked bad blocks for reads. Now 799 * need to check for writes. We never accept write errors 800 * on the replacement, so we don't to check rrdev. 801 */ 802 while ((rw & WRITE) && rdev && 803 test_bit(WriteErrorSeen, &rdev->flags)) { 804 sector_t first_bad; 805 int bad_sectors; 806 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 807 &first_bad, &bad_sectors); 808 if (!bad) 809 break; 810 811 if (bad < 0) { 812 set_bit(BlockedBadBlocks, &rdev->flags); 813 if (!conf->mddev->external && 814 conf->mddev->flags) { 815 /* It is very unlikely, but we might 816 * still need to write out the 817 * bad block log - better give it 818 * a chance*/ 819 md_check_recovery(conf->mddev); 820 } 821 /* 822 * Because md_wait_for_blocked_rdev 823 * will dec nr_pending, we must 824 * increment it first. 825 */ 826 atomic_inc(&rdev->nr_pending); 827 md_wait_for_blocked_rdev(rdev, conf->mddev); 828 } else { 829 /* Acknowledged bad block - skip the write */ 830 rdev_dec_pending(rdev, conf->mddev); 831 rdev = NULL; 832 } 833 } 834 835 if (rdev) { 836 if (s->syncing || s->expanding || s->expanded 837 || s->replacing) 838 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 839 840 set_bit(STRIPE_IO_STARTED, &sh->state); 841 842 bio_reset(bi); 843 bi->bi_bdev = rdev->bdev; 844 bi->bi_rw = rw; 845 bi->bi_end_io = (rw & WRITE) 846 ? raid5_end_write_request 847 : raid5_end_read_request; 848 bi->bi_private = sh; 849 850 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 851 __func__, (unsigned long long)sh->sector, 852 bi->bi_rw, i); 853 atomic_inc(&sh->count); 854 if (use_new_offset(conf, sh)) 855 bi->bi_sector = (sh->sector 856 + rdev->new_data_offset); 857 else 858 bi->bi_sector = (sh->sector 859 + rdev->data_offset); 860 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 861 bi->bi_rw |= REQ_NOMERGE; 862 863 bi->bi_vcnt = 1; 864 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 865 bi->bi_io_vec[0].bv_offset = 0; 866 bi->bi_size = STRIPE_SIZE; 867 /* 868 * If this is discard request, set bi_vcnt 0. We don't 869 * want to confuse SCSI because SCSI will replace payload 870 */ 871 if (rw & REQ_DISCARD) 872 bi->bi_vcnt = 0; 873 if (rrdev) 874 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 875 876 if (conf->mddev->gendisk) 877 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 878 bi, disk_devt(conf->mddev->gendisk), 879 sh->dev[i].sector); 880 generic_make_request(bi); 881 } 882 if (rrdev) { 883 if (s->syncing || s->expanding || s->expanded 884 || s->replacing) 885 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 886 887 set_bit(STRIPE_IO_STARTED, &sh->state); 888 889 bio_reset(rbi); 890 rbi->bi_bdev = rrdev->bdev; 891 rbi->bi_rw = rw; 892 BUG_ON(!(rw & WRITE)); 893 rbi->bi_end_io = raid5_end_write_request; 894 rbi->bi_private = sh; 895 896 pr_debug("%s: for %llu schedule op %ld on " 897 "replacement disc %d\n", 898 __func__, (unsigned long long)sh->sector, 899 rbi->bi_rw, i); 900 atomic_inc(&sh->count); 901 if (use_new_offset(conf, sh)) 902 rbi->bi_sector = (sh->sector 903 + rrdev->new_data_offset); 904 else 905 rbi->bi_sector = (sh->sector 906 + rrdev->data_offset); 907 rbi->bi_vcnt = 1; 908 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 909 rbi->bi_io_vec[0].bv_offset = 0; 910 rbi->bi_size = STRIPE_SIZE; 911 /* 912 * If this is discard request, set bi_vcnt 0. We don't 913 * want to confuse SCSI because SCSI will replace payload 914 */ 915 if (rw & REQ_DISCARD) 916 rbi->bi_vcnt = 0; 917 if (conf->mddev->gendisk) 918 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 919 rbi, disk_devt(conf->mddev->gendisk), 920 sh->dev[i].sector); 921 generic_make_request(rbi); 922 } 923 if (!rdev && !rrdev) { 924 if (rw & WRITE) 925 set_bit(STRIPE_DEGRADED, &sh->state); 926 pr_debug("skip op %ld on disc %d for sector %llu\n", 927 bi->bi_rw, i, (unsigned long long)sh->sector); 928 clear_bit(R5_LOCKED, &sh->dev[i].flags); 929 set_bit(STRIPE_HANDLE, &sh->state); 930 } 931 } 932} 933 934static struct dma_async_tx_descriptor * 935async_copy_data(int frombio, struct bio *bio, struct page *page, 936 sector_t sector, struct dma_async_tx_descriptor *tx) 937{ 938 struct bio_vec *bvl; 939 struct page *bio_page; 940 int i; 941 int page_offset; 942 struct async_submit_ctl submit; 943 enum async_tx_flags flags = 0; 944 945 if (bio->bi_sector >= sector) 946 page_offset = (signed)(bio->bi_sector - sector) * 512; 947 else 948 page_offset = (signed)(sector - bio->bi_sector) * -512; 949 950 if (frombio) 951 flags |= ASYNC_TX_FENCE; 952 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 953 954 bio_for_each_segment(bvl, bio, i) { 955 int len = bvl->bv_len; 956 int clen; 957 int b_offset = 0; 958 959 if (page_offset < 0) { 960 b_offset = -page_offset; 961 page_offset += b_offset; 962 len -= b_offset; 963 } 964 965 if (len > 0 && page_offset + len > STRIPE_SIZE) 966 clen = STRIPE_SIZE - page_offset; 967 else 968 clen = len; 969 970 if (clen > 0) { 971 b_offset += bvl->bv_offset; 972 bio_page = bvl->bv_page; 973 if (frombio) 974 tx = async_memcpy(page, bio_page, page_offset, 975 b_offset, clen, &submit); 976 else 977 tx = async_memcpy(bio_page, page, b_offset, 978 page_offset, clen, &submit); 979 } 980 /* chain the operations */ 981 submit.depend_tx = tx; 982 983 if (clen < len) /* hit end of page */ 984 break; 985 page_offset += len; 986 } 987 988 return tx; 989} 990 991static void ops_complete_biofill(void *stripe_head_ref) 992{ 993 struct stripe_head *sh = stripe_head_ref; 994 struct bio *return_bi = NULL; 995 int i; 996 997 pr_debug("%s: stripe %llu\n", __func__, 998 (unsigned long long)sh->sector); 999 1000 /* clear completed biofills */ 1001 for (i = sh->disks; i--; ) { 1002 struct r5dev *dev = &sh->dev[i]; 1003 1004 /* acknowledge completion of a biofill operation */ 1005 /* and check if we need to reply to a read request, 1006 * new R5_Wantfill requests are held off until 1007 * !STRIPE_BIOFILL_RUN 1008 */ 1009 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1010 struct bio *rbi, *rbi2; 1011 1012 BUG_ON(!dev->read); 1013 rbi = dev->read; 1014 dev->read = NULL; 1015 while (rbi && rbi->bi_sector < 1016 dev->sector + STRIPE_SECTORS) { 1017 rbi2 = r5_next_bio(rbi, dev->sector); 1018 if (!raid5_dec_bi_active_stripes(rbi)) { 1019 rbi->bi_next = return_bi; 1020 return_bi = rbi; 1021 } 1022 rbi = rbi2; 1023 } 1024 } 1025 } 1026 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1027 1028 return_io(return_bi); 1029 1030 set_bit(STRIPE_HANDLE, &sh->state); 1031 release_stripe(sh); 1032} 1033 1034static void ops_run_biofill(struct stripe_head *sh) 1035{ 1036 struct dma_async_tx_descriptor *tx = NULL; 1037 struct async_submit_ctl submit; 1038 int i; 1039 1040 pr_debug("%s: stripe %llu\n", __func__, 1041 (unsigned long long)sh->sector); 1042 1043 for (i = sh->disks; i--; ) { 1044 struct r5dev *dev = &sh->dev[i]; 1045 if (test_bit(R5_Wantfill, &dev->flags)) { 1046 struct bio *rbi; 1047 spin_lock_irq(&sh->stripe_lock); 1048 dev->read = rbi = dev->toread; 1049 dev->toread = NULL; 1050 spin_unlock_irq(&sh->stripe_lock); 1051 while (rbi && rbi->bi_sector < 1052 dev->sector + STRIPE_SECTORS) { 1053 tx = async_copy_data(0, rbi, dev->page, 1054 dev->sector, tx); 1055 rbi = r5_next_bio(rbi, dev->sector); 1056 } 1057 } 1058 } 1059 1060 atomic_inc(&sh->count); 1061 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1062 async_trigger_callback(&submit); 1063} 1064 1065static void mark_target_uptodate(struct stripe_head *sh, int target) 1066{ 1067 struct r5dev *tgt; 1068 1069 if (target < 0) 1070 return; 1071 1072 tgt = &sh->dev[target]; 1073 set_bit(R5_UPTODATE, &tgt->flags); 1074 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1075 clear_bit(R5_Wantcompute, &tgt->flags); 1076} 1077 1078static void ops_complete_compute(void *stripe_head_ref) 1079{ 1080 struct stripe_head *sh = stripe_head_ref; 1081 1082 pr_debug("%s: stripe %llu\n", __func__, 1083 (unsigned long long)sh->sector); 1084 1085 /* mark the computed target(s) as uptodate */ 1086 mark_target_uptodate(sh, sh->ops.target); 1087 mark_target_uptodate(sh, sh->ops.target2); 1088 1089 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1090 if (sh->check_state == check_state_compute_run) 1091 sh->check_state = check_state_compute_result; 1092 set_bit(STRIPE_HANDLE, &sh->state); 1093 release_stripe(sh); 1094} 1095 1096/* return a pointer to the address conversion region of the scribble buffer */ 1097static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1098 struct raid5_percpu *percpu) 1099{ 1100 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 1101} 1102 1103static struct dma_async_tx_descriptor * 1104ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1105{ 1106 int disks = sh->disks; 1107 struct page **xor_srcs = percpu->scribble; 1108 int target = sh->ops.target; 1109 struct r5dev *tgt = &sh->dev[target]; 1110 struct page *xor_dest = tgt->page; 1111 int count = 0; 1112 struct dma_async_tx_descriptor *tx; 1113 struct async_submit_ctl submit; 1114 int i; 1115 1116 pr_debug("%s: stripe %llu block: %d\n", 1117 __func__, (unsigned long long)sh->sector, target); 1118 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1119 1120 for (i = disks; i--; ) 1121 if (i != target) 1122 xor_srcs[count++] = sh->dev[i].page; 1123 1124 atomic_inc(&sh->count); 1125 1126 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1127 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 1128 if (unlikely(count == 1)) 1129 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1130 else 1131 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1132 1133 return tx; 1134} 1135 1136/* set_syndrome_sources - populate source buffers for gen_syndrome 1137 * @srcs - (struct page *) array of size sh->disks 1138 * @sh - stripe_head to parse 1139 * 1140 * Populates srcs in proper layout order for the stripe and returns the 1141 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1142 * destination buffer is recorded in srcs[count] and the Q destination 1143 * is recorded in srcs[count+1]]. 1144 */ 1145static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 1146{ 1147 int disks = sh->disks; 1148 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1149 int d0_idx = raid6_d0(sh); 1150 int count; 1151 int i; 1152 1153 for (i = 0; i < disks; i++) 1154 srcs[i] = NULL; 1155 1156 count = 0; 1157 i = d0_idx; 1158 do { 1159 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1160 1161 srcs[slot] = sh->dev[i].page; 1162 i = raid6_next_disk(i, disks); 1163 } while (i != d0_idx); 1164 1165 return syndrome_disks; 1166} 1167 1168static struct dma_async_tx_descriptor * 1169ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1170{ 1171 int disks = sh->disks; 1172 struct page **blocks = percpu->scribble; 1173 int target; 1174 int qd_idx = sh->qd_idx; 1175 struct dma_async_tx_descriptor *tx; 1176 struct async_submit_ctl submit; 1177 struct r5dev *tgt; 1178 struct page *dest; 1179 int i; 1180 int count; 1181 1182 if (sh->ops.target < 0) 1183 target = sh->ops.target2; 1184 else if (sh->ops.target2 < 0) 1185 target = sh->ops.target; 1186 else 1187 /* we should only have one valid target */ 1188 BUG(); 1189 BUG_ON(target < 0); 1190 pr_debug("%s: stripe %llu block: %d\n", 1191 __func__, (unsigned long long)sh->sector, target); 1192 1193 tgt = &sh->dev[target]; 1194 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1195 dest = tgt->page; 1196 1197 atomic_inc(&sh->count); 1198 1199 if (target == qd_idx) { 1200 count = set_syndrome_sources(blocks, sh); 1201 blocks[count] = NULL; /* regenerating p is not necessary */ 1202 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1203 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1204 ops_complete_compute, sh, 1205 to_addr_conv(sh, percpu)); 1206 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1207 } else { 1208 /* Compute any data- or p-drive using XOR */ 1209 count = 0; 1210 for (i = disks; i-- ; ) { 1211 if (i == target || i == qd_idx) 1212 continue; 1213 blocks[count++] = sh->dev[i].page; 1214 } 1215 1216 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1217 NULL, ops_complete_compute, sh, 1218 to_addr_conv(sh, percpu)); 1219 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1220 } 1221 1222 return tx; 1223} 1224 1225static struct dma_async_tx_descriptor * 1226ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1227{ 1228 int i, count, disks = sh->disks; 1229 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1230 int d0_idx = raid6_d0(sh); 1231 int faila = -1, failb = -1; 1232 int target = sh->ops.target; 1233 int target2 = sh->ops.target2; 1234 struct r5dev *tgt = &sh->dev[target]; 1235 struct r5dev *tgt2 = &sh->dev[target2]; 1236 struct dma_async_tx_descriptor *tx; 1237 struct page **blocks = percpu->scribble; 1238 struct async_submit_ctl submit; 1239 1240 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1241 __func__, (unsigned long long)sh->sector, target, target2); 1242 BUG_ON(target < 0 || target2 < 0); 1243 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1244 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1245 1246 /* we need to open-code set_syndrome_sources to handle the 1247 * slot number conversion for 'faila' and 'failb' 1248 */ 1249 for (i = 0; i < disks ; i++) 1250 blocks[i] = NULL; 1251 count = 0; 1252 i = d0_idx; 1253 do { 1254 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1255 1256 blocks[slot] = sh->dev[i].page; 1257 1258 if (i == target) 1259 faila = slot; 1260 if (i == target2) 1261 failb = slot; 1262 i = raid6_next_disk(i, disks); 1263 } while (i != d0_idx); 1264 1265 BUG_ON(faila == failb); 1266 if (failb < faila) 1267 swap(faila, failb); 1268 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1269 __func__, (unsigned long long)sh->sector, faila, failb); 1270 1271 atomic_inc(&sh->count); 1272 1273 if (failb == syndrome_disks+1) { 1274 /* Q disk is one of the missing disks */ 1275 if (faila == syndrome_disks) { 1276 /* Missing P+Q, just recompute */ 1277 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1278 ops_complete_compute, sh, 1279 to_addr_conv(sh, percpu)); 1280 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1281 STRIPE_SIZE, &submit); 1282 } else { 1283 struct page *dest; 1284 int data_target; 1285 int qd_idx = sh->qd_idx; 1286 1287 /* Missing D+Q: recompute D from P, then recompute Q */ 1288 if (target == qd_idx) 1289 data_target = target2; 1290 else 1291 data_target = target; 1292 1293 count = 0; 1294 for (i = disks; i-- ; ) { 1295 if (i == data_target || i == qd_idx) 1296 continue; 1297 blocks[count++] = sh->dev[i].page; 1298 } 1299 dest = sh->dev[data_target].page; 1300 init_async_submit(&submit, 1301 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1302 NULL, NULL, NULL, 1303 to_addr_conv(sh, percpu)); 1304 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1305 &submit); 1306 1307 count = set_syndrome_sources(blocks, sh); 1308 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1309 ops_complete_compute, sh, 1310 to_addr_conv(sh, percpu)); 1311 return async_gen_syndrome(blocks, 0, count+2, 1312 STRIPE_SIZE, &submit); 1313 } 1314 } else { 1315 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1316 ops_complete_compute, sh, 1317 to_addr_conv(sh, percpu)); 1318 if (failb == syndrome_disks) { 1319 /* We're missing D+P. */ 1320 return async_raid6_datap_recov(syndrome_disks+2, 1321 STRIPE_SIZE, faila, 1322 blocks, &submit); 1323 } else { 1324 /* We're missing D+D. */ 1325 return async_raid6_2data_recov(syndrome_disks+2, 1326 STRIPE_SIZE, faila, failb, 1327 blocks, &submit); 1328 } 1329 } 1330} 1331 1332 1333static void ops_complete_prexor(void *stripe_head_ref) 1334{ 1335 struct stripe_head *sh = stripe_head_ref; 1336 1337 pr_debug("%s: stripe %llu\n", __func__, 1338 (unsigned long long)sh->sector); 1339} 1340 1341static struct dma_async_tx_descriptor * 1342ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1343 struct dma_async_tx_descriptor *tx) 1344{ 1345 int disks = sh->disks; 1346 struct page **xor_srcs = percpu->scribble; 1347 int count = 0, pd_idx = sh->pd_idx, i; 1348 struct async_submit_ctl submit; 1349 1350 /* existing parity data subtracted */ 1351 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1352 1353 pr_debug("%s: stripe %llu\n", __func__, 1354 (unsigned long long)sh->sector); 1355 1356 for (i = disks; i--; ) { 1357 struct r5dev *dev = &sh->dev[i]; 1358 /* Only process blocks that are known to be uptodate */ 1359 if (test_bit(R5_Wantdrain, &dev->flags)) 1360 xor_srcs[count++] = dev->page; 1361 } 1362 1363 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1364 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1365 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1366 1367 return tx; 1368} 1369 1370static struct dma_async_tx_descriptor * 1371ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1372{ 1373 int disks = sh->disks; 1374 int i; 1375 1376 pr_debug("%s: stripe %llu\n", __func__, 1377 (unsigned long long)sh->sector); 1378 1379 for (i = disks; i--; ) { 1380 struct r5dev *dev = &sh->dev[i]; 1381 struct bio *chosen; 1382 1383 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1384 struct bio *wbi; 1385 1386 spin_lock_irq(&sh->stripe_lock); 1387 chosen = dev->towrite; 1388 dev->towrite = NULL; 1389 BUG_ON(dev->written); 1390 wbi = dev->written = chosen; 1391 spin_unlock_irq(&sh->stripe_lock); 1392 1393 while (wbi && wbi->bi_sector < 1394 dev->sector + STRIPE_SECTORS) { 1395 if (wbi->bi_rw & REQ_FUA) 1396 set_bit(R5_WantFUA, &dev->flags); 1397 if (wbi->bi_rw & REQ_SYNC) 1398 set_bit(R5_SyncIO, &dev->flags); 1399 if (wbi->bi_rw & REQ_DISCARD) 1400 set_bit(R5_Discard, &dev->flags); 1401 else 1402 tx = async_copy_data(1, wbi, dev->page, 1403 dev->sector, tx); 1404 wbi = r5_next_bio(wbi, dev->sector); 1405 } 1406 } 1407 } 1408 1409 return tx; 1410} 1411 1412static void ops_complete_reconstruct(void *stripe_head_ref) 1413{ 1414 struct stripe_head *sh = stripe_head_ref; 1415 int disks = sh->disks; 1416 int pd_idx = sh->pd_idx; 1417 int qd_idx = sh->qd_idx; 1418 int i; 1419 bool fua = false, sync = false, discard = false; 1420 1421 pr_debug("%s: stripe %llu\n", __func__, 1422 (unsigned long long)sh->sector); 1423 1424 for (i = disks; i--; ) { 1425 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1426 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1427 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1428 } 1429 1430 for (i = disks; i--; ) { 1431 struct r5dev *dev = &sh->dev[i]; 1432 1433 if (dev->written || i == pd_idx || i == qd_idx) { 1434 if (!discard) 1435 set_bit(R5_UPTODATE, &dev->flags); 1436 if (fua) 1437 set_bit(R5_WantFUA, &dev->flags); 1438 if (sync) 1439 set_bit(R5_SyncIO, &dev->flags); 1440 } 1441 } 1442 1443 if (sh->reconstruct_state == reconstruct_state_drain_run) 1444 sh->reconstruct_state = reconstruct_state_drain_result; 1445 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1446 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1447 else { 1448 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1449 sh->reconstruct_state = reconstruct_state_result; 1450 } 1451 1452 set_bit(STRIPE_HANDLE, &sh->state); 1453 release_stripe(sh); 1454} 1455 1456static void 1457ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1458 struct dma_async_tx_descriptor *tx) 1459{ 1460 int disks = sh->disks; 1461 struct page **xor_srcs = percpu->scribble; 1462 struct async_submit_ctl submit; 1463 int count = 0, pd_idx = sh->pd_idx, i; 1464 struct page *xor_dest; 1465 int prexor = 0; 1466 unsigned long flags; 1467 1468 pr_debug("%s: stripe %llu\n", __func__, 1469 (unsigned long long)sh->sector); 1470 1471 for (i = 0; i < sh->disks; i++) { 1472 if (pd_idx == i) 1473 continue; 1474 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1475 break; 1476 } 1477 if (i >= sh->disks) { 1478 atomic_inc(&sh->count); 1479 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1480 ops_complete_reconstruct(sh); 1481 return; 1482 } 1483 /* check if prexor is active which means only process blocks 1484 * that are part of a read-modify-write (written) 1485 */ 1486 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1487 prexor = 1; 1488 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1489 for (i = disks; i--; ) { 1490 struct r5dev *dev = &sh->dev[i]; 1491 if (dev->written) 1492 xor_srcs[count++] = dev->page; 1493 } 1494 } else { 1495 xor_dest = sh->dev[pd_idx].page; 1496 for (i = disks; i--; ) { 1497 struct r5dev *dev = &sh->dev[i]; 1498 if (i != pd_idx) 1499 xor_srcs[count++] = dev->page; 1500 } 1501 } 1502 1503 /* 1/ if we prexor'd then the dest is reused as a source 1504 * 2/ if we did not prexor then we are redoing the parity 1505 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1506 * for the synchronous xor case 1507 */ 1508 flags = ASYNC_TX_ACK | 1509 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1510 1511 atomic_inc(&sh->count); 1512 1513 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1514 to_addr_conv(sh, percpu)); 1515 if (unlikely(count == 1)) 1516 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1517 else 1518 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1519} 1520 1521static void 1522ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1523 struct dma_async_tx_descriptor *tx) 1524{ 1525 struct async_submit_ctl submit; 1526 struct page **blocks = percpu->scribble; 1527 int count, i; 1528 1529 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1530 1531 for (i = 0; i < sh->disks; i++) { 1532 if (sh->pd_idx == i || sh->qd_idx == i) 1533 continue; 1534 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1535 break; 1536 } 1537 if (i >= sh->disks) { 1538 atomic_inc(&sh->count); 1539 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1540 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1541 ops_complete_reconstruct(sh); 1542 return; 1543 } 1544 1545 count = set_syndrome_sources(blocks, sh); 1546 1547 atomic_inc(&sh->count); 1548 1549 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1550 sh, to_addr_conv(sh, percpu)); 1551 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1552} 1553 1554static void ops_complete_check(void *stripe_head_ref) 1555{ 1556 struct stripe_head *sh = stripe_head_ref; 1557 1558 pr_debug("%s: stripe %llu\n", __func__, 1559 (unsigned long long)sh->sector); 1560 1561 sh->check_state = check_state_check_result; 1562 set_bit(STRIPE_HANDLE, &sh->state); 1563 release_stripe(sh); 1564} 1565 1566static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1567{ 1568 int disks = sh->disks; 1569 int pd_idx = sh->pd_idx; 1570 int qd_idx = sh->qd_idx; 1571 struct page *xor_dest; 1572 struct page **xor_srcs = percpu->scribble; 1573 struct dma_async_tx_descriptor *tx; 1574 struct async_submit_ctl submit; 1575 int count; 1576 int i; 1577 1578 pr_debug("%s: stripe %llu\n", __func__, 1579 (unsigned long long)sh->sector); 1580 1581 count = 0; 1582 xor_dest = sh->dev[pd_idx].page; 1583 xor_srcs[count++] = xor_dest; 1584 for (i = disks; i--; ) { 1585 if (i == pd_idx || i == qd_idx) 1586 continue; 1587 xor_srcs[count++] = sh->dev[i].page; 1588 } 1589 1590 init_async_submit(&submit, 0, NULL, NULL, NULL, 1591 to_addr_conv(sh, percpu)); 1592 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1593 &sh->ops.zero_sum_result, &submit); 1594 1595 atomic_inc(&sh->count); 1596 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1597 tx = async_trigger_callback(&submit); 1598} 1599 1600static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1601{ 1602 struct page **srcs = percpu->scribble; 1603 struct async_submit_ctl submit; 1604 int count; 1605 1606 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1607 (unsigned long long)sh->sector, checkp); 1608 1609 count = set_syndrome_sources(srcs, sh); 1610 if (!checkp) 1611 srcs[count] = NULL; 1612 1613 atomic_inc(&sh->count); 1614 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1615 sh, to_addr_conv(sh, percpu)); 1616 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1617 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1618} 1619 1620static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1621{ 1622 int overlap_clear = 0, i, disks = sh->disks; 1623 struct dma_async_tx_descriptor *tx = NULL; 1624 struct r5conf *conf = sh->raid_conf; 1625 int level = conf->level; 1626 struct raid5_percpu *percpu; 1627 unsigned long cpu; 1628 1629 cpu = get_cpu(); 1630 percpu = per_cpu_ptr(conf->percpu, cpu); 1631 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1632 ops_run_biofill(sh); 1633 overlap_clear++; 1634 } 1635 1636 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1637 if (level < 6) 1638 tx = ops_run_compute5(sh, percpu); 1639 else { 1640 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1641 tx = ops_run_compute6_1(sh, percpu); 1642 else 1643 tx = ops_run_compute6_2(sh, percpu); 1644 } 1645 /* terminate the chain if reconstruct is not set to be run */ 1646 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1647 async_tx_ack(tx); 1648 } 1649 1650 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1651 tx = ops_run_prexor(sh, percpu, tx); 1652 1653 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1654 tx = ops_run_biodrain(sh, tx); 1655 overlap_clear++; 1656 } 1657 1658 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1659 if (level < 6) 1660 ops_run_reconstruct5(sh, percpu, tx); 1661 else 1662 ops_run_reconstruct6(sh, percpu, tx); 1663 } 1664 1665 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1666 if (sh->check_state == check_state_run) 1667 ops_run_check_p(sh, percpu); 1668 else if (sh->check_state == check_state_run_q) 1669 ops_run_check_pq(sh, percpu, 0); 1670 else if (sh->check_state == check_state_run_pq) 1671 ops_run_check_pq(sh, percpu, 1); 1672 else 1673 BUG(); 1674 } 1675 1676 if (overlap_clear) 1677 for (i = disks; i--; ) { 1678 struct r5dev *dev = &sh->dev[i]; 1679 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1680 wake_up(&sh->raid_conf->wait_for_overlap); 1681 } 1682 put_cpu(); 1683} 1684 1685static int grow_one_stripe(struct r5conf *conf, int hash) 1686{ 1687 struct stripe_head *sh; 1688 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1689 if (!sh) 1690 return 0; 1691 1692 sh->raid_conf = conf; 1693 1694 spin_lock_init(&sh->stripe_lock); 1695 1696 if (grow_buffers(sh)) { 1697 shrink_buffers(sh); 1698 kmem_cache_free(conf->slab_cache, sh); 1699 return 0; 1700 } 1701 sh->hash_lock_index = hash; 1702 /* we just created an active stripe so... */ 1703 atomic_set(&sh->count, 1); 1704 atomic_inc(&conf->active_stripes); 1705 INIT_LIST_HEAD(&sh->lru); 1706 release_stripe(sh); 1707 return 1; 1708} 1709 1710static int grow_stripes(struct r5conf *conf, int num) 1711{ 1712 struct kmem_cache *sc; 1713 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1714 int hash; 1715 1716 if (conf->mddev->gendisk) 1717 sprintf(conf->cache_name[0], 1718 "raid%d-%s", conf->level, mdname(conf->mddev)); 1719 else 1720 sprintf(conf->cache_name[0], 1721 "raid%d-%p", conf->level, conf->mddev); 1722 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1723 1724 conf->active_name = 0; 1725 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1726 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1727 0, 0, NULL); 1728 if (!sc) 1729 return 1; 1730 conf->slab_cache = sc; 1731 conf->pool_size = devs; 1732 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 1733 while (num--) { 1734 if (!grow_one_stripe(conf, hash)) 1735 return 1; 1736 conf->max_nr_stripes++; 1737 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 1738 } 1739 return 0; 1740} 1741 1742/** 1743 * scribble_len - return the required size of the scribble region 1744 * @num - total number of disks in the array 1745 * 1746 * The size must be enough to contain: 1747 * 1/ a struct page pointer for each device in the array +2 1748 * 2/ room to convert each entry in (1) to its corresponding dma 1749 * (dma_map_page()) or page (page_address()) address. 1750 * 1751 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1752 * calculate over all devices (not just the data blocks), using zeros in place 1753 * of the P and Q blocks. 1754 */ 1755static size_t scribble_len(int num) 1756{ 1757 size_t len; 1758 1759 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1760 1761 return len; 1762} 1763 1764static int resize_stripes(struct r5conf *conf, int newsize) 1765{ 1766 /* Make all the stripes able to hold 'newsize' devices. 1767 * New slots in each stripe get 'page' set to a new page. 1768 * 1769 * This happens in stages: 1770 * 1/ create a new kmem_cache and allocate the required number of 1771 * stripe_heads. 1772 * 2/ gather all the old stripe_heads and transfer the pages across 1773 * to the new stripe_heads. This will have the side effect of 1774 * freezing the array as once all stripe_heads have been collected, 1775 * no IO will be possible. Old stripe heads are freed once their 1776 * pages have been transferred over, and the old kmem_cache is 1777 * freed when all stripes are done. 1778 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1779 * we simple return a failre status - no need to clean anything up. 1780 * 4/ allocate new pages for the new slots in the new stripe_heads. 1781 * If this fails, we don't bother trying the shrink the 1782 * stripe_heads down again, we just leave them as they are. 1783 * As each stripe_head is processed the new one is released into 1784 * active service. 1785 * 1786 * Once step2 is started, we cannot afford to wait for a write, 1787 * so we use GFP_NOIO allocations. 1788 */ 1789 struct stripe_head *osh, *nsh; 1790 LIST_HEAD(newstripes); 1791 struct disk_info *ndisks; 1792 unsigned long cpu; 1793 int err; 1794 struct kmem_cache *sc; 1795 int i; 1796 int hash, cnt; 1797 1798 if (newsize <= conf->pool_size) 1799 return 0; /* never bother to shrink */ 1800 1801 err = md_allow_write(conf->mddev); 1802 if (err) 1803 return err; 1804 1805 /* Step 1 */ 1806 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1807 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1808 0, 0, NULL); 1809 if (!sc) 1810 return -ENOMEM; 1811 1812 for (i = conf->max_nr_stripes; i; i--) { 1813 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1814 if (!nsh) 1815 break; 1816 1817 nsh->raid_conf = conf; 1818 spin_lock_init(&nsh->stripe_lock); 1819 1820 list_add(&nsh->lru, &newstripes); 1821 } 1822 if (i) { 1823 /* didn't get enough, give up */ 1824 while (!list_empty(&newstripes)) { 1825 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1826 list_del(&nsh->lru); 1827 kmem_cache_free(sc, nsh); 1828 } 1829 kmem_cache_destroy(sc); 1830 return -ENOMEM; 1831 } 1832 /* Step 2 - Must use GFP_NOIO now. 1833 * OK, we have enough stripes, start collecting inactive 1834 * stripes and copying them over 1835 */ 1836 hash = 0; 1837 cnt = 0; 1838 list_for_each_entry(nsh, &newstripes, lru) { 1839 lock_device_hash_lock(conf, hash); 1840 wait_event_cmd(conf->wait_for_stripe, 1841 !list_empty(conf->inactive_list + hash), 1842 unlock_device_hash_lock(conf, hash), 1843 lock_device_hash_lock(conf, hash)); 1844 osh = get_free_stripe(conf, hash); 1845 unlock_device_hash_lock(conf, hash); 1846 atomic_set(&nsh->count, 1); 1847 for(i=0; i<conf->pool_size; i++) 1848 nsh->dev[i].page = osh->dev[i].page; 1849 for( ; i<newsize; i++) 1850 nsh->dev[i].page = NULL; 1851 nsh->hash_lock_index = hash; 1852 kmem_cache_free(conf->slab_cache, osh); 1853 cnt++; 1854 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 1855 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 1856 hash++; 1857 cnt = 0; 1858 } 1859 } 1860 kmem_cache_destroy(conf->slab_cache); 1861 1862 /* Step 3. 1863 * At this point, we are holding all the stripes so the array 1864 * is completely stalled, so now is a good time to resize 1865 * conf->disks and the scribble region 1866 */ 1867 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1868 if (ndisks) { 1869 for (i=0; i<conf->raid_disks; i++) 1870 ndisks[i] = conf->disks[i]; 1871 kfree(conf->disks); 1872 conf->disks = ndisks; 1873 } else 1874 err = -ENOMEM; 1875 1876 get_online_cpus(); 1877 conf->scribble_len = scribble_len(newsize); 1878 for_each_present_cpu(cpu) { 1879 struct raid5_percpu *percpu; 1880 void *scribble; 1881 1882 percpu = per_cpu_ptr(conf->percpu, cpu); 1883 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1884 1885 if (scribble) { 1886 kfree(percpu->scribble); 1887 percpu->scribble = scribble; 1888 } else { 1889 err = -ENOMEM; 1890 break; 1891 } 1892 } 1893 put_online_cpus(); 1894 1895 /* Step 4, return new stripes to service */ 1896 while(!list_empty(&newstripes)) { 1897 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1898 list_del_init(&nsh->lru); 1899 1900 for (i=conf->raid_disks; i < newsize; i++) 1901 if (nsh->dev[i].page == NULL) { 1902 struct page *p = alloc_page(GFP_NOIO); 1903 nsh->dev[i].page = p; 1904 if (!p) 1905 err = -ENOMEM; 1906 } 1907 release_stripe(nsh); 1908 } 1909 /* critical section pass, GFP_NOIO no longer needed */ 1910 1911 conf->slab_cache = sc; 1912 conf->active_name = 1-conf->active_name; 1913 conf->pool_size = newsize; 1914 return err; 1915} 1916 1917static int drop_one_stripe(struct r5conf *conf, int hash) 1918{ 1919 struct stripe_head *sh; 1920 1921 spin_lock_irq(conf->hash_locks + hash); 1922 sh = get_free_stripe(conf, hash); 1923 spin_unlock_irq(conf->hash_locks + hash); 1924 if (!sh) 1925 return 0; 1926 BUG_ON(atomic_read(&sh->count)); 1927 shrink_buffers(sh); 1928 kmem_cache_free(conf->slab_cache, sh); 1929 atomic_dec(&conf->active_stripes); 1930 return 1; 1931} 1932 1933static void shrink_stripes(struct r5conf *conf) 1934{ 1935 int hash; 1936 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++) 1937 while (drop_one_stripe(conf, hash)) 1938 ; 1939 1940 if (conf->slab_cache) 1941 kmem_cache_destroy(conf->slab_cache); 1942 conf->slab_cache = NULL; 1943} 1944 1945static void raid5_end_read_request(struct bio * bi, int error) 1946{ 1947 struct stripe_head *sh = bi->bi_private; 1948 struct r5conf *conf = sh->raid_conf; 1949 int disks = sh->disks, i; 1950 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1951 char b[BDEVNAME_SIZE]; 1952 struct md_rdev *rdev = NULL; 1953 sector_t s; 1954 1955 for (i=0 ; i<disks; i++) 1956 if (bi == &sh->dev[i].req) 1957 break; 1958 1959 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1960 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1961 uptodate); 1962 if (i == disks) { 1963 BUG(); 1964 return; 1965 } 1966 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1967 /* If replacement finished while this request was outstanding, 1968 * 'replacement' might be NULL already. 1969 * In that case it moved down to 'rdev'. 1970 * rdev is not removed until all requests are finished. 1971 */ 1972 rdev = conf->disks[i].replacement; 1973 if (!rdev) 1974 rdev = conf->disks[i].rdev; 1975 1976 if (use_new_offset(conf, sh)) 1977 s = sh->sector + rdev->new_data_offset; 1978 else 1979 s = sh->sector + rdev->data_offset; 1980 if (uptodate) { 1981 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1982 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1983 /* Note that this cannot happen on a 1984 * replacement device. We just fail those on 1985 * any error 1986 */ 1987 printk_ratelimited( 1988 KERN_INFO 1989 "md/raid:%s: read error corrected" 1990 " (%lu sectors at %llu on %s)\n", 1991 mdname(conf->mddev), STRIPE_SECTORS, 1992 (unsigned long long)s, 1993 bdevname(rdev->bdev, b)); 1994 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1995 clear_bit(R5_ReadError, &sh->dev[i].flags); 1996 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1997 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1998 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1999 2000 if (atomic_read(&rdev->read_errors)) 2001 atomic_set(&rdev->read_errors, 0); 2002 } else { 2003 const char *bdn = bdevname(rdev->bdev, b); 2004 int retry = 0; 2005 int set_bad = 0; 2006 2007 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2008 atomic_inc(&rdev->read_errors); 2009 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2010 printk_ratelimited( 2011 KERN_WARNING 2012 "md/raid:%s: read error on replacement device " 2013 "(sector %llu on %s).\n", 2014 mdname(conf->mddev), 2015 (unsigned long long)s, 2016 bdn); 2017 else if (conf->mddev->degraded >= conf->max_degraded) { 2018 set_bad = 1; 2019 printk_ratelimited( 2020 KERN_WARNING 2021 "md/raid:%s: read error not correctable " 2022 "(sector %llu on %s).\n", 2023 mdname(conf->mddev), 2024 (unsigned long long)s, 2025 bdn); 2026 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2027 /* Oh, no!!! */ 2028 set_bad = 1; 2029 printk_ratelimited( 2030 KERN_WARNING 2031 "md/raid:%s: read error NOT corrected!! " 2032 "(sector %llu on %s).\n", 2033 mdname(conf->mddev), 2034 (unsigned long long)s, 2035 bdn); 2036 } else if (atomic_read(&rdev->read_errors) 2037 > conf->max_nr_stripes) 2038 printk(KERN_WARNING 2039 "md/raid:%s: Too many read errors, failing device %s.\n", 2040 mdname(conf->mddev), bdn); 2041 else 2042 retry = 1; 2043 if (set_bad && test_bit(In_sync, &rdev->flags) 2044 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2045 retry = 1; 2046 if (retry) 2047 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2048 set_bit(R5_ReadError, &sh->dev[i].flags); 2049 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2050 } else 2051 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2052 else { 2053 clear_bit(R5_ReadError, &sh->dev[i].flags); 2054 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2055 if (!(set_bad 2056 && test_bit(In_sync, &rdev->flags) 2057 && rdev_set_badblocks( 2058 rdev, sh->sector, STRIPE_SECTORS, 0))) 2059 md_error(conf->mddev, rdev); 2060 } 2061 } 2062 rdev_dec_pending(rdev, conf->mddev); 2063 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2064 set_bit(STRIPE_HANDLE, &sh->state); 2065 release_stripe(sh); 2066} 2067 2068static void raid5_end_write_request(struct bio *bi, int error) 2069{ 2070 struct stripe_head *sh = bi->bi_private; 2071 struct r5conf *conf = sh->raid_conf; 2072 int disks = sh->disks, i; 2073 struct md_rdev *uninitialized_var(rdev); 2074 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2075 sector_t first_bad; 2076 int bad_sectors; 2077 int replacement = 0; 2078 2079 for (i = 0 ; i < disks; i++) { 2080 if (bi == &sh->dev[i].req) { 2081 rdev = conf->disks[i].rdev; 2082 break; 2083 } 2084 if (bi == &sh->dev[i].rreq) { 2085 rdev = conf->disks[i].replacement; 2086 if (rdev) 2087 replacement = 1; 2088 else 2089 /* rdev was removed and 'replacement' 2090 * replaced it. rdev is not removed 2091 * until all requests are finished. 2092 */ 2093 rdev = conf->disks[i].rdev; 2094 break; 2095 } 2096 } 2097 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 2098 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2099 uptodate); 2100 if (i == disks) { 2101 BUG(); 2102 return; 2103 } 2104 2105 if (replacement) { 2106 if (!uptodate) 2107 md_error(conf->mddev, rdev); 2108 else if (is_badblock(rdev, sh->sector, 2109 STRIPE_SECTORS, 2110 &first_bad, &bad_sectors)) 2111 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2112 } else { 2113 if (!uptodate) { 2114 set_bit(WriteErrorSeen, &rdev->flags); 2115 set_bit(R5_WriteError, &sh->dev[i].flags); 2116 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2117 set_bit(MD_RECOVERY_NEEDED, 2118 &rdev->mddev->recovery); 2119 } else if (is_badblock(rdev, sh->sector, 2120 STRIPE_SECTORS, 2121 &first_bad, &bad_sectors)) { 2122 set_bit(R5_MadeGood, &sh->dev[i].flags); 2123 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2124 /* That was a successful write so make 2125 * sure it looks like we already did 2126 * a re-write. 2127 */ 2128 set_bit(R5_ReWrite, &sh->dev[i].flags); 2129 } 2130 } 2131 rdev_dec_pending(rdev, conf->mddev); 2132 2133 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2134 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2135 set_bit(STRIPE_HANDLE, &sh->state); 2136 release_stripe(sh); 2137} 2138 2139static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 2140 2141static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2142{ 2143 struct r5dev *dev = &sh->dev[i]; 2144 2145 bio_init(&dev->req); 2146 dev->req.bi_io_vec = &dev->vec; 2147 dev->req.bi_vcnt++; 2148 dev->req.bi_max_vecs++; 2149 dev->req.bi_private = sh; 2150 dev->vec.bv_page = dev->page; 2151 2152 bio_init(&dev->rreq); 2153 dev->rreq.bi_io_vec = &dev->rvec; 2154 dev->rreq.bi_vcnt++; 2155 dev->rreq.bi_max_vecs++; 2156 dev->rreq.bi_private = sh; 2157 dev->rvec.bv_page = dev->page; 2158 2159 dev->flags = 0; 2160 dev->sector = compute_blocknr(sh, i, previous); 2161} 2162 2163static void error(struct mddev *mddev, struct md_rdev *rdev) 2164{ 2165 char b[BDEVNAME_SIZE]; 2166 struct r5conf *conf = mddev->private; 2167 unsigned long flags; 2168 pr_debug("raid456: error called\n"); 2169 2170 spin_lock_irqsave(&conf->device_lock, flags); 2171 clear_bit(In_sync, &rdev->flags); 2172 mddev->degraded = calc_degraded(conf); 2173 spin_unlock_irqrestore(&conf->device_lock, flags); 2174 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2175 2176 set_bit(Blocked, &rdev->flags); 2177 set_bit(Faulty, &rdev->flags); 2178 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2179 printk(KERN_ALERT 2180 "md/raid:%s: Disk failure on %s, disabling device.\n" 2181 "md/raid:%s: Operation continuing on %d devices.\n", 2182 mdname(mddev), 2183 bdevname(rdev->bdev, b), 2184 mdname(mddev), 2185 conf->raid_disks - mddev->degraded); 2186} 2187 2188/* 2189 * Input: a 'big' sector number, 2190 * Output: index of the data and parity disk, and the sector # in them. 2191 */ 2192static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2193 int previous, int *dd_idx, 2194 struct stripe_head *sh) 2195{ 2196 sector_t stripe, stripe2; 2197 sector_t chunk_number; 2198 unsigned int chunk_offset; 2199 int pd_idx, qd_idx; 2200 int ddf_layout = 0; 2201 sector_t new_sector; 2202 int algorithm = previous ? conf->prev_algo 2203 : conf->algorithm; 2204 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2205 : conf->chunk_sectors; 2206 int raid_disks = previous ? conf->previous_raid_disks 2207 : conf->raid_disks; 2208 int data_disks = raid_disks - conf->max_degraded; 2209 2210 /* First compute the information on this sector */ 2211 2212 /* 2213 * Compute the chunk number and the sector offset inside the chunk 2214 */ 2215 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2216 chunk_number = r_sector; 2217 2218 /* 2219 * Compute the stripe number 2220 */ 2221 stripe = chunk_number; 2222 *dd_idx = sector_div(stripe, data_disks); 2223 stripe2 = stripe; 2224 /* 2225 * Select the parity disk based on the user selected algorithm. 2226 */ 2227 pd_idx = qd_idx = -1; 2228 switch(conf->level) { 2229 case 4: 2230 pd_idx = data_disks; 2231 break; 2232 case 5: 2233 switch (algorithm) { 2234 case ALGORITHM_LEFT_ASYMMETRIC: 2235 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2236 if (*dd_idx >= pd_idx) 2237 (*dd_idx)++; 2238 break; 2239 case ALGORITHM_RIGHT_ASYMMETRIC: 2240 pd_idx = sector_div(stripe2, raid_disks); 2241 if (*dd_idx >= pd_idx) 2242 (*dd_idx)++; 2243 break; 2244 case ALGORITHM_LEFT_SYMMETRIC: 2245 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2246 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2247 break; 2248 case ALGORITHM_RIGHT_SYMMETRIC: 2249 pd_idx = sector_div(stripe2, raid_disks); 2250 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2251 break; 2252 case ALGORITHM_PARITY_0: 2253 pd_idx = 0; 2254 (*dd_idx)++; 2255 break; 2256 case ALGORITHM_PARITY_N: 2257 pd_idx = data_disks; 2258 break; 2259 default: 2260 BUG(); 2261 } 2262 break; 2263 case 6: 2264 2265 switch (algorithm) { 2266 case ALGORITHM_LEFT_ASYMMETRIC: 2267 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2268 qd_idx = pd_idx + 1; 2269 if (pd_idx == raid_disks-1) { 2270 (*dd_idx)++; /* Q D D D P */ 2271 qd_idx = 0; 2272 } else if (*dd_idx >= pd_idx) 2273 (*dd_idx) += 2; /* D D P Q D */ 2274 break; 2275 case ALGORITHM_RIGHT_ASYMMETRIC: 2276 pd_idx = sector_div(stripe2, raid_disks); 2277 qd_idx = pd_idx + 1; 2278 if (pd_idx == raid_disks-1) { 2279 (*dd_idx)++; /* Q D D D P */ 2280 qd_idx = 0; 2281 } else if (*dd_idx >= pd_idx) 2282 (*dd_idx) += 2; /* D D P Q D */ 2283 break; 2284 case ALGORITHM_LEFT_SYMMETRIC: 2285 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2286 qd_idx = (pd_idx + 1) % raid_disks; 2287 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2288 break; 2289 case ALGORITHM_RIGHT_SYMMETRIC: 2290 pd_idx = sector_div(stripe2, raid_disks); 2291 qd_idx = (pd_idx + 1) % raid_disks; 2292 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2293 break; 2294 2295 case ALGORITHM_PARITY_0: 2296 pd_idx = 0; 2297 qd_idx = 1; 2298 (*dd_idx) += 2; 2299 break; 2300 case ALGORITHM_PARITY_N: 2301 pd_idx = data_disks; 2302 qd_idx = data_disks + 1; 2303 break; 2304 2305 case ALGORITHM_ROTATING_ZERO_RESTART: 2306 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2307 * of blocks for computing Q is different. 2308 */ 2309 pd_idx = sector_div(stripe2, raid_disks); 2310 qd_idx = pd_idx + 1; 2311 if (pd_idx == raid_disks-1) { 2312 (*dd_idx)++; /* Q D D D P */ 2313 qd_idx = 0; 2314 } else if (*dd_idx >= pd_idx) 2315 (*dd_idx) += 2; /* D D P Q D */ 2316 ddf_layout = 1; 2317 break; 2318 2319 case ALGORITHM_ROTATING_N_RESTART: 2320 /* Same a left_asymmetric, by first stripe is 2321 * D D D P Q rather than 2322 * Q D D D P 2323 */ 2324 stripe2 += 1; 2325 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2326 qd_idx = pd_idx + 1; 2327 if (pd_idx == raid_disks-1) { 2328 (*dd_idx)++; /* Q D D D P */ 2329 qd_idx = 0; 2330 } else if (*dd_idx >= pd_idx) 2331 (*dd_idx) += 2; /* D D P Q D */ 2332 ddf_layout = 1; 2333 break; 2334 2335 case ALGORITHM_ROTATING_N_CONTINUE: 2336 /* Same as left_symmetric but Q is before P */ 2337 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2338 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2339 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2340 ddf_layout = 1; 2341 break; 2342 2343 case ALGORITHM_LEFT_ASYMMETRIC_6: 2344 /* RAID5 left_asymmetric, with Q on last device */ 2345 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2346 if (*dd_idx >= pd_idx) 2347 (*dd_idx)++; 2348 qd_idx = raid_disks - 1; 2349 break; 2350 2351 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2352 pd_idx = sector_div(stripe2, raid_disks-1); 2353 if (*dd_idx >= pd_idx) 2354 (*dd_idx)++; 2355 qd_idx = raid_disks - 1; 2356 break; 2357 2358 case ALGORITHM_LEFT_SYMMETRIC_6: 2359 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2360 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2361 qd_idx = raid_disks - 1; 2362 break; 2363 2364 case ALGORITHM_RIGHT_SYMMETRIC_6: 2365 pd_idx = sector_div(stripe2, raid_disks-1); 2366 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2367 qd_idx = raid_disks - 1; 2368 break; 2369 2370 case ALGORITHM_PARITY_0_6: 2371 pd_idx = 0; 2372 (*dd_idx)++; 2373 qd_idx = raid_disks - 1; 2374 break; 2375 2376 default: 2377 BUG(); 2378 } 2379 break; 2380 } 2381 2382 if (sh) { 2383 sh->pd_idx = pd_idx; 2384 sh->qd_idx = qd_idx; 2385 sh->ddf_layout = ddf_layout; 2386 } 2387 /* 2388 * Finally, compute the new sector number 2389 */ 2390 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2391 return new_sector; 2392} 2393 2394 2395static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2396{ 2397 struct r5conf *conf = sh->raid_conf; 2398 int raid_disks = sh->disks; 2399 int data_disks = raid_disks - conf->max_degraded; 2400 sector_t new_sector = sh->sector, check; 2401 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2402 : conf->chunk_sectors; 2403 int algorithm = previous ? conf->prev_algo 2404 : conf->algorithm; 2405 sector_t stripe; 2406 int chunk_offset; 2407 sector_t chunk_number; 2408 int dummy1, dd_idx = i; 2409 sector_t r_sector; 2410 struct stripe_head sh2; 2411 2412 2413 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2414 stripe = new_sector; 2415 2416 if (i == sh->pd_idx) 2417 return 0; 2418 switch(conf->level) { 2419 case 4: break; 2420 case 5: 2421 switch (algorithm) { 2422 case ALGORITHM_LEFT_ASYMMETRIC: 2423 case ALGORITHM_RIGHT_ASYMMETRIC: 2424 if (i > sh->pd_idx) 2425 i--; 2426 break; 2427 case ALGORITHM_LEFT_SYMMETRIC: 2428 case ALGORITHM_RIGHT_SYMMETRIC: 2429 if (i < sh->pd_idx) 2430 i += raid_disks; 2431 i -= (sh->pd_idx + 1); 2432 break; 2433 case ALGORITHM_PARITY_0: 2434 i -= 1; 2435 break; 2436 case ALGORITHM_PARITY_N: 2437 break; 2438 default: 2439 BUG(); 2440 } 2441 break; 2442 case 6: 2443 if (i == sh->qd_idx) 2444 return 0; /* It is the Q disk */ 2445 switch (algorithm) { 2446 case ALGORITHM_LEFT_ASYMMETRIC: 2447 case ALGORITHM_RIGHT_ASYMMETRIC: 2448 case ALGORITHM_ROTATING_ZERO_RESTART: 2449 case ALGORITHM_ROTATING_N_RESTART: 2450 if (sh->pd_idx == raid_disks-1) 2451 i--; /* Q D D D P */ 2452 else if (i > sh->pd_idx) 2453 i -= 2; /* D D P Q D */ 2454 break; 2455 case ALGORITHM_LEFT_SYMMETRIC: 2456 case ALGORITHM_RIGHT_SYMMETRIC: 2457 if (sh->pd_idx == raid_disks-1) 2458 i--; /* Q D D D P */ 2459 else { 2460 /* D D P Q D */ 2461 if (i < sh->pd_idx) 2462 i += raid_disks; 2463 i -= (sh->pd_idx + 2); 2464 } 2465 break; 2466 case ALGORITHM_PARITY_0: 2467 i -= 2; 2468 break; 2469 case ALGORITHM_PARITY_N: 2470 break; 2471 case ALGORITHM_ROTATING_N_CONTINUE: 2472 /* Like left_symmetric, but P is before Q */ 2473 if (sh->pd_idx == 0) 2474 i--; /* P D D D Q */ 2475 else { 2476 /* D D Q P D */ 2477 if (i < sh->pd_idx) 2478 i += raid_disks; 2479 i -= (sh->pd_idx + 1); 2480 } 2481 break; 2482 case ALGORITHM_LEFT_ASYMMETRIC_6: 2483 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2484 if (i > sh->pd_idx) 2485 i--; 2486 break; 2487 case ALGORITHM_LEFT_SYMMETRIC_6: 2488 case ALGORITHM_RIGHT_SYMMETRIC_6: 2489 if (i < sh->pd_idx) 2490 i += data_disks + 1; 2491 i -= (sh->pd_idx + 1); 2492 break; 2493 case ALGORITHM_PARITY_0_6: 2494 i -= 1; 2495 break; 2496 default: 2497 BUG(); 2498 } 2499 break; 2500 } 2501 2502 chunk_number = stripe * data_disks + i; 2503 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2504 2505 check = raid5_compute_sector(conf, r_sector, 2506 previous, &dummy1, &sh2); 2507 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2508 || sh2.qd_idx != sh->qd_idx) { 2509 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2510 mdname(conf->mddev)); 2511 return 0; 2512 } 2513 return r_sector; 2514} 2515 2516 2517static void 2518schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2519 int rcw, int expand) 2520{ 2521 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2522 struct r5conf *conf = sh->raid_conf; 2523 int level = conf->level; 2524 2525 if (rcw) { 2526 2527 for (i = disks; i--; ) { 2528 struct r5dev *dev = &sh->dev[i]; 2529 2530 if (dev->towrite) { 2531 set_bit(R5_LOCKED, &dev->flags); 2532 set_bit(R5_Wantdrain, &dev->flags); 2533 if (!expand) 2534 clear_bit(R5_UPTODATE, &dev->flags); 2535 s->locked++; 2536 } 2537 } 2538 /* if we are not expanding this is a proper write request, and 2539 * there will be bios with new data to be drained into the 2540 * stripe cache 2541 */ 2542 if (!expand) { 2543 if (!s->locked) 2544 /* False alarm, nothing to do */ 2545 return; 2546 sh->reconstruct_state = reconstruct_state_drain_run; 2547 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2548 } else 2549 sh->reconstruct_state = reconstruct_state_run; 2550 2551 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2552 2553 if (s->locked + conf->max_degraded == disks) 2554 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2555 atomic_inc(&conf->pending_full_writes); 2556 } else { 2557 BUG_ON(level == 6); 2558 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2559 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2560 2561 for (i = disks; i--; ) { 2562 struct r5dev *dev = &sh->dev[i]; 2563 if (i == pd_idx) 2564 continue; 2565 2566 if (dev->towrite && 2567 (test_bit(R5_UPTODATE, &dev->flags) || 2568 test_bit(R5_Wantcompute, &dev->flags))) { 2569 set_bit(R5_Wantdrain, &dev->flags); 2570 set_bit(R5_LOCKED, &dev->flags); 2571 clear_bit(R5_UPTODATE, &dev->flags); 2572 s->locked++; 2573 } 2574 } 2575 if (!s->locked) 2576 /* False alarm - nothing to do */ 2577 return; 2578 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2579 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2580 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2581 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2582 } 2583 2584 /* keep the parity disk(s) locked while asynchronous operations 2585 * are in flight 2586 */ 2587 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2588 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2589 s->locked++; 2590 2591 if (level == 6) { 2592 int qd_idx = sh->qd_idx; 2593 struct r5dev *dev = &sh->dev[qd_idx]; 2594 2595 set_bit(R5_LOCKED, &dev->flags); 2596 clear_bit(R5_UPTODATE, &dev->flags); 2597 s->locked++; 2598 } 2599 2600 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2601 __func__, (unsigned long long)sh->sector, 2602 s->locked, s->ops_request); 2603} 2604 2605/* 2606 * Each stripe/dev can have one or more bion attached. 2607 * toread/towrite point to the first in a chain. 2608 * The bi_next chain must be in order. 2609 */ 2610static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2611{ 2612 struct bio **bip; 2613 struct r5conf *conf = sh->raid_conf; 2614 int firstwrite=0; 2615 2616 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2617 (unsigned long long)bi->bi_sector, 2618 (unsigned long long)sh->sector); 2619 2620 /* 2621 * If several bio share a stripe. The bio bi_phys_segments acts as a 2622 * reference count to avoid race. The reference count should already be 2623 * increased before this function is called (for example, in 2624 * make_request()), so other bio sharing this stripe will not free the 2625 * stripe. If a stripe is owned by one stripe, the stripe lock will 2626 * protect it. 2627 */ 2628 spin_lock_irq(&sh->stripe_lock); 2629 if (forwrite) { 2630 bip = &sh->dev[dd_idx].towrite; 2631 if (*bip == NULL) 2632 firstwrite = 1; 2633 } else 2634 bip = &sh->dev[dd_idx].toread; 2635 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2636 if (bio_end_sector(*bip) > bi->bi_sector) 2637 goto overlap; 2638 bip = & (*bip)->bi_next; 2639 } 2640 if (*bip && (*bip)->bi_sector < bio_end_sector(bi)) 2641 goto overlap; 2642 2643 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2644 if (*bip) 2645 bi->bi_next = *bip; 2646 *bip = bi; 2647 raid5_inc_bi_active_stripes(bi); 2648 2649 if (forwrite) { 2650 /* check if page is covered */ 2651 sector_t sector = sh->dev[dd_idx].sector; 2652 for (bi=sh->dev[dd_idx].towrite; 2653 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2654 bi && bi->bi_sector <= sector; 2655 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2656 if (bio_end_sector(bi) >= sector) 2657 sector = bio_end_sector(bi); 2658 } 2659 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2660 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2661 } 2662 2663 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2664 (unsigned long long)(*bip)->bi_sector, 2665 (unsigned long long)sh->sector, dd_idx); 2666 spin_unlock_irq(&sh->stripe_lock); 2667 2668 if (conf->mddev->bitmap && firstwrite) { 2669 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2670 STRIPE_SECTORS, 0); 2671 sh->bm_seq = conf->seq_flush+1; 2672 set_bit(STRIPE_BIT_DELAY, &sh->state); 2673 } 2674 return 1; 2675 2676 overlap: 2677 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2678 spin_unlock_irq(&sh->stripe_lock); 2679 return 0; 2680} 2681 2682static void end_reshape(struct r5conf *conf); 2683 2684static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2685 struct stripe_head *sh) 2686{ 2687 int sectors_per_chunk = 2688 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2689 int dd_idx; 2690 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2691 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2692 2693 raid5_compute_sector(conf, 2694 stripe * (disks - conf->max_degraded) 2695 *sectors_per_chunk + chunk_offset, 2696 previous, 2697 &dd_idx, sh); 2698} 2699 2700static void 2701handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2702 struct stripe_head_state *s, int disks, 2703 struct bio **return_bi) 2704{ 2705 int i; 2706 for (i = disks; i--; ) { 2707 struct bio *bi; 2708 int bitmap_end = 0; 2709 2710 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2711 struct md_rdev *rdev; 2712 rcu_read_lock(); 2713 rdev = rcu_dereference(conf->disks[i].rdev); 2714 if (rdev && test_bit(In_sync, &rdev->flags)) 2715 atomic_inc(&rdev->nr_pending); 2716 else 2717 rdev = NULL; 2718 rcu_read_unlock(); 2719 if (rdev) { 2720 if (!rdev_set_badblocks( 2721 rdev, 2722 sh->sector, 2723 STRIPE_SECTORS, 0)) 2724 md_error(conf->mddev, rdev); 2725 rdev_dec_pending(rdev, conf->mddev); 2726 } 2727 } 2728 spin_lock_irq(&sh->stripe_lock); 2729 /* fail all writes first */ 2730 bi = sh->dev[i].towrite; 2731 sh->dev[i].towrite = NULL; 2732 spin_unlock_irq(&sh->stripe_lock); 2733 if (bi) 2734 bitmap_end = 1; 2735 2736 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2737 wake_up(&conf->wait_for_overlap); 2738 2739 while (bi && bi->bi_sector < 2740 sh->dev[i].sector + STRIPE_SECTORS) { 2741 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2742 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2743 if (!raid5_dec_bi_active_stripes(bi)) { 2744 md_write_end(conf->mddev); 2745 bi->bi_next = *return_bi; 2746 *return_bi = bi; 2747 } 2748 bi = nextbi; 2749 } 2750 if (bitmap_end) 2751 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2752 STRIPE_SECTORS, 0, 0); 2753 bitmap_end = 0; 2754 /* and fail all 'written' */ 2755 bi = sh->dev[i].written; 2756 sh->dev[i].written = NULL; 2757 if (bi) bitmap_end = 1; 2758 while (bi && bi->bi_sector < 2759 sh->dev[i].sector + STRIPE_SECTORS) { 2760 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2761 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2762 if (!raid5_dec_bi_active_stripes(bi)) { 2763 md_write_end(conf->mddev); 2764 bi->bi_next = *return_bi; 2765 *return_bi = bi; 2766 } 2767 bi = bi2; 2768 } 2769 2770 /* fail any reads if this device is non-operational and 2771 * the data has not reached the cache yet. 2772 */ 2773 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2774 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2775 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2776 spin_lock_irq(&sh->stripe_lock); 2777 bi = sh->dev[i].toread; 2778 sh->dev[i].toread = NULL; 2779 spin_unlock_irq(&sh->stripe_lock); 2780 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2781 wake_up(&conf->wait_for_overlap); 2782 while (bi && bi->bi_sector < 2783 sh->dev[i].sector + STRIPE_SECTORS) { 2784 struct bio *nextbi = 2785 r5_next_bio(bi, sh->dev[i].sector); 2786 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2787 if (!raid5_dec_bi_active_stripes(bi)) { 2788 bi->bi_next = *return_bi; 2789 *return_bi = bi; 2790 } 2791 bi = nextbi; 2792 } 2793 } 2794 if (bitmap_end) 2795 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2796 STRIPE_SECTORS, 0, 0); 2797 /* If we were in the middle of a write the parity block might 2798 * still be locked - so just clear all R5_LOCKED flags 2799 */ 2800 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2801 } 2802 2803 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2804 if (atomic_dec_and_test(&conf->pending_full_writes)) 2805 md_wakeup_thread(conf->mddev->thread); 2806} 2807 2808static void 2809handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2810 struct stripe_head_state *s) 2811{ 2812 int abort = 0; 2813 int i; 2814 2815 clear_bit(STRIPE_SYNCING, &sh->state); 2816 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2817 wake_up(&conf->wait_for_overlap); 2818 s->syncing = 0; 2819 s->replacing = 0; 2820 /* There is nothing more to do for sync/check/repair. 2821 * Don't even need to abort as that is handled elsewhere 2822 * if needed, and not always wanted e.g. if there is a known 2823 * bad block here. 2824 * For recover/replace we need to record a bad block on all 2825 * non-sync devices, or abort the recovery 2826 */ 2827 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2828 /* During recovery devices cannot be removed, so 2829 * locking and refcounting of rdevs is not needed 2830 */ 2831 for (i = 0; i < conf->raid_disks; i++) { 2832 struct md_rdev *rdev = conf->disks[i].rdev; 2833 if (rdev 2834 && !test_bit(Faulty, &rdev->flags) 2835 && !test_bit(In_sync, &rdev->flags) 2836 && !rdev_set_badblocks(rdev, sh->sector, 2837 STRIPE_SECTORS, 0)) 2838 abort = 1; 2839 rdev = conf->disks[i].replacement; 2840 if (rdev 2841 && !test_bit(Faulty, &rdev->flags) 2842 && !test_bit(In_sync, &rdev->flags) 2843 && !rdev_set_badblocks(rdev, sh->sector, 2844 STRIPE_SECTORS, 0)) 2845 abort = 1; 2846 } 2847 if (abort) 2848 conf->recovery_disabled = 2849 conf->mddev->recovery_disabled; 2850 } 2851 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2852} 2853 2854static int want_replace(struct stripe_head *sh, int disk_idx) 2855{ 2856 struct md_rdev *rdev; 2857 int rv = 0; 2858 /* Doing recovery so rcu locking not required */ 2859 rdev = sh->raid_conf->disks[disk_idx].replacement; 2860 if (rdev 2861 && !test_bit(Faulty, &rdev->flags) 2862 && !test_bit(In_sync, &rdev->flags) 2863 && (rdev->recovery_offset <= sh->sector 2864 || rdev->mddev->recovery_cp <= sh->sector)) 2865 rv = 1; 2866 2867 return rv; 2868} 2869 2870/* fetch_block - checks the given member device to see if its data needs 2871 * to be read or computed to satisfy a request. 2872 * 2873 * Returns 1 when no more member devices need to be checked, otherwise returns 2874 * 0 to tell the loop in handle_stripe_fill to continue 2875 */ 2876static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2877 int disk_idx, int disks) 2878{ 2879 struct r5dev *dev = &sh->dev[disk_idx]; 2880 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2881 &sh->dev[s->failed_num[1]] }; 2882 2883 /* is the data in this block needed, and can we get it? */ 2884 if (!test_bit(R5_LOCKED, &dev->flags) && 2885 !test_bit(R5_UPTODATE, &dev->flags) && 2886 (dev->toread || 2887 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2888 s->syncing || s->expanding || 2889 (s->replacing && want_replace(sh, disk_idx)) || 2890 (s->failed >= 1 && fdev[0]->toread) || 2891 (s->failed >= 2 && fdev[1]->toread) || 2892 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2893 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2894 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2895 /* we would like to get this block, possibly by computing it, 2896 * otherwise read it if the backing disk is insync 2897 */ 2898 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2899 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2900 if ((s->uptodate == disks - 1) && 2901 (s->failed && (disk_idx == s->failed_num[0] || 2902 disk_idx == s->failed_num[1]))) { 2903 /* have disk failed, and we're requested to fetch it; 2904 * do compute it 2905 */ 2906 pr_debug("Computing stripe %llu block %d\n", 2907 (unsigned long long)sh->sector, disk_idx); 2908 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2909 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2910 set_bit(R5_Wantcompute, &dev->flags); 2911 sh->ops.target = disk_idx; 2912 sh->ops.target2 = -1; /* no 2nd target */ 2913 s->req_compute = 1; 2914 /* Careful: from this point on 'uptodate' is in the eye 2915 * of raid_run_ops which services 'compute' operations 2916 * before writes. R5_Wantcompute flags a block that will 2917 * be R5_UPTODATE by the time it is needed for a 2918 * subsequent operation. 2919 */ 2920 s->uptodate++; 2921 return 1; 2922 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2923 /* Computing 2-failure is *very* expensive; only 2924 * do it if failed >= 2 2925 */ 2926 int other; 2927 for (other = disks; other--; ) { 2928 if (other == disk_idx) 2929 continue; 2930 if (!test_bit(R5_UPTODATE, 2931 &sh->dev[other].flags)) 2932 break; 2933 } 2934 BUG_ON(other < 0); 2935 pr_debug("Computing stripe %llu blocks %d,%d\n", 2936 (unsigned long long)sh->sector, 2937 disk_idx, other); 2938 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2939 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2940 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2941 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2942 sh->ops.target = disk_idx; 2943 sh->ops.target2 = other; 2944 s->uptodate += 2; 2945 s->req_compute = 1; 2946 return 1; 2947 } else if (test_bit(R5_Insync, &dev->flags)) { 2948 set_bit(R5_LOCKED, &dev->flags); 2949 set_bit(R5_Wantread, &dev->flags); 2950 s->locked++; 2951 pr_debug("Reading block %d (sync=%d)\n", 2952 disk_idx, s->syncing); 2953 } 2954 } 2955 2956 return 0; 2957} 2958 2959/** 2960 * handle_stripe_fill - read or compute data to satisfy pending requests. 2961 */ 2962static void handle_stripe_fill(struct stripe_head *sh, 2963 struct stripe_head_state *s, 2964 int disks) 2965{ 2966 int i; 2967 2968 /* look for blocks to read/compute, skip this if a compute 2969 * is already in flight, or if the stripe contents are in the 2970 * midst of changing due to a write 2971 */ 2972 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2973 !sh->reconstruct_state) 2974 for (i = disks; i--; ) 2975 if (fetch_block(sh, s, i, disks)) 2976 break; 2977 set_bit(STRIPE_HANDLE, &sh->state); 2978} 2979 2980 2981/* handle_stripe_clean_event 2982 * any written block on an uptodate or failed drive can be returned. 2983 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2984 * never LOCKED, so we don't need to test 'failed' directly. 2985 */ 2986static void handle_stripe_clean_event(struct r5conf *conf, 2987 struct stripe_head *sh, int disks, struct bio **return_bi) 2988{ 2989 int i; 2990 struct r5dev *dev; 2991 int discard_pending = 0; 2992 2993 for (i = disks; i--; ) 2994 if (sh->dev[i].written) { 2995 dev = &sh->dev[i]; 2996 if (!test_bit(R5_LOCKED, &dev->flags) && 2997 (test_bit(R5_UPTODATE, &dev->flags) || 2998 test_bit(R5_Discard, &dev->flags))) { 2999 /* We can return any write requests */ 3000 struct bio *wbi, *wbi2; 3001 pr_debug("Return write for disc %d\n", i); 3002 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3003 clear_bit(R5_UPTODATE, &dev->flags); 3004 wbi = dev->written; 3005 dev->written = NULL; 3006 while (wbi && wbi->bi_sector < 3007 dev->sector + STRIPE_SECTORS) { 3008 wbi2 = r5_next_bio(wbi, dev->sector); 3009 if (!raid5_dec_bi_active_stripes(wbi)) { 3010 md_write_end(conf->mddev); 3011 wbi->bi_next = *return_bi; 3012 *return_bi = wbi; 3013 } 3014 wbi = wbi2; 3015 } 3016 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3017 STRIPE_SECTORS, 3018 !test_bit(STRIPE_DEGRADED, &sh->state), 3019 0); 3020 } else if (test_bit(R5_Discard, &dev->flags)) 3021 discard_pending = 1; 3022 } 3023 if (!discard_pending && 3024 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3025 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3026 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3027 if (sh->qd_idx >= 0) { 3028 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3029 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3030 } 3031 /* now that discard is done we can proceed with any sync */ 3032 clear_bit(STRIPE_DISCARD, &sh->state); 3033 /* 3034 * SCSI discard will change some bio fields and the stripe has 3035 * no updated data, so remove it from hash list and the stripe 3036 * will be reinitialized 3037 */ 3038 spin_lock_irq(&conf->device_lock); 3039 remove_hash(sh); 3040 spin_unlock_irq(&conf->device_lock); 3041 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3042 set_bit(STRIPE_HANDLE, &sh->state); 3043 3044 } 3045 3046 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3047 if (atomic_dec_and_test(&conf->pending_full_writes)) 3048 md_wakeup_thread(conf->mddev->thread); 3049} 3050 3051static void handle_stripe_dirtying(struct r5conf *conf, 3052 struct stripe_head *sh, 3053 struct stripe_head_state *s, 3054 int disks) 3055{ 3056 int rmw = 0, rcw = 0, i; 3057 sector_t recovery_cp = conf->mddev->recovery_cp; 3058 3059 /* RAID6 requires 'rcw' in current implementation. 3060 * Otherwise, check whether resync is now happening or should start. 3061 * If yes, then the array is dirty (after unclean shutdown or 3062 * initial creation), so parity in some stripes might be inconsistent. 3063 * In this case, we need to always do reconstruct-write, to ensure 3064 * that in case of drive failure or read-error correction, we 3065 * generate correct data from the parity. 3066 */ 3067 if (conf->max_degraded == 2 || 3068 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 3069 /* Calculate the real rcw later - for now make it 3070 * look like rcw is cheaper 3071 */ 3072 rcw = 1; rmw = 2; 3073 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 3074 conf->max_degraded, (unsigned long long)recovery_cp, 3075 (unsigned long long)sh->sector); 3076 } else for (i = disks; i--; ) { 3077 /* would I have to read this buffer for read_modify_write */ 3078 struct r5dev *dev = &sh->dev[i]; 3079 if ((dev->towrite || i == sh->pd_idx) && 3080 !test_bit(R5_LOCKED, &dev->flags) && 3081 !(test_bit(R5_UPTODATE, &dev->flags) || 3082 test_bit(R5_Wantcompute, &dev->flags))) { 3083 if (test_bit(R5_Insync, &dev->flags)) 3084 rmw++; 3085 else 3086 rmw += 2*disks; /* cannot read it */ 3087 } 3088 /* Would I have to read this buffer for reconstruct_write */ 3089 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 3090 !test_bit(R5_LOCKED, &dev->flags) && 3091 !(test_bit(R5_UPTODATE, &dev->flags) || 3092 test_bit(R5_Wantcompute, &dev->flags))) { 3093 if (test_bit(R5_Insync, &dev->flags)) rcw++; 3094 else 3095 rcw += 2*disks; 3096 } 3097 } 3098 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3099 (unsigned long long)sh->sector, rmw, rcw); 3100 set_bit(STRIPE_HANDLE, &sh->state); 3101 if (rmw < rcw && rmw > 0) { 3102 /* prefer read-modify-write, but need to get some data */ 3103 if (conf->mddev->queue) 3104 blk_add_trace_msg(conf->mddev->queue, 3105 "raid5 rmw %llu %d", 3106 (unsigned long long)sh->sector, rmw); 3107 for (i = disks; i--; ) { 3108 struct r5dev *dev = &sh->dev[i]; 3109 if ((dev->towrite || i == sh->pd_idx) && 3110 !test_bit(R5_LOCKED, &dev->flags) && 3111 !(test_bit(R5_UPTODATE, &dev->flags) || 3112 test_bit(R5_Wantcompute, &dev->flags)) && 3113 test_bit(R5_Insync, &dev->flags)) { 3114 if ( 3115 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 3116 pr_debug("Read_old block " 3117 "%d for r-m-w\n", i); 3118 set_bit(R5_LOCKED, &dev->flags); 3119 set_bit(R5_Wantread, &dev->flags); 3120 s->locked++; 3121 } else { 3122 set_bit(STRIPE_DELAYED, &sh->state); 3123 set_bit(STRIPE_HANDLE, &sh->state); 3124 } 3125 } 3126 } 3127 } 3128 if (rcw <= rmw && rcw > 0) { 3129 /* want reconstruct write, but need to get some data */ 3130 int qread =0; 3131 rcw = 0; 3132 for (i = disks; i--; ) { 3133 struct r5dev *dev = &sh->dev[i]; 3134 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3135 i != sh->pd_idx && i != sh->qd_idx && 3136 !test_bit(R5_LOCKED, &dev->flags) && 3137 !(test_bit(R5_UPTODATE, &dev->flags) || 3138 test_bit(R5_Wantcompute, &dev->flags))) { 3139 rcw++; 3140 if (!test_bit(R5_Insync, &dev->flags)) 3141 continue; /* it's a failed drive */ 3142 if ( 3143 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 3144 pr_debug("Read_old block " 3145 "%d for Reconstruct\n", i); 3146 set_bit(R5_LOCKED, &dev->flags); 3147 set_bit(R5_Wantread, &dev->flags); 3148 s->locked++; 3149 qread++; 3150 } else { 3151 set_bit(STRIPE_DELAYED, &sh->state); 3152 set_bit(STRIPE_HANDLE, &sh->state); 3153 } 3154 } 3155 } 3156 if (rcw && conf->mddev->queue) 3157 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3158 (unsigned long long)sh->sector, 3159 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3160 } 3161 /* now if nothing is locked, and if we have enough data, 3162 * we can start a write request 3163 */ 3164 /* since handle_stripe can be called at any time we need to handle the 3165 * case where a compute block operation has been submitted and then a 3166 * subsequent call wants to start a write request. raid_run_ops only 3167 * handles the case where compute block and reconstruct are requested 3168 * simultaneously. If this is not the case then new writes need to be 3169 * held off until the compute completes. 3170 */ 3171 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3172 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3173 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3174 schedule_reconstruction(sh, s, rcw == 0, 0); 3175} 3176 3177static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3178 struct stripe_head_state *s, int disks) 3179{ 3180 struct r5dev *dev = NULL; 3181 3182 set_bit(STRIPE_HANDLE, &sh->state); 3183 3184 switch (sh->check_state) { 3185 case check_state_idle: 3186 /* start a new check operation if there are no failures */ 3187 if (s->failed == 0) { 3188 BUG_ON(s->uptodate != disks); 3189 sh->check_state = check_state_run; 3190 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3191 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3192 s->uptodate--; 3193 break; 3194 } 3195 dev = &sh->dev[s->failed_num[0]]; 3196 /* fall through */ 3197 case check_state_compute_result: 3198 sh->check_state = check_state_idle; 3199 if (!dev) 3200 dev = &sh->dev[sh->pd_idx]; 3201 3202 /* check that a write has not made the stripe insync */ 3203 if (test_bit(STRIPE_INSYNC, &sh->state)) 3204 break; 3205 3206 /* either failed parity check, or recovery is happening */ 3207 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3208 BUG_ON(s->uptodate != disks); 3209 3210 set_bit(R5_LOCKED, &dev->flags); 3211 s->locked++; 3212 set_bit(R5_Wantwrite, &dev->flags); 3213 3214 clear_bit(STRIPE_DEGRADED, &sh->state); 3215 set_bit(STRIPE_INSYNC, &sh->state); 3216 break; 3217 case check_state_run: 3218 break; /* we will be called again upon completion */ 3219 case check_state_check_result: 3220 sh->check_state = check_state_idle; 3221 3222 /* if a failure occurred during the check operation, leave 3223 * STRIPE_INSYNC not set and let the stripe be handled again 3224 */ 3225 if (s->failed) 3226 break; 3227 3228 /* handle a successful check operation, if parity is correct 3229 * we are done. Otherwise update the mismatch count and repair 3230 * parity if !MD_RECOVERY_CHECK 3231 */ 3232 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3233 /* parity is correct (on disc, 3234 * not in buffer any more) 3235 */ 3236 set_bit(STRIPE_INSYNC, &sh->state); 3237 else { 3238 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3239 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3240 /* don't try to repair!! */ 3241 set_bit(STRIPE_INSYNC, &sh->state); 3242 else { 3243 sh->check_state = check_state_compute_run; 3244 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3245 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3246 set_bit(R5_Wantcompute, 3247 &sh->dev[sh->pd_idx].flags); 3248 sh->ops.target = sh->pd_idx; 3249 sh->ops.target2 = -1; 3250 s->uptodate++; 3251 } 3252 } 3253 break; 3254 case check_state_compute_run: 3255 break; 3256 default: 3257 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3258 __func__, sh->check_state, 3259 (unsigned long long) sh->sector); 3260 BUG(); 3261 } 3262} 3263 3264 3265static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3266 struct stripe_head_state *s, 3267 int disks) 3268{ 3269 int pd_idx = sh->pd_idx; 3270 int qd_idx = sh->qd_idx; 3271 struct r5dev *dev; 3272 3273 set_bit(STRIPE_HANDLE, &sh->state); 3274 3275 BUG_ON(s->failed > 2); 3276 3277 /* Want to check and possibly repair P and Q. 3278 * However there could be one 'failed' device, in which 3279 * case we can only check one of them, possibly using the 3280 * other to generate missing data 3281 */ 3282 3283 switch (sh->check_state) { 3284 case check_state_idle: 3285 /* start a new check operation if there are < 2 failures */ 3286 if (s->failed == s->q_failed) { 3287 /* The only possible failed device holds Q, so it 3288 * makes sense to check P (If anything else were failed, 3289 * we would have used P to recreate it). 3290 */ 3291 sh->check_state = check_state_run; 3292 } 3293 if (!s->q_failed && s->failed < 2) { 3294 /* Q is not failed, and we didn't use it to generate 3295 * anything, so it makes sense to check it 3296 */ 3297 if (sh->check_state == check_state_run) 3298 sh->check_state = check_state_run_pq; 3299 else 3300 sh->check_state = check_state_run_q; 3301 } 3302 3303 /* discard potentially stale zero_sum_result */ 3304 sh->ops.zero_sum_result = 0; 3305 3306 if (sh->check_state == check_state_run) { 3307 /* async_xor_zero_sum destroys the contents of P */ 3308 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3309 s->uptodate--; 3310 } 3311 if (sh->check_state >= check_state_run && 3312 sh->check_state <= check_state_run_pq) { 3313 /* async_syndrome_zero_sum preserves P and Q, so 3314 * no need to mark them !uptodate here 3315 */ 3316 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3317 break; 3318 } 3319 3320 /* we have 2-disk failure */ 3321 BUG_ON(s->failed != 2); 3322 /* fall through */ 3323 case check_state_compute_result: 3324 sh->check_state = check_state_idle; 3325 3326 /* check that a write has not made the stripe insync */ 3327 if (test_bit(STRIPE_INSYNC, &sh->state)) 3328 break; 3329 3330 /* now write out any block on a failed drive, 3331 * or P or Q if they were recomputed 3332 */ 3333 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3334 if (s->failed == 2) { 3335 dev = &sh->dev[s->failed_num[1]]; 3336 s->locked++; 3337 set_bit(R5_LOCKED, &dev->flags); 3338 set_bit(R5_Wantwrite, &dev->flags); 3339 } 3340 if (s->failed >= 1) { 3341 dev = &sh->dev[s->failed_num[0]]; 3342 s->locked++; 3343 set_bit(R5_LOCKED, &dev->flags); 3344 set_bit(R5_Wantwrite, &dev->flags); 3345 } 3346 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3347 dev = &sh->dev[pd_idx]; 3348 s->locked++; 3349 set_bit(R5_LOCKED, &dev->flags); 3350 set_bit(R5_Wantwrite, &dev->flags); 3351 } 3352 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3353 dev = &sh->dev[qd_idx]; 3354 s->locked++; 3355 set_bit(R5_LOCKED, &dev->flags); 3356 set_bit(R5_Wantwrite, &dev->flags); 3357 } 3358 clear_bit(STRIPE_DEGRADED, &sh->state); 3359 3360 set_bit(STRIPE_INSYNC, &sh->state); 3361 break; 3362 case check_state_run: 3363 case check_state_run_q: 3364 case check_state_run_pq: 3365 break; /* we will be called again upon completion */ 3366 case check_state_check_result: 3367 sh->check_state = check_state_idle; 3368 3369 /* handle a successful check operation, if parity is correct 3370 * we are done. Otherwise update the mismatch count and repair 3371 * parity if !MD_RECOVERY_CHECK 3372 */ 3373 if (sh->ops.zero_sum_result == 0) { 3374 /* both parities are correct */ 3375 if (!s->failed) 3376 set_bit(STRIPE_INSYNC, &sh->state); 3377 else { 3378 /* in contrast to the raid5 case we can validate 3379 * parity, but still have a failure to write 3380 * back 3381 */ 3382 sh->check_state = check_state_compute_result; 3383 /* Returning at this point means that we may go 3384 * off and bring p and/or q uptodate again so 3385 * we make sure to check zero_sum_result again 3386 * to verify if p or q need writeback 3387 */ 3388 } 3389 } else { 3390 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3391 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3392 /* don't try to repair!! */ 3393 set_bit(STRIPE_INSYNC, &sh->state); 3394 else { 3395 int *target = &sh->ops.target; 3396 3397 sh->ops.target = -1; 3398 sh->ops.target2 = -1; 3399 sh->check_state = check_state_compute_run; 3400 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3401 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3402 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3403 set_bit(R5_Wantcompute, 3404 &sh->dev[pd_idx].flags); 3405 *target = pd_idx; 3406 target = &sh->ops.target2; 3407 s->uptodate++; 3408 } 3409 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3410 set_bit(R5_Wantcompute, 3411 &sh->dev[qd_idx].flags); 3412 *target = qd_idx; 3413 s->uptodate++; 3414 } 3415 } 3416 } 3417 break; 3418 case check_state_compute_run: 3419 break; 3420 default: 3421 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3422 __func__, sh->check_state, 3423 (unsigned long long) sh->sector); 3424 BUG(); 3425 } 3426} 3427 3428static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3429{ 3430 int i; 3431 3432 /* We have read all the blocks in this stripe and now we need to 3433 * copy some of them into a target stripe for expand. 3434 */ 3435 struct dma_async_tx_descriptor *tx = NULL; 3436 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3437 for (i = 0; i < sh->disks; i++) 3438 if (i != sh->pd_idx && i != sh->qd_idx) { 3439 int dd_idx, j; 3440 struct stripe_head *sh2; 3441 struct async_submit_ctl submit; 3442 3443 sector_t bn = compute_blocknr(sh, i, 1); 3444 sector_t s = raid5_compute_sector(conf, bn, 0, 3445 &dd_idx, NULL); 3446 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3447 if (sh2 == NULL) 3448 /* so far only the early blocks of this stripe 3449 * have been requested. When later blocks 3450 * get requested, we will try again 3451 */ 3452 continue; 3453 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3454 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3455 /* must have already done this block */ 3456 release_stripe(sh2); 3457 continue; 3458 } 3459 3460 /* place all the copies on one channel */ 3461 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3462 tx = async_memcpy(sh2->dev[dd_idx].page, 3463 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3464 &submit); 3465 3466 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3467 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3468 for (j = 0; j < conf->raid_disks; j++) 3469 if (j != sh2->pd_idx && 3470 j != sh2->qd_idx && 3471 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3472 break; 3473 if (j == conf->raid_disks) { 3474 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3475 set_bit(STRIPE_HANDLE, &sh2->state); 3476 } 3477 release_stripe(sh2); 3478 3479 } 3480 /* done submitting copies, wait for them to complete */ 3481 async_tx_quiesce(&tx); 3482} 3483 3484/* 3485 * handle_stripe - do things to a stripe. 3486 * 3487 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3488 * state of various bits to see what needs to be done. 3489 * Possible results: 3490 * return some read requests which now have data 3491 * return some write requests which are safely on storage 3492 * schedule a read on some buffers 3493 * schedule a write of some buffers 3494 * return confirmation of parity correctness 3495 * 3496 */ 3497 3498static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3499{ 3500 struct r5conf *conf = sh->raid_conf; 3501 int disks = sh->disks; 3502 struct r5dev *dev; 3503 int i; 3504 int do_recovery = 0; 3505 3506 memset(s, 0, sizeof(*s)); 3507 3508 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3509 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3510 s->failed_num[0] = -1; 3511 s->failed_num[1] = -1; 3512 3513 /* Now to look around and see what can be done */ 3514 rcu_read_lock(); 3515 for (i=disks; i--; ) { 3516 struct md_rdev *rdev; 3517 sector_t first_bad; 3518 int bad_sectors; 3519 int is_bad = 0; 3520 3521 dev = &sh->dev[i]; 3522 3523 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3524 i, dev->flags, 3525 dev->toread, dev->towrite, dev->written); 3526 /* maybe we can reply to a read 3527 * 3528 * new wantfill requests are only permitted while 3529 * ops_complete_biofill is guaranteed to be inactive 3530 */ 3531 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3532 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3533 set_bit(R5_Wantfill, &dev->flags); 3534 3535 /* now count some things */ 3536 if (test_bit(R5_LOCKED, &dev->flags)) 3537 s->locked++; 3538 if (test_bit(R5_UPTODATE, &dev->flags)) 3539 s->uptodate++; 3540 if (test_bit(R5_Wantcompute, &dev->flags)) { 3541 s->compute++; 3542 BUG_ON(s->compute > 2); 3543 } 3544 3545 if (test_bit(R5_Wantfill, &dev->flags)) 3546 s->to_fill++; 3547 else if (dev->toread) 3548 s->to_read++; 3549 if (dev->towrite) { 3550 s->to_write++; 3551 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3552 s->non_overwrite++; 3553 } 3554 if (dev->written) 3555 s->written++; 3556 /* Prefer to use the replacement for reads, but only 3557 * if it is recovered enough and has no bad blocks. 3558 */ 3559 rdev = rcu_dereference(conf->disks[i].replacement); 3560 if (rdev && !test_bit(Faulty, &rdev->flags) && 3561 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3562 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3563 &first_bad, &bad_sectors)) 3564 set_bit(R5_ReadRepl, &dev->flags); 3565 else { 3566 if (rdev) 3567 set_bit(R5_NeedReplace, &dev->flags); 3568 rdev = rcu_dereference(conf->disks[i].rdev); 3569 clear_bit(R5_ReadRepl, &dev->flags); 3570 } 3571 if (rdev && test_bit(Faulty, &rdev->flags)) 3572 rdev = NULL; 3573 if (rdev) { 3574 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3575 &first_bad, &bad_sectors); 3576 if (s->blocked_rdev == NULL 3577 && (test_bit(Blocked, &rdev->flags) 3578 || is_bad < 0)) { 3579 if (is_bad < 0) 3580 set_bit(BlockedBadBlocks, 3581 &rdev->flags); 3582 s->blocked_rdev = rdev; 3583 atomic_inc(&rdev->nr_pending); 3584 } 3585 } 3586 clear_bit(R5_Insync, &dev->flags); 3587 if (!rdev) 3588 /* Not in-sync */; 3589 else if (is_bad) { 3590 /* also not in-sync */ 3591 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3592 test_bit(R5_UPTODATE, &dev->flags)) { 3593 /* treat as in-sync, but with a read error 3594 * which we can now try to correct 3595 */ 3596 set_bit(R5_Insync, &dev->flags); 3597 set_bit(R5_ReadError, &dev->flags); 3598 } 3599 } else if (test_bit(In_sync, &rdev->flags)) 3600 set_bit(R5_Insync, &dev->flags); 3601 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3602 /* in sync if before recovery_offset */ 3603 set_bit(R5_Insync, &dev->flags); 3604 else if (test_bit(R5_UPTODATE, &dev->flags) && 3605 test_bit(R5_Expanded, &dev->flags)) 3606 /* If we've reshaped into here, we assume it is Insync. 3607 * We will shortly update recovery_offset to make 3608 * it official. 3609 */ 3610 set_bit(R5_Insync, &dev->flags); 3611 3612 if (test_bit(R5_WriteError, &dev->flags)) { 3613 /* This flag does not apply to '.replacement' 3614 * only to .rdev, so make sure to check that*/ 3615 struct md_rdev *rdev2 = rcu_dereference( 3616 conf->disks[i].rdev); 3617 if (rdev2 == rdev) 3618 clear_bit(R5_Insync, &dev->flags); 3619 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3620 s->handle_bad_blocks = 1; 3621 atomic_inc(&rdev2->nr_pending); 3622 } else 3623 clear_bit(R5_WriteError, &dev->flags); 3624 } 3625 if (test_bit(R5_MadeGood, &dev->flags)) { 3626 /* This flag does not apply to '.replacement' 3627 * only to .rdev, so make sure to check that*/ 3628 struct md_rdev *rdev2 = rcu_dereference( 3629 conf->disks[i].rdev); 3630 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3631 s->handle_bad_blocks = 1; 3632 atomic_inc(&rdev2->nr_pending); 3633 } else 3634 clear_bit(R5_MadeGood, &dev->flags); 3635 } 3636 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3637 struct md_rdev *rdev2 = rcu_dereference( 3638 conf->disks[i].replacement); 3639 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3640 s->handle_bad_blocks = 1; 3641 atomic_inc(&rdev2->nr_pending); 3642 } else 3643 clear_bit(R5_MadeGoodRepl, &dev->flags); 3644 } 3645 if (!test_bit(R5_Insync, &dev->flags)) { 3646 /* The ReadError flag will just be confusing now */ 3647 clear_bit(R5_ReadError, &dev->flags); 3648 clear_bit(R5_ReWrite, &dev->flags); 3649 } 3650 if (test_bit(R5_ReadError, &dev->flags)) 3651 clear_bit(R5_Insync, &dev->flags); 3652 if (!test_bit(R5_Insync, &dev->flags)) { 3653 if (s->failed < 2) 3654 s->failed_num[s->failed] = i; 3655 s->failed++; 3656 if (rdev && !test_bit(Faulty, &rdev->flags)) 3657 do_recovery = 1; 3658 } 3659 } 3660 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3661 /* If there is a failed device being replaced, 3662 * we must be recovering. 3663 * else if we are after recovery_cp, we must be syncing 3664 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3665 * else we can only be replacing 3666 * sync and recovery both need to read all devices, and so 3667 * use the same flag. 3668 */ 3669 if (do_recovery || 3670 sh->sector >= conf->mddev->recovery_cp || 3671 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3672 s->syncing = 1; 3673 else 3674 s->replacing = 1; 3675 } 3676 rcu_read_unlock(); 3677} 3678 3679static void handle_stripe(struct stripe_head *sh) 3680{ 3681 struct stripe_head_state s; 3682 struct r5conf *conf = sh->raid_conf; 3683 int i; 3684 int prexor; 3685 int disks = sh->disks; 3686 struct r5dev *pdev, *qdev; 3687 3688 clear_bit(STRIPE_HANDLE, &sh->state); 3689 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3690 /* already being handled, ensure it gets handled 3691 * again when current action finishes */ 3692 set_bit(STRIPE_HANDLE, &sh->state); 3693 return; 3694 } 3695 3696 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3697 spin_lock(&sh->stripe_lock); 3698 /* Cannot process 'sync' concurrently with 'discard' */ 3699 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3700 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3701 set_bit(STRIPE_SYNCING, &sh->state); 3702 clear_bit(STRIPE_INSYNC, &sh->state); 3703 clear_bit(STRIPE_REPLACED, &sh->state); 3704 } 3705 spin_unlock(&sh->stripe_lock); 3706 } 3707 clear_bit(STRIPE_DELAYED, &sh->state); 3708 3709 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3710 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3711 (unsigned long long)sh->sector, sh->state, 3712 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3713 sh->check_state, sh->reconstruct_state); 3714 3715 analyse_stripe(sh, &s); 3716 3717 if (s.handle_bad_blocks) { 3718 set_bit(STRIPE_HANDLE, &sh->state); 3719 goto finish; 3720 } 3721 3722 if (unlikely(s.blocked_rdev)) { 3723 if (s.syncing || s.expanding || s.expanded || 3724 s.replacing || s.to_write || s.written) { 3725 set_bit(STRIPE_HANDLE, &sh->state); 3726 goto finish; 3727 } 3728 /* There is nothing for the blocked_rdev to block */ 3729 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3730 s.blocked_rdev = NULL; 3731 } 3732 3733 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3734 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3735 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3736 } 3737 3738 pr_debug("locked=%d uptodate=%d to_read=%d" 3739 " to_write=%d failed=%d failed_num=%d,%d\n", 3740 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3741 s.failed_num[0], s.failed_num[1]); 3742 /* check if the array has lost more than max_degraded devices and, 3743 * if so, some requests might need to be failed. 3744 */ 3745 if (s.failed > conf->max_degraded) { 3746 sh->check_state = 0; 3747 sh->reconstruct_state = 0; 3748 if (s.to_read+s.to_write+s.written) 3749 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3750 if (s.syncing + s.replacing) 3751 handle_failed_sync(conf, sh, &s); 3752 } 3753 3754 /* Now we check to see if any write operations have recently 3755 * completed 3756 */ 3757 prexor = 0; 3758 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3759 prexor = 1; 3760 if (sh->reconstruct_state == reconstruct_state_drain_result || 3761 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3762 sh->reconstruct_state = reconstruct_state_idle; 3763 3764 /* All the 'written' buffers and the parity block are ready to 3765 * be written back to disk 3766 */ 3767 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3768 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3769 BUG_ON(sh->qd_idx >= 0 && 3770 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3771 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3772 for (i = disks; i--; ) { 3773 struct r5dev *dev = &sh->dev[i]; 3774 if (test_bit(R5_LOCKED, &dev->flags) && 3775 (i == sh->pd_idx || i == sh->qd_idx || 3776 dev->written)) { 3777 pr_debug("Writing block %d\n", i); 3778 set_bit(R5_Wantwrite, &dev->flags); 3779 if (prexor) 3780 continue; 3781 if (!test_bit(R5_Insync, &dev->flags) || 3782 ((i == sh->pd_idx || i == sh->qd_idx) && 3783 s.failed == 0)) 3784 set_bit(STRIPE_INSYNC, &sh->state); 3785 } 3786 } 3787 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3788 s.dec_preread_active = 1; 3789 } 3790 3791 /* 3792 * might be able to return some write requests if the parity blocks 3793 * are safe, or on a failed drive 3794 */ 3795 pdev = &sh->dev[sh->pd_idx]; 3796 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3797 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3798 qdev = &sh->dev[sh->qd_idx]; 3799 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3800 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3801 || conf->level < 6; 3802 3803 if (s.written && 3804 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3805 && !test_bit(R5_LOCKED, &pdev->flags) 3806 && (test_bit(R5_UPTODATE, &pdev->flags) || 3807 test_bit(R5_Discard, &pdev->flags))))) && 3808 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3809 && !test_bit(R5_LOCKED, &qdev->flags) 3810 && (test_bit(R5_UPTODATE, &qdev->flags) || 3811 test_bit(R5_Discard, &qdev->flags)))))) 3812 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3813 3814 /* Now we might consider reading some blocks, either to check/generate 3815 * parity, or to satisfy requests 3816 * or to load a block that is being partially written. 3817 */ 3818 if (s.to_read || s.non_overwrite 3819 || (conf->level == 6 && s.to_write && s.failed) 3820 || (s.syncing && (s.uptodate + s.compute < disks)) 3821 || s.replacing 3822 || s.expanding) 3823 handle_stripe_fill(sh, &s, disks); 3824 3825 /* Now to consider new write requests and what else, if anything 3826 * should be read. We do not handle new writes when: 3827 * 1/ A 'write' operation (copy+xor) is already in flight. 3828 * 2/ A 'check' operation is in flight, as it may clobber the parity 3829 * block. 3830 */ 3831 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3832 handle_stripe_dirtying(conf, sh, &s, disks); 3833 3834 /* maybe we need to check and possibly fix the parity for this stripe 3835 * Any reads will already have been scheduled, so we just see if enough 3836 * data is available. The parity check is held off while parity 3837 * dependent operations are in flight. 3838 */ 3839 if (sh->check_state || 3840 (s.syncing && s.locked == 0 && 3841 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3842 !test_bit(STRIPE_INSYNC, &sh->state))) { 3843 if (conf->level == 6) 3844 handle_parity_checks6(conf, sh, &s, disks); 3845 else 3846 handle_parity_checks5(conf, sh, &s, disks); 3847 } 3848 3849 if ((s.replacing || s.syncing) && s.locked == 0 3850 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 3851 && !test_bit(STRIPE_REPLACED, &sh->state)) { 3852 /* Write out to replacement devices where possible */ 3853 for (i = 0; i < conf->raid_disks; i++) 3854 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3855 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3856 set_bit(R5_WantReplace, &sh->dev[i].flags); 3857 set_bit(R5_LOCKED, &sh->dev[i].flags); 3858 s.locked++; 3859 } 3860 if (s.replacing) 3861 set_bit(STRIPE_INSYNC, &sh->state); 3862 set_bit(STRIPE_REPLACED, &sh->state); 3863 } 3864 if ((s.syncing || s.replacing) && s.locked == 0 && 3865 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3866 test_bit(STRIPE_INSYNC, &sh->state)) { 3867 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3868 clear_bit(STRIPE_SYNCING, &sh->state); 3869 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3870 wake_up(&conf->wait_for_overlap); 3871 } 3872 3873 /* If the failed drives are just a ReadError, then we might need 3874 * to progress the repair/check process 3875 */ 3876 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3877 for (i = 0; i < s.failed; i++) { 3878 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3879 if (test_bit(R5_ReadError, &dev->flags) 3880 && !test_bit(R5_LOCKED, &dev->flags) 3881 && test_bit(R5_UPTODATE, &dev->flags) 3882 ) { 3883 if (!test_bit(R5_ReWrite, &dev->flags)) { 3884 set_bit(R5_Wantwrite, &dev->flags); 3885 set_bit(R5_ReWrite, &dev->flags); 3886 set_bit(R5_LOCKED, &dev->flags); 3887 s.locked++; 3888 } else { 3889 /* let's read it back */ 3890 set_bit(R5_Wantread, &dev->flags); 3891 set_bit(R5_LOCKED, &dev->flags); 3892 s.locked++; 3893 } 3894 } 3895 } 3896 3897 3898 /* Finish reconstruct operations initiated by the expansion process */ 3899 if (sh->reconstruct_state == reconstruct_state_result) { 3900 struct stripe_head *sh_src 3901 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3902 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3903 /* sh cannot be written until sh_src has been read. 3904 * so arrange for sh to be delayed a little 3905 */ 3906 set_bit(STRIPE_DELAYED, &sh->state); 3907 set_bit(STRIPE_HANDLE, &sh->state); 3908 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3909 &sh_src->state)) 3910 atomic_inc(&conf->preread_active_stripes); 3911 release_stripe(sh_src); 3912 goto finish; 3913 } 3914 if (sh_src) 3915 release_stripe(sh_src); 3916 3917 sh->reconstruct_state = reconstruct_state_idle; 3918 clear_bit(STRIPE_EXPANDING, &sh->state); 3919 for (i = conf->raid_disks; i--; ) { 3920 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3921 set_bit(R5_LOCKED, &sh->dev[i].flags); 3922 s.locked++; 3923 } 3924 } 3925 3926 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3927 !sh->reconstruct_state) { 3928 /* Need to write out all blocks after computing parity */ 3929 sh->disks = conf->raid_disks; 3930 stripe_set_idx(sh->sector, conf, 0, sh); 3931 schedule_reconstruction(sh, &s, 1, 1); 3932 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3933 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3934 atomic_dec(&conf->reshape_stripes); 3935 wake_up(&conf->wait_for_overlap); 3936 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3937 } 3938 3939 if (s.expanding && s.locked == 0 && 3940 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3941 handle_stripe_expansion(conf, sh); 3942 3943finish: 3944 /* wait for this device to become unblocked */ 3945 if (unlikely(s.blocked_rdev)) { 3946 if (conf->mddev->external) 3947 md_wait_for_blocked_rdev(s.blocked_rdev, 3948 conf->mddev); 3949 else 3950 /* Internal metadata will immediately 3951 * be written by raid5d, so we don't 3952 * need to wait here. 3953 */ 3954 rdev_dec_pending(s.blocked_rdev, 3955 conf->mddev); 3956 } 3957 3958 if (s.handle_bad_blocks) 3959 for (i = disks; i--; ) { 3960 struct md_rdev *rdev; 3961 struct r5dev *dev = &sh->dev[i]; 3962 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3963 /* We own a safe reference to the rdev */ 3964 rdev = conf->disks[i].rdev; 3965 if (!rdev_set_badblocks(rdev, sh->sector, 3966 STRIPE_SECTORS, 0)) 3967 md_error(conf->mddev, rdev); 3968 rdev_dec_pending(rdev, conf->mddev); 3969 } 3970 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3971 rdev = conf->disks[i].rdev; 3972 rdev_clear_badblocks(rdev, sh->sector, 3973 STRIPE_SECTORS, 0); 3974 rdev_dec_pending(rdev, conf->mddev); 3975 } 3976 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3977 rdev = conf->disks[i].replacement; 3978 if (!rdev) 3979 /* rdev have been moved down */ 3980 rdev = conf->disks[i].rdev; 3981 rdev_clear_badblocks(rdev, sh->sector, 3982 STRIPE_SECTORS, 0); 3983 rdev_dec_pending(rdev, conf->mddev); 3984 } 3985 } 3986 3987 if (s.ops_request) 3988 raid_run_ops(sh, s.ops_request); 3989 3990 ops_run_io(sh, &s); 3991 3992 if (s.dec_preread_active) { 3993 /* We delay this until after ops_run_io so that if make_request 3994 * is waiting on a flush, it won't continue until the writes 3995 * have actually been submitted. 3996 */ 3997 atomic_dec(&conf->preread_active_stripes); 3998 if (atomic_read(&conf->preread_active_stripes) < 3999 IO_THRESHOLD) 4000 md_wakeup_thread(conf->mddev->thread); 4001 } 4002 4003 return_io(s.return_bi); 4004 4005 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4006} 4007 4008static void raid5_activate_delayed(struct r5conf *conf) 4009{ 4010 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4011 while (!list_empty(&conf->delayed_list)) { 4012 struct list_head *l = conf->delayed_list.next; 4013 struct stripe_head *sh; 4014 sh = list_entry(l, struct stripe_head, lru); 4015 list_del_init(l); 4016 clear_bit(STRIPE_DELAYED, &sh->state); 4017 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4018 atomic_inc(&conf->preread_active_stripes); 4019 list_add_tail(&sh->lru, &conf->hold_list); 4020 raid5_wakeup_stripe_thread(sh); 4021 } 4022 } 4023} 4024 4025static void activate_bit_delay(struct r5conf *conf, 4026 struct list_head *temp_inactive_list) 4027{ 4028 /* device_lock is held */ 4029 struct list_head head; 4030 list_add(&head, &conf->bitmap_list); 4031 list_del_init(&conf->bitmap_list); 4032 while (!list_empty(&head)) { 4033 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4034 int hash; 4035 list_del_init(&sh->lru); 4036 atomic_inc(&sh->count); 4037 hash = sh->hash_lock_index; 4038 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4039 } 4040} 4041 4042int md_raid5_congested(struct mddev *mddev, int bits) 4043{ 4044 struct r5conf *conf = mddev->private; 4045 4046 /* No difference between reads and writes. Just check 4047 * how busy the stripe_cache is 4048 */ 4049 4050 if (conf->inactive_blocked) 4051 return 1; 4052 if (conf->quiesce) 4053 return 1; 4054 if (atomic_read(&conf->empty_inactive_list_nr)) 4055 return 1; 4056 4057 return 0; 4058} 4059EXPORT_SYMBOL_GPL(md_raid5_congested); 4060 4061static int raid5_congested(void *data, int bits) 4062{ 4063 struct mddev *mddev = data; 4064 4065 return mddev_congested(mddev, bits) || 4066 md_raid5_congested(mddev, bits); 4067} 4068 4069/* We want read requests to align with chunks where possible, 4070 * but write requests don't need to. 4071 */ 4072static int raid5_mergeable_bvec(struct request_queue *q, 4073 struct bvec_merge_data *bvm, 4074 struct bio_vec *biovec) 4075{ 4076 struct mddev *mddev = q->queuedata; 4077 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 4078 int max; 4079 unsigned int chunk_sectors = mddev->chunk_sectors; 4080 unsigned int bio_sectors = bvm->bi_size >> 9; 4081 4082 if ((bvm->bi_rw & 1) == WRITE) 4083 return biovec->bv_len; /* always allow writes to be mergeable */ 4084 4085 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4086 chunk_sectors = mddev->new_chunk_sectors; 4087 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 4088 if (max < 0) max = 0; 4089 if (max <= biovec->bv_len && bio_sectors == 0) 4090 return biovec->bv_len; 4091 else 4092 return max; 4093} 4094 4095 4096static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4097{ 4098 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 4099 unsigned int chunk_sectors = mddev->chunk_sectors; 4100 unsigned int bio_sectors = bio_sectors(bio); 4101 4102 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4103 chunk_sectors = mddev->new_chunk_sectors; 4104 return chunk_sectors >= 4105 ((sector & (chunk_sectors - 1)) + bio_sectors); 4106} 4107 4108/* 4109 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4110 * later sampled by raid5d. 4111 */ 4112static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4113{ 4114 unsigned long flags; 4115 4116 spin_lock_irqsave(&conf->device_lock, flags); 4117 4118 bi->bi_next = conf->retry_read_aligned_list; 4119 conf->retry_read_aligned_list = bi; 4120 4121 spin_unlock_irqrestore(&conf->device_lock, flags); 4122 md_wakeup_thread(conf->mddev->thread); 4123} 4124 4125 4126static struct bio *remove_bio_from_retry(struct r5conf *conf) 4127{ 4128 struct bio *bi; 4129 4130 bi = conf->retry_read_aligned; 4131 if (bi) { 4132 conf->retry_read_aligned = NULL; 4133 return bi; 4134 } 4135 bi = conf->retry_read_aligned_list; 4136 if(bi) { 4137 conf->retry_read_aligned_list = bi->bi_next; 4138 bi->bi_next = NULL; 4139 /* 4140 * this sets the active strip count to 1 and the processed 4141 * strip count to zero (upper 8 bits) 4142 */ 4143 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4144 } 4145 4146 return bi; 4147} 4148 4149 4150/* 4151 * The "raid5_align_endio" should check if the read succeeded and if it 4152 * did, call bio_endio on the original bio (having bio_put the new bio 4153 * first). 4154 * If the read failed.. 4155 */ 4156static void raid5_align_endio(struct bio *bi, int error) 4157{ 4158 struct bio* raid_bi = bi->bi_private; 4159 struct mddev *mddev; 4160 struct r5conf *conf; 4161 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 4162 struct md_rdev *rdev; 4163 4164 bio_put(bi); 4165 4166 rdev = (void*)raid_bi->bi_next; 4167 raid_bi->bi_next = NULL; 4168 mddev = rdev->mddev; 4169 conf = mddev->private; 4170 4171 rdev_dec_pending(rdev, conf->mddev); 4172 4173 if (!error && uptodate) { 4174 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4175 raid_bi, 0); 4176 bio_endio(raid_bi, 0); 4177 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4178 wake_up(&conf->wait_for_stripe); 4179 return; 4180 } 4181 4182 4183 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4184 4185 add_bio_to_retry(raid_bi, conf); 4186} 4187 4188static int bio_fits_rdev(struct bio *bi) 4189{ 4190 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 4191 4192 if (bio_sectors(bi) > queue_max_sectors(q)) 4193 return 0; 4194 blk_recount_segments(q, bi); 4195 if (bi->bi_phys_segments > queue_max_segments(q)) 4196 return 0; 4197 4198 if (q->merge_bvec_fn) 4199 /* it's too hard to apply the merge_bvec_fn at this stage, 4200 * just just give up 4201 */ 4202 return 0; 4203 4204 return 1; 4205} 4206 4207 4208static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 4209{ 4210 struct r5conf *conf = mddev->private; 4211 int dd_idx; 4212 struct bio* align_bi; 4213 struct md_rdev *rdev; 4214 sector_t end_sector; 4215 4216 if (!in_chunk_boundary(mddev, raid_bio)) { 4217 pr_debug("chunk_aligned_read : non aligned\n"); 4218 return 0; 4219 } 4220 /* 4221 * use bio_clone_mddev to make a copy of the bio 4222 */ 4223 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4224 if (!align_bi) 4225 return 0; 4226 /* 4227 * set bi_end_io to a new function, and set bi_private to the 4228 * original bio. 4229 */ 4230 align_bi->bi_end_io = raid5_align_endio; 4231 align_bi->bi_private = raid_bio; 4232 /* 4233 * compute position 4234 */ 4235 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 4236 0, 4237 &dd_idx, NULL); 4238 4239 end_sector = bio_end_sector(align_bi); 4240 rcu_read_lock(); 4241 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4242 if (!rdev || test_bit(Faulty, &rdev->flags) || 4243 rdev->recovery_offset < end_sector) { 4244 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4245 if (rdev && 4246 (test_bit(Faulty, &rdev->flags) || 4247 !(test_bit(In_sync, &rdev->flags) || 4248 rdev->recovery_offset >= end_sector))) 4249 rdev = NULL; 4250 } 4251 if (rdev) { 4252 sector_t first_bad; 4253 int bad_sectors; 4254 4255 atomic_inc(&rdev->nr_pending); 4256 rcu_read_unlock(); 4257 raid_bio->bi_next = (void*)rdev; 4258 align_bi->bi_bdev = rdev->bdev; 4259 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 4260 4261 if (!bio_fits_rdev(align_bi) || 4262 is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi), 4263 &first_bad, &bad_sectors)) { 4264 /* too big in some way, or has a known bad block */ 4265 bio_put(align_bi); 4266 rdev_dec_pending(rdev, mddev); 4267 return 0; 4268 } 4269 4270 /* No reshape active, so we can trust rdev->data_offset */ 4271 align_bi->bi_sector += rdev->data_offset; 4272 4273 spin_lock_irq(&conf->device_lock); 4274 wait_event_lock_irq(conf->wait_for_stripe, 4275 conf->quiesce == 0, 4276 conf->device_lock); 4277 atomic_inc(&conf->active_aligned_reads); 4278 spin_unlock_irq(&conf->device_lock); 4279 4280 if (mddev->gendisk) 4281 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4282 align_bi, disk_devt(mddev->gendisk), 4283 raid_bio->bi_sector); 4284 generic_make_request(align_bi); 4285 return 1; 4286 } else { 4287 rcu_read_unlock(); 4288 bio_put(align_bi); 4289 return 0; 4290 } 4291} 4292 4293/* __get_priority_stripe - get the next stripe to process 4294 * 4295 * Full stripe writes are allowed to pass preread active stripes up until 4296 * the bypass_threshold is exceeded. In general the bypass_count 4297 * increments when the handle_list is handled before the hold_list; however, it 4298 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4299 * stripe with in flight i/o. The bypass_count will be reset when the 4300 * head of the hold_list has changed, i.e. the head was promoted to the 4301 * handle_list. 4302 */ 4303static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4304{ 4305 struct stripe_head *sh = NULL, *tmp; 4306 struct list_head *handle_list = NULL; 4307 struct r5worker_group *wg = NULL; 4308 4309 if (conf->worker_cnt_per_group == 0) { 4310 handle_list = &conf->handle_list; 4311 } else if (group != ANY_GROUP) { 4312 handle_list = &conf->worker_groups[group].handle_list; 4313 wg = &conf->worker_groups[group]; 4314 } else { 4315 int i; 4316 for (i = 0; i < conf->group_cnt; i++) { 4317 handle_list = &conf->worker_groups[i].handle_list; 4318 wg = &conf->worker_groups[i]; 4319 if (!list_empty(handle_list)) 4320 break; 4321 } 4322 } 4323 4324 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4325 __func__, 4326 list_empty(handle_list) ? "empty" : "busy", 4327 list_empty(&conf->hold_list) ? "empty" : "busy", 4328 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4329 4330 if (!list_empty(handle_list)) { 4331 sh = list_entry(handle_list->next, typeof(*sh), lru); 4332 4333 if (list_empty(&conf->hold_list)) 4334 conf->bypass_count = 0; 4335 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4336 if (conf->hold_list.next == conf->last_hold) 4337 conf->bypass_count++; 4338 else { 4339 conf->last_hold = conf->hold_list.next; 4340 conf->bypass_count -= conf->bypass_threshold; 4341 if (conf->bypass_count < 0) 4342 conf->bypass_count = 0; 4343 } 4344 } 4345 } else if (!list_empty(&conf->hold_list) && 4346 ((conf->bypass_threshold && 4347 conf->bypass_count > conf->bypass_threshold) || 4348 atomic_read(&conf->pending_full_writes) == 0)) { 4349 4350 list_for_each_entry(tmp, &conf->hold_list, lru) { 4351 if (conf->worker_cnt_per_group == 0 || 4352 group == ANY_GROUP || 4353 !cpu_online(tmp->cpu) || 4354 cpu_to_group(tmp->cpu) == group) { 4355 sh = tmp; 4356 break; 4357 } 4358 } 4359 4360 if (sh) { 4361 conf->bypass_count -= conf->bypass_threshold; 4362 if (conf->bypass_count < 0) 4363 conf->bypass_count = 0; 4364 } 4365 wg = NULL; 4366 } 4367 4368 if (!sh) 4369 return NULL; 4370 4371 if (wg) { 4372 wg->stripes_cnt--; 4373 sh->group = NULL; 4374 } 4375 list_del_init(&sh->lru); 4376 atomic_inc(&sh->count); 4377 BUG_ON(atomic_read(&sh->count) != 1); 4378 return sh; 4379} 4380 4381struct raid5_plug_cb { 4382 struct blk_plug_cb cb; 4383 struct list_head list; 4384 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4385}; 4386 4387static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4388{ 4389 struct raid5_plug_cb *cb = container_of( 4390 blk_cb, struct raid5_plug_cb, cb); 4391 struct stripe_head *sh; 4392 struct mddev *mddev = cb->cb.data; 4393 struct r5conf *conf = mddev->private; 4394 int cnt = 0; 4395 int hash; 4396 4397 if (cb->list.next && !list_empty(&cb->list)) { 4398 spin_lock_irq(&conf->device_lock); 4399 while (!list_empty(&cb->list)) { 4400 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4401 list_del_init(&sh->lru); 4402 /* 4403 * avoid race release_stripe_plug() sees 4404 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4405 * is still in our list 4406 */ 4407 smp_mb__before_clear_bit(); 4408 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4409 /* 4410 * STRIPE_ON_RELEASE_LIST could be set here. In that 4411 * case, the count is always > 1 here 4412 */ 4413 hash = sh->hash_lock_index; 4414 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 4415 cnt++; 4416 } 4417 spin_unlock_irq(&conf->device_lock); 4418 } 4419 release_inactive_stripe_list(conf, cb->temp_inactive_list, 4420 NR_STRIPE_HASH_LOCKS); 4421 if (mddev->queue) 4422 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4423 kfree(cb); 4424} 4425 4426static void release_stripe_plug(struct mddev *mddev, 4427 struct stripe_head *sh) 4428{ 4429 struct blk_plug_cb *blk_cb = blk_check_plugged( 4430 raid5_unplug, mddev, 4431 sizeof(struct raid5_plug_cb)); 4432 struct raid5_plug_cb *cb; 4433 4434 if (!blk_cb) { 4435 release_stripe(sh); 4436 return; 4437 } 4438 4439 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4440 4441 if (cb->list.next == NULL) { 4442 int i; 4443 INIT_LIST_HEAD(&cb->list); 4444 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 4445 INIT_LIST_HEAD(cb->temp_inactive_list + i); 4446 } 4447 4448 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4449 list_add_tail(&sh->lru, &cb->list); 4450 else 4451 release_stripe(sh); 4452} 4453 4454static void make_discard_request(struct mddev *mddev, struct bio *bi) 4455{ 4456 struct r5conf *conf = mddev->private; 4457 sector_t logical_sector, last_sector; 4458 struct stripe_head *sh; 4459 int remaining; 4460 int stripe_sectors; 4461 4462 if (mddev->reshape_position != MaxSector) 4463 /* Skip discard while reshape is happening */ 4464 return; 4465 4466 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4467 last_sector = bi->bi_sector + (bi->bi_size>>9); 4468 4469 bi->bi_next = NULL; 4470 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4471 4472 stripe_sectors = conf->chunk_sectors * 4473 (conf->raid_disks - conf->max_degraded); 4474 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4475 stripe_sectors); 4476 sector_div(last_sector, stripe_sectors); 4477 4478 logical_sector *= conf->chunk_sectors; 4479 last_sector *= conf->chunk_sectors; 4480 4481 for (; logical_sector < last_sector; 4482 logical_sector += STRIPE_SECTORS) { 4483 DEFINE_WAIT(w); 4484 int d; 4485 again: 4486 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4487 prepare_to_wait(&conf->wait_for_overlap, &w, 4488 TASK_UNINTERRUPTIBLE); 4489 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4490 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4491 release_stripe(sh); 4492 schedule(); 4493 goto again; 4494 } 4495 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4496 spin_lock_irq(&sh->stripe_lock); 4497 for (d = 0; d < conf->raid_disks; d++) { 4498 if (d == sh->pd_idx || d == sh->qd_idx) 4499 continue; 4500 if (sh->dev[d].towrite || sh->dev[d].toread) { 4501 set_bit(R5_Overlap, &sh->dev[d].flags); 4502 spin_unlock_irq(&sh->stripe_lock); 4503 release_stripe(sh); 4504 schedule(); 4505 goto again; 4506 } 4507 } 4508 set_bit(STRIPE_DISCARD, &sh->state); 4509 finish_wait(&conf->wait_for_overlap, &w); 4510 for (d = 0; d < conf->raid_disks; d++) { 4511 if (d == sh->pd_idx || d == sh->qd_idx) 4512 continue; 4513 sh->dev[d].towrite = bi; 4514 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4515 raid5_inc_bi_active_stripes(bi); 4516 } 4517 spin_unlock_irq(&sh->stripe_lock); 4518 if (conf->mddev->bitmap) { 4519 for (d = 0; 4520 d < conf->raid_disks - conf->max_degraded; 4521 d++) 4522 bitmap_startwrite(mddev->bitmap, 4523 sh->sector, 4524 STRIPE_SECTORS, 4525 0); 4526 sh->bm_seq = conf->seq_flush + 1; 4527 set_bit(STRIPE_BIT_DELAY, &sh->state); 4528 } 4529 4530 set_bit(STRIPE_HANDLE, &sh->state); 4531 clear_bit(STRIPE_DELAYED, &sh->state); 4532 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4533 atomic_inc(&conf->preread_active_stripes); 4534 release_stripe_plug(mddev, sh); 4535 } 4536 4537 remaining = raid5_dec_bi_active_stripes(bi); 4538 if (remaining == 0) { 4539 md_write_end(mddev); 4540 bio_endio(bi, 0); 4541 } 4542} 4543 4544static void make_request(struct mddev *mddev, struct bio * bi) 4545{ 4546 struct r5conf *conf = mddev->private; 4547 int dd_idx; 4548 sector_t new_sector; 4549 sector_t logical_sector, last_sector; 4550 struct stripe_head *sh; 4551 const int rw = bio_data_dir(bi); 4552 int remaining; 4553 4554 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4555 md_flush_request(mddev, bi); 4556 return; 4557 } 4558 4559 md_write_start(mddev, bi); 4560 4561 if (rw == READ && 4562 mddev->reshape_position == MaxSector && 4563 chunk_aligned_read(mddev,bi)) 4564 return; 4565 4566 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4567 make_discard_request(mddev, bi); 4568 return; 4569 } 4570 4571 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4572 last_sector = bio_end_sector(bi); 4573 bi->bi_next = NULL; 4574 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4575 4576 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4577 DEFINE_WAIT(w); 4578 int previous; 4579 int seq; 4580 4581 retry: 4582 seq = read_seqcount_begin(&conf->gen_lock); 4583 previous = 0; 4584 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4585 if (unlikely(conf->reshape_progress != MaxSector)) { 4586 /* spinlock is needed as reshape_progress may be 4587 * 64bit on a 32bit platform, and so it might be 4588 * possible to see a half-updated value 4589 * Of course reshape_progress could change after 4590 * the lock is dropped, so once we get a reference 4591 * to the stripe that we think it is, we will have 4592 * to check again. 4593 */ 4594 spin_lock_irq(&conf->device_lock); 4595 if (mddev->reshape_backwards 4596 ? logical_sector < conf->reshape_progress 4597 : logical_sector >= conf->reshape_progress) { 4598 previous = 1; 4599 } else { 4600 if (mddev->reshape_backwards 4601 ? logical_sector < conf->reshape_safe 4602 : logical_sector >= conf->reshape_safe) { 4603 spin_unlock_irq(&conf->device_lock); 4604 schedule(); 4605 goto retry; 4606 } 4607 } 4608 spin_unlock_irq(&conf->device_lock); 4609 } 4610 4611 new_sector = raid5_compute_sector(conf, logical_sector, 4612 previous, 4613 &dd_idx, NULL); 4614 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4615 (unsigned long long)new_sector, 4616 (unsigned long long)logical_sector); 4617 4618 sh = get_active_stripe(conf, new_sector, previous, 4619 (bi->bi_rw&RWA_MASK), 0); 4620 if (sh) { 4621 if (unlikely(previous)) { 4622 /* expansion might have moved on while waiting for a 4623 * stripe, so we must do the range check again. 4624 * Expansion could still move past after this 4625 * test, but as we are holding a reference to 4626 * 'sh', we know that if that happens, 4627 * STRIPE_EXPANDING will get set and the expansion 4628 * won't proceed until we finish with the stripe. 4629 */ 4630 int must_retry = 0; 4631 spin_lock_irq(&conf->device_lock); 4632 if (mddev->reshape_backwards 4633 ? logical_sector >= conf->reshape_progress 4634 : logical_sector < conf->reshape_progress) 4635 /* mismatch, need to try again */ 4636 must_retry = 1; 4637 spin_unlock_irq(&conf->device_lock); 4638 if (must_retry) { 4639 release_stripe(sh); 4640 schedule(); 4641 goto retry; 4642 } 4643 } 4644 if (read_seqcount_retry(&conf->gen_lock, seq)) { 4645 /* Might have got the wrong stripe_head 4646 * by accident 4647 */ 4648 release_stripe(sh); 4649 goto retry; 4650 } 4651 4652 if (rw == WRITE && 4653 logical_sector >= mddev->suspend_lo && 4654 logical_sector < mddev->suspend_hi) { 4655 release_stripe(sh); 4656 /* As the suspend_* range is controlled by 4657 * userspace, we want an interruptible 4658 * wait. 4659 */ 4660 flush_signals(current); 4661 prepare_to_wait(&conf->wait_for_overlap, 4662 &w, TASK_INTERRUPTIBLE); 4663 if (logical_sector >= mddev->suspend_lo && 4664 logical_sector < mddev->suspend_hi) 4665 schedule(); 4666 goto retry; 4667 } 4668 4669 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4670 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4671 /* Stripe is busy expanding or 4672 * add failed due to overlap. Flush everything 4673 * and wait a while 4674 */ 4675 md_wakeup_thread(mddev->thread); 4676 release_stripe(sh); 4677 schedule(); 4678 goto retry; 4679 } 4680 finish_wait(&conf->wait_for_overlap, &w); 4681 set_bit(STRIPE_HANDLE, &sh->state); 4682 clear_bit(STRIPE_DELAYED, &sh->state); 4683 if ((bi->bi_rw & REQ_SYNC) && 4684 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4685 atomic_inc(&conf->preread_active_stripes); 4686 release_stripe_plug(mddev, sh); 4687 } else { 4688 /* cannot get stripe for read-ahead, just give-up */ 4689 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4690 finish_wait(&conf->wait_for_overlap, &w); 4691 break; 4692 } 4693 } 4694 4695 remaining = raid5_dec_bi_active_stripes(bi); 4696 if (remaining == 0) { 4697 4698 if ( rw == WRITE ) 4699 md_write_end(mddev); 4700 4701 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4702 bi, 0); 4703 bio_endio(bi, 0); 4704 } 4705} 4706 4707static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4708 4709static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4710{ 4711 /* reshaping is quite different to recovery/resync so it is 4712 * handled quite separately ... here. 4713 * 4714 * On each call to sync_request, we gather one chunk worth of 4715 * destination stripes and flag them as expanding. 4716 * Then we find all the source stripes and request reads. 4717 * As the reads complete, handle_stripe will copy the data 4718 * into the destination stripe and release that stripe. 4719 */ 4720 struct r5conf *conf = mddev->private; 4721 struct stripe_head *sh; 4722 sector_t first_sector, last_sector; 4723 int raid_disks = conf->previous_raid_disks; 4724 int data_disks = raid_disks - conf->max_degraded; 4725 int new_data_disks = conf->raid_disks - conf->max_degraded; 4726 int i; 4727 int dd_idx; 4728 sector_t writepos, readpos, safepos; 4729 sector_t stripe_addr; 4730 int reshape_sectors; 4731 struct list_head stripes; 4732 4733 if (sector_nr == 0) { 4734 /* If restarting in the middle, skip the initial sectors */ 4735 if (mddev->reshape_backwards && 4736 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4737 sector_nr = raid5_size(mddev, 0, 0) 4738 - conf->reshape_progress; 4739 } else if (!mddev->reshape_backwards && 4740 conf->reshape_progress > 0) 4741 sector_nr = conf->reshape_progress; 4742 sector_div(sector_nr, new_data_disks); 4743 if (sector_nr) { 4744 mddev->curr_resync_completed = sector_nr; 4745 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4746 *skipped = 1; 4747 return sector_nr; 4748 } 4749 } 4750 4751 /* We need to process a full chunk at a time. 4752 * If old and new chunk sizes differ, we need to process the 4753 * largest of these 4754 */ 4755 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4756 reshape_sectors = mddev->new_chunk_sectors; 4757 else 4758 reshape_sectors = mddev->chunk_sectors; 4759 4760 /* We update the metadata at least every 10 seconds, or when 4761 * the data about to be copied would over-write the source of 4762 * the data at the front of the range. i.e. one new_stripe 4763 * along from reshape_progress new_maps to after where 4764 * reshape_safe old_maps to 4765 */ 4766 writepos = conf->reshape_progress; 4767 sector_div(writepos, new_data_disks); 4768 readpos = conf->reshape_progress; 4769 sector_div(readpos, data_disks); 4770 safepos = conf->reshape_safe; 4771 sector_div(safepos, data_disks); 4772 if (mddev->reshape_backwards) { 4773 writepos -= min_t(sector_t, reshape_sectors, writepos); 4774 readpos += reshape_sectors; 4775 safepos += reshape_sectors; 4776 } else { 4777 writepos += reshape_sectors; 4778 readpos -= min_t(sector_t, reshape_sectors, readpos); 4779 safepos -= min_t(sector_t, reshape_sectors, safepos); 4780 } 4781 4782 /* Having calculated the 'writepos' possibly use it 4783 * to set 'stripe_addr' which is where we will write to. 4784 */ 4785 if (mddev->reshape_backwards) { 4786 BUG_ON(conf->reshape_progress == 0); 4787 stripe_addr = writepos; 4788 BUG_ON((mddev->dev_sectors & 4789 ~((sector_t)reshape_sectors - 1)) 4790 - reshape_sectors - stripe_addr 4791 != sector_nr); 4792 } else { 4793 BUG_ON(writepos != sector_nr + reshape_sectors); 4794 stripe_addr = sector_nr; 4795 } 4796 4797 /* 'writepos' is the most advanced device address we might write. 4798 * 'readpos' is the least advanced device address we might read. 4799 * 'safepos' is the least address recorded in the metadata as having 4800 * been reshaped. 4801 * If there is a min_offset_diff, these are adjusted either by 4802 * increasing the safepos/readpos if diff is negative, or 4803 * increasing writepos if diff is positive. 4804 * If 'readpos' is then behind 'writepos', there is no way that we can 4805 * ensure safety in the face of a crash - that must be done by userspace 4806 * making a backup of the data. So in that case there is no particular 4807 * rush to update metadata. 4808 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4809 * update the metadata to advance 'safepos' to match 'readpos' so that 4810 * we can be safe in the event of a crash. 4811 * So we insist on updating metadata if safepos is behind writepos and 4812 * readpos is beyond writepos. 4813 * In any case, update the metadata every 10 seconds. 4814 * Maybe that number should be configurable, but I'm not sure it is 4815 * worth it.... maybe it could be a multiple of safemode_delay??? 4816 */ 4817 if (conf->min_offset_diff < 0) { 4818 safepos += -conf->min_offset_diff; 4819 readpos += -conf->min_offset_diff; 4820 } else 4821 writepos += conf->min_offset_diff; 4822 4823 if ((mddev->reshape_backwards 4824 ? (safepos > writepos && readpos < writepos) 4825 : (safepos < writepos && readpos > writepos)) || 4826 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4827 /* Cannot proceed until we've updated the superblock... */ 4828 wait_event(conf->wait_for_overlap, 4829 atomic_read(&conf->reshape_stripes)==0 4830 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4831 if (atomic_read(&conf->reshape_stripes) != 0) 4832 return 0; 4833 mddev->reshape_position = conf->reshape_progress; 4834 mddev->curr_resync_completed = sector_nr; 4835 conf->reshape_checkpoint = jiffies; 4836 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4837 md_wakeup_thread(mddev->thread); 4838 wait_event(mddev->sb_wait, mddev->flags == 0 || 4839 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4840 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4841 return 0; 4842 spin_lock_irq(&conf->device_lock); 4843 conf->reshape_safe = mddev->reshape_position; 4844 spin_unlock_irq(&conf->device_lock); 4845 wake_up(&conf->wait_for_overlap); 4846 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4847 } 4848 4849 INIT_LIST_HEAD(&stripes); 4850 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4851 int j; 4852 int skipped_disk = 0; 4853 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4854 set_bit(STRIPE_EXPANDING, &sh->state); 4855 atomic_inc(&conf->reshape_stripes); 4856 /* If any of this stripe is beyond the end of the old 4857 * array, then we need to zero those blocks 4858 */ 4859 for (j=sh->disks; j--;) { 4860 sector_t s; 4861 if (j == sh->pd_idx) 4862 continue; 4863 if (conf->level == 6 && 4864 j == sh->qd_idx) 4865 continue; 4866 s = compute_blocknr(sh, j, 0); 4867 if (s < raid5_size(mddev, 0, 0)) { 4868 skipped_disk = 1; 4869 continue; 4870 } 4871 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4872 set_bit(R5_Expanded, &sh->dev[j].flags); 4873 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4874 } 4875 if (!skipped_disk) { 4876 set_bit(STRIPE_EXPAND_READY, &sh->state); 4877 set_bit(STRIPE_HANDLE, &sh->state); 4878 } 4879 list_add(&sh->lru, &stripes); 4880 } 4881 spin_lock_irq(&conf->device_lock); 4882 if (mddev->reshape_backwards) 4883 conf->reshape_progress -= reshape_sectors * new_data_disks; 4884 else 4885 conf->reshape_progress += reshape_sectors * new_data_disks; 4886 spin_unlock_irq(&conf->device_lock); 4887 /* Ok, those stripe are ready. We can start scheduling 4888 * reads on the source stripes. 4889 * The source stripes are determined by mapping the first and last 4890 * block on the destination stripes. 4891 */ 4892 first_sector = 4893 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4894 1, &dd_idx, NULL); 4895 last_sector = 4896 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4897 * new_data_disks - 1), 4898 1, &dd_idx, NULL); 4899 if (last_sector >= mddev->dev_sectors) 4900 last_sector = mddev->dev_sectors - 1; 4901 while (first_sector <= last_sector) { 4902 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4903 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4904 set_bit(STRIPE_HANDLE, &sh->state); 4905 release_stripe(sh); 4906 first_sector += STRIPE_SECTORS; 4907 } 4908 /* Now that the sources are clearly marked, we can release 4909 * the destination stripes 4910 */ 4911 while (!list_empty(&stripes)) { 4912 sh = list_entry(stripes.next, struct stripe_head, lru); 4913 list_del_init(&sh->lru); 4914 release_stripe(sh); 4915 } 4916 /* If this takes us to the resync_max point where we have to pause, 4917 * then we need to write out the superblock. 4918 */ 4919 sector_nr += reshape_sectors; 4920 if ((sector_nr - mddev->curr_resync_completed) * 2 4921 >= mddev->resync_max - mddev->curr_resync_completed) { 4922 /* Cannot proceed until we've updated the superblock... */ 4923 wait_event(conf->wait_for_overlap, 4924 atomic_read(&conf->reshape_stripes) == 0 4925 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4926 if (atomic_read(&conf->reshape_stripes) != 0) 4927 goto ret; 4928 mddev->reshape_position = conf->reshape_progress; 4929 mddev->curr_resync_completed = sector_nr; 4930 conf->reshape_checkpoint = jiffies; 4931 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4932 md_wakeup_thread(mddev->thread); 4933 wait_event(mddev->sb_wait, 4934 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4935 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4936 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4937 goto ret; 4938 spin_lock_irq(&conf->device_lock); 4939 conf->reshape_safe = mddev->reshape_position; 4940 spin_unlock_irq(&conf->device_lock); 4941 wake_up(&conf->wait_for_overlap); 4942 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4943 } 4944ret: 4945 return reshape_sectors; 4946} 4947 4948/* FIXME go_faster isn't used */ 4949static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4950{ 4951 struct r5conf *conf = mddev->private; 4952 struct stripe_head *sh; 4953 sector_t max_sector = mddev->dev_sectors; 4954 sector_t sync_blocks; 4955 int still_degraded = 0; 4956 int i; 4957 4958 if (sector_nr >= max_sector) { 4959 /* just being told to finish up .. nothing much to do */ 4960 4961 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4962 end_reshape(conf); 4963 return 0; 4964 } 4965 4966 if (mddev->curr_resync < max_sector) /* aborted */ 4967 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4968 &sync_blocks, 1); 4969 else /* completed sync */ 4970 conf->fullsync = 0; 4971 bitmap_close_sync(mddev->bitmap); 4972 4973 return 0; 4974 } 4975 4976 /* Allow raid5_quiesce to complete */ 4977 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4978 4979 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4980 return reshape_request(mddev, sector_nr, skipped); 4981 4982 /* No need to check resync_max as we never do more than one 4983 * stripe, and as resync_max will always be on a chunk boundary, 4984 * if the check in md_do_sync didn't fire, there is no chance 4985 * of overstepping resync_max here 4986 */ 4987 4988 /* if there is too many failed drives and we are trying 4989 * to resync, then assert that we are finished, because there is 4990 * nothing we can do. 4991 */ 4992 if (mddev->degraded >= conf->max_degraded && 4993 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4994 sector_t rv = mddev->dev_sectors - sector_nr; 4995 *skipped = 1; 4996 return rv; 4997 } 4998 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4999 !conf->fullsync && 5000 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5001 sync_blocks >= STRIPE_SECTORS) { 5002 /* we can skip this block, and probably more */ 5003 sync_blocks /= STRIPE_SECTORS; 5004 *skipped = 1; 5005 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5006 } 5007 5008 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 5009 5010 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 5011 if (sh == NULL) { 5012 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 5013 /* make sure we don't swamp the stripe cache if someone else 5014 * is trying to get access 5015 */ 5016 schedule_timeout_uninterruptible(1); 5017 } 5018 /* Need to check if array will still be degraded after recovery/resync 5019 * We don't need to check the 'failed' flag as when that gets set, 5020 * recovery aborts. 5021 */ 5022 for (i = 0; i < conf->raid_disks; i++) 5023 if (conf->disks[i].rdev == NULL) 5024 still_degraded = 1; 5025 5026 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5027 5028 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5029 5030 handle_stripe(sh); 5031 release_stripe(sh); 5032 5033 return STRIPE_SECTORS; 5034} 5035 5036static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5037{ 5038 /* We may not be able to submit a whole bio at once as there 5039 * may not be enough stripe_heads available. 5040 * We cannot pre-allocate enough stripe_heads as we may need 5041 * more than exist in the cache (if we allow ever large chunks). 5042 * So we do one stripe head at a time and record in 5043 * ->bi_hw_segments how many have been done. 5044 * 5045 * We *know* that this entire raid_bio is in one chunk, so 5046 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5047 */ 5048 struct stripe_head *sh; 5049 int dd_idx; 5050 sector_t sector, logical_sector, last_sector; 5051 int scnt = 0; 5052 int remaining; 5053 int handled = 0; 5054 5055 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5056 sector = raid5_compute_sector(conf, logical_sector, 5057 0, &dd_idx, NULL); 5058 last_sector = bio_end_sector(raid_bio); 5059 5060 for (; logical_sector < last_sector; 5061 logical_sector += STRIPE_SECTORS, 5062 sector += STRIPE_SECTORS, 5063 scnt++) { 5064 5065 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5066 /* already done this stripe */ 5067 continue; 5068 5069 sh = get_active_stripe(conf, sector, 0, 1, 0); 5070 5071 if (!sh) { 5072 /* failed to get a stripe - must wait */ 5073 raid5_set_bi_processed_stripes(raid_bio, scnt); 5074 conf->retry_read_aligned = raid_bio; 5075 return handled; 5076 } 5077 5078 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 5079 release_stripe(sh); 5080 raid5_set_bi_processed_stripes(raid_bio, scnt); 5081 conf->retry_read_aligned = raid_bio; 5082 return handled; 5083 } 5084 5085 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5086 handle_stripe(sh); 5087 release_stripe(sh); 5088 handled++; 5089 } 5090 remaining = raid5_dec_bi_active_stripes(raid_bio); 5091 if (remaining == 0) { 5092 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5093 raid_bio, 0); 5094 bio_endio(raid_bio, 0); 5095 } 5096 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5097 wake_up(&conf->wait_for_stripe); 5098 return handled; 5099} 5100 5101static int handle_active_stripes(struct r5conf *conf, int group, 5102 struct r5worker *worker, 5103 struct list_head *temp_inactive_list) 5104{ 5105 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5106 int i, batch_size = 0, hash; 5107 bool release_inactive = false; 5108 5109 while (batch_size < MAX_STRIPE_BATCH && 5110 (sh = __get_priority_stripe(conf, group)) != NULL) 5111 batch[batch_size++] = sh; 5112 5113 if (batch_size == 0) { 5114 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5115 if (!list_empty(temp_inactive_list + i)) 5116 break; 5117 if (i == NR_STRIPE_HASH_LOCKS) 5118 return batch_size; 5119 release_inactive = true; 5120 } 5121 spin_unlock_irq(&conf->device_lock); 5122 5123 release_inactive_stripe_list(conf, temp_inactive_list, 5124 NR_STRIPE_HASH_LOCKS); 5125 5126 if (release_inactive) { 5127 spin_lock_irq(&conf->device_lock); 5128 return 0; 5129 } 5130 5131 for (i = 0; i < batch_size; i++) 5132 handle_stripe(batch[i]); 5133 5134 cond_resched(); 5135 5136 spin_lock_irq(&conf->device_lock); 5137 for (i = 0; i < batch_size; i++) { 5138 hash = batch[i]->hash_lock_index; 5139 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5140 } 5141 return batch_size; 5142} 5143 5144static void raid5_do_work(struct work_struct *work) 5145{ 5146 struct r5worker *worker = container_of(work, struct r5worker, work); 5147 struct r5worker_group *group = worker->group; 5148 struct r5conf *conf = group->conf; 5149 int group_id = group - conf->worker_groups; 5150 int handled; 5151 struct blk_plug plug; 5152 5153 pr_debug("+++ raid5worker active\n"); 5154 5155 blk_start_plug(&plug); 5156 handled = 0; 5157 spin_lock_irq(&conf->device_lock); 5158 while (1) { 5159 int batch_size, released; 5160 5161 released = release_stripe_list(conf, worker->temp_inactive_list); 5162 5163 batch_size = handle_active_stripes(conf, group_id, worker, 5164 worker->temp_inactive_list); 5165 worker->working = false; 5166 if (!batch_size && !released) 5167 break; 5168 handled += batch_size; 5169 } 5170 pr_debug("%d stripes handled\n", handled); 5171 5172 spin_unlock_irq(&conf->device_lock); 5173 blk_finish_plug(&plug); 5174 5175 pr_debug("--- raid5worker inactive\n"); 5176} 5177 5178/* 5179 * This is our raid5 kernel thread. 5180 * 5181 * We scan the hash table for stripes which can be handled now. 5182 * During the scan, completed stripes are saved for us by the interrupt 5183 * handler, so that they will not have to wait for our next wakeup. 5184 */ 5185static void raid5d(struct md_thread *thread) 5186{ 5187 struct mddev *mddev = thread->mddev; 5188 struct r5conf *conf = mddev->private; 5189 int handled; 5190 struct blk_plug plug; 5191 5192 pr_debug("+++ raid5d active\n"); 5193 5194 md_check_recovery(mddev); 5195 5196 blk_start_plug(&plug); 5197 handled = 0; 5198 spin_lock_irq(&conf->device_lock); 5199 while (1) { 5200 struct bio *bio; 5201 int batch_size, released; 5202 5203 released = release_stripe_list(conf, conf->temp_inactive_list); 5204 5205 if ( 5206 !list_empty(&conf->bitmap_list)) { 5207 /* Now is a good time to flush some bitmap updates */ 5208 conf->seq_flush++; 5209 spin_unlock_irq(&conf->device_lock); 5210 bitmap_unplug(mddev->bitmap); 5211 spin_lock_irq(&conf->device_lock); 5212 conf->seq_write = conf->seq_flush; 5213 activate_bit_delay(conf, conf->temp_inactive_list); 5214 } 5215 raid5_activate_delayed(conf); 5216 5217 while ((bio = remove_bio_from_retry(conf))) { 5218 int ok; 5219 spin_unlock_irq(&conf->device_lock); 5220 ok = retry_aligned_read(conf, bio); 5221 spin_lock_irq(&conf->device_lock); 5222 if (!ok) 5223 break; 5224 handled++; 5225 } 5226 5227 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5228 conf->temp_inactive_list); 5229 if (!batch_size && !released) 5230 break; 5231 handled += batch_size; 5232 5233 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5234 spin_unlock_irq(&conf->device_lock); 5235 md_check_recovery(mddev); 5236 spin_lock_irq(&conf->device_lock); 5237 } 5238 } 5239 pr_debug("%d stripes handled\n", handled); 5240 5241 spin_unlock_irq(&conf->device_lock); 5242 5243 async_tx_issue_pending_all(); 5244 blk_finish_plug(&plug); 5245 5246 pr_debug("--- raid5d inactive\n"); 5247} 5248 5249static ssize_t 5250raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5251{ 5252 struct r5conf *conf = mddev->private; 5253 if (conf) 5254 return sprintf(page, "%d\n", conf->max_nr_stripes); 5255 else 5256 return 0; 5257} 5258 5259int 5260raid5_set_cache_size(struct mddev *mddev, int size) 5261{ 5262 struct r5conf *conf = mddev->private; 5263 int err; 5264 int hash; 5265 5266 if (size <= 16 || size > 32768) 5267 return -EINVAL; 5268 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS; 5269 while (size < conf->max_nr_stripes) { 5270 if (drop_one_stripe(conf, hash)) 5271 conf->max_nr_stripes--; 5272 else 5273 break; 5274 hash--; 5275 if (hash < 0) 5276 hash = NR_STRIPE_HASH_LOCKS - 1; 5277 } 5278 err = md_allow_write(mddev); 5279 if (err) 5280 return err; 5281 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 5282 while (size > conf->max_nr_stripes) { 5283 if (grow_one_stripe(conf, hash)) 5284 conf->max_nr_stripes++; 5285 else break; 5286 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 5287 } 5288 return 0; 5289} 5290EXPORT_SYMBOL(raid5_set_cache_size); 5291 5292static ssize_t 5293raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5294{ 5295 struct r5conf *conf = mddev->private; 5296 unsigned long new; 5297 int err; 5298 5299 if (len >= PAGE_SIZE) 5300 return -EINVAL; 5301 if (!conf) 5302 return -ENODEV; 5303 5304 if (kstrtoul(page, 10, &new)) 5305 return -EINVAL; 5306 err = raid5_set_cache_size(mddev, new); 5307 if (err) 5308 return err; 5309 return len; 5310} 5311 5312static struct md_sysfs_entry 5313raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5314 raid5_show_stripe_cache_size, 5315 raid5_store_stripe_cache_size); 5316 5317static ssize_t 5318raid5_show_preread_threshold(struct mddev *mddev, char *page) 5319{ 5320 struct r5conf *conf = mddev->private; 5321 if (conf) 5322 return sprintf(page, "%d\n", conf->bypass_threshold); 5323 else 5324 return 0; 5325} 5326 5327static ssize_t 5328raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 5329{ 5330 struct r5conf *conf = mddev->private; 5331 unsigned long new; 5332 if (len >= PAGE_SIZE) 5333 return -EINVAL; 5334 if (!conf) 5335 return -ENODEV; 5336 5337 if (kstrtoul(page, 10, &new)) 5338 return -EINVAL; 5339 if (new > conf->max_nr_stripes) 5340 return -EINVAL; 5341 conf->bypass_threshold = new; 5342 return len; 5343} 5344 5345static struct md_sysfs_entry 5346raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 5347 S_IRUGO | S_IWUSR, 5348 raid5_show_preread_threshold, 5349 raid5_store_preread_threshold); 5350 5351static ssize_t 5352stripe_cache_active_show(struct mddev *mddev, char *page) 5353{ 5354 struct r5conf *conf = mddev->private; 5355 if (conf) 5356 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 5357 else 5358 return 0; 5359} 5360 5361static struct md_sysfs_entry 5362raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 5363 5364static ssize_t 5365raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 5366{ 5367 struct r5conf *conf = mddev->private; 5368 if (conf) 5369 return sprintf(page, "%d\n", conf->worker_cnt_per_group); 5370 else 5371 return 0; 5372} 5373 5374static int alloc_thread_groups(struct r5conf *conf, int cnt, 5375 int *group_cnt, 5376 int *worker_cnt_per_group, 5377 struct r5worker_group **worker_groups); 5378static ssize_t 5379raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 5380{ 5381 struct r5conf *conf = mddev->private; 5382 unsigned long new; 5383 int err; 5384 struct r5worker_group *new_groups, *old_groups; 5385 int group_cnt, worker_cnt_per_group; 5386 5387 if (len >= PAGE_SIZE) 5388 return -EINVAL; 5389 if (!conf) 5390 return -ENODEV; 5391 5392 if (kstrtoul(page, 10, &new)) 5393 return -EINVAL; 5394 5395 if (new == conf->worker_cnt_per_group) 5396 return len; 5397 5398 mddev_suspend(mddev); 5399 5400 old_groups = conf->worker_groups; 5401 if (old_groups) 5402 flush_workqueue(raid5_wq); 5403 5404 err = alloc_thread_groups(conf, new, 5405 &group_cnt, &worker_cnt_per_group, 5406 &new_groups); 5407 if (!err) { 5408 spin_lock_irq(&conf->device_lock); 5409 conf->group_cnt = group_cnt; 5410 conf->worker_cnt_per_group = worker_cnt_per_group; 5411 conf->worker_groups = new_groups; 5412 spin_unlock_irq(&conf->device_lock); 5413 5414 if (old_groups) 5415 kfree(old_groups[0].workers); 5416 kfree(old_groups); 5417 } 5418 5419 mddev_resume(mddev); 5420 5421 if (err) 5422 return err; 5423 return len; 5424} 5425 5426static struct md_sysfs_entry 5427raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 5428 raid5_show_group_thread_cnt, 5429 raid5_store_group_thread_cnt); 5430 5431static struct attribute *raid5_attrs[] = { 5432 &raid5_stripecache_size.attr, 5433 &raid5_stripecache_active.attr, 5434 &raid5_preread_bypass_threshold.attr, 5435 &raid5_group_thread_cnt.attr, 5436 NULL, 5437}; 5438static struct attribute_group raid5_attrs_group = { 5439 .name = NULL, 5440 .attrs = raid5_attrs, 5441}; 5442 5443static int alloc_thread_groups(struct r5conf *conf, int cnt, 5444 int *group_cnt, 5445 int *worker_cnt_per_group, 5446 struct r5worker_group **worker_groups) 5447{ 5448 int i, j, k; 5449 ssize_t size; 5450 struct r5worker *workers; 5451 5452 *worker_cnt_per_group = cnt; 5453 if (cnt == 0) { 5454 *group_cnt = 0; 5455 *worker_groups = NULL; 5456 return 0; 5457 } 5458 *group_cnt = num_possible_nodes(); 5459 size = sizeof(struct r5worker) * cnt; 5460 workers = kzalloc(size * *group_cnt, GFP_NOIO); 5461 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 5462 *group_cnt, GFP_NOIO); 5463 if (!*worker_groups || !workers) { 5464 kfree(workers); 5465 kfree(*worker_groups); 5466 return -ENOMEM; 5467 } 5468 5469 for (i = 0; i < *group_cnt; i++) { 5470 struct r5worker_group *group; 5471 5472 group = &(*worker_groups)[i]; 5473 INIT_LIST_HEAD(&group->handle_list); 5474 group->conf = conf; 5475 group->workers = workers + i * cnt; 5476 5477 for (j = 0; j < cnt; j++) { 5478 struct r5worker *worker = group->workers + j; 5479 worker->group = group; 5480 INIT_WORK(&worker->work, raid5_do_work); 5481 5482 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 5483 INIT_LIST_HEAD(worker->temp_inactive_list + k); 5484 } 5485 } 5486 5487 return 0; 5488} 5489 5490static void free_thread_groups(struct r5conf *conf) 5491{ 5492 if (conf->worker_groups) 5493 kfree(conf->worker_groups[0].workers); 5494 kfree(conf->worker_groups); 5495 conf->worker_groups = NULL; 5496} 5497 5498static sector_t 5499raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 5500{ 5501 struct r5conf *conf = mddev->private; 5502 5503 if (!sectors) 5504 sectors = mddev->dev_sectors; 5505 if (!raid_disks) 5506 /* size is defined by the smallest of previous and new size */ 5507 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 5508 5509 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5510 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5511 return sectors * (raid_disks - conf->max_degraded); 5512} 5513 5514static void raid5_free_percpu(struct r5conf *conf) 5515{ 5516 struct raid5_percpu *percpu; 5517 unsigned long cpu; 5518 5519 if (!conf->percpu) 5520 return; 5521 5522 get_online_cpus(); 5523 for_each_possible_cpu(cpu) { 5524 percpu = per_cpu_ptr(conf->percpu, cpu); 5525 safe_put_page(percpu->spare_page); 5526 kfree(percpu->scribble); 5527 } 5528#ifdef CONFIG_HOTPLUG_CPU 5529 unregister_cpu_notifier(&conf->cpu_notify); 5530#endif 5531 put_online_cpus(); 5532 5533 free_percpu(conf->percpu); 5534} 5535 5536static void free_conf(struct r5conf *conf) 5537{ 5538 free_thread_groups(conf); 5539 shrink_stripes(conf); 5540 raid5_free_percpu(conf); 5541 kfree(conf->disks); 5542 kfree(conf->stripe_hashtbl); 5543 kfree(conf); 5544} 5545 5546#ifdef CONFIG_HOTPLUG_CPU 5547static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5548 void *hcpu) 5549{ 5550 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5551 long cpu = (long)hcpu; 5552 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5553 5554 switch (action) { 5555 case CPU_UP_PREPARE: 5556 case CPU_UP_PREPARE_FROZEN: 5557 if (conf->level == 6 && !percpu->spare_page) 5558 percpu->spare_page = alloc_page(GFP_KERNEL); 5559 if (!percpu->scribble) 5560 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5561 5562 if (!percpu->scribble || 5563 (conf->level == 6 && !percpu->spare_page)) { 5564 safe_put_page(percpu->spare_page); 5565 kfree(percpu->scribble); 5566 pr_err("%s: failed memory allocation for cpu%ld\n", 5567 __func__, cpu); 5568 return notifier_from_errno(-ENOMEM); 5569 } 5570 break; 5571 case CPU_DEAD: 5572 case CPU_DEAD_FROZEN: 5573 safe_put_page(percpu->spare_page); 5574 kfree(percpu->scribble); 5575 percpu->spare_page = NULL; 5576 percpu->scribble = NULL; 5577 break; 5578 default: 5579 break; 5580 } 5581 return NOTIFY_OK; 5582} 5583#endif 5584 5585static int raid5_alloc_percpu(struct r5conf *conf) 5586{ 5587 unsigned long cpu; 5588 struct page *spare_page; 5589 struct raid5_percpu __percpu *allcpus; 5590 void *scribble; 5591 int err; 5592 5593 allcpus = alloc_percpu(struct raid5_percpu); 5594 if (!allcpus) 5595 return -ENOMEM; 5596 conf->percpu = allcpus; 5597 5598 get_online_cpus(); 5599 err = 0; 5600 for_each_present_cpu(cpu) { 5601 if (conf->level == 6) { 5602 spare_page = alloc_page(GFP_KERNEL); 5603 if (!spare_page) { 5604 err = -ENOMEM; 5605 break; 5606 } 5607 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5608 } 5609 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5610 if (!scribble) { 5611 err = -ENOMEM; 5612 break; 5613 } 5614 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5615 } 5616#ifdef CONFIG_HOTPLUG_CPU 5617 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5618 conf->cpu_notify.priority = 0; 5619 if (err == 0) 5620 err = register_cpu_notifier(&conf->cpu_notify); 5621#endif 5622 put_online_cpus(); 5623 5624 return err; 5625} 5626 5627static struct r5conf *setup_conf(struct mddev *mddev) 5628{ 5629 struct r5conf *conf; 5630 int raid_disk, memory, max_disks; 5631 struct md_rdev *rdev; 5632 struct disk_info *disk; 5633 char pers_name[6]; 5634 int i; 5635 int group_cnt, worker_cnt_per_group; 5636 struct r5worker_group *new_group; 5637 5638 if (mddev->new_level != 5 5639 && mddev->new_level != 4 5640 && mddev->new_level != 6) { 5641 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5642 mdname(mddev), mddev->new_level); 5643 return ERR_PTR(-EIO); 5644 } 5645 if ((mddev->new_level == 5 5646 && !algorithm_valid_raid5(mddev->new_layout)) || 5647 (mddev->new_level == 6 5648 && !algorithm_valid_raid6(mddev->new_layout))) { 5649 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5650 mdname(mddev), mddev->new_layout); 5651 return ERR_PTR(-EIO); 5652 } 5653 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5654 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5655 mdname(mddev), mddev->raid_disks); 5656 return ERR_PTR(-EINVAL); 5657 } 5658 5659 if (!mddev->new_chunk_sectors || 5660 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5661 !is_power_of_2(mddev->new_chunk_sectors)) { 5662 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5663 mdname(mddev), mddev->new_chunk_sectors << 9); 5664 return ERR_PTR(-EINVAL); 5665 } 5666 5667 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5668 if (conf == NULL) 5669 goto abort; 5670 /* Don't enable multi-threading by default*/ 5671 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 5672 &new_group)) { 5673 conf->group_cnt = group_cnt; 5674 conf->worker_cnt_per_group = worker_cnt_per_group; 5675 conf->worker_groups = new_group; 5676 } else 5677 goto abort; 5678 spin_lock_init(&conf->device_lock); 5679 seqcount_init(&conf->gen_lock); 5680 init_waitqueue_head(&conf->wait_for_stripe); 5681 init_waitqueue_head(&conf->wait_for_overlap); 5682 INIT_LIST_HEAD(&conf->handle_list); 5683 INIT_LIST_HEAD(&conf->hold_list); 5684 INIT_LIST_HEAD(&conf->delayed_list); 5685 INIT_LIST_HEAD(&conf->bitmap_list); 5686 init_llist_head(&conf->released_stripes); 5687 atomic_set(&conf->active_stripes, 0); 5688 atomic_set(&conf->preread_active_stripes, 0); 5689 atomic_set(&conf->active_aligned_reads, 0); 5690 conf->bypass_threshold = BYPASS_THRESHOLD; 5691 conf->recovery_disabled = mddev->recovery_disabled - 1; 5692 5693 conf->raid_disks = mddev->raid_disks; 5694 if (mddev->reshape_position == MaxSector) 5695 conf->previous_raid_disks = mddev->raid_disks; 5696 else 5697 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5698 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5699 conf->scribble_len = scribble_len(max_disks); 5700 5701 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5702 GFP_KERNEL); 5703 if (!conf->disks) 5704 goto abort; 5705 5706 conf->mddev = mddev; 5707 5708 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5709 goto abort; 5710 5711 /* We init hash_locks[0] separately to that it can be used 5712 * as the reference lock in the spin_lock_nest_lock() call 5713 * in lock_all_device_hash_locks_irq in order to convince 5714 * lockdep that we know what we are doing. 5715 */ 5716 spin_lock_init(conf->hash_locks); 5717 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 5718 spin_lock_init(conf->hash_locks + i); 5719 5720 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5721 INIT_LIST_HEAD(conf->inactive_list + i); 5722 5723 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5724 INIT_LIST_HEAD(conf->temp_inactive_list + i); 5725 5726 conf->level = mddev->new_level; 5727 if (raid5_alloc_percpu(conf) != 0) 5728 goto abort; 5729 5730 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5731 5732 rdev_for_each(rdev, mddev) { 5733 raid_disk = rdev->raid_disk; 5734 if (raid_disk >= max_disks 5735 || raid_disk < 0) 5736 continue; 5737 disk = conf->disks + raid_disk; 5738 5739 if (test_bit(Replacement, &rdev->flags)) { 5740 if (disk->replacement) 5741 goto abort; 5742 disk->replacement = rdev; 5743 } else { 5744 if (disk->rdev) 5745 goto abort; 5746 disk->rdev = rdev; 5747 } 5748 5749 if (test_bit(In_sync, &rdev->flags)) { 5750 char b[BDEVNAME_SIZE]; 5751 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5752 " disk %d\n", 5753 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5754 } else if (rdev->saved_raid_disk != raid_disk) 5755 /* Cannot rely on bitmap to complete recovery */ 5756 conf->fullsync = 1; 5757 } 5758 5759 conf->chunk_sectors = mddev->new_chunk_sectors; 5760 conf->level = mddev->new_level; 5761 if (conf->level == 6) 5762 conf->max_degraded = 2; 5763 else 5764 conf->max_degraded = 1; 5765 conf->algorithm = mddev->new_layout; 5766 conf->reshape_progress = mddev->reshape_position; 5767 if (conf->reshape_progress != MaxSector) { 5768 conf->prev_chunk_sectors = mddev->chunk_sectors; 5769 conf->prev_algo = mddev->layout; 5770 } 5771 5772 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5773 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5774 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 5775 if (grow_stripes(conf, NR_STRIPES)) { 5776 printk(KERN_ERR 5777 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5778 mdname(mddev), memory); 5779 goto abort; 5780 } else 5781 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5782 mdname(mddev), memory); 5783 5784 sprintf(pers_name, "raid%d", mddev->new_level); 5785 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5786 if (!conf->thread) { 5787 printk(KERN_ERR 5788 "md/raid:%s: couldn't allocate thread.\n", 5789 mdname(mddev)); 5790 goto abort; 5791 } 5792 5793 return conf; 5794 5795 abort: 5796 if (conf) { 5797 free_conf(conf); 5798 return ERR_PTR(-EIO); 5799 } else 5800 return ERR_PTR(-ENOMEM); 5801} 5802 5803 5804static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5805{ 5806 switch (algo) { 5807 case ALGORITHM_PARITY_0: 5808 if (raid_disk < max_degraded) 5809 return 1; 5810 break; 5811 case ALGORITHM_PARITY_N: 5812 if (raid_disk >= raid_disks - max_degraded) 5813 return 1; 5814 break; 5815 case ALGORITHM_PARITY_0_6: 5816 if (raid_disk == 0 || 5817 raid_disk == raid_disks - 1) 5818 return 1; 5819 break; 5820 case ALGORITHM_LEFT_ASYMMETRIC_6: 5821 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5822 case ALGORITHM_LEFT_SYMMETRIC_6: 5823 case ALGORITHM_RIGHT_SYMMETRIC_6: 5824 if (raid_disk == raid_disks - 1) 5825 return 1; 5826 } 5827 return 0; 5828} 5829 5830static int run(struct mddev *mddev) 5831{ 5832 struct r5conf *conf; 5833 int working_disks = 0; 5834 int dirty_parity_disks = 0; 5835 struct md_rdev *rdev; 5836 sector_t reshape_offset = 0; 5837 int i; 5838 long long min_offset_diff = 0; 5839 int first = 1; 5840 5841 if (mddev->recovery_cp != MaxSector) 5842 printk(KERN_NOTICE "md/raid:%s: not clean" 5843 " -- starting background reconstruction\n", 5844 mdname(mddev)); 5845 5846 rdev_for_each(rdev, mddev) { 5847 long long diff; 5848 if (rdev->raid_disk < 0) 5849 continue; 5850 diff = (rdev->new_data_offset - rdev->data_offset); 5851 if (first) { 5852 min_offset_diff = diff; 5853 first = 0; 5854 } else if (mddev->reshape_backwards && 5855 diff < min_offset_diff) 5856 min_offset_diff = diff; 5857 else if (!mddev->reshape_backwards && 5858 diff > min_offset_diff) 5859 min_offset_diff = diff; 5860 } 5861 5862 if (mddev->reshape_position != MaxSector) { 5863 /* Check that we can continue the reshape. 5864 * Difficulties arise if the stripe we would write to 5865 * next is at or after the stripe we would read from next. 5866 * For a reshape that changes the number of devices, this 5867 * is only possible for a very short time, and mdadm makes 5868 * sure that time appears to have past before assembling 5869 * the array. So we fail if that time hasn't passed. 5870 * For a reshape that keeps the number of devices the same 5871 * mdadm must be monitoring the reshape can keeping the 5872 * critical areas read-only and backed up. It will start 5873 * the array in read-only mode, so we check for that. 5874 */ 5875 sector_t here_new, here_old; 5876 int old_disks; 5877 int max_degraded = (mddev->level == 6 ? 2 : 1); 5878 5879 if (mddev->new_level != mddev->level) { 5880 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5881 "required - aborting.\n", 5882 mdname(mddev)); 5883 return -EINVAL; 5884 } 5885 old_disks = mddev->raid_disks - mddev->delta_disks; 5886 /* reshape_position must be on a new-stripe boundary, and one 5887 * further up in new geometry must map after here in old 5888 * geometry. 5889 */ 5890 here_new = mddev->reshape_position; 5891 if (sector_div(here_new, mddev->new_chunk_sectors * 5892 (mddev->raid_disks - max_degraded))) { 5893 printk(KERN_ERR "md/raid:%s: reshape_position not " 5894 "on a stripe boundary\n", mdname(mddev)); 5895 return -EINVAL; 5896 } 5897 reshape_offset = here_new * mddev->new_chunk_sectors; 5898 /* here_new is the stripe we will write to */ 5899 here_old = mddev->reshape_position; 5900 sector_div(here_old, mddev->chunk_sectors * 5901 (old_disks-max_degraded)); 5902 /* here_old is the first stripe that we might need to read 5903 * from */ 5904 if (mddev->delta_disks == 0) { 5905 if ((here_new * mddev->new_chunk_sectors != 5906 here_old * mddev->chunk_sectors)) { 5907 printk(KERN_ERR "md/raid:%s: reshape position is" 5908 " confused - aborting\n", mdname(mddev)); 5909 return -EINVAL; 5910 } 5911 /* We cannot be sure it is safe to start an in-place 5912 * reshape. It is only safe if user-space is monitoring 5913 * and taking constant backups. 5914 * mdadm always starts a situation like this in 5915 * readonly mode so it can take control before 5916 * allowing any writes. So just check for that. 5917 */ 5918 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5919 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5920 /* not really in-place - so OK */; 5921 else if (mddev->ro == 0) { 5922 printk(KERN_ERR "md/raid:%s: in-place reshape " 5923 "must be started in read-only mode " 5924 "- aborting\n", 5925 mdname(mddev)); 5926 return -EINVAL; 5927 } 5928 } else if (mddev->reshape_backwards 5929 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5930 here_old * mddev->chunk_sectors) 5931 : (here_new * mddev->new_chunk_sectors >= 5932 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5933 /* Reading from the same stripe as writing to - bad */ 5934 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5935 "auto-recovery - aborting.\n", 5936 mdname(mddev)); 5937 return -EINVAL; 5938 } 5939 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5940 mdname(mddev)); 5941 /* OK, we should be able to continue; */ 5942 } else { 5943 BUG_ON(mddev->level != mddev->new_level); 5944 BUG_ON(mddev->layout != mddev->new_layout); 5945 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5946 BUG_ON(mddev->delta_disks != 0); 5947 } 5948 5949 if (mddev->private == NULL) 5950 conf = setup_conf(mddev); 5951 else 5952 conf = mddev->private; 5953 5954 if (IS_ERR(conf)) 5955 return PTR_ERR(conf); 5956 5957 conf->min_offset_diff = min_offset_diff; 5958 mddev->thread = conf->thread; 5959 conf->thread = NULL; 5960 mddev->private = conf; 5961 5962 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5963 i++) { 5964 rdev = conf->disks[i].rdev; 5965 if (!rdev && conf->disks[i].replacement) { 5966 /* The replacement is all we have yet */ 5967 rdev = conf->disks[i].replacement; 5968 conf->disks[i].replacement = NULL; 5969 clear_bit(Replacement, &rdev->flags); 5970 conf->disks[i].rdev = rdev; 5971 } 5972 if (!rdev) 5973 continue; 5974 if (conf->disks[i].replacement && 5975 conf->reshape_progress != MaxSector) { 5976 /* replacements and reshape simply do not mix. */ 5977 printk(KERN_ERR "md: cannot handle concurrent " 5978 "replacement and reshape.\n"); 5979 goto abort; 5980 } 5981 if (test_bit(In_sync, &rdev->flags)) { 5982 working_disks++; 5983 continue; 5984 } 5985 /* This disc is not fully in-sync. However if it 5986 * just stored parity (beyond the recovery_offset), 5987 * when we don't need to be concerned about the 5988 * array being dirty. 5989 * When reshape goes 'backwards', we never have 5990 * partially completed devices, so we only need 5991 * to worry about reshape going forwards. 5992 */ 5993 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5994 if (mddev->major_version == 0 && 5995 mddev->minor_version > 90) 5996 rdev->recovery_offset = reshape_offset; 5997 5998 if (rdev->recovery_offset < reshape_offset) { 5999 /* We need to check old and new layout */ 6000 if (!only_parity(rdev->raid_disk, 6001 conf->algorithm, 6002 conf->raid_disks, 6003 conf->max_degraded)) 6004 continue; 6005 } 6006 if (!only_parity(rdev->raid_disk, 6007 conf->prev_algo, 6008 conf->previous_raid_disks, 6009 conf->max_degraded)) 6010 continue; 6011 dirty_parity_disks++; 6012 } 6013 6014 /* 6015 * 0 for a fully functional array, 1 or 2 for a degraded array. 6016 */ 6017 mddev->degraded = calc_degraded(conf); 6018 6019 if (has_failed(conf)) { 6020 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6021 " (%d/%d failed)\n", 6022 mdname(mddev), mddev->degraded, conf->raid_disks); 6023 goto abort; 6024 } 6025 6026 /* device size must be a multiple of chunk size */ 6027 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6028 mddev->resync_max_sectors = mddev->dev_sectors; 6029 6030 if (mddev->degraded > dirty_parity_disks && 6031 mddev->recovery_cp != MaxSector) { 6032 if (mddev->ok_start_degraded) 6033 printk(KERN_WARNING 6034 "md/raid:%s: starting dirty degraded array" 6035 " - data corruption possible.\n", 6036 mdname(mddev)); 6037 else { 6038 printk(KERN_ERR 6039 "md/raid:%s: cannot start dirty degraded array.\n", 6040 mdname(mddev)); 6041 goto abort; 6042 } 6043 } 6044 6045 if (mddev->degraded == 0) 6046 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6047 " devices, algorithm %d\n", mdname(mddev), conf->level, 6048 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6049 mddev->new_layout); 6050 else 6051 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6052 " out of %d devices, algorithm %d\n", 6053 mdname(mddev), conf->level, 6054 mddev->raid_disks - mddev->degraded, 6055 mddev->raid_disks, mddev->new_layout); 6056 6057 print_raid5_conf(conf); 6058 6059 if (conf->reshape_progress != MaxSector) { 6060 conf->reshape_safe = conf->reshape_progress; 6061 atomic_set(&conf->reshape_stripes, 0); 6062 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6063 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6064 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6065 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6066 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6067 "reshape"); 6068 } 6069 6070 6071 /* Ok, everything is just fine now */ 6072 if (mddev->to_remove == &raid5_attrs_group) 6073 mddev->to_remove = NULL; 6074 else if (mddev->kobj.sd && 6075 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6076 printk(KERN_WARNING 6077 "raid5: failed to create sysfs attributes for %s\n", 6078 mdname(mddev)); 6079 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6080 6081 if (mddev->queue) { 6082 int chunk_size; 6083 bool discard_supported = true; 6084 /* read-ahead size must cover two whole stripes, which 6085 * is 2 * (datadisks) * chunksize where 'n' is the 6086 * number of raid devices 6087 */ 6088 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6089 int stripe = data_disks * 6090 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6091 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6092 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6093 6094 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 6095 6096 mddev->queue->backing_dev_info.congested_data = mddev; 6097 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 6098 6099 chunk_size = mddev->chunk_sectors << 9; 6100 blk_queue_io_min(mddev->queue, chunk_size); 6101 blk_queue_io_opt(mddev->queue, chunk_size * 6102 (conf->raid_disks - conf->max_degraded)); 6103 /* 6104 * We can only discard a whole stripe. It doesn't make sense to 6105 * discard data disk but write parity disk 6106 */ 6107 stripe = stripe * PAGE_SIZE; 6108 /* Round up to power of 2, as discard handling 6109 * currently assumes that */ 6110 while ((stripe-1) & stripe) 6111 stripe = (stripe | (stripe-1)) + 1; 6112 mddev->queue->limits.discard_alignment = stripe; 6113 mddev->queue->limits.discard_granularity = stripe; 6114 /* 6115 * unaligned part of discard request will be ignored, so can't 6116 * guarantee discard_zerors_data 6117 */ 6118 mddev->queue->limits.discard_zeroes_data = 0; 6119 6120 blk_queue_max_write_same_sectors(mddev->queue, 0); 6121 6122 rdev_for_each(rdev, mddev) { 6123 disk_stack_limits(mddev->gendisk, rdev->bdev, 6124 rdev->data_offset << 9); 6125 disk_stack_limits(mddev->gendisk, rdev->bdev, 6126 rdev->new_data_offset << 9); 6127 /* 6128 * discard_zeroes_data is required, otherwise data 6129 * could be lost. Consider a scenario: discard a stripe 6130 * (the stripe could be inconsistent if 6131 * discard_zeroes_data is 0); write one disk of the 6132 * stripe (the stripe could be inconsistent again 6133 * depending on which disks are used to calculate 6134 * parity); the disk is broken; The stripe data of this 6135 * disk is lost. 6136 */ 6137 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6138 !bdev_get_queue(rdev->bdev)-> 6139 limits.discard_zeroes_data) 6140 discard_supported = false; 6141 } 6142 6143 if (discard_supported && 6144 mddev->queue->limits.max_discard_sectors >= stripe && 6145 mddev->queue->limits.discard_granularity >= stripe) 6146 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 6147 mddev->queue); 6148 else 6149 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 6150 mddev->queue); 6151 } 6152 6153 return 0; 6154abort: 6155 md_unregister_thread(&mddev->thread); 6156 print_raid5_conf(conf); 6157 free_conf(conf); 6158 mddev->private = NULL; 6159 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 6160 return -EIO; 6161} 6162 6163static int stop(struct mddev *mddev) 6164{ 6165 struct r5conf *conf = mddev->private; 6166 6167 md_unregister_thread(&mddev->thread); 6168 if (mddev->queue) 6169 mddev->queue->backing_dev_info.congested_fn = NULL; 6170 free_conf(conf); 6171 mddev->private = NULL; 6172 mddev->to_remove = &raid5_attrs_group; 6173 return 0; 6174} 6175 6176static void status(struct seq_file *seq, struct mddev *mddev) 6177{ 6178 struct r5conf *conf = mddev->private; 6179 int i; 6180 6181 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 6182 mddev->chunk_sectors / 2, mddev->layout); 6183 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 6184 for (i = 0; i < conf->raid_disks; i++) 6185 seq_printf (seq, "%s", 6186 conf->disks[i].rdev && 6187 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 6188 seq_printf (seq, "]"); 6189} 6190 6191static void print_raid5_conf (struct r5conf *conf) 6192{ 6193 int i; 6194 struct disk_info *tmp; 6195 6196 printk(KERN_DEBUG "RAID conf printout:\n"); 6197 if (!conf) { 6198 printk("(conf==NULL)\n"); 6199 return; 6200 } 6201 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 6202 conf->raid_disks, 6203 conf->raid_disks - conf->mddev->degraded); 6204 6205 for (i = 0; i < conf->raid_disks; i++) { 6206 char b[BDEVNAME_SIZE]; 6207 tmp = conf->disks + i; 6208 if (tmp->rdev) 6209 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 6210 i, !test_bit(Faulty, &tmp->rdev->flags), 6211 bdevname(tmp->rdev->bdev, b)); 6212 } 6213} 6214 6215static int raid5_spare_active(struct mddev *mddev) 6216{ 6217 int i; 6218 struct r5conf *conf = mddev->private; 6219 struct disk_info *tmp; 6220 int count = 0; 6221 unsigned long flags; 6222 6223 for (i = 0; i < conf->raid_disks; i++) { 6224 tmp = conf->disks + i; 6225 if (tmp->replacement 6226 && tmp->replacement->recovery_offset == MaxSector 6227 && !test_bit(Faulty, &tmp->replacement->flags) 6228 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 6229 /* Replacement has just become active. */ 6230 if (!tmp->rdev 6231 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 6232 count++; 6233 if (tmp->rdev) { 6234 /* Replaced device not technically faulty, 6235 * but we need to be sure it gets removed 6236 * and never re-added. 6237 */ 6238 set_bit(Faulty, &tmp->rdev->flags); 6239 sysfs_notify_dirent_safe( 6240 tmp->rdev->sysfs_state); 6241 } 6242 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 6243 } else if (tmp->rdev 6244 && tmp->rdev->recovery_offset == MaxSector 6245 && !test_bit(Faulty, &tmp->rdev->flags) 6246 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 6247 count++; 6248 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 6249 } 6250 } 6251 spin_lock_irqsave(&conf->device_lock, flags); 6252 mddev->degraded = calc_degraded(conf); 6253 spin_unlock_irqrestore(&conf->device_lock, flags); 6254 print_raid5_conf(conf); 6255 return count; 6256} 6257 6258static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 6259{ 6260 struct r5conf *conf = mddev->private; 6261 int err = 0; 6262 int number = rdev->raid_disk; 6263 struct md_rdev **rdevp; 6264 struct disk_info *p = conf->disks + number; 6265 6266 print_raid5_conf(conf); 6267 if (rdev == p->rdev) 6268 rdevp = &p->rdev; 6269 else if (rdev == p->replacement) 6270 rdevp = &p->replacement; 6271 else 6272 return 0; 6273 6274 if (number >= conf->raid_disks && 6275 conf->reshape_progress == MaxSector) 6276 clear_bit(In_sync, &rdev->flags); 6277 6278 if (test_bit(In_sync, &rdev->flags) || 6279 atomic_read(&rdev->nr_pending)) { 6280 err = -EBUSY; 6281 goto abort; 6282 } 6283 /* Only remove non-faulty devices if recovery 6284 * isn't possible. 6285 */ 6286 if (!test_bit(Faulty, &rdev->flags) && 6287 mddev->recovery_disabled != conf->recovery_disabled && 6288 !has_failed(conf) && 6289 (!p->replacement || p->replacement == rdev) && 6290 number < conf->raid_disks) { 6291 err = -EBUSY; 6292 goto abort; 6293 } 6294 *rdevp = NULL; 6295 synchronize_rcu(); 6296 if (atomic_read(&rdev->nr_pending)) { 6297 /* lost the race, try later */ 6298 err = -EBUSY; 6299 *rdevp = rdev; 6300 } else if (p->replacement) { 6301 /* We must have just cleared 'rdev' */ 6302 p->rdev = p->replacement; 6303 clear_bit(Replacement, &p->replacement->flags); 6304 smp_mb(); /* Make sure other CPUs may see both as identical 6305 * but will never see neither - if they are careful 6306 */ 6307 p->replacement = NULL; 6308 clear_bit(WantReplacement, &rdev->flags); 6309 } else 6310 /* We might have just removed the Replacement as faulty- 6311 * clear the bit just in case 6312 */ 6313 clear_bit(WantReplacement, &rdev->flags); 6314abort: 6315 6316 print_raid5_conf(conf); 6317 return err; 6318} 6319 6320static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 6321{ 6322 struct r5conf *conf = mddev->private; 6323 int err = -EEXIST; 6324 int disk; 6325 struct disk_info *p; 6326 int first = 0; 6327 int last = conf->raid_disks - 1; 6328 6329 if (mddev->recovery_disabled == conf->recovery_disabled) 6330 return -EBUSY; 6331 6332 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 6333 /* no point adding a device */ 6334 return -EINVAL; 6335 6336 if (rdev->raid_disk >= 0) 6337 first = last = rdev->raid_disk; 6338 6339 /* 6340 * find the disk ... but prefer rdev->saved_raid_disk 6341 * if possible. 6342 */ 6343 if (rdev->saved_raid_disk >= 0 && 6344 rdev->saved_raid_disk >= first && 6345 conf->disks[rdev->saved_raid_disk].rdev == NULL) 6346 first = rdev->saved_raid_disk; 6347 6348 for (disk = first; disk <= last; disk++) { 6349 p = conf->disks + disk; 6350 if (p->rdev == NULL) { 6351 clear_bit(In_sync, &rdev->flags); 6352 rdev->raid_disk = disk; 6353 err = 0; 6354 if (rdev->saved_raid_disk != disk) 6355 conf->fullsync = 1; 6356 rcu_assign_pointer(p->rdev, rdev); 6357 goto out; 6358 } 6359 } 6360 for (disk = first; disk <= last; disk++) { 6361 p = conf->disks + disk; 6362 if (test_bit(WantReplacement, &p->rdev->flags) && 6363 p->replacement == NULL) { 6364 clear_bit(In_sync, &rdev->flags); 6365 set_bit(Replacement, &rdev->flags); 6366 rdev->raid_disk = disk; 6367 err = 0; 6368 conf->fullsync = 1; 6369 rcu_assign_pointer(p->replacement, rdev); 6370 break; 6371 } 6372 } 6373out: 6374 print_raid5_conf(conf); 6375 return err; 6376} 6377 6378static int raid5_resize(struct mddev *mddev, sector_t sectors) 6379{ 6380 /* no resync is happening, and there is enough space 6381 * on all devices, so we can resize. 6382 * We need to make sure resync covers any new space. 6383 * If the array is shrinking we should possibly wait until 6384 * any io in the removed space completes, but it hardly seems 6385 * worth it. 6386 */ 6387 sector_t newsize; 6388 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 6389 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 6390 if (mddev->external_size && 6391 mddev->array_sectors > newsize) 6392 return -EINVAL; 6393 if (mddev->bitmap) { 6394 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 6395 if (ret) 6396 return ret; 6397 } 6398 md_set_array_sectors(mddev, newsize); 6399 set_capacity(mddev->gendisk, mddev->array_sectors); 6400 revalidate_disk(mddev->gendisk); 6401 if (sectors > mddev->dev_sectors && 6402 mddev->recovery_cp > mddev->dev_sectors) { 6403 mddev->recovery_cp = mddev->dev_sectors; 6404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6405 } 6406 mddev->dev_sectors = sectors; 6407 mddev->resync_max_sectors = sectors; 6408 return 0; 6409} 6410 6411static int check_stripe_cache(struct mddev *mddev) 6412{ 6413 /* Can only proceed if there are plenty of stripe_heads. 6414 * We need a minimum of one full stripe,, and for sensible progress 6415 * it is best to have about 4 times that. 6416 * If we require 4 times, then the default 256 4K stripe_heads will 6417 * allow for chunk sizes up to 256K, which is probably OK. 6418 * If the chunk size is greater, user-space should request more 6419 * stripe_heads first. 6420 */ 6421 struct r5conf *conf = mddev->private; 6422 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 6423 > conf->max_nr_stripes || 6424 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 6425 > conf->max_nr_stripes) { 6426 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 6427 mdname(mddev), 6428 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 6429 / STRIPE_SIZE)*4); 6430 return 0; 6431 } 6432 return 1; 6433} 6434 6435static int check_reshape(struct mddev *mddev) 6436{ 6437 struct r5conf *conf = mddev->private; 6438 6439 if (mddev->delta_disks == 0 && 6440 mddev->new_layout == mddev->layout && 6441 mddev->new_chunk_sectors == mddev->chunk_sectors) 6442 return 0; /* nothing to do */ 6443 if (has_failed(conf)) 6444 return -EINVAL; 6445 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 6446 /* We might be able to shrink, but the devices must 6447 * be made bigger first. 6448 * For raid6, 4 is the minimum size. 6449 * Otherwise 2 is the minimum 6450 */ 6451 int min = 2; 6452 if (mddev->level == 6) 6453 min = 4; 6454 if (mddev->raid_disks + mddev->delta_disks < min) 6455 return -EINVAL; 6456 } 6457 6458 if (!check_stripe_cache(mddev)) 6459 return -ENOSPC; 6460 6461 return resize_stripes(conf, (conf->previous_raid_disks 6462 + mddev->delta_disks)); 6463} 6464 6465static int raid5_start_reshape(struct mddev *mddev) 6466{ 6467 struct r5conf *conf = mddev->private; 6468 struct md_rdev *rdev; 6469 int spares = 0; 6470 unsigned long flags; 6471 6472 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6473 return -EBUSY; 6474 6475 if (!check_stripe_cache(mddev)) 6476 return -ENOSPC; 6477 6478 if (has_failed(conf)) 6479 return -EINVAL; 6480 6481 rdev_for_each(rdev, mddev) { 6482 if (!test_bit(In_sync, &rdev->flags) 6483 && !test_bit(Faulty, &rdev->flags)) 6484 spares++; 6485 } 6486 6487 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 6488 /* Not enough devices even to make a degraded array 6489 * of that size 6490 */ 6491 return -EINVAL; 6492 6493 /* Refuse to reduce size of the array. Any reductions in 6494 * array size must be through explicit setting of array_size 6495 * attribute. 6496 */ 6497 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 6498 < mddev->array_sectors) { 6499 printk(KERN_ERR "md/raid:%s: array size must be reduced " 6500 "before number of disks\n", mdname(mddev)); 6501 return -EINVAL; 6502 } 6503 6504 atomic_set(&conf->reshape_stripes, 0); 6505 spin_lock_irq(&conf->device_lock); 6506 write_seqcount_begin(&conf->gen_lock); 6507 conf->previous_raid_disks = conf->raid_disks; 6508 conf->raid_disks += mddev->delta_disks; 6509 conf->prev_chunk_sectors = conf->chunk_sectors; 6510 conf->chunk_sectors = mddev->new_chunk_sectors; 6511 conf->prev_algo = conf->algorithm; 6512 conf->algorithm = mddev->new_layout; 6513 conf->generation++; 6514 /* Code that selects data_offset needs to see the generation update 6515 * if reshape_progress has been set - so a memory barrier needed. 6516 */ 6517 smp_mb(); 6518 if (mddev->reshape_backwards) 6519 conf->reshape_progress = raid5_size(mddev, 0, 0); 6520 else 6521 conf->reshape_progress = 0; 6522 conf->reshape_safe = conf->reshape_progress; 6523 write_seqcount_end(&conf->gen_lock); 6524 spin_unlock_irq(&conf->device_lock); 6525 6526 /* Now make sure any requests that proceeded on the assumption 6527 * the reshape wasn't running - like Discard or Read - have 6528 * completed. 6529 */ 6530 mddev_suspend(mddev); 6531 mddev_resume(mddev); 6532 6533 /* Add some new drives, as many as will fit. 6534 * We know there are enough to make the newly sized array work. 6535 * Don't add devices if we are reducing the number of 6536 * devices in the array. This is because it is not possible 6537 * to correctly record the "partially reconstructed" state of 6538 * such devices during the reshape and confusion could result. 6539 */ 6540 if (mddev->delta_disks >= 0) { 6541 rdev_for_each(rdev, mddev) 6542 if (rdev->raid_disk < 0 && 6543 !test_bit(Faulty, &rdev->flags)) { 6544 if (raid5_add_disk(mddev, rdev) == 0) { 6545 if (rdev->raid_disk 6546 >= conf->previous_raid_disks) 6547 set_bit(In_sync, &rdev->flags); 6548 else 6549 rdev->recovery_offset = 0; 6550 6551 if (sysfs_link_rdev(mddev, rdev)) 6552 /* Failure here is OK */; 6553 } 6554 } else if (rdev->raid_disk >= conf->previous_raid_disks 6555 && !test_bit(Faulty, &rdev->flags)) { 6556 /* This is a spare that was manually added */ 6557 set_bit(In_sync, &rdev->flags); 6558 } 6559 6560 /* When a reshape changes the number of devices, 6561 * ->degraded is measured against the larger of the 6562 * pre and post number of devices. 6563 */ 6564 spin_lock_irqsave(&conf->device_lock, flags); 6565 mddev->degraded = calc_degraded(conf); 6566 spin_unlock_irqrestore(&conf->device_lock, flags); 6567 } 6568 mddev->raid_disks = conf->raid_disks; 6569 mddev->reshape_position = conf->reshape_progress; 6570 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6571 6572 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6573 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6574 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6575 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6576 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6577 "reshape"); 6578 if (!mddev->sync_thread) { 6579 mddev->recovery = 0; 6580 spin_lock_irq(&conf->device_lock); 6581 write_seqcount_begin(&conf->gen_lock); 6582 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6583 mddev->new_chunk_sectors = 6584 conf->chunk_sectors = conf->prev_chunk_sectors; 6585 mddev->new_layout = conf->algorithm = conf->prev_algo; 6586 rdev_for_each(rdev, mddev) 6587 rdev->new_data_offset = rdev->data_offset; 6588 smp_wmb(); 6589 conf->generation --; 6590 conf->reshape_progress = MaxSector; 6591 mddev->reshape_position = MaxSector; 6592 write_seqcount_end(&conf->gen_lock); 6593 spin_unlock_irq(&conf->device_lock); 6594 return -EAGAIN; 6595 } 6596 conf->reshape_checkpoint = jiffies; 6597 md_wakeup_thread(mddev->sync_thread); 6598 md_new_event(mddev); 6599 return 0; 6600} 6601 6602/* This is called from the reshape thread and should make any 6603 * changes needed in 'conf' 6604 */ 6605static void end_reshape(struct r5conf *conf) 6606{ 6607 6608 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6609 struct md_rdev *rdev; 6610 6611 spin_lock_irq(&conf->device_lock); 6612 conf->previous_raid_disks = conf->raid_disks; 6613 rdev_for_each(rdev, conf->mddev) 6614 rdev->data_offset = rdev->new_data_offset; 6615 smp_wmb(); 6616 conf->reshape_progress = MaxSector; 6617 spin_unlock_irq(&conf->device_lock); 6618 wake_up(&conf->wait_for_overlap); 6619 6620 /* read-ahead size must cover two whole stripes, which is 6621 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6622 */ 6623 if (conf->mddev->queue) { 6624 int data_disks = conf->raid_disks - conf->max_degraded; 6625 int stripe = data_disks * ((conf->chunk_sectors << 9) 6626 / PAGE_SIZE); 6627 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6628 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6629 } 6630 } 6631} 6632 6633/* This is called from the raid5d thread with mddev_lock held. 6634 * It makes config changes to the device. 6635 */ 6636static void raid5_finish_reshape(struct mddev *mddev) 6637{ 6638 struct r5conf *conf = mddev->private; 6639 6640 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6641 6642 if (mddev->delta_disks > 0) { 6643 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6644 set_capacity(mddev->gendisk, mddev->array_sectors); 6645 revalidate_disk(mddev->gendisk); 6646 } else { 6647 int d; 6648 spin_lock_irq(&conf->device_lock); 6649 mddev->degraded = calc_degraded(conf); 6650 spin_unlock_irq(&conf->device_lock); 6651 for (d = conf->raid_disks ; 6652 d < conf->raid_disks - mddev->delta_disks; 6653 d++) { 6654 struct md_rdev *rdev = conf->disks[d].rdev; 6655 if (rdev) 6656 clear_bit(In_sync, &rdev->flags); 6657 rdev = conf->disks[d].replacement; 6658 if (rdev) 6659 clear_bit(In_sync, &rdev->flags); 6660 } 6661 } 6662 mddev->layout = conf->algorithm; 6663 mddev->chunk_sectors = conf->chunk_sectors; 6664 mddev->reshape_position = MaxSector; 6665 mddev->delta_disks = 0; 6666 mddev->reshape_backwards = 0; 6667 } 6668} 6669 6670static void raid5_quiesce(struct mddev *mddev, int state) 6671{ 6672 struct r5conf *conf = mddev->private; 6673 6674 switch(state) { 6675 case 2: /* resume for a suspend */ 6676 wake_up(&conf->wait_for_overlap); 6677 break; 6678 6679 case 1: /* stop all writes */ 6680 lock_all_device_hash_locks_irq(conf); 6681 /* '2' tells resync/reshape to pause so that all 6682 * active stripes can drain 6683 */ 6684 conf->quiesce = 2; 6685 wait_event_cmd(conf->wait_for_stripe, 6686 atomic_read(&conf->active_stripes) == 0 && 6687 atomic_read(&conf->active_aligned_reads) == 0, 6688 unlock_all_device_hash_locks_irq(conf), 6689 lock_all_device_hash_locks_irq(conf)); 6690 conf->quiesce = 1; 6691 unlock_all_device_hash_locks_irq(conf); 6692 /* allow reshape to continue */ 6693 wake_up(&conf->wait_for_overlap); 6694 break; 6695 6696 case 0: /* re-enable writes */ 6697 lock_all_device_hash_locks_irq(conf); 6698 conf->quiesce = 0; 6699 wake_up(&conf->wait_for_stripe); 6700 wake_up(&conf->wait_for_overlap); 6701 unlock_all_device_hash_locks_irq(conf); 6702 break; 6703 } 6704} 6705 6706 6707static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6708{ 6709 struct r0conf *raid0_conf = mddev->private; 6710 sector_t sectors; 6711 6712 /* for raid0 takeover only one zone is supported */ 6713 if (raid0_conf->nr_strip_zones > 1) { 6714 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6715 mdname(mddev)); 6716 return ERR_PTR(-EINVAL); 6717 } 6718 6719 sectors = raid0_conf->strip_zone[0].zone_end; 6720 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6721 mddev->dev_sectors = sectors; 6722 mddev->new_level = level; 6723 mddev->new_layout = ALGORITHM_PARITY_N; 6724 mddev->new_chunk_sectors = mddev->chunk_sectors; 6725 mddev->raid_disks += 1; 6726 mddev->delta_disks = 1; 6727 /* make sure it will be not marked as dirty */ 6728 mddev->recovery_cp = MaxSector; 6729 6730 return setup_conf(mddev); 6731} 6732 6733 6734static void *raid5_takeover_raid1(struct mddev *mddev) 6735{ 6736 int chunksect; 6737 6738 if (mddev->raid_disks != 2 || 6739 mddev->degraded > 1) 6740 return ERR_PTR(-EINVAL); 6741 6742 /* Should check if there are write-behind devices? */ 6743 6744 chunksect = 64*2; /* 64K by default */ 6745 6746 /* The array must be an exact multiple of chunksize */ 6747 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6748 chunksect >>= 1; 6749 6750 if ((chunksect<<9) < STRIPE_SIZE) 6751 /* array size does not allow a suitable chunk size */ 6752 return ERR_PTR(-EINVAL); 6753 6754 mddev->new_level = 5; 6755 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6756 mddev->new_chunk_sectors = chunksect; 6757 6758 return setup_conf(mddev); 6759} 6760 6761static void *raid5_takeover_raid6(struct mddev *mddev) 6762{ 6763 int new_layout; 6764 6765 switch (mddev->layout) { 6766 case ALGORITHM_LEFT_ASYMMETRIC_6: 6767 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6768 break; 6769 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6770 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6771 break; 6772 case ALGORITHM_LEFT_SYMMETRIC_6: 6773 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6774 break; 6775 case ALGORITHM_RIGHT_SYMMETRIC_6: 6776 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6777 break; 6778 case ALGORITHM_PARITY_0_6: 6779 new_layout = ALGORITHM_PARITY_0; 6780 break; 6781 case ALGORITHM_PARITY_N: 6782 new_layout = ALGORITHM_PARITY_N; 6783 break; 6784 default: 6785 return ERR_PTR(-EINVAL); 6786 } 6787 mddev->new_level = 5; 6788 mddev->new_layout = new_layout; 6789 mddev->delta_disks = -1; 6790 mddev->raid_disks -= 1; 6791 return setup_conf(mddev); 6792} 6793 6794 6795static int raid5_check_reshape(struct mddev *mddev) 6796{ 6797 /* For a 2-drive array, the layout and chunk size can be changed 6798 * immediately as not restriping is needed. 6799 * For larger arrays we record the new value - after validation 6800 * to be used by a reshape pass. 6801 */ 6802 struct r5conf *conf = mddev->private; 6803 int new_chunk = mddev->new_chunk_sectors; 6804 6805 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6806 return -EINVAL; 6807 if (new_chunk > 0) { 6808 if (!is_power_of_2(new_chunk)) 6809 return -EINVAL; 6810 if (new_chunk < (PAGE_SIZE>>9)) 6811 return -EINVAL; 6812 if (mddev->array_sectors & (new_chunk-1)) 6813 /* not factor of array size */ 6814 return -EINVAL; 6815 } 6816 6817 /* They look valid */ 6818 6819 if (mddev->raid_disks == 2) { 6820 /* can make the change immediately */ 6821 if (mddev->new_layout >= 0) { 6822 conf->algorithm = mddev->new_layout; 6823 mddev->layout = mddev->new_layout; 6824 } 6825 if (new_chunk > 0) { 6826 conf->chunk_sectors = new_chunk ; 6827 mddev->chunk_sectors = new_chunk; 6828 } 6829 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6830 md_wakeup_thread(mddev->thread); 6831 } 6832 return check_reshape(mddev); 6833} 6834 6835static int raid6_check_reshape(struct mddev *mddev) 6836{ 6837 int new_chunk = mddev->new_chunk_sectors; 6838 6839 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6840 return -EINVAL; 6841 if (new_chunk > 0) { 6842 if (!is_power_of_2(new_chunk)) 6843 return -EINVAL; 6844 if (new_chunk < (PAGE_SIZE >> 9)) 6845 return -EINVAL; 6846 if (mddev->array_sectors & (new_chunk-1)) 6847 /* not factor of array size */ 6848 return -EINVAL; 6849 } 6850 6851 /* They look valid */ 6852 return check_reshape(mddev); 6853} 6854 6855static void *raid5_takeover(struct mddev *mddev) 6856{ 6857 /* raid5 can take over: 6858 * raid0 - if there is only one strip zone - make it a raid4 layout 6859 * raid1 - if there are two drives. We need to know the chunk size 6860 * raid4 - trivial - just use a raid4 layout. 6861 * raid6 - Providing it is a *_6 layout 6862 */ 6863 if (mddev->level == 0) 6864 return raid45_takeover_raid0(mddev, 5); 6865 if (mddev->level == 1) 6866 return raid5_takeover_raid1(mddev); 6867 if (mddev->level == 4) { 6868 mddev->new_layout = ALGORITHM_PARITY_N; 6869 mddev->new_level = 5; 6870 return setup_conf(mddev); 6871 } 6872 if (mddev->level == 6) 6873 return raid5_takeover_raid6(mddev); 6874 6875 return ERR_PTR(-EINVAL); 6876} 6877 6878static void *raid4_takeover(struct mddev *mddev) 6879{ 6880 /* raid4 can take over: 6881 * raid0 - if there is only one strip zone 6882 * raid5 - if layout is right 6883 */ 6884 if (mddev->level == 0) 6885 return raid45_takeover_raid0(mddev, 4); 6886 if (mddev->level == 5 && 6887 mddev->layout == ALGORITHM_PARITY_N) { 6888 mddev->new_layout = 0; 6889 mddev->new_level = 4; 6890 return setup_conf(mddev); 6891 } 6892 return ERR_PTR(-EINVAL); 6893} 6894 6895static struct md_personality raid5_personality; 6896 6897static void *raid6_takeover(struct mddev *mddev) 6898{ 6899 /* Currently can only take over a raid5. We map the 6900 * personality to an equivalent raid6 personality 6901 * with the Q block at the end. 6902 */ 6903 int new_layout; 6904 6905 if (mddev->pers != &raid5_personality) 6906 return ERR_PTR(-EINVAL); 6907 if (mddev->degraded > 1) 6908 return ERR_PTR(-EINVAL); 6909 if (mddev->raid_disks > 253) 6910 return ERR_PTR(-EINVAL); 6911 if (mddev->raid_disks < 3) 6912 return ERR_PTR(-EINVAL); 6913 6914 switch (mddev->layout) { 6915 case ALGORITHM_LEFT_ASYMMETRIC: 6916 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6917 break; 6918 case ALGORITHM_RIGHT_ASYMMETRIC: 6919 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6920 break; 6921 case ALGORITHM_LEFT_SYMMETRIC: 6922 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6923 break; 6924 case ALGORITHM_RIGHT_SYMMETRIC: 6925 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6926 break; 6927 case ALGORITHM_PARITY_0: 6928 new_layout = ALGORITHM_PARITY_0_6; 6929 break; 6930 case ALGORITHM_PARITY_N: 6931 new_layout = ALGORITHM_PARITY_N; 6932 break; 6933 default: 6934 return ERR_PTR(-EINVAL); 6935 } 6936 mddev->new_level = 6; 6937 mddev->new_layout = new_layout; 6938 mddev->delta_disks = 1; 6939 mddev->raid_disks += 1; 6940 return setup_conf(mddev); 6941} 6942 6943 6944static struct md_personality raid6_personality = 6945{ 6946 .name = "raid6", 6947 .level = 6, 6948 .owner = THIS_MODULE, 6949 .make_request = make_request, 6950 .run = run, 6951 .stop = stop, 6952 .status = status, 6953 .error_handler = error, 6954 .hot_add_disk = raid5_add_disk, 6955 .hot_remove_disk= raid5_remove_disk, 6956 .spare_active = raid5_spare_active, 6957 .sync_request = sync_request, 6958 .resize = raid5_resize, 6959 .size = raid5_size, 6960 .check_reshape = raid6_check_reshape, 6961 .start_reshape = raid5_start_reshape, 6962 .finish_reshape = raid5_finish_reshape, 6963 .quiesce = raid5_quiesce, 6964 .takeover = raid6_takeover, 6965}; 6966static struct md_personality raid5_personality = 6967{ 6968 .name = "raid5", 6969 .level = 5, 6970 .owner = THIS_MODULE, 6971 .make_request = make_request, 6972 .run = run, 6973 .stop = stop, 6974 .status = status, 6975 .error_handler = error, 6976 .hot_add_disk = raid5_add_disk, 6977 .hot_remove_disk= raid5_remove_disk, 6978 .spare_active = raid5_spare_active, 6979 .sync_request = sync_request, 6980 .resize = raid5_resize, 6981 .size = raid5_size, 6982 .check_reshape = raid5_check_reshape, 6983 .start_reshape = raid5_start_reshape, 6984 .finish_reshape = raid5_finish_reshape, 6985 .quiesce = raid5_quiesce, 6986 .takeover = raid5_takeover, 6987}; 6988 6989static struct md_personality raid4_personality = 6990{ 6991 .name = "raid4", 6992 .level = 4, 6993 .owner = THIS_MODULE, 6994 .make_request = make_request, 6995 .run = run, 6996 .stop = stop, 6997 .status = status, 6998 .error_handler = error, 6999 .hot_add_disk = raid5_add_disk, 7000 .hot_remove_disk= raid5_remove_disk, 7001 .spare_active = raid5_spare_active, 7002 .sync_request = sync_request, 7003 .resize = raid5_resize, 7004 .size = raid5_size, 7005 .check_reshape = raid5_check_reshape, 7006 .start_reshape = raid5_start_reshape, 7007 .finish_reshape = raid5_finish_reshape, 7008 .quiesce = raid5_quiesce, 7009 .takeover = raid4_takeover, 7010}; 7011 7012static int __init raid5_init(void) 7013{ 7014 raid5_wq = alloc_workqueue("raid5wq", 7015 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7016 if (!raid5_wq) 7017 return -ENOMEM; 7018 register_md_personality(&raid6_personality); 7019 register_md_personality(&raid5_personality); 7020 register_md_personality(&raid4_personality); 7021 return 0; 7022} 7023 7024static void raid5_exit(void) 7025{ 7026 unregister_md_personality(&raid6_personality); 7027 unregister_md_personality(&raid5_personality); 7028 unregister_md_personality(&raid4_personality); 7029 destroy_workqueue(raid5_wq); 7030} 7031 7032module_init(raid5_init); 7033module_exit(raid5_exit); 7034MODULE_LICENSE("GPL"); 7035MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7036MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7037MODULE_ALIAS("md-raid5"); 7038MODULE_ALIAS("md-raid4"); 7039MODULE_ALIAS("md-level-5"); 7040MODULE_ALIAS("md-level-4"); 7041MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7042MODULE_ALIAS("md-raid6"); 7043MODULE_ALIAS("md-level-6"); 7044 7045/* This used to be two separate modules, they were: */ 7046MODULE_ALIAS("raid5"); 7047MODULE_ALIAS("raid6");