at v3.13 8695 lines 230 kB view raw
1/* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33*/ 34 35#include <linux/kthread.h> 36#include <linux/blkdev.h> 37#include <linux/sysctl.h> 38#include <linux/seq_file.h> 39#include <linux/fs.h> 40#include <linux/poll.h> 41#include <linux/ctype.h> 42#include <linux/string.h> 43#include <linux/hdreg.h> 44#include <linux/proc_fs.h> 45#include <linux/random.h> 46#include <linux/module.h> 47#include <linux/reboot.h> 48#include <linux/file.h> 49#include <linux/compat.h> 50#include <linux/delay.h> 51#include <linux/raid/md_p.h> 52#include <linux/raid/md_u.h> 53#include <linux/slab.h> 54#include "md.h" 55#include "bitmap.h" 56 57#ifndef MODULE 58static void autostart_arrays(int part); 59#endif 60 61/* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66static LIST_HEAD(pers_list); 67static DEFINE_SPINLOCK(pers_lock); 68 69static void md_print_devices(void); 70 71static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72static struct workqueue_struct *md_wq; 73static struct workqueue_struct *md_misc_wq; 74 75static int remove_and_add_spares(struct mddev *mddev, 76 struct md_rdev *this); 77 78#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 79 80/* 81 * Default number of read corrections we'll attempt on an rdev 82 * before ejecting it from the array. We divide the read error 83 * count by 2 for every hour elapsed between read errors. 84 */ 85#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 86/* 87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 88 * is 1000 KB/sec, so the extra system load does not show up that much. 89 * Increase it if you want to have more _guaranteed_ speed. Note that 90 * the RAID driver will use the maximum available bandwidth if the IO 91 * subsystem is idle. There is also an 'absolute maximum' reconstruction 92 * speed limit - in case reconstruction slows down your system despite 93 * idle IO detection. 94 * 95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 96 * or /sys/block/mdX/md/sync_speed_{min,max} 97 */ 98 99static int sysctl_speed_limit_min = 1000; 100static int sysctl_speed_limit_max = 200000; 101static inline int speed_min(struct mddev *mddev) 102{ 103 return mddev->sync_speed_min ? 104 mddev->sync_speed_min : sysctl_speed_limit_min; 105} 106 107static inline int speed_max(struct mddev *mddev) 108{ 109 return mddev->sync_speed_max ? 110 mddev->sync_speed_max : sysctl_speed_limit_max; 111} 112 113static struct ctl_table_header *raid_table_header; 114 115static struct ctl_table raid_table[] = { 116 { 117 .procname = "speed_limit_min", 118 .data = &sysctl_speed_limit_min, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { 124 .procname = "speed_limit_max", 125 .data = &sysctl_speed_limit_max, 126 .maxlen = sizeof(int), 127 .mode = S_IRUGO|S_IWUSR, 128 .proc_handler = proc_dointvec, 129 }, 130 { } 131}; 132 133static struct ctl_table raid_dir_table[] = { 134 { 135 .procname = "raid", 136 .maxlen = 0, 137 .mode = S_IRUGO|S_IXUGO, 138 .child = raid_table, 139 }, 140 { } 141}; 142 143static struct ctl_table raid_root_table[] = { 144 { 145 .procname = "dev", 146 .maxlen = 0, 147 .mode = 0555, 148 .child = raid_dir_table, 149 }, 150 { } 151}; 152 153static const struct block_device_operations md_fops; 154 155static int start_readonly; 156 157/* bio_clone_mddev 158 * like bio_clone, but with a local bio set 159 */ 160 161struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 162 struct mddev *mddev) 163{ 164 struct bio *b; 165 166 if (!mddev || !mddev->bio_set) 167 return bio_alloc(gfp_mask, nr_iovecs); 168 169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 170 if (!b) 171 return NULL; 172 return b; 173} 174EXPORT_SYMBOL_GPL(bio_alloc_mddev); 175 176struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 177 struct mddev *mddev) 178{ 179 if (!mddev || !mddev->bio_set) 180 return bio_clone(bio, gfp_mask); 181 182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 183} 184EXPORT_SYMBOL_GPL(bio_clone_mddev); 185 186/* 187 * We have a system wide 'event count' that is incremented 188 * on any 'interesting' event, and readers of /proc/mdstat 189 * can use 'poll' or 'select' to find out when the event 190 * count increases. 191 * 192 * Events are: 193 * start array, stop array, error, add device, remove device, 194 * start build, activate spare 195 */ 196static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 197static atomic_t md_event_count; 198void md_new_event(struct mddev *mddev) 199{ 200 atomic_inc(&md_event_count); 201 wake_up(&md_event_waiters); 202} 203EXPORT_SYMBOL_GPL(md_new_event); 204 205/* Alternate version that can be called from interrupts 206 * when calling sysfs_notify isn't needed. 207 */ 208static void md_new_event_inintr(struct mddev *mddev) 209{ 210 atomic_inc(&md_event_count); 211 wake_up(&md_event_waiters); 212} 213 214/* 215 * Enables to iterate over all existing md arrays 216 * all_mddevs_lock protects this list. 217 */ 218static LIST_HEAD(all_mddevs); 219static DEFINE_SPINLOCK(all_mddevs_lock); 220 221 222/* 223 * iterates through all used mddevs in the system. 224 * We take care to grab the all_mddevs_lock whenever navigating 225 * the list, and to always hold a refcount when unlocked. 226 * Any code which breaks out of this loop while own 227 * a reference to the current mddev and must mddev_put it. 228 */ 229#define for_each_mddev(_mddev,_tmp) \ 230 \ 231 for (({ spin_lock(&all_mddevs_lock); \ 232 _tmp = all_mddevs.next; \ 233 _mddev = NULL;}); \ 234 ({ if (_tmp != &all_mddevs) \ 235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 236 spin_unlock(&all_mddevs_lock); \ 237 if (_mddev) mddev_put(_mddev); \ 238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 239 _tmp != &all_mddevs;}); \ 240 ({ spin_lock(&all_mddevs_lock); \ 241 _tmp = _tmp->next;}) \ 242 ) 243 244 245/* Rather than calling directly into the personality make_request function, 246 * IO requests come here first so that we can check if the device is 247 * being suspended pending a reconfiguration. 248 * We hold a refcount over the call to ->make_request. By the time that 249 * call has finished, the bio has been linked into some internal structure 250 * and so is visible to ->quiesce(), so we don't need the refcount any more. 251 */ 252static void md_make_request(struct request_queue *q, struct bio *bio) 253{ 254 const int rw = bio_data_dir(bio); 255 struct mddev *mddev = q->queuedata; 256 int cpu; 257 unsigned int sectors; 258 259 if (mddev == NULL || mddev->pers == NULL 260 || !mddev->ready) { 261 bio_io_error(bio); 262 return; 263 } 264 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 266 return; 267 } 268 smp_rmb(); /* Ensure implications of 'active' are visible */ 269 rcu_read_lock(); 270 if (mddev->suspended) { 271 DEFINE_WAIT(__wait); 272 for (;;) { 273 prepare_to_wait(&mddev->sb_wait, &__wait, 274 TASK_UNINTERRUPTIBLE); 275 if (!mddev->suspended) 276 break; 277 rcu_read_unlock(); 278 schedule(); 279 rcu_read_lock(); 280 } 281 finish_wait(&mddev->sb_wait, &__wait); 282 } 283 atomic_inc(&mddev->active_io); 284 rcu_read_unlock(); 285 286 /* 287 * save the sectors now since our bio can 288 * go away inside make_request 289 */ 290 sectors = bio_sectors(bio); 291 mddev->pers->make_request(mddev, bio); 292 293 cpu = part_stat_lock(); 294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 296 part_stat_unlock(); 297 298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 299 wake_up(&mddev->sb_wait); 300} 301 302/* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once ->stop is called and completes, the module will be completely 306 * unused. 307 */ 308void mddev_suspend(struct mddev *mddev) 309{ 310 BUG_ON(mddev->suspended); 311 mddev->suspended = 1; 312 synchronize_rcu(); 313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 314 mddev->pers->quiesce(mddev, 1); 315 316 del_timer_sync(&mddev->safemode_timer); 317} 318EXPORT_SYMBOL_GPL(mddev_suspend); 319 320void mddev_resume(struct mddev *mddev) 321{ 322 mddev->suspended = 0; 323 wake_up(&mddev->sb_wait); 324 mddev->pers->quiesce(mddev, 0); 325 326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 327 md_wakeup_thread(mddev->thread); 328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 329} 330EXPORT_SYMBOL_GPL(mddev_resume); 331 332int mddev_congested(struct mddev *mddev, int bits) 333{ 334 return mddev->suspended; 335} 336EXPORT_SYMBOL(mddev_congested); 337 338/* 339 * Generic flush handling for md 340 */ 341 342static void md_end_flush(struct bio *bio, int err) 343{ 344 struct md_rdev *rdev = bio->bi_private; 345 struct mddev *mddev = rdev->mddev; 346 347 rdev_dec_pending(rdev, mddev); 348 349 if (atomic_dec_and_test(&mddev->flush_pending)) { 350 /* The pre-request flush has finished */ 351 queue_work(md_wq, &mddev->flush_work); 352 } 353 bio_put(bio); 354} 355 356static void md_submit_flush_data(struct work_struct *ws); 357 358static void submit_flushes(struct work_struct *ws) 359{ 360 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 361 struct md_rdev *rdev; 362 363 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 364 atomic_set(&mddev->flush_pending, 1); 365 rcu_read_lock(); 366 rdev_for_each_rcu(rdev, mddev) 367 if (rdev->raid_disk >= 0 && 368 !test_bit(Faulty, &rdev->flags)) { 369 /* Take two references, one is dropped 370 * when request finishes, one after 371 * we reclaim rcu_read_lock 372 */ 373 struct bio *bi; 374 atomic_inc(&rdev->nr_pending); 375 atomic_inc(&rdev->nr_pending); 376 rcu_read_unlock(); 377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 378 bi->bi_end_io = md_end_flush; 379 bi->bi_private = rdev; 380 bi->bi_bdev = rdev->bdev; 381 atomic_inc(&mddev->flush_pending); 382 submit_bio(WRITE_FLUSH, bi); 383 rcu_read_lock(); 384 rdev_dec_pending(rdev, mddev); 385 } 386 rcu_read_unlock(); 387 if (atomic_dec_and_test(&mddev->flush_pending)) 388 queue_work(md_wq, &mddev->flush_work); 389} 390 391static void md_submit_flush_data(struct work_struct *ws) 392{ 393 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 394 struct bio *bio = mddev->flush_bio; 395 396 if (bio->bi_size == 0) 397 /* an empty barrier - all done */ 398 bio_endio(bio, 0); 399 else { 400 bio->bi_rw &= ~REQ_FLUSH; 401 mddev->pers->make_request(mddev, bio); 402 } 403 404 mddev->flush_bio = NULL; 405 wake_up(&mddev->sb_wait); 406} 407 408void md_flush_request(struct mddev *mddev, struct bio *bio) 409{ 410 spin_lock_irq(&mddev->write_lock); 411 wait_event_lock_irq(mddev->sb_wait, 412 !mddev->flush_bio, 413 mddev->write_lock); 414 mddev->flush_bio = bio; 415 spin_unlock_irq(&mddev->write_lock); 416 417 INIT_WORK(&mddev->flush_work, submit_flushes); 418 queue_work(md_wq, &mddev->flush_work); 419} 420EXPORT_SYMBOL(md_flush_request); 421 422void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 423{ 424 struct mddev *mddev = cb->data; 425 md_wakeup_thread(mddev->thread); 426 kfree(cb); 427} 428EXPORT_SYMBOL(md_unplug); 429 430static inline struct mddev *mddev_get(struct mddev *mddev) 431{ 432 atomic_inc(&mddev->active); 433 return mddev; 434} 435 436static void mddev_delayed_delete(struct work_struct *ws); 437 438static void mddev_put(struct mddev *mddev) 439{ 440 struct bio_set *bs = NULL; 441 442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 443 return; 444 if (!mddev->raid_disks && list_empty(&mddev->disks) && 445 mddev->ctime == 0 && !mddev->hold_active) { 446 /* Array is not configured at all, and not held active, 447 * so destroy it */ 448 list_del_init(&mddev->all_mddevs); 449 bs = mddev->bio_set; 450 mddev->bio_set = NULL; 451 if (mddev->gendisk) { 452 /* We did a probe so need to clean up. Call 453 * queue_work inside the spinlock so that 454 * flush_workqueue() after mddev_find will 455 * succeed in waiting for the work to be done. 456 */ 457 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 458 queue_work(md_misc_wq, &mddev->del_work); 459 } else 460 kfree(mddev); 461 } 462 spin_unlock(&all_mddevs_lock); 463 if (bs) 464 bioset_free(bs); 465} 466 467void mddev_init(struct mddev *mddev) 468{ 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->reshape_backwards = 0; 484 mddev->last_sync_action = "none"; 485 mddev->resync_min = 0; 486 mddev->resync_max = MaxSector; 487 mddev->level = LEVEL_NONE; 488} 489EXPORT_SYMBOL_GPL(mddev_init); 490 491static struct mddev * mddev_find(dev_t unit) 492{ 493 struct mddev *mddev, *new = NULL; 494 495 if (unit && MAJOR(unit) != MD_MAJOR) 496 unit &= ~((1<<MdpMinorShift)-1); 497 498 retry: 499 spin_lock(&all_mddevs_lock); 500 501 if (unit) { 502 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 503 if (mddev->unit == unit) { 504 mddev_get(mddev); 505 spin_unlock(&all_mddevs_lock); 506 kfree(new); 507 return mddev; 508 } 509 510 if (new) { 511 list_add(&new->all_mddevs, &all_mddevs); 512 spin_unlock(&all_mddevs_lock); 513 new->hold_active = UNTIL_IOCTL; 514 return new; 515 } 516 } else if (new) { 517 /* find an unused unit number */ 518 static int next_minor = 512; 519 int start = next_minor; 520 int is_free = 0; 521 int dev = 0; 522 while (!is_free) { 523 dev = MKDEV(MD_MAJOR, next_minor); 524 next_minor++; 525 if (next_minor > MINORMASK) 526 next_minor = 0; 527 if (next_minor == start) { 528 /* Oh dear, all in use. */ 529 spin_unlock(&all_mddevs_lock); 530 kfree(new); 531 return NULL; 532 } 533 534 is_free = 1; 535 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 536 if (mddev->unit == dev) { 537 is_free = 0; 538 break; 539 } 540 } 541 new->unit = dev; 542 new->md_minor = MINOR(dev); 543 new->hold_active = UNTIL_STOP; 544 list_add(&new->all_mddevs, &all_mddevs); 545 spin_unlock(&all_mddevs_lock); 546 return new; 547 } 548 spin_unlock(&all_mddevs_lock); 549 550 new = kzalloc(sizeof(*new), GFP_KERNEL); 551 if (!new) 552 return NULL; 553 554 new->unit = unit; 555 if (MAJOR(unit) == MD_MAJOR) 556 new->md_minor = MINOR(unit); 557 else 558 new->md_minor = MINOR(unit) >> MdpMinorShift; 559 560 mddev_init(new); 561 562 goto retry; 563} 564 565static inline int __must_check mddev_lock(struct mddev * mddev) 566{ 567 return mutex_lock_interruptible(&mddev->reconfig_mutex); 568} 569 570/* Sometimes we need to take the lock in a situation where 571 * failure due to interrupts is not acceptable. 572 */ 573static inline void mddev_lock_nointr(struct mddev * mddev) 574{ 575 mutex_lock(&mddev->reconfig_mutex); 576} 577 578static inline int mddev_is_locked(struct mddev *mddev) 579{ 580 return mutex_is_locked(&mddev->reconfig_mutex); 581} 582 583static inline int mddev_trylock(struct mddev * mddev) 584{ 585 return mutex_trylock(&mddev->reconfig_mutex); 586} 587 588static struct attribute_group md_redundancy_group; 589 590static void mddev_unlock(struct mddev * mddev) 591{ 592 if (mddev->to_remove) { 593 /* These cannot be removed under reconfig_mutex as 594 * an access to the files will try to take reconfig_mutex 595 * while holding the file unremovable, which leads to 596 * a deadlock. 597 * So hold set sysfs_active while the remove in happeing, 598 * and anything else which might set ->to_remove or my 599 * otherwise change the sysfs namespace will fail with 600 * -EBUSY if sysfs_active is still set. 601 * We set sysfs_active under reconfig_mutex and elsewhere 602 * test it under the same mutex to ensure its correct value 603 * is seen. 604 */ 605 struct attribute_group *to_remove = mddev->to_remove; 606 mddev->to_remove = NULL; 607 mddev->sysfs_active = 1; 608 mutex_unlock(&mddev->reconfig_mutex); 609 610 if (mddev->kobj.sd) { 611 if (to_remove != &md_redundancy_group) 612 sysfs_remove_group(&mddev->kobj, to_remove); 613 if (mddev->pers == NULL || 614 mddev->pers->sync_request == NULL) { 615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 616 if (mddev->sysfs_action) 617 sysfs_put(mddev->sysfs_action); 618 mddev->sysfs_action = NULL; 619 } 620 } 621 mddev->sysfs_active = 0; 622 } else 623 mutex_unlock(&mddev->reconfig_mutex); 624 625 /* As we've dropped the mutex we need a spinlock to 626 * make sure the thread doesn't disappear 627 */ 628 spin_lock(&pers_lock); 629 md_wakeup_thread(mddev->thread); 630 spin_unlock(&pers_lock); 631} 632 633static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 634{ 635 struct md_rdev *rdev; 636 637 rdev_for_each(rdev, mddev) 638 if (rdev->desc_nr == nr) 639 return rdev; 640 641 return NULL; 642} 643 644static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 645{ 646 struct md_rdev *rdev; 647 648 rdev_for_each_rcu(rdev, mddev) 649 if (rdev->desc_nr == nr) 650 return rdev; 651 652 return NULL; 653} 654 655static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 656{ 657 struct md_rdev *rdev; 658 659 rdev_for_each(rdev, mddev) 660 if (rdev->bdev->bd_dev == dev) 661 return rdev; 662 663 return NULL; 664} 665 666static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 667{ 668 struct md_rdev *rdev; 669 670 rdev_for_each_rcu(rdev, mddev) 671 if (rdev->bdev->bd_dev == dev) 672 return rdev; 673 674 return NULL; 675} 676 677static struct md_personality *find_pers(int level, char *clevel) 678{ 679 struct md_personality *pers; 680 list_for_each_entry(pers, &pers_list, list) { 681 if (level != LEVEL_NONE && pers->level == level) 682 return pers; 683 if (strcmp(pers->name, clevel)==0) 684 return pers; 685 } 686 return NULL; 687} 688 689/* return the offset of the super block in 512byte sectors */ 690static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 691{ 692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 693 return MD_NEW_SIZE_SECTORS(num_sectors); 694} 695 696static int alloc_disk_sb(struct md_rdev * rdev) 697{ 698 if (rdev->sb_page) 699 MD_BUG(); 700 701 rdev->sb_page = alloc_page(GFP_KERNEL); 702 if (!rdev->sb_page) { 703 printk(KERN_ALERT "md: out of memory.\n"); 704 return -ENOMEM; 705 } 706 707 return 0; 708} 709 710void md_rdev_clear(struct md_rdev *rdev) 711{ 712 if (rdev->sb_page) { 713 put_page(rdev->sb_page); 714 rdev->sb_loaded = 0; 715 rdev->sb_page = NULL; 716 rdev->sb_start = 0; 717 rdev->sectors = 0; 718 } 719 if (rdev->bb_page) { 720 put_page(rdev->bb_page); 721 rdev->bb_page = NULL; 722 } 723 kfree(rdev->badblocks.page); 724 rdev->badblocks.page = NULL; 725} 726EXPORT_SYMBOL_GPL(md_rdev_clear); 727 728static void super_written(struct bio *bio, int error) 729{ 730 struct md_rdev *rdev = bio->bi_private; 731 struct mddev *mddev = rdev->mddev; 732 733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 734 printk("md: super_written gets error=%d, uptodate=%d\n", 735 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 737 md_error(mddev, rdev); 738 } 739 740 if (atomic_dec_and_test(&mddev->pending_writes)) 741 wake_up(&mddev->sb_wait); 742 bio_put(bio); 743} 744 745void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 746 sector_t sector, int size, struct page *page) 747{ 748 /* write first size bytes of page to sector of rdev 749 * Increment mddev->pending_writes before returning 750 * and decrement it on completion, waking up sb_wait 751 * if zero is reached. 752 * If an error occurred, call md_error 753 */ 754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 755 756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 757 bio->bi_sector = sector; 758 bio_add_page(bio, page, size, 0); 759 bio->bi_private = rdev; 760 bio->bi_end_io = super_written; 761 762 atomic_inc(&mddev->pending_writes); 763 submit_bio(WRITE_FLUSH_FUA, bio); 764} 765 766void md_super_wait(struct mddev *mddev) 767{ 768 /* wait for all superblock writes that were scheduled to complete */ 769 DEFINE_WAIT(wq); 770 for(;;) { 771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 772 if (atomic_read(&mddev->pending_writes)==0) 773 break; 774 schedule(); 775 } 776 finish_wait(&mddev->sb_wait, &wq); 777} 778 779int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 780 struct page *page, int rw, bool metadata_op) 781{ 782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 783 int ret; 784 785 rw |= REQ_SYNC; 786 787 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 788 rdev->meta_bdev : rdev->bdev; 789 if (metadata_op) 790 bio->bi_sector = sector + rdev->sb_start; 791 else if (rdev->mddev->reshape_position != MaxSector && 792 (rdev->mddev->reshape_backwards == 793 (sector >= rdev->mddev->reshape_position))) 794 bio->bi_sector = sector + rdev->new_data_offset; 795 else 796 bio->bi_sector = sector + rdev->data_offset; 797 bio_add_page(bio, page, size, 0); 798 submit_bio_wait(rw, bio); 799 800 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 801 bio_put(bio); 802 return ret; 803} 804EXPORT_SYMBOL_GPL(sync_page_io); 805 806static int read_disk_sb(struct md_rdev * rdev, int size) 807{ 808 char b[BDEVNAME_SIZE]; 809 if (!rdev->sb_page) { 810 MD_BUG(); 811 return -EINVAL; 812 } 813 if (rdev->sb_loaded) 814 return 0; 815 816 817 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 818 goto fail; 819 rdev->sb_loaded = 1; 820 return 0; 821 822fail: 823 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 824 bdevname(rdev->bdev,b)); 825 return -EINVAL; 826} 827 828static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 829{ 830 return sb1->set_uuid0 == sb2->set_uuid0 && 831 sb1->set_uuid1 == sb2->set_uuid1 && 832 sb1->set_uuid2 == sb2->set_uuid2 && 833 sb1->set_uuid3 == sb2->set_uuid3; 834} 835 836static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 837{ 838 int ret; 839 mdp_super_t *tmp1, *tmp2; 840 841 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 842 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 843 844 if (!tmp1 || !tmp2) { 845 ret = 0; 846 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 847 goto abort; 848 } 849 850 *tmp1 = *sb1; 851 *tmp2 = *sb2; 852 853 /* 854 * nr_disks is not constant 855 */ 856 tmp1->nr_disks = 0; 857 tmp2->nr_disks = 0; 858 859 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 860abort: 861 kfree(tmp1); 862 kfree(tmp2); 863 return ret; 864} 865 866 867static u32 md_csum_fold(u32 csum) 868{ 869 csum = (csum & 0xffff) + (csum >> 16); 870 return (csum & 0xffff) + (csum >> 16); 871} 872 873static unsigned int calc_sb_csum(mdp_super_t * sb) 874{ 875 u64 newcsum = 0; 876 u32 *sb32 = (u32*)sb; 877 int i; 878 unsigned int disk_csum, csum; 879 880 disk_csum = sb->sb_csum; 881 sb->sb_csum = 0; 882 883 for (i = 0; i < MD_SB_BYTES/4 ; i++) 884 newcsum += sb32[i]; 885 csum = (newcsum & 0xffffffff) + (newcsum>>32); 886 887 888#ifdef CONFIG_ALPHA 889 /* This used to use csum_partial, which was wrong for several 890 * reasons including that different results are returned on 891 * different architectures. It isn't critical that we get exactly 892 * the same return value as before (we always csum_fold before 893 * testing, and that removes any differences). However as we 894 * know that csum_partial always returned a 16bit value on 895 * alphas, do a fold to maximise conformity to previous behaviour. 896 */ 897 sb->sb_csum = md_csum_fold(disk_csum); 898#else 899 sb->sb_csum = disk_csum; 900#endif 901 return csum; 902} 903 904 905/* 906 * Handle superblock details. 907 * We want to be able to handle multiple superblock formats 908 * so we have a common interface to them all, and an array of 909 * different handlers. 910 * We rely on user-space to write the initial superblock, and support 911 * reading and updating of superblocks. 912 * Interface methods are: 913 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 914 * loads and validates a superblock on dev. 915 * if refdev != NULL, compare superblocks on both devices 916 * Return: 917 * 0 - dev has a superblock that is compatible with refdev 918 * 1 - dev has a superblock that is compatible and newer than refdev 919 * so dev should be used as the refdev in future 920 * -EINVAL superblock incompatible or invalid 921 * -othererror e.g. -EIO 922 * 923 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 924 * Verify that dev is acceptable into mddev. 925 * The first time, mddev->raid_disks will be 0, and data from 926 * dev should be merged in. Subsequent calls check that dev 927 * is new enough. Return 0 or -EINVAL 928 * 929 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 930 * Update the superblock for rdev with data in mddev 931 * This does not write to disc. 932 * 933 */ 934 935struct super_type { 936 char *name; 937 struct module *owner; 938 int (*load_super)(struct md_rdev *rdev, 939 struct md_rdev *refdev, 940 int minor_version); 941 int (*validate_super)(struct mddev *mddev, 942 struct md_rdev *rdev); 943 void (*sync_super)(struct mddev *mddev, 944 struct md_rdev *rdev); 945 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 946 sector_t num_sectors); 947 int (*allow_new_offset)(struct md_rdev *rdev, 948 unsigned long long new_offset); 949}; 950 951/* 952 * Check that the given mddev has no bitmap. 953 * 954 * This function is called from the run method of all personalities that do not 955 * support bitmaps. It prints an error message and returns non-zero if mddev 956 * has a bitmap. Otherwise, it returns 0. 957 * 958 */ 959int md_check_no_bitmap(struct mddev *mddev) 960{ 961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 962 return 0; 963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 964 mdname(mddev), mddev->pers->name); 965 return 1; 966} 967EXPORT_SYMBOL(md_check_no_bitmap); 968 969/* 970 * load_super for 0.90.0 971 */ 972static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 973{ 974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 975 mdp_super_t *sb; 976 int ret; 977 978 /* 979 * Calculate the position of the superblock (512byte sectors), 980 * it's at the end of the disk. 981 * 982 * It also happens to be a multiple of 4Kb. 983 */ 984 rdev->sb_start = calc_dev_sboffset(rdev); 985 986 ret = read_disk_sb(rdev, MD_SB_BYTES); 987 if (ret) return ret; 988 989 ret = -EINVAL; 990 991 bdevname(rdev->bdev, b); 992 sb = page_address(rdev->sb_page); 993 994 if (sb->md_magic != MD_SB_MAGIC) { 995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 996 b); 997 goto abort; 998 } 999 1000 if (sb->major_version != 0 || 1001 sb->minor_version < 90 || 1002 sb->minor_version > 91) { 1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1004 sb->major_version, sb->minor_version, 1005 b); 1006 goto abort; 1007 } 1008 1009 if (sb->raid_disks <= 0) 1010 goto abort; 1011 1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1014 b); 1015 goto abort; 1016 } 1017 1018 rdev->preferred_minor = sb->md_minor; 1019 rdev->data_offset = 0; 1020 rdev->new_data_offset = 0; 1021 rdev->sb_size = MD_SB_BYTES; 1022 rdev->badblocks.shift = -1; 1023 1024 if (sb->level == LEVEL_MULTIPATH) 1025 rdev->desc_nr = -1; 1026 else 1027 rdev->desc_nr = sb->this_disk.number; 1028 1029 if (!refdev) { 1030 ret = 1; 1031 } else { 1032 __u64 ev1, ev2; 1033 mdp_super_t *refsb = page_address(refdev->sb_page); 1034 if (!uuid_equal(refsb, sb)) { 1035 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1036 b, bdevname(refdev->bdev,b2)); 1037 goto abort; 1038 } 1039 if (!sb_equal(refsb, sb)) { 1040 printk(KERN_WARNING "md: %s has same UUID" 1041 " but different superblock to %s\n", 1042 b, bdevname(refdev->bdev, b2)); 1043 goto abort; 1044 } 1045 ev1 = md_event(sb); 1046 ev2 = md_event(refsb); 1047 if (ev1 > ev2) 1048 ret = 1; 1049 else 1050 ret = 0; 1051 } 1052 rdev->sectors = rdev->sb_start; 1053 /* Limit to 4TB as metadata cannot record more than that. 1054 * (not needed for Linear and RAID0 as metadata doesn't 1055 * record this size) 1056 */ 1057 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1058 rdev->sectors = (2ULL << 32) - 2; 1059 1060 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1061 /* "this cannot possibly happen" ... */ 1062 ret = -EINVAL; 1063 1064 abort: 1065 return ret; 1066} 1067 1068/* 1069 * validate_super for 0.90.0 1070 */ 1071static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1072{ 1073 mdp_disk_t *desc; 1074 mdp_super_t *sb = page_address(rdev->sb_page); 1075 __u64 ev1 = md_event(sb); 1076 1077 rdev->raid_disk = -1; 1078 clear_bit(Faulty, &rdev->flags); 1079 clear_bit(In_sync, &rdev->flags); 1080 clear_bit(Bitmap_sync, &rdev->flags); 1081 clear_bit(WriteMostly, &rdev->flags); 1082 1083 if (mddev->raid_disks == 0) { 1084 mddev->major_version = 0; 1085 mddev->minor_version = sb->minor_version; 1086 mddev->patch_version = sb->patch_version; 1087 mddev->external = 0; 1088 mddev->chunk_sectors = sb->chunk_size >> 9; 1089 mddev->ctime = sb->ctime; 1090 mddev->utime = sb->utime; 1091 mddev->level = sb->level; 1092 mddev->clevel[0] = 0; 1093 mddev->layout = sb->layout; 1094 mddev->raid_disks = sb->raid_disks; 1095 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1096 mddev->events = ev1; 1097 mddev->bitmap_info.offset = 0; 1098 mddev->bitmap_info.space = 0; 1099 /* bitmap can use 60 K after the 4K superblocks */ 1100 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1101 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1102 mddev->reshape_backwards = 0; 1103 1104 if (mddev->minor_version >= 91) { 1105 mddev->reshape_position = sb->reshape_position; 1106 mddev->delta_disks = sb->delta_disks; 1107 mddev->new_level = sb->new_level; 1108 mddev->new_layout = sb->new_layout; 1109 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1110 if (mddev->delta_disks < 0) 1111 mddev->reshape_backwards = 1; 1112 } else { 1113 mddev->reshape_position = MaxSector; 1114 mddev->delta_disks = 0; 1115 mddev->new_level = mddev->level; 1116 mddev->new_layout = mddev->layout; 1117 mddev->new_chunk_sectors = mddev->chunk_sectors; 1118 } 1119 1120 if (sb->state & (1<<MD_SB_CLEAN)) 1121 mddev->recovery_cp = MaxSector; 1122 else { 1123 if (sb->events_hi == sb->cp_events_hi && 1124 sb->events_lo == sb->cp_events_lo) { 1125 mddev->recovery_cp = sb->recovery_cp; 1126 } else 1127 mddev->recovery_cp = 0; 1128 } 1129 1130 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1131 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1132 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1133 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1134 1135 mddev->max_disks = MD_SB_DISKS; 1136 1137 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1138 mddev->bitmap_info.file == NULL) { 1139 mddev->bitmap_info.offset = 1140 mddev->bitmap_info.default_offset; 1141 mddev->bitmap_info.space = 1142 mddev->bitmap_info.default_space; 1143 } 1144 1145 } else if (mddev->pers == NULL) { 1146 /* Insist on good event counter while assembling, except 1147 * for spares (which don't need an event count) */ 1148 ++ev1; 1149 if (sb->disks[rdev->desc_nr].state & ( 1150 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1151 if (ev1 < mddev->events) 1152 return -EINVAL; 1153 } else if (mddev->bitmap) { 1154 /* if adding to array with a bitmap, then we can accept an 1155 * older device ... but not too old. 1156 */ 1157 if (ev1 < mddev->bitmap->events_cleared) 1158 return 0; 1159 if (ev1 < mddev->events) 1160 set_bit(Bitmap_sync, &rdev->flags); 1161 } else { 1162 if (ev1 < mddev->events) 1163 /* just a hot-add of a new device, leave raid_disk at -1 */ 1164 return 0; 1165 } 1166 1167 if (mddev->level != LEVEL_MULTIPATH) { 1168 desc = sb->disks + rdev->desc_nr; 1169 1170 if (desc->state & (1<<MD_DISK_FAULTY)) 1171 set_bit(Faulty, &rdev->flags); 1172 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1173 desc->raid_disk < mddev->raid_disks */) { 1174 set_bit(In_sync, &rdev->flags); 1175 rdev->raid_disk = desc->raid_disk; 1176 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1177 /* active but not in sync implies recovery up to 1178 * reshape position. We don't know exactly where 1179 * that is, so set to zero for now */ 1180 if (mddev->minor_version >= 91) { 1181 rdev->recovery_offset = 0; 1182 rdev->raid_disk = desc->raid_disk; 1183 } 1184 } 1185 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1186 set_bit(WriteMostly, &rdev->flags); 1187 } else /* MULTIPATH are always insync */ 1188 set_bit(In_sync, &rdev->flags); 1189 return 0; 1190} 1191 1192/* 1193 * sync_super for 0.90.0 1194 */ 1195static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1196{ 1197 mdp_super_t *sb; 1198 struct md_rdev *rdev2; 1199 int next_spare = mddev->raid_disks; 1200 1201 1202 /* make rdev->sb match mddev data.. 1203 * 1204 * 1/ zero out disks 1205 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1206 * 3/ any empty disks < next_spare become removed 1207 * 1208 * disks[0] gets initialised to REMOVED because 1209 * we cannot be sure from other fields if it has 1210 * been initialised or not. 1211 */ 1212 int i; 1213 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1214 1215 rdev->sb_size = MD_SB_BYTES; 1216 1217 sb = page_address(rdev->sb_page); 1218 1219 memset(sb, 0, sizeof(*sb)); 1220 1221 sb->md_magic = MD_SB_MAGIC; 1222 sb->major_version = mddev->major_version; 1223 sb->patch_version = mddev->patch_version; 1224 sb->gvalid_words = 0; /* ignored */ 1225 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1226 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1227 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1228 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1229 1230 sb->ctime = mddev->ctime; 1231 sb->level = mddev->level; 1232 sb->size = mddev->dev_sectors / 2; 1233 sb->raid_disks = mddev->raid_disks; 1234 sb->md_minor = mddev->md_minor; 1235 sb->not_persistent = 0; 1236 sb->utime = mddev->utime; 1237 sb->state = 0; 1238 sb->events_hi = (mddev->events>>32); 1239 sb->events_lo = (u32)mddev->events; 1240 1241 if (mddev->reshape_position == MaxSector) 1242 sb->minor_version = 90; 1243 else { 1244 sb->minor_version = 91; 1245 sb->reshape_position = mddev->reshape_position; 1246 sb->new_level = mddev->new_level; 1247 sb->delta_disks = mddev->delta_disks; 1248 sb->new_layout = mddev->new_layout; 1249 sb->new_chunk = mddev->new_chunk_sectors << 9; 1250 } 1251 mddev->minor_version = sb->minor_version; 1252 if (mddev->in_sync) 1253 { 1254 sb->recovery_cp = mddev->recovery_cp; 1255 sb->cp_events_hi = (mddev->events>>32); 1256 sb->cp_events_lo = (u32)mddev->events; 1257 if (mddev->recovery_cp == MaxSector) 1258 sb->state = (1<< MD_SB_CLEAN); 1259 } else 1260 sb->recovery_cp = 0; 1261 1262 sb->layout = mddev->layout; 1263 sb->chunk_size = mddev->chunk_sectors << 9; 1264 1265 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1266 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1267 1268 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1269 rdev_for_each(rdev2, mddev) { 1270 mdp_disk_t *d; 1271 int desc_nr; 1272 int is_active = test_bit(In_sync, &rdev2->flags); 1273 1274 if (rdev2->raid_disk >= 0 && 1275 sb->minor_version >= 91) 1276 /* we have nowhere to store the recovery_offset, 1277 * but if it is not below the reshape_position, 1278 * we can piggy-back on that. 1279 */ 1280 is_active = 1; 1281 if (rdev2->raid_disk < 0 || 1282 test_bit(Faulty, &rdev2->flags)) 1283 is_active = 0; 1284 if (is_active) 1285 desc_nr = rdev2->raid_disk; 1286 else 1287 desc_nr = next_spare++; 1288 rdev2->desc_nr = desc_nr; 1289 d = &sb->disks[rdev2->desc_nr]; 1290 nr_disks++; 1291 d->number = rdev2->desc_nr; 1292 d->major = MAJOR(rdev2->bdev->bd_dev); 1293 d->minor = MINOR(rdev2->bdev->bd_dev); 1294 if (is_active) 1295 d->raid_disk = rdev2->raid_disk; 1296 else 1297 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1298 if (test_bit(Faulty, &rdev2->flags)) 1299 d->state = (1<<MD_DISK_FAULTY); 1300 else if (is_active) { 1301 d->state = (1<<MD_DISK_ACTIVE); 1302 if (test_bit(In_sync, &rdev2->flags)) 1303 d->state |= (1<<MD_DISK_SYNC); 1304 active++; 1305 working++; 1306 } else { 1307 d->state = 0; 1308 spare++; 1309 working++; 1310 } 1311 if (test_bit(WriteMostly, &rdev2->flags)) 1312 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1313 } 1314 /* now set the "removed" and "faulty" bits on any missing devices */ 1315 for (i=0 ; i < mddev->raid_disks ; i++) { 1316 mdp_disk_t *d = &sb->disks[i]; 1317 if (d->state == 0 && d->number == 0) { 1318 d->number = i; 1319 d->raid_disk = i; 1320 d->state = (1<<MD_DISK_REMOVED); 1321 d->state |= (1<<MD_DISK_FAULTY); 1322 failed++; 1323 } 1324 } 1325 sb->nr_disks = nr_disks; 1326 sb->active_disks = active; 1327 sb->working_disks = working; 1328 sb->failed_disks = failed; 1329 sb->spare_disks = spare; 1330 1331 sb->this_disk = sb->disks[rdev->desc_nr]; 1332 sb->sb_csum = calc_sb_csum(sb); 1333} 1334 1335/* 1336 * rdev_size_change for 0.90.0 1337 */ 1338static unsigned long long 1339super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1340{ 1341 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1342 return 0; /* component must fit device */ 1343 if (rdev->mddev->bitmap_info.offset) 1344 return 0; /* can't move bitmap */ 1345 rdev->sb_start = calc_dev_sboffset(rdev); 1346 if (!num_sectors || num_sectors > rdev->sb_start) 1347 num_sectors = rdev->sb_start; 1348 /* Limit to 4TB as metadata cannot record more than that. 1349 * 4TB == 2^32 KB, or 2*2^32 sectors. 1350 */ 1351 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1352 num_sectors = (2ULL << 32) - 2; 1353 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1354 rdev->sb_page); 1355 md_super_wait(rdev->mddev); 1356 return num_sectors; 1357} 1358 1359static int 1360super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1361{ 1362 /* non-zero offset changes not possible with v0.90 */ 1363 return new_offset == 0; 1364} 1365 1366/* 1367 * version 1 superblock 1368 */ 1369 1370static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1371{ 1372 __le32 disk_csum; 1373 u32 csum; 1374 unsigned long long newcsum; 1375 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1376 __le32 *isuper = (__le32*)sb; 1377 1378 disk_csum = sb->sb_csum; 1379 sb->sb_csum = 0; 1380 newcsum = 0; 1381 for (; size >= 4; size -= 4) 1382 newcsum += le32_to_cpu(*isuper++); 1383 1384 if (size == 2) 1385 newcsum += le16_to_cpu(*(__le16*) isuper); 1386 1387 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1388 sb->sb_csum = disk_csum; 1389 return cpu_to_le32(csum); 1390} 1391 1392static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1393 int acknowledged); 1394static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1395{ 1396 struct mdp_superblock_1 *sb; 1397 int ret; 1398 sector_t sb_start; 1399 sector_t sectors; 1400 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1401 int bmask; 1402 1403 /* 1404 * Calculate the position of the superblock in 512byte sectors. 1405 * It is always aligned to a 4K boundary and 1406 * depeding on minor_version, it can be: 1407 * 0: At least 8K, but less than 12K, from end of device 1408 * 1: At start of device 1409 * 2: 4K from start of device. 1410 */ 1411 switch(minor_version) { 1412 case 0: 1413 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1414 sb_start -= 8*2; 1415 sb_start &= ~(sector_t)(4*2-1); 1416 break; 1417 case 1: 1418 sb_start = 0; 1419 break; 1420 case 2: 1421 sb_start = 8; 1422 break; 1423 default: 1424 return -EINVAL; 1425 } 1426 rdev->sb_start = sb_start; 1427 1428 /* superblock is rarely larger than 1K, but it can be larger, 1429 * and it is safe to read 4k, so we do that 1430 */ 1431 ret = read_disk_sb(rdev, 4096); 1432 if (ret) return ret; 1433 1434 1435 sb = page_address(rdev->sb_page); 1436 1437 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1438 sb->major_version != cpu_to_le32(1) || 1439 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1440 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1441 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1442 return -EINVAL; 1443 1444 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1445 printk("md: invalid superblock checksum on %s\n", 1446 bdevname(rdev->bdev,b)); 1447 return -EINVAL; 1448 } 1449 if (le64_to_cpu(sb->data_size) < 10) { 1450 printk("md: data_size too small on %s\n", 1451 bdevname(rdev->bdev,b)); 1452 return -EINVAL; 1453 } 1454 if (sb->pad0 || 1455 sb->pad3[0] || 1456 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1457 /* Some padding is non-zero, might be a new feature */ 1458 return -EINVAL; 1459 1460 rdev->preferred_minor = 0xffff; 1461 rdev->data_offset = le64_to_cpu(sb->data_offset); 1462 rdev->new_data_offset = rdev->data_offset; 1463 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1464 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1465 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1466 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1467 1468 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1469 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1470 if (rdev->sb_size & bmask) 1471 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1472 1473 if (minor_version 1474 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1475 return -EINVAL; 1476 if (minor_version 1477 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1478 return -EINVAL; 1479 1480 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1481 rdev->desc_nr = -1; 1482 else 1483 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1484 1485 if (!rdev->bb_page) { 1486 rdev->bb_page = alloc_page(GFP_KERNEL); 1487 if (!rdev->bb_page) 1488 return -ENOMEM; 1489 } 1490 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1491 rdev->badblocks.count == 0) { 1492 /* need to load the bad block list. 1493 * Currently we limit it to one page. 1494 */ 1495 s32 offset; 1496 sector_t bb_sector; 1497 u64 *bbp; 1498 int i; 1499 int sectors = le16_to_cpu(sb->bblog_size); 1500 if (sectors > (PAGE_SIZE / 512)) 1501 return -EINVAL; 1502 offset = le32_to_cpu(sb->bblog_offset); 1503 if (offset == 0) 1504 return -EINVAL; 1505 bb_sector = (long long)offset; 1506 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1507 rdev->bb_page, READ, true)) 1508 return -EIO; 1509 bbp = (u64 *)page_address(rdev->bb_page); 1510 rdev->badblocks.shift = sb->bblog_shift; 1511 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1512 u64 bb = le64_to_cpu(*bbp); 1513 int count = bb & (0x3ff); 1514 u64 sector = bb >> 10; 1515 sector <<= sb->bblog_shift; 1516 count <<= sb->bblog_shift; 1517 if (bb + 1 == 0) 1518 break; 1519 if (md_set_badblocks(&rdev->badblocks, 1520 sector, count, 1) == 0) 1521 return -EINVAL; 1522 } 1523 } else if (sb->bblog_offset != 0) 1524 rdev->badblocks.shift = 0; 1525 1526 if (!refdev) { 1527 ret = 1; 1528 } else { 1529 __u64 ev1, ev2; 1530 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1531 1532 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1533 sb->level != refsb->level || 1534 sb->layout != refsb->layout || 1535 sb->chunksize != refsb->chunksize) { 1536 printk(KERN_WARNING "md: %s has strangely different" 1537 " superblock to %s\n", 1538 bdevname(rdev->bdev,b), 1539 bdevname(refdev->bdev,b2)); 1540 return -EINVAL; 1541 } 1542 ev1 = le64_to_cpu(sb->events); 1543 ev2 = le64_to_cpu(refsb->events); 1544 1545 if (ev1 > ev2) 1546 ret = 1; 1547 else 1548 ret = 0; 1549 } 1550 if (minor_version) { 1551 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1552 sectors -= rdev->data_offset; 1553 } else 1554 sectors = rdev->sb_start; 1555 if (sectors < le64_to_cpu(sb->data_size)) 1556 return -EINVAL; 1557 rdev->sectors = le64_to_cpu(sb->data_size); 1558 return ret; 1559} 1560 1561static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1562{ 1563 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1564 __u64 ev1 = le64_to_cpu(sb->events); 1565 1566 rdev->raid_disk = -1; 1567 clear_bit(Faulty, &rdev->flags); 1568 clear_bit(In_sync, &rdev->flags); 1569 clear_bit(Bitmap_sync, &rdev->flags); 1570 clear_bit(WriteMostly, &rdev->flags); 1571 1572 if (mddev->raid_disks == 0) { 1573 mddev->major_version = 1; 1574 mddev->patch_version = 0; 1575 mddev->external = 0; 1576 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1577 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1578 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1579 mddev->level = le32_to_cpu(sb->level); 1580 mddev->clevel[0] = 0; 1581 mddev->layout = le32_to_cpu(sb->layout); 1582 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1583 mddev->dev_sectors = le64_to_cpu(sb->size); 1584 mddev->events = ev1; 1585 mddev->bitmap_info.offset = 0; 1586 mddev->bitmap_info.space = 0; 1587 /* Default location for bitmap is 1K after superblock 1588 * using 3K - total of 4K 1589 */ 1590 mddev->bitmap_info.default_offset = 1024 >> 9; 1591 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1592 mddev->reshape_backwards = 0; 1593 1594 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1595 memcpy(mddev->uuid, sb->set_uuid, 16); 1596 1597 mddev->max_disks = (4096-256)/2; 1598 1599 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1600 mddev->bitmap_info.file == NULL) { 1601 mddev->bitmap_info.offset = 1602 (__s32)le32_to_cpu(sb->bitmap_offset); 1603 /* Metadata doesn't record how much space is available. 1604 * For 1.0, we assume we can use up to the superblock 1605 * if before, else to 4K beyond superblock. 1606 * For others, assume no change is possible. 1607 */ 1608 if (mddev->minor_version > 0) 1609 mddev->bitmap_info.space = 0; 1610 else if (mddev->bitmap_info.offset > 0) 1611 mddev->bitmap_info.space = 1612 8 - mddev->bitmap_info.offset; 1613 else 1614 mddev->bitmap_info.space = 1615 -mddev->bitmap_info.offset; 1616 } 1617 1618 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1619 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1620 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1621 mddev->new_level = le32_to_cpu(sb->new_level); 1622 mddev->new_layout = le32_to_cpu(sb->new_layout); 1623 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1624 if (mddev->delta_disks < 0 || 1625 (mddev->delta_disks == 0 && 1626 (le32_to_cpu(sb->feature_map) 1627 & MD_FEATURE_RESHAPE_BACKWARDS))) 1628 mddev->reshape_backwards = 1; 1629 } else { 1630 mddev->reshape_position = MaxSector; 1631 mddev->delta_disks = 0; 1632 mddev->new_level = mddev->level; 1633 mddev->new_layout = mddev->layout; 1634 mddev->new_chunk_sectors = mddev->chunk_sectors; 1635 } 1636 1637 } else if (mddev->pers == NULL) { 1638 /* Insist of good event counter while assembling, except for 1639 * spares (which don't need an event count) */ 1640 ++ev1; 1641 if (rdev->desc_nr >= 0 && 1642 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1643 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1644 if (ev1 < mddev->events) 1645 return -EINVAL; 1646 } else if (mddev->bitmap) { 1647 /* If adding to array with a bitmap, then we can accept an 1648 * older device, but not too old. 1649 */ 1650 if (ev1 < mddev->bitmap->events_cleared) 1651 return 0; 1652 if (ev1 < mddev->events) 1653 set_bit(Bitmap_sync, &rdev->flags); 1654 } else { 1655 if (ev1 < mddev->events) 1656 /* just a hot-add of a new device, leave raid_disk at -1 */ 1657 return 0; 1658 } 1659 if (mddev->level != LEVEL_MULTIPATH) { 1660 int role; 1661 if (rdev->desc_nr < 0 || 1662 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1663 role = 0xffff; 1664 rdev->desc_nr = -1; 1665 } else 1666 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1667 switch(role) { 1668 case 0xffff: /* spare */ 1669 break; 1670 case 0xfffe: /* faulty */ 1671 set_bit(Faulty, &rdev->flags); 1672 break; 1673 default: 1674 if ((le32_to_cpu(sb->feature_map) & 1675 MD_FEATURE_RECOVERY_OFFSET)) 1676 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1677 else 1678 set_bit(In_sync, &rdev->flags); 1679 rdev->raid_disk = role; 1680 break; 1681 } 1682 if (sb->devflags & WriteMostly1) 1683 set_bit(WriteMostly, &rdev->flags); 1684 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1685 set_bit(Replacement, &rdev->flags); 1686 } else /* MULTIPATH are always insync */ 1687 set_bit(In_sync, &rdev->flags); 1688 1689 return 0; 1690} 1691 1692static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1693{ 1694 struct mdp_superblock_1 *sb; 1695 struct md_rdev *rdev2; 1696 int max_dev, i; 1697 /* make rdev->sb match mddev and rdev data. */ 1698 1699 sb = page_address(rdev->sb_page); 1700 1701 sb->feature_map = 0; 1702 sb->pad0 = 0; 1703 sb->recovery_offset = cpu_to_le64(0); 1704 memset(sb->pad3, 0, sizeof(sb->pad3)); 1705 1706 sb->utime = cpu_to_le64((__u64)mddev->utime); 1707 sb->events = cpu_to_le64(mddev->events); 1708 if (mddev->in_sync) 1709 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1710 else 1711 sb->resync_offset = cpu_to_le64(0); 1712 1713 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1714 1715 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1716 sb->size = cpu_to_le64(mddev->dev_sectors); 1717 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1718 sb->level = cpu_to_le32(mddev->level); 1719 sb->layout = cpu_to_le32(mddev->layout); 1720 1721 if (test_bit(WriteMostly, &rdev->flags)) 1722 sb->devflags |= WriteMostly1; 1723 else 1724 sb->devflags &= ~WriteMostly1; 1725 sb->data_offset = cpu_to_le64(rdev->data_offset); 1726 sb->data_size = cpu_to_le64(rdev->sectors); 1727 1728 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1729 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1730 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1731 } 1732 1733 if (rdev->raid_disk >= 0 && 1734 !test_bit(In_sync, &rdev->flags)) { 1735 sb->feature_map |= 1736 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1737 sb->recovery_offset = 1738 cpu_to_le64(rdev->recovery_offset); 1739 } 1740 if (test_bit(Replacement, &rdev->flags)) 1741 sb->feature_map |= 1742 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1743 1744 if (mddev->reshape_position != MaxSector) { 1745 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1746 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1747 sb->new_layout = cpu_to_le32(mddev->new_layout); 1748 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1749 sb->new_level = cpu_to_le32(mddev->new_level); 1750 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1751 if (mddev->delta_disks == 0 && 1752 mddev->reshape_backwards) 1753 sb->feature_map 1754 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1755 if (rdev->new_data_offset != rdev->data_offset) { 1756 sb->feature_map 1757 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1758 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1759 - rdev->data_offset)); 1760 } 1761 } 1762 1763 if (rdev->badblocks.count == 0) 1764 /* Nothing to do for bad blocks*/ ; 1765 else if (sb->bblog_offset == 0) 1766 /* Cannot record bad blocks on this device */ 1767 md_error(mddev, rdev); 1768 else { 1769 struct badblocks *bb = &rdev->badblocks; 1770 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1771 u64 *p = bb->page; 1772 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1773 if (bb->changed) { 1774 unsigned seq; 1775 1776retry: 1777 seq = read_seqbegin(&bb->lock); 1778 1779 memset(bbp, 0xff, PAGE_SIZE); 1780 1781 for (i = 0 ; i < bb->count ; i++) { 1782 u64 internal_bb = p[i]; 1783 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1784 | BB_LEN(internal_bb)); 1785 bbp[i] = cpu_to_le64(store_bb); 1786 } 1787 bb->changed = 0; 1788 if (read_seqretry(&bb->lock, seq)) 1789 goto retry; 1790 1791 bb->sector = (rdev->sb_start + 1792 (int)le32_to_cpu(sb->bblog_offset)); 1793 bb->size = le16_to_cpu(sb->bblog_size); 1794 } 1795 } 1796 1797 max_dev = 0; 1798 rdev_for_each(rdev2, mddev) 1799 if (rdev2->desc_nr+1 > max_dev) 1800 max_dev = rdev2->desc_nr+1; 1801 1802 if (max_dev > le32_to_cpu(sb->max_dev)) { 1803 int bmask; 1804 sb->max_dev = cpu_to_le32(max_dev); 1805 rdev->sb_size = max_dev * 2 + 256; 1806 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1807 if (rdev->sb_size & bmask) 1808 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1809 } else 1810 max_dev = le32_to_cpu(sb->max_dev); 1811 1812 for (i=0; i<max_dev;i++) 1813 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1814 1815 rdev_for_each(rdev2, mddev) { 1816 i = rdev2->desc_nr; 1817 if (test_bit(Faulty, &rdev2->flags)) 1818 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1819 else if (test_bit(In_sync, &rdev2->flags)) 1820 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1821 else if (rdev2->raid_disk >= 0) 1822 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1823 else 1824 sb->dev_roles[i] = cpu_to_le16(0xffff); 1825 } 1826 1827 sb->sb_csum = calc_sb_1_csum(sb); 1828} 1829 1830static unsigned long long 1831super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1832{ 1833 struct mdp_superblock_1 *sb; 1834 sector_t max_sectors; 1835 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1836 return 0; /* component must fit device */ 1837 if (rdev->data_offset != rdev->new_data_offset) 1838 return 0; /* too confusing */ 1839 if (rdev->sb_start < rdev->data_offset) { 1840 /* minor versions 1 and 2; superblock before data */ 1841 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1842 max_sectors -= rdev->data_offset; 1843 if (!num_sectors || num_sectors > max_sectors) 1844 num_sectors = max_sectors; 1845 } else if (rdev->mddev->bitmap_info.offset) { 1846 /* minor version 0 with bitmap we can't move */ 1847 return 0; 1848 } else { 1849 /* minor version 0; superblock after data */ 1850 sector_t sb_start; 1851 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1852 sb_start &= ~(sector_t)(4*2 - 1); 1853 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1854 if (!num_sectors || num_sectors > max_sectors) 1855 num_sectors = max_sectors; 1856 rdev->sb_start = sb_start; 1857 } 1858 sb = page_address(rdev->sb_page); 1859 sb->data_size = cpu_to_le64(num_sectors); 1860 sb->super_offset = rdev->sb_start; 1861 sb->sb_csum = calc_sb_1_csum(sb); 1862 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1863 rdev->sb_page); 1864 md_super_wait(rdev->mddev); 1865 return num_sectors; 1866 1867} 1868 1869static int 1870super_1_allow_new_offset(struct md_rdev *rdev, 1871 unsigned long long new_offset) 1872{ 1873 /* All necessary checks on new >= old have been done */ 1874 struct bitmap *bitmap; 1875 if (new_offset >= rdev->data_offset) 1876 return 1; 1877 1878 /* with 1.0 metadata, there is no metadata to tread on 1879 * so we can always move back */ 1880 if (rdev->mddev->minor_version == 0) 1881 return 1; 1882 1883 /* otherwise we must be sure not to step on 1884 * any metadata, so stay: 1885 * 36K beyond start of superblock 1886 * beyond end of badblocks 1887 * beyond write-intent bitmap 1888 */ 1889 if (rdev->sb_start + (32+4)*2 > new_offset) 1890 return 0; 1891 bitmap = rdev->mddev->bitmap; 1892 if (bitmap && !rdev->mddev->bitmap_info.file && 1893 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1894 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1895 return 0; 1896 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1897 return 0; 1898 1899 return 1; 1900} 1901 1902static struct super_type super_types[] = { 1903 [0] = { 1904 .name = "0.90.0", 1905 .owner = THIS_MODULE, 1906 .load_super = super_90_load, 1907 .validate_super = super_90_validate, 1908 .sync_super = super_90_sync, 1909 .rdev_size_change = super_90_rdev_size_change, 1910 .allow_new_offset = super_90_allow_new_offset, 1911 }, 1912 [1] = { 1913 .name = "md-1", 1914 .owner = THIS_MODULE, 1915 .load_super = super_1_load, 1916 .validate_super = super_1_validate, 1917 .sync_super = super_1_sync, 1918 .rdev_size_change = super_1_rdev_size_change, 1919 .allow_new_offset = super_1_allow_new_offset, 1920 }, 1921}; 1922 1923static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1924{ 1925 if (mddev->sync_super) { 1926 mddev->sync_super(mddev, rdev); 1927 return; 1928 } 1929 1930 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1931 1932 super_types[mddev->major_version].sync_super(mddev, rdev); 1933} 1934 1935static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1936{ 1937 struct md_rdev *rdev, *rdev2; 1938 1939 rcu_read_lock(); 1940 rdev_for_each_rcu(rdev, mddev1) 1941 rdev_for_each_rcu(rdev2, mddev2) 1942 if (rdev->bdev->bd_contains == 1943 rdev2->bdev->bd_contains) { 1944 rcu_read_unlock(); 1945 return 1; 1946 } 1947 rcu_read_unlock(); 1948 return 0; 1949} 1950 1951static LIST_HEAD(pending_raid_disks); 1952 1953/* 1954 * Try to register data integrity profile for an mddev 1955 * 1956 * This is called when an array is started and after a disk has been kicked 1957 * from the array. It only succeeds if all working and active component devices 1958 * are integrity capable with matching profiles. 1959 */ 1960int md_integrity_register(struct mddev *mddev) 1961{ 1962 struct md_rdev *rdev, *reference = NULL; 1963 1964 if (list_empty(&mddev->disks)) 1965 return 0; /* nothing to do */ 1966 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1967 return 0; /* shouldn't register, or already is */ 1968 rdev_for_each(rdev, mddev) { 1969 /* skip spares and non-functional disks */ 1970 if (test_bit(Faulty, &rdev->flags)) 1971 continue; 1972 if (rdev->raid_disk < 0) 1973 continue; 1974 if (!reference) { 1975 /* Use the first rdev as the reference */ 1976 reference = rdev; 1977 continue; 1978 } 1979 /* does this rdev's profile match the reference profile? */ 1980 if (blk_integrity_compare(reference->bdev->bd_disk, 1981 rdev->bdev->bd_disk) < 0) 1982 return -EINVAL; 1983 } 1984 if (!reference || !bdev_get_integrity(reference->bdev)) 1985 return 0; 1986 /* 1987 * All component devices are integrity capable and have matching 1988 * profiles, register the common profile for the md device. 1989 */ 1990 if (blk_integrity_register(mddev->gendisk, 1991 bdev_get_integrity(reference->bdev)) != 0) { 1992 printk(KERN_ERR "md: failed to register integrity for %s\n", 1993 mdname(mddev)); 1994 return -EINVAL; 1995 } 1996 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1997 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1998 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1999 mdname(mddev)); 2000 return -EINVAL; 2001 } 2002 return 0; 2003} 2004EXPORT_SYMBOL(md_integrity_register); 2005 2006/* Disable data integrity if non-capable/non-matching disk is being added */ 2007void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2008{ 2009 struct blk_integrity *bi_rdev; 2010 struct blk_integrity *bi_mddev; 2011 2012 if (!mddev->gendisk) 2013 return; 2014 2015 bi_rdev = bdev_get_integrity(rdev->bdev); 2016 bi_mddev = blk_get_integrity(mddev->gendisk); 2017 2018 if (!bi_mddev) /* nothing to do */ 2019 return; 2020 if (rdev->raid_disk < 0) /* skip spares */ 2021 return; 2022 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2023 rdev->bdev->bd_disk) >= 0) 2024 return; 2025 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2026 blk_integrity_unregister(mddev->gendisk); 2027} 2028EXPORT_SYMBOL(md_integrity_add_rdev); 2029 2030static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2031{ 2032 char b[BDEVNAME_SIZE]; 2033 struct kobject *ko; 2034 char *s; 2035 int err; 2036 2037 if (rdev->mddev) { 2038 MD_BUG(); 2039 return -EINVAL; 2040 } 2041 2042 /* prevent duplicates */ 2043 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2044 return -EEXIST; 2045 2046 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2047 if (rdev->sectors && (mddev->dev_sectors == 0 || 2048 rdev->sectors < mddev->dev_sectors)) { 2049 if (mddev->pers) { 2050 /* Cannot change size, so fail 2051 * If mddev->level <= 0, then we don't care 2052 * about aligning sizes (e.g. linear) 2053 */ 2054 if (mddev->level > 0) 2055 return -ENOSPC; 2056 } else 2057 mddev->dev_sectors = rdev->sectors; 2058 } 2059 2060 /* Verify rdev->desc_nr is unique. 2061 * If it is -1, assign a free number, else 2062 * check number is not in use 2063 */ 2064 if (rdev->desc_nr < 0) { 2065 int choice = 0; 2066 if (mddev->pers) choice = mddev->raid_disks; 2067 while (find_rdev_nr(mddev, choice)) 2068 choice++; 2069 rdev->desc_nr = choice; 2070 } else { 2071 if (find_rdev_nr(mddev, rdev->desc_nr)) 2072 return -EBUSY; 2073 } 2074 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2075 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2076 mdname(mddev), mddev->max_disks); 2077 return -EBUSY; 2078 } 2079 bdevname(rdev->bdev,b); 2080 while ( (s=strchr(b, '/')) != NULL) 2081 *s = '!'; 2082 2083 rdev->mddev = mddev; 2084 printk(KERN_INFO "md: bind<%s>\n", b); 2085 2086 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2087 goto fail; 2088 2089 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2090 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2091 /* failure here is OK */; 2092 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2093 2094 list_add_rcu(&rdev->same_set, &mddev->disks); 2095 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2096 2097 /* May as well allow recovery to be retried once */ 2098 mddev->recovery_disabled++; 2099 2100 return 0; 2101 2102 fail: 2103 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2104 b, mdname(mddev)); 2105 return err; 2106} 2107 2108static void md_delayed_delete(struct work_struct *ws) 2109{ 2110 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2111 kobject_del(&rdev->kobj); 2112 kobject_put(&rdev->kobj); 2113} 2114 2115static void unbind_rdev_from_array(struct md_rdev * rdev) 2116{ 2117 char b[BDEVNAME_SIZE]; 2118 if (!rdev->mddev) { 2119 MD_BUG(); 2120 return; 2121 } 2122 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2123 list_del_rcu(&rdev->same_set); 2124 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2125 rdev->mddev = NULL; 2126 sysfs_remove_link(&rdev->kobj, "block"); 2127 sysfs_put(rdev->sysfs_state); 2128 rdev->sysfs_state = NULL; 2129 rdev->badblocks.count = 0; 2130 /* We need to delay this, otherwise we can deadlock when 2131 * writing to 'remove' to "dev/state". We also need 2132 * to delay it due to rcu usage. 2133 */ 2134 synchronize_rcu(); 2135 INIT_WORK(&rdev->del_work, md_delayed_delete); 2136 kobject_get(&rdev->kobj); 2137 queue_work(md_misc_wq, &rdev->del_work); 2138} 2139 2140/* 2141 * prevent the device from being mounted, repartitioned or 2142 * otherwise reused by a RAID array (or any other kernel 2143 * subsystem), by bd_claiming the device. 2144 */ 2145static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2146{ 2147 int err = 0; 2148 struct block_device *bdev; 2149 char b[BDEVNAME_SIZE]; 2150 2151 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2152 shared ? (struct md_rdev *)lock_rdev : rdev); 2153 if (IS_ERR(bdev)) { 2154 printk(KERN_ERR "md: could not open %s.\n", 2155 __bdevname(dev, b)); 2156 return PTR_ERR(bdev); 2157 } 2158 rdev->bdev = bdev; 2159 return err; 2160} 2161 2162static void unlock_rdev(struct md_rdev *rdev) 2163{ 2164 struct block_device *bdev = rdev->bdev; 2165 rdev->bdev = NULL; 2166 if (!bdev) 2167 MD_BUG(); 2168 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2169} 2170 2171void md_autodetect_dev(dev_t dev); 2172 2173static void export_rdev(struct md_rdev * rdev) 2174{ 2175 char b[BDEVNAME_SIZE]; 2176 printk(KERN_INFO "md: export_rdev(%s)\n", 2177 bdevname(rdev->bdev,b)); 2178 if (rdev->mddev) 2179 MD_BUG(); 2180 md_rdev_clear(rdev); 2181#ifndef MODULE 2182 if (test_bit(AutoDetected, &rdev->flags)) 2183 md_autodetect_dev(rdev->bdev->bd_dev); 2184#endif 2185 unlock_rdev(rdev); 2186 kobject_put(&rdev->kobj); 2187} 2188 2189static void kick_rdev_from_array(struct md_rdev * rdev) 2190{ 2191 unbind_rdev_from_array(rdev); 2192 export_rdev(rdev); 2193} 2194 2195static void export_array(struct mddev *mddev) 2196{ 2197 struct md_rdev *rdev, *tmp; 2198 2199 rdev_for_each_safe(rdev, tmp, mddev) { 2200 if (!rdev->mddev) { 2201 MD_BUG(); 2202 continue; 2203 } 2204 kick_rdev_from_array(rdev); 2205 } 2206 if (!list_empty(&mddev->disks)) 2207 MD_BUG(); 2208 mddev->raid_disks = 0; 2209 mddev->major_version = 0; 2210} 2211 2212static void print_desc(mdp_disk_t *desc) 2213{ 2214 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2215 desc->major,desc->minor,desc->raid_disk,desc->state); 2216} 2217 2218static void print_sb_90(mdp_super_t *sb) 2219{ 2220 int i; 2221 2222 printk(KERN_INFO 2223 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2224 sb->major_version, sb->minor_version, sb->patch_version, 2225 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2226 sb->ctime); 2227 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2228 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2229 sb->md_minor, sb->layout, sb->chunk_size); 2230 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2231 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2232 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2233 sb->failed_disks, sb->spare_disks, 2234 sb->sb_csum, (unsigned long)sb->events_lo); 2235 2236 printk(KERN_INFO); 2237 for (i = 0; i < MD_SB_DISKS; i++) { 2238 mdp_disk_t *desc; 2239 2240 desc = sb->disks + i; 2241 if (desc->number || desc->major || desc->minor || 2242 desc->raid_disk || (desc->state && (desc->state != 4))) { 2243 printk(" D %2d: ", i); 2244 print_desc(desc); 2245 } 2246 } 2247 printk(KERN_INFO "md: THIS: "); 2248 print_desc(&sb->this_disk); 2249} 2250 2251static void print_sb_1(struct mdp_superblock_1 *sb) 2252{ 2253 __u8 *uuid; 2254 2255 uuid = sb->set_uuid; 2256 printk(KERN_INFO 2257 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2258 "md: Name: \"%s\" CT:%llu\n", 2259 le32_to_cpu(sb->major_version), 2260 le32_to_cpu(sb->feature_map), 2261 uuid, 2262 sb->set_name, 2263 (unsigned long long)le64_to_cpu(sb->ctime) 2264 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2265 2266 uuid = sb->device_uuid; 2267 printk(KERN_INFO 2268 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2269 " RO:%llu\n" 2270 "md: Dev:%08x UUID: %pU\n" 2271 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2272 "md: (MaxDev:%u) \n", 2273 le32_to_cpu(sb->level), 2274 (unsigned long long)le64_to_cpu(sb->size), 2275 le32_to_cpu(sb->raid_disks), 2276 le32_to_cpu(sb->layout), 2277 le32_to_cpu(sb->chunksize), 2278 (unsigned long long)le64_to_cpu(sb->data_offset), 2279 (unsigned long long)le64_to_cpu(sb->data_size), 2280 (unsigned long long)le64_to_cpu(sb->super_offset), 2281 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2282 le32_to_cpu(sb->dev_number), 2283 uuid, 2284 sb->devflags, 2285 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2286 (unsigned long long)le64_to_cpu(sb->events), 2287 (unsigned long long)le64_to_cpu(sb->resync_offset), 2288 le32_to_cpu(sb->sb_csum), 2289 le32_to_cpu(sb->max_dev) 2290 ); 2291} 2292 2293static void print_rdev(struct md_rdev *rdev, int major_version) 2294{ 2295 char b[BDEVNAME_SIZE]; 2296 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2297 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2298 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2299 rdev->desc_nr); 2300 if (rdev->sb_loaded) { 2301 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2302 switch (major_version) { 2303 case 0: 2304 print_sb_90(page_address(rdev->sb_page)); 2305 break; 2306 case 1: 2307 print_sb_1(page_address(rdev->sb_page)); 2308 break; 2309 } 2310 } else 2311 printk(KERN_INFO "md: no rdev superblock!\n"); 2312} 2313 2314static void md_print_devices(void) 2315{ 2316 struct list_head *tmp; 2317 struct md_rdev *rdev; 2318 struct mddev *mddev; 2319 char b[BDEVNAME_SIZE]; 2320 2321 printk("\n"); 2322 printk("md: **********************************\n"); 2323 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2324 printk("md: **********************************\n"); 2325 for_each_mddev(mddev, tmp) { 2326 2327 if (mddev->bitmap) 2328 bitmap_print_sb(mddev->bitmap); 2329 else 2330 printk("%s: ", mdname(mddev)); 2331 rdev_for_each(rdev, mddev) 2332 printk("<%s>", bdevname(rdev->bdev,b)); 2333 printk("\n"); 2334 2335 rdev_for_each(rdev, mddev) 2336 print_rdev(rdev, mddev->major_version); 2337 } 2338 printk("md: **********************************\n"); 2339 printk("\n"); 2340} 2341 2342 2343static void sync_sbs(struct mddev * mddev, int nospares) 2344{ 2345 /* Update each superblock (in-memory image), but 2346 * if we are allowed to, skip spares which already 2347 * have the right event counter, or have one earlier 2348 * (which would mean they aren't being marked as dirty 2349 * with the rest of the array) 2350 */ 2351 struct md_rdev *rdev; 2352 rdev_for_each(rdev, mddev) { 2353 if (rdev->sb_events == mddev->events || 2354 (nospares && 2355 rdev->raid_disk < 0 && 2356 rdev->sb_events+1 == mddev->events)) { 2357 /* Don't update this superblock */ 2358 rdev->sb_loaded = 2; 2359 } else { 2360 sync_super(mddev, rdev); 2361 rdev->sb_loaded = 1; 2362 } 2363 } 2364} 2365 2366static void md_update_sb(struct mddev * mddev, int force_change) 2367{ 2368 struct md_rdev *rdev; 2369 int sync_req; 2370 int nospares = 0; 2371 int any_badblocks_changed = 0; 2372 2373 if (mddev->ro) { 2374 if (force_change) 2375 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2376 return; 2377 } 2378repeat: 2379 /* First make sure individual recovery_offsets are correct */ 2380 rdev_for_each(rdev, mddev) { 2381 if (rdev->raid_disk >= 0 && 2382 mddev->delta_disks >= 0 && 2383 !test_bit(In_sync, &rdev->flags) && 2384 mddev->curr_resync_completed > rdev->recovery_offset) 2385 rdev->recovery_offset = mddev->curr_resync_completed; 2386 2387 } 2388 if (!mddev->persistent) { 2389 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2390 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2391 if (!mddev->external) { 2392 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2393 rdev_for_each(rdev, mddev) { 2394 if (rdev->badblocks.changed) { 2395 rdev->badblocks.changed = 0; 2396 md_ack_all_badblocks(&rdev->badblocks); 2397 md_error(mddev, rdev); 2398 } 2399 clear_bit(Blocked, &rdev->flags); 2400 clear_bit(BlockedBadBlocks, &rdev->flags); 2401 wake_up(&rdev->blocked_wait); 2402 } 2403 } 2404 wake_up(&mddev->sb_wait); 2405 return; 2406 } 2407 2408 spin_lock_irq(&mddev->write_lock); 2409 2410 mddev->utime = get_seconds(); 2411 2412 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2413 force_change = 1; 2414 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2415 /* just a clean<-> dirty transition, possibly leave spares alone, 2416 * though if events isn't the right even/odd, we will have to do 2417 * spares after all 2418 */ 2419 nospares = 1; 2420 if (force_change) 2421 nospares = 0; 2422 if (mddev->degraded) 2423 /* If the array is degraded, then skipping spares is both 2424 * dangerous and fairly pointless. 2425 * Dangerous because a device that was removed from the array 2426 * might have a event_count that still looks up-to-date, 2427 * so it can be re-added without a resync. 2428 * Pointless because if there are any spares to skip, 2429 * then a recovery will happen and soon that array won't 2430 * be degraded any more and the spare can go back to sleep then. 2431 */ 2432 nospares = 0; 2433 2434 sync_req = mddev->in_sync; 2435 2436 /* If this is just a dirty<->clean transition, and the array is clean 2437 * and 'events' is odd, we can roll back to the previous clean state */ 2438 if (nospares 2439 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2440 && mddev->can_decrease_events 2441 && mddev->events != 1) { 2442 mddev->events--; 2443 mddev->can_decrease_events = 0; 2444 } else { 2445 /* otherwise we have to go forward and ... */ 2446 mddev->events ++; 2447 mddev->can_decrease_events = nospares; 2448 } 2449 2450 if (!mddev->events) { 2451 /* 2452 * oops, this 64-bit counter should never wrap. 2453 * Either we are in around ~1 trillion A.C., assuming 2454 * 1 reboot per second, or we have a bug: 2455 */ 2456 MD_BUG(); 2457 mddev->events --; 2458 } 2459 2460 rdev_for_each(rdev, mddev) { 2461 if (rdev->badblocks.changed) 2462 any_badblocks_changed++; 2463 if (test_bit(Faulty, &rdev->flags)) 2464 set_bit(FaultRecorded, &rdev->flags); 2465 } 2466 2467 sync_sbs(mddev, nospares); 2468 spin_unlock_irq(&mddev->write_lock); 2469 2470 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2471 mdname(mddev), mddev->in_sync); 2472 2473 bitmap_update_sb(mddev->bitmap); 2474 rdev_for_each(rdev, mddev) { 2475 char b[BDEVNAME_SIZE]; 2476 2477 if (rdev->sb_loaded != 1) 2478 continue; /* no noise on spare devices */ 2479 2480 if (!test_bit(Faulty, &rdev->flags) && 2481 rdev->saved_raid_disk == -1) { 2482 md_super_write(mddev,rdev, 2483 rdev->sb_start, rdev->sb_size, 2484 rdev->sb_page); 2485 pr_debug("md: (write) %s's sb offset: %llu\n", 2486 bdevname(rdev->bdev, b), 2487 (unsigned long long)rdev->sb_start); 2488 rdev->sb_events = mddev->events; 2489 if (rdev->badblocks.size) { 2490 md_super_write(mddev, rdev, 2491 rdev->badblocks.sector, 2492 rdev->badblocks.size << 9, 2493 rdev->bb_page); 2494 rdev->badblocks.size = 0; 2495 } 2496 2497 } else if (test_bit(Faulty, &rdev->flags)) 2498 pr_debug("md: %s (skipping faulty)\n", 2499 bdevname(rdev->bdev, b)); 2500 else 2501 pr_debug("(skipping incremental s/r "); 2502 2503 if (mddev->level == LEVEL_MULTIPATH) 2504 /* only need to write one superblock... */ 2505 break; 2506 } 2507 md_super_wait(mddev); 2508 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2509 2510 spin_lock_irq(&mddev->write_lock); 2511 if (mddev->in_sync != sync_req || 2512 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2513 /* have to write it out again */ 2514 spin_unlock_irq(&mddev->write_lock); 2515 goto repeat; 2516 } 2517 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2518 spin_unlock_irq(&mddev->write_lock); 2519 wake_up(&mddev->sb_wait); 2520 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2521 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2522 2523 rdev_for_each(rdev, mddev) { 2524 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2525 clear_bit(Blocked, &rdev->flags); 2526 2527 if (any_badblocks_changed) 2528 md_ack_all_badblocks(&rdev->badblocks); 2529 clear_bit(BlockedBadBlocks, &rdev->flags); 2530 wake_up(&rdev->blocked_wait); 2531 } 2532} 2533 2534/* words written to sysfs files may, or may not, be \n terminated. 2535 * We want to accept with case. For this we use cmd_match. 2536 */ 2537static int cmd_match(const char *cmd, const char *str) 2538{ 2539 /* See if cmd, written into a sysfs file, matches 2540 * str. They must either be the same, or cmd can 2541 * have a trailing newline 2542 */ 2543 while (*cmd && *str && *cmd == *str) { 2544 cmd++; 2545 str++; 2546 } 2547 if (*cmd == '\n') 2548 cmd++; 2549 if (*str || *cmd) 2550 return 0; 2551 return 1; 2552} 2553 2554struct rdev_sysfs_entry { 2555 struct attribute attr; 2556 ssize_t (*show)(struct md_rdev *, char *); 2557 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2558}; 2559 2560static ssize_t 2561state_show(struct md_rdev *rdev, char *page) 2562{ 2563 char *sep = ""; 2564 size_t len = 0; 2565 2566 if (test_bit(Faulty, &rdev->flags) || 2567 rdev->badblocks.unacked_exist) { 2568 len+= sprintf(page+len, "%sfaulty",sep); 2569 sep = ","; 2570 } 2571 if (test_bit(In_sync, &rdev->flags)) { 2572 len += sprintf(page+len, "%sin_sync",sep); 2573 sep = ","; 2574 } 2575 if (test_bit(WriteMostly, &rdev->flags)) { 2576 len += sprintf(page+len, "%swrite_mostly",sep); 2577 sep = ","; 2578 } 2579 if (test_bit(Blocked, &rdev->flags) || 2580 (rdev->badblocks.unacked_exist 2581 && !test_bit(Faulty, &rdev->flags))) { 2582 len += sprintf(page+len, "%sblocked", sep); 2583 sep = ","; 2584 } 2585 if (!test_bit(Faulty, &rdev->flags) && 2586 !test_bit(In_sync, &rdev->flags)) { 2587 len += sprintf(page+len, "%sspare", sep); 2588 sep = ","; 2589 } 2590 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2591 len += sprintf(page+len, "%swrite_error", sep); 2592 sep = ","; 2593 } 2594 if (test_bit(WantReplacement, &rdev->flags)) { 2595 len += sprintf(page+len, "%swant_replacement", sep); 2596 sep = ","; 2597 } 2598 if (test_bit(Replacement, &rdev->flags)) { 2599 len += sprintf(page+len, "%sreplacement", sep); 2600 sep = ","; 2601 } 2602 2603 return len+sprintf(page+len, "\n"); 2604} 2605 2606static ssize_t 2607state_store(struct md_rdev *rdev, const char *buf, size_t len) 2608{ 2609 /* can write 2610 * faulty - simulates an error 2611 * remove - disconnects the device 2612 * writemostly - sets write_mostly 2613 * -writemostly - clears write_mostly 2614 * blocked - sets the Blocked flags 2615 * -blocked - clears the Blocked and possibly simulates an error 2616 * insync - sets Insync providing device isn't active 2617 * write_error - sets WriteErrorSeen 2618 * -write_error - clears WriteErrorSeen 2619 */ 2620 int err = -EINVAL; 2621 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2622 md_error(rdev->mddev, rdev); 2623 if (test_bit(Faulty, &rdev->flags)) 2624 err = 0; 2625 else 2626 err = -EBUSY; 2627 } else if (cmd_match(buf, "remove")) { 2628 if (rdev->raid_disk >= 0) 2629 err = -EBUSY; 2630 else { 2631 struct mddev *mddev = rdev->mddev; 2632 kick_rdev_from_array(rdev); 2633 if (mddev->pers) 2634 md_update_sb(mddev, 1); 2635 md_new_event(mddev); 2636 err = 0; 2637 } 2638 } else if (cmd_match(buf, "writemostly")) { 2639 set_bit(WriteMostly, &rdev->flags); 2640 err = 0; 2641 } else if (cmd_match(buf, "-writemostly")) { 2642 clear_bit(WriteMostly, &rdev->flags); 2643 err = 0; 2644 } else if (cmd_match(buf, "blocked")) { 2645 set_bit(Blocked, &rdev->flags); 2646 err = 0; 2647 } else if (cmd_match(buf, "-blocked")) { 2648 if (!test_bit(Faulty, &rdev->flags) && 2649 rdev->badblocks.unacked_exist) { 2650 /* metadata handler doesn't understand badblocks, 2651 * so we need to fail the device 2652 */ 2653 md_error(rdev->mddev, rdev); 2654 } 2655 clear_bit(Blocked, &rdev->flags); 2656 clear_bit(BlockedBadBlocks, &rdev->flags); 2657 wake_up(&rdev->blocked_wait); 2658 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2659 md_wakeup_thread(rdev->mddev->thread); 2660 2661 err = 0; 2662 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2663 set_bit(In_sync, &rdev->flags); 2664 err = 0; 2665 } else if (cmd_match(buf, "write_error")) { 2666 set_bit(WriteErrorSeen, &rdev->flags); 2667 err = 0; 2668 } else if (cmd_match(buf, "-write_error")) { 2669 clear_bit(WriteErrorSeen, &rdev->flags); 2670 err = 0; 2671 } else if (cmd_match(buf, "want_replacement")) { 2672 /* Any non-spare device that is not a replacement can 2673 * become want_replacement at any time, but we then need to 2674 * check if recovery is needed. 2675 */ 2676 if (rdev->raid_disk >= 0 && 2677 !test_bit(Replacement, &rdev->flags)) 2678 set_bit(WantReplacement, &rdev->flags); 2679 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2680 md_wakeup_thread(rdev->mddev->thread); 2681 err = 0; 2682 } else if (cmd_match(buf, "-want_replacement")) { 2683 /* Clearing 'want_replacement' is always allowed. 2684 * Once replacements starts it is too late though. 2685 */ 2686 err = 0; 2687 clear_bit(WantReplacement, &rdev->flags); 2688 } else if (cmd_match(buf, "replacement")) { 2689 /* Can only set a device as a replacement when array has not 2690 * yet been started. Once running, replacement is automatic 2691 * from spares, or by assigning 'slot'. 2692 */ 2693 if (rdev->mddev->pers) 2694 err = -EBUSY; 2695 else { 2696 set_bit(Replacement, &rdev->flags); 2697 err = 0; 2698 } 2699 } else if (cmd_match(buf, "-replacement")) { 2700 /* Similarly, can only clear Replacement before start */ 2701 if (rdev->mddev->pers) 2702 err = -EBUSY; 2703 else { 2704 clear_bit(Replacement, &rdev->flags); 2705 err = 0; 2706 } 2707 } 2708 if (!err) 2709 sysfs_notify_dirent_safe(rdev->sysfs_state); 2710 return err ? err : len; 2711} 2712static struct rdev_sysfs_entry rdev_state = 2713__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2714 2715static ssize_t 2716errors_show(struct md_rdev *rdev, char *page) 2717{ 2718 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2719} 2720 2721static ssize_t 2722errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2723{ 2724 char *e; 2725 unsigned long n = simple_strtoul(buf, &e, 10); 2726 if (*buf && (*e == 0 || *e == '\n')) { 2727 atomic_set(&rdev->corrected_errors, n); 2728 return len; 2729 } 2730 return -EINVAL; 2731} 2732static struct rdev_sysfs_entry rdev_errors = 2733__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2734 2735static ssize_t 2736slot_show(struct md_rdev *rdev, char *page) 2737{ 2738 if (rdev->raid_disk < 0) 2739 return sprintf(page, "none\n"); 2740 else 2741 return sprintf(page, "%d\n", rdev->raid_disk); 2742} 2743 2744static ssize_t 2745slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2746{ 2747 char *e; 2748 int err; 2749 int slot = simple_strtoul(buf, &e, 10); 2750 if (strncmp(buf, "none", 4)==0) 2751 slot = -1; 2752 else if (e==buf || (*e && *e!= '\n')) 2753 return -EINVAL; 2754 if (rdev->mddev->pers && slot == -1) { 2755 /* Setting 'slot' on an active array requires also 2756 * updating the 'rd%d' link, and communicating 2757 * with the personality with ->hot_*_disk. 2758 * For now we only support removing 2759 * failed/spare devices. This normally happens automatically, 2760 * but not when the metadata is externally managed. 2761 */ 2762 if (rdev->raid_disk == -1) 2763 return -EEXIST; 2764 /* personality does all needed checks */ 2765 if (rdev->mddev->pers->hot_remove_disk == NULL) 2766 return -EINVAL; 2767 clear_bit(Blocked, &rdev->flags); 2768 remove_and_add_spares(rdev->mddev, rdev); 2769 if (rdev->raid_disk >= 0) 2770 return -EBUSY; 2771 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2772 md_wakeup_thread(rdev->mddev->thread); 2773 } else if (rdev->mddev->pers) { 2774 /* Activating a spare .. or possibly reactivating 2775 * if we ever get bitmaps working here. 2776 */ 2777 2778 if (rdev->raid_disk != -1) 2779 return -EBUSY; 2780 2781 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2782 return -EBUSY; 2783 2784 if (rdev->mddev->pers->hot_add_disk == NULL) 2785 return -EINVAL; 2786 2787 if (slot >= rdev->mddev->raid_disks && 2788 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2789 return -ENOSPC; 2790 2791 rdev->raid_disk = slot; 2792 if (test_bit(In_sync, &rdev->flags)) 2793 rdev->saved_raid_disk = slot; 2794 else 2795 rdev->saved_raid_disk = -1; 2796 clear_bit(In_sync, &rdev->flags); 2797 clear_bit(Bitmap_sync, &rdev->flags); 2798 err = rdev->mddev->pers-> 2799 hot_add_disk(rdev->mddev, rdev); 2800 if (err) { 2801 rdev->raid_disk = -1; 2802 return err; 2803 } else 2804 sysfs_notify_dirent_safe(rdev->sysfs_state); 2805 if (sysfs_link_rdev(rdev->mddev, rdev)) 2806 /* failure here is OK */; 2807 /* don't wakeup anyone, leave that to userspace. */ 2808 } else { 2809 if (slot >= rdev->mddev->raid_disks && 2810 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2811 return -ENOSPC; 2812 rdev->raid_disk = slot; 2813 /* assume it is working */ 2814 clear_bit(Faulty, &rdev->flags); 2815 clear_bit(WriteMostly, &rdev->flags); 2816 set_bit(In_sync, &rdev->flags); 2817 sysfs_notify_dirent_safe(rdev->sysfs_state); 2818 } 2819 return len; 2820} 2821 2822 2823static struct rdev_sysfs_entry rdev_slot = 2824__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2825 2826static ssize_t 2827offset_show(struct md_rdev *rdev, char *page) 2828{ 2829 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2830} 2831 2832static ssize_t 2833offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2834{ 2835 unsigned long long offset; 2836 if (kstrtoull(buf, 10, &offset) < 0) 2837 return -EINVAL; 2838 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2839 return -EBUSY; 2840 if (rdev->sectors && rdev->mddev->external) 2841 /* Must set offset before size, so overlap checks 2842 * can be sane */ 2843 return -EBUSY; 2844 rdev->data_offset = offset; 2845 rdev->new_data_offset = offset; 2846 return len; 2847} 2848 2849static struct rdev_sysfs_entry rdev_offset = 2850__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2851 2852static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2853{ 2854 return sprintf(page, "%llu\n", 2855 (unsigned long long)rdev->new_data_offset); 2856} 2857 2858static ssize_t new_offset_store(struct md_rdev *rdev, 2859 const char *buf, size_t len) 2860{ 2861 unsigned long long new_offset; 2862 struct mddev *mddev = rdev->mddev; 2863 2864 if (kstrtoull(buf, 10, &new_offset) < 0) 2865 return -EINVAL; 2866 2867 if (mddev->sync_thread) 2868 return -EBUSY; 2869 if (new_offset == rdev->data_offset) 2870 /* reset is always permitted */ 2871 ; 2872 else if (new_offset > rdev->data_offset) { 2873 /* must not push array size beyond rdev_sectors */ 2874 if (new_offset - rdev->data_offset 2875 + mddev->dev_sectors > rdev->sectors) 2876 return -E2BIG; 2877 } 2878 /* Metadata worries about other space details. */ 2879 2880 /* decreasing the offset is inconsistent with a backwards 2881 * reshape. 2882 */ 2883 if (new_offset < rdev->data_offset && 2884 mddev->reshape_backwards) 2885 return -EINVAL; 2886 /* Increasing offset is inconsistent with forwards 2887 * reshape. reshape_direction should be set to 2888 * 'backwards' first. 2889 */ 2890 if (new_offset > rdev->data_offset && 2891 !mddev->reshape_backwards) 2892 return -EINVAL; 2893 2894 if (mddev->pers && mddev->persistent && 2895 !super_types[mddev->major_version] 2896 .allow_new_offset(rdev, new_offset)) 2897 return -E2BIG; 2898 rdev->new_data_offset = new_offset; 2899 if (new_offset > rdev->data_offset) 2900 mddev->reshape_backwards = 1; 2901 else if (new_offset < rdev->data_offset) 2902 mddev->reshape_backwards = 0; 2903 2904 return len; 2905} 2906static struct rdev_sysfs_entry rdev_new_offset = 2907__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2908 2909static ssize_t 2910rdev_size_show(struct md_rdev *rdev, char *page) 2911{ 2912 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2913} 2914 2915static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2916{ 2917 /* check if two start/length pairs overlap */ 2918 if (s1+l1 <= s2) 2919 return 0; 2920 if (s2+l2 <= s1) 2921 return 0; 2922 return 1; 2923} 2924 2925static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2926{ 2927 unsigned long long blocks; 2928 sector_t new; 2929 2930 if (kstrtoull(buf, 10, &blocks) < 0) 2931 return -EINVAL; 2932 2933 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2934 return -EINVAL; /* sector conversion overflow */ 2935 2936 new = blocks * 2; 2937 if (new != blocks * 2) 2938 return -EINVAL; /* unsigned long long to sector_t overflow */ 2939 2940 *sectors = new; 2941 return 0; 2942} 2943 2944static ssize_t 2945rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2946{ 2947 struct mddev *my_mddev = rdev->mddev; 2948 sector_t oldsectors = rdev->sectors; 2949 sector_t sectors; 2950 2951 if (strict_blocks_to_sectors(buf, &sectors) < 0) 2952 return -EINVAL; 2953 if (rdev->data_offset != rdev->new_data_offset) 2954 return -EINVAL; /* too confusing */ 2955 if (my_mddev->pers && rdev->raid_disk >= 0) { 2956 if (my_mddev->persistent) { 2957 sectors = super_types[my_mddev->major_version]. 2958 rdev_size_change(rdev, sectors); 2959 if (!sectors) 2960 return -EBUSY; 2961 } else if (!sectors) 2962 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2963 rdev->data_offset; 2964 if (!my_mddev->pers->resize) 2965 /* Cannot change size for RAID0 or Linear etc */ 2966 return -EINVAL; 2967 } 2968 if (sectors < my_mddev->dev_sectors) 2969 return -EINVAL; /* component must fit device */ 2970 2971 rdev->sectors = sectors; 2972 if (sectors > oldsectors && my_mddev->external) { 2973 /* need to check that all other rdevs with the same ->bdev 2974 * do not overlap. We need to unlock the mddev to avoid 2975 * a deadlock. We have already changed rdev->sectors, and if 2976 * we have to change it back, we will have the lock again. 2977 */ 2978 struct mddev *mddev; 2979 int overlap = 0; 2980 struct list_head *tmp; 2981 2982 mddev_unlock(my_mddev); 2983 for_each_mddev(mddev, tmp) { 2984 struct md_rdev *rdev2; 2985 2986 mddev_lock_nointr(mddev); 2987 rdev_for_each(rdev2, mddev) 2988 if (rdev->bdev == rdev2->bdev && 2989 rdev != rdev2 && 2990 overlaps(rdev->data_offset, rdev->sectors, 2991 rdev2->data_offset, 2992 rdev2->sectors)) { 2993 overlap = 1; 2994 break; 2995 } 2996 mddev_unlock(mddev); 2997 if (overlap) { 2998 mddev_put(mddev); 2999 break; 3000 } 3001 } 3002 mddev_lock_nointr(my_mddev); 3003 if (overlap) { 3004 /* Someone else could have slipped in a size 3005 * change here, but doing so is just silly. 3006 * We put oldsectors back because we *know* it is 3007 * safe, and trust userspace not to race with 3008 * itself 3009 */ 3010 rdev->sectors = oldsectors; 3011 return -EBUSY; 3012 } 3013 } 3014 return len; 3015} 3016 3017static struct rdev_sysfs_entry rdev_size = 3018__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3019 3020 3021static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3022{ 3023 unsigned long long recovery_start = rdev->recovery_offset; 3024 3025 if (test_bit(In_sync, &rdev->flags) || 3026 recovery_start == MaxSector) 3027 return sprintf(page, "none\n"); 3028 3029 return sprintf(page, "%llu\n", recovery_start); 3030} 3031 3032static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3033{ 3034 unsigned long long recovery_start; 3035 3036 if (cmd_match(buf, "none")) 3037 recovery_start = MaxSector; 3038 else if (kstrtoull(buf, 10, &recovery_start)) 3039 return -EINVAL; 3040 3041 if (rdev->mddev->pers && 3042 rdev->raid_disk >= 0) 3043 return -EBUSY; 3044 3045 rdev->recovery_offset = recovery_start; 3046 if (recovery_start == MaxSector) 3047 set_bit(In_sync, &rdev->flags); 3048 else 3049 clear_bit(In_sync, &rdev->flags); 3050 return len; 3051} 3052 3053static struct rdev_sysfs_entry rdev_recovery_start = 3054__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3055 3056 3057static ssize_t 3058badblocks_show(struct badblocks *bb, char *page, int unack); 3059static ssize_t 3060badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3061 3062static ssize_t bb_show(struct md_rdev *rdev, char *page) 3063{ 3064 return badblocks_show(&rdev->badblocks, page, 0); 3065} 3066static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3067{ 3068 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3069 /* Maybe that ack was all we needed */ 3070 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3071 wake_up(&rdev->blocked_wait); 3072 return rv; 3073} 3074static struct rdev_sysfs_entry rdev_bad_blocks = 3075__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3076 3077 3078static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3079{ 3080 return badblocks_show(&rdev->badblocks, page, 1); 3081} 3082static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3083{ 3084 return badblocks_store(&rdev->badblocks, page, len, 1); 3085} 3086static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3087__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3088 3089static struct attribute *rdev_default_attrs[] = { 3090 &rdev_state.attr, 3091 &rdev_errors.attr, 3092 &rdev_slot.attr, 3093 &rdev_offset.attr, 3094 &rdev_new_offset.attr, 3095 &rdev_size.attr, 3096 &rdev_recovery_start.attr, 3097 &rdev_bad_blocks.attr, 3098 &rdev_unack_bad_blocks.attr, 3099 NULL, 3100}; 3101static ssize_t 3102rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3103{ 3104 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3105 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3106 struct mddev *mddev = rdev->mddev; 3107 ssize_t rv; 3108 3109 if (!entry->show) 3110 return -EIO; 3111 3112 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3113 if (!rv) { 3114 if (rdev->mddev == NULL) 3115 rv = -EBUSY; 3116 else 3117 rv = entry->show(rdev, page); 3118 mddev_unlock(mddev); 3119 } 3120 return rv; 3121} 3122 3123static ssize_t 3124rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3125 const char *page, size_t length) 3126{ 3127 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3128 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3129 ssize_t rv; 3130 struct mddev *mddev = rdev->mddev; 3131 3132 if (!entry->store) 3133 return -EIO; 3134 if (!capable(CAP_SYS_ADMIN)) 3135 return -EACCES; 3136 rv = mddev ? mddev_lock(mddev): -EBUSY; 3137 if (!rv) { 3138 if (rdev->mddev == NULL) 3139 rv = -EBUSY; 3140 else 3141 rv = entry->store(rdev, page, length); 3142 mddev_unlock(mddev); 3143 } 3144 return rv; 3145} 3146 3147static void rdev_free(struct kobject *ko) 3148{ 3149 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3150 kfree(rdev); 3151} 3152static const struct sysfs_ops rdev_sysfs_ops = { 3153 .show = rdev_attr_show, 3154 .store = rdev_attr_store, 3155}; 3156static struct kobj_type rdev_ktype = { 3157 .release = rdev_free, 3158 .sysfs_ops = &rdev_sysfs_ops, 3159 .default_attrs = rdev_default_attrs, 3160}; 3161 3162int md_rdev_init(struct md_rdev *rdev) 3163{ 3164 rdev->desc_nr = -1; 3165 rdev->saved_raid_disk = -1; 3166 rdev->raid_disk = -1; 3167 rdev->flags = 0; 3168 rdev->data_offset = 0; 3169 rdev->new_data_offset = 0; 3170 rdev->sb_events = 0; 3171 rdev->last_read_error.tv_sec = 0; 3172 rdev->last_read_error.tv_nsec = 0; 3173 rdev->sb_loaded = 0; 3174 rdev->bb_page = NULL; 3175 atomic_set(&rdev->nr_pending, 0); 3176 atomic_set(&rdev->read_errors, 0); 3177 atomic_set(&rdev->corrected_errors, 0); 3178 3179 INIT_LIST_HEAD(&rdev->same_set); 3180 init_waitqueue_head(&rdev->blocked_wait); 3181 3182 /* Add space to store bad block list. 3183 * This reserves the space even on arrays where it cannot 3184 * be used - I wonder if that matters 3185 */ 3186 rdev->badblocks.count = 0; 3187 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3188 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3189 seqlock_init(&rdev->badblocks.lock); 3190 if (rdev->badblocks.page == NULL) 3191 return -ENOMEM; 3192 3193 return 0; 3194} 3195EXPORT_SYMBOL_GPL(md_rdev_init); 3196/* 3197 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3198 * 3199 * mark the device faulty if: 3200 * 3201 * - the device is nonexistent (zero size) 3202 * - the device has no valid superblock 3203 * 3204 * a faulty rdev _never_ has rdev->sb set. 3205 */ 3206static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3207{ 3208 char b[BDEVNAME_SIZE]; 3209 int err; 3210 struct md_rdev *rdev; 3211 sector_t size; 3212 3213 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3214 if (!rdev) { 3215 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3216 return ERR_PTR(-ENOMEM); 3217 } 3218 3219 err = md_rdev_init(rdev); 3220 if (err) 3221 goto abort_free; 3222 err = alloc_disk_sb(rdev); 3223 if (err) 3224 goto abort_free; 3225 3226 err = lock_rdev(rdev, newdev, super_format == -2); 3227 if (err) 3228 goto abort_free; 3229 3230 kobject_init(&rdev->kobj, &rdev_ktype); 3231 3232 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3233 if (!size) { 3234 printk(KERN_WARNING 3235 "md: %s has zero or unknown size, marking faulty!\n", 3236 bdevname(rdev->bdev,b)); 3237 err = -EINVAL; 3238 goto abort_free; 3239 } 3240 3241 if (super_format >= 0) { 3242 err = super_types[super_format]. 3243 load_super(rdev, NULL, super_minor); 3244 if (err == -EINVAL) { 3245 printk(KERN_WARNING 3246 "md: %s does not have a valid v%d.%d " 3247 "superblock, not importing!\n", 3248 bdevname(rdev->bdev,b), 3249 super_format, super_minor); 3250 goto abort_free; 3251 } 3252 if (err < 0) { 3253 printk(KERN_WARNING 3254 "md: could not read %s's sb, not importing!\n", 3255 bdevname(rdev->bdev,b)); 3256 goto abort_free; 3257 } 3258 } 3259 3260 return rdev; 3261 3262abort_free: 3263 if (rdev->bdev) 3264 unlock_rdev(rdev); 3265 md_rdev_clear(rdev); 3266 kfree(rdev); 3267 return ERR_PTR(err); 3268} 3269 3270/* 3271 * Check a full RAID array for plausibility 3272 */ 3273 3274 3275static void analyze_sbs(struct mddev * mddev) 3276{ 3277 int i; 3278 struct md_rdev *rdev, *freshest, *tmp; 3279 char b[BDEVNAME_SIZE]; 3280 3281 freshest = NULL; 3282 rdev_for_each_safe(rdev, tmp, mddev) 3283 switch (super_types[mddev->major_version]. 3284 load_super(rdev, freshest, mddev->minor_version)) { 3285 case 1: 3286 freshest = rdev; 3287 break; 3288 case 0: 3289 break; 3290 default: 3291 printk( KERN_ERR \ 3292 "md: fatal superblock inconsistency in %s" 3293 " -- removing from array\n", 3294 bdevname(rdev->bdev,b)); 3295 kick_rdev_from_array(rdev); 3296 } 3297 3298 3299 super_types[mddev->major_version]. 3300 validate_super(mddev, freshest); 3301 3302 i = 0; 3303 rdev_for_each_safe(rdev, tmp, mddev) { 3304 if (mddev->max_disks && 3305 (rdev->desc_nr >= mddev->max_disks || 3306 i > mddev->max_disks)) { 3307 printk(KERN_WARNING 3308 "md: %s: %s: only %d devices permitted\n", 3309 mdname(mddev), bdevname(rdev->bdev, b), 3310 mddev->max_disks); 3311 kick_rdev_from_array(rdev); 3312 continue; 3313 } 3314 if (rdev != freshest) 3315 if (super_types[mddev->major_version]. 3316 validate_super(mddev, rdev)) { 3317 printk(KERN_WARNING "md: kicking non-fresh %s" 3318 " from array!\n", 3319 bdevname(rdev->bdev,b)); 3320 kick_rdev_from_array(rdev); 3321 continue; 3322 } 3323 if (mddev->level == LEVEL_MULTIPATH) { 3324 rdev->desc_nr = i++; 3325 rdev->raid_disk = rdev->desc_nr; 3326 set_bit(In_sync, &rdev->flags); 3327 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3328 rdev->raid_disk = -1; 3329 clear_bit(In_sync, &rdev->flags); 3330 } 3331 } 3332} 3333 3334/* Read a fixed-point number. 3335 * Numbers in sysfs attributes should be in "standard" units where 3336 * possible, so time should be in seconds. 3337 * However we internally use a a much smaller unit such as 3338 * milliseconds or jiffies. 3339 * This function takes a decimal number with a possible fractional 3340 * component, and produces an integer which is the result of 3341 * multiplying that number by 10^'scale'. 3342 * all without any floating-point arithmetic. 3343 */ 3344int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3345{ 3346 unsigned long result = 0; 3347 long decimals = -1; 3348 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3349 if (*cp == '.') 3350 decimals = 0; 3351 else if (decimals < scale) { 3352 unsigned int value; 3353 value = *cp - '0'; 3354 result = result * 10 + value; 3355 if (decimals >= 0) 3356 decimals++; 3357 } 3358 cp++; 3359 } 3360 if (*cp == '\n') 3361 cp++; 3362 if (*cp) 3363 return -EINVAL; 3364 if (decimals < 0) 3365 decimals = 0; 3366 while (decimals < scale) { 3367 result *= 10; 3368 decimals ++; 3369 } 3370 *res = result; 3371 return 0; 3372} 3373 3374 3375static void md_safemode_timeout(unsigned long data); 3376 3377static ssize_t 3378safe_delay_show(struct mddev *mddev, char *page) 3379{ 3380 int msec = (mddev->safemode_delay*1000)/HZ; 3381 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3382} 3383static ssize_t 3384safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3385{ 3386 unsigned long msec; 3387 3388 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3389 return -EINVAL; 3390 if (msec == 0) 3391 mddev->safemode_delay = 0; 3392 else { 3393 unsigned long old_delay = mddev->safemode_delay; 3394 mddev->safemode_delay = (msec*HZ)/1000; 3395 if (mddev->safemode_delay == 0) 3396 mddev->safemode_delay = 1; 3397 if (mddev->safemode_delay < old_delay || old_delay == 0) 3398 md_safemode_timeout((unsigned long)mddev); 3399 } 3400 return len; 3401} 3402static struct md_sysfs_entry md_safe_delay = 3403__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3404 3405static ssize_t 3406level_show(struct mddev *mddev, char *page) 3407{ 3408 struct md_personality *p = mddev->pers; 3409 if (p) 3410 return sprintf(page, "%s\n", p->name); 3411 else if (mddev->clevel[0]) 3412 return sprintf(page, "%s\n", mddev->clevel); 3413 else if (mddev->level != LEVEL_NONE) 3414 return sprintf(page, "%d\n", mddev->level); 3415 else 3416 return 0; 3417} 3418 3419static ssize_t 3420level_store(struct mddev *mddev, const char *buf, size_t len) 3421{ 3422 char clevel[16]; 3423 ssize_t rv = len; 3424 struct md_personality *pers; 3425 long level; 3426 void *priv; 3427 struct md_rdev *rdev; 3428 3429 if (mddev->pers == NULL) { 3430 if (len == 0) 3431 return 0; 3432 if (len >= sizeof(mddev->clevel)) 3433 return -ENOSPC; 3434 strncpy(mddev->clevel, buf, len); 3435 if (mddev->clevel[len-1] == '\n') 3436 len--; 3437 mddev->clevel[len] = 0; 3438 mddev->level = LEVEL_NONE; 3439 return rv; 3440 } 3441 3442 /* request to change the personality. Need to ensure: 3443 * - array is not engaged in resync/recovery/reshape 3444 * - old personality can be suspended 3445 * - new personality will access other array. 3446 */ 3447 3448 if (mddev->sync_thread || 3449 mddev->reshape_position != MaxSector || 3450 mddev->sysfs_active) 3451 return -EBUSY; 3452 3453 if (!mddev->pers->quiesce) { 3454 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3455 mdname(mddev), mddev->pers->name); 3456 return -EINVAL; 3457 } 3458 3459 /* Now find the new personality */ 3460 if (len == 0 || len >= sizeof(clevel)) 3461 return -EINVAL; 3462 strncpy(clevel, buf, len); 3463 if (clevel[len-1] == '\n') 3464 len--; 3465 clevel[len] = 0; 3466 if (kstrtol(clevel, 10, &level)) 3467 level = LEVEL_NONE; 3468 3469 if (request_module("md-%s", clevel) != 0) 3470 request_module("md-level-%s", clevel); 3471 spin_lock(&pers_lock); 3472 pers = find_pers(level, clevel); 3473 if (!pers || !try_module_get(pers->owner)) { 3474 spin_unlock(&pers_lock); 3475 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3476 return -EINVAL; 3477 } 3478 spin_unlock(&pers_lock); 3479 3480 if (pers == mddev->pers) { 3481 /* Nothing to do! */ 3482 module_put(pers->owner); 3483 return rv; 3484 } 3485 if (!pers->takeover) { 3486 module_put(pers->owner); 3487 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3488 mdname(mddev), clevel); 3489 return -EINVAL; 3490 } 3491 3492 rdev_for_each(rdev, mddev) 3493 rdev->new_raid_disk = rdev->raid_disk; 3494 3495 /* ->takeover must set new_* and/or delta_disks 3496 * if it succeeds, and may set them when it fails. 3497 */ 3498 priv = pers->takeover(mddev); 3499 if (IS_ERR(priv)) { 3500 mddev->new_level = mddev->level; 3501 mddev->new_layout = mddev->layout; 3502 mddev->new_chunk_sectors = mddev->chunk_sectors; 3503 mddev->raid_disks -= mddev->delta_disks; 3504 mddev->delta_disks = 0; 3505 mddev->reshape_backwards = 0; 3506 module_put(pers->owner); 3507 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3508 mdname(mddev), clevel); 3509 return PTR_ERR(priv); 3510 } 3511 3512 /* Looks like we have a winner */ 3513 mddev_suspend(mddev); 3514 mddev->pers->stop(mddev); 3515 3516 if (mddev->pers->sync_request == NULL && 3517 pers->sync_request != NULL) { 3518 /* need to add the md_redundancy_group */ 3519 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3520 printk(KERN_WARNING 3521 "md: cannot register extra attributes for %s\n", 3522 mdname(mddev)); 3523 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3524 } 3525 if (mddev->pers->sync_request != NULL && 3526 pers->sync_request == NULL) { 3527 /* need to remove the md_redundancy_group */ 3528 if (mddev->to_remove == NULL) 3529 mddev->to_remove = &md_redundancy_group; 3530 } 3531 3532 if (mddev->pers->sync_request == NULL && 3533 mddev->external) { 3534 /* We are converting from a no-redundancy array 3535 * to a redundancy array and metadata is managed 3536 * externally so we need to be sure that writes 3537 * won't block due to a need to transition 3538 * clean->dirty 3539 * until external management is started. 3540 */ 3541 mddev->in_sync = 0; 3542 mddev->safemode_delay = 0; 3543 mddev->safemode = 0; 3544 } 3545 3546 rdev_for_each(rdev, mddev) { 3547 if (rdev->raid_disk < 0) 3548 continue; 3549 if (rdev->new_raid_disk >= mddev->raid_disks) 3550 rdev->new_raid_disk = -1; 3551 if (rdev->new_raid_disk == rdev->raid_disk) 3552 continue; 3553 sysfs_unlink_rdev(mddev, rdev); 3554 } 3555 rdev_for_each(rdev, mddev) { 3556 if (rdev->raid_disk < 0) 3557 continue; 3558 if (rdev->new_raid_disk == rdev->raid_disk) 3559 continue; 3560 rdev->raid_disk = rdev->new_raid_disk; 3561 if (rdev->raid_disk < 0) 3562 clear_bit(In_sync, &rdev->flags); 3563 else { 3564 if (sysfs_link_rdev(mddev, rdev)) 3565 printk(KERN_WARNING "md: cannot register rd%d" 3566 " for %s after level change\n", 3567 rdev->raid_disk, mdname(mddev)); 3568 } 3569 } 3570 3571 module_put(mddev->pers->owner); 3572 mddev->pers = pers; 3573 mddev->private = priv; 3574 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3575 mddev->level = mddev->new_level; 3576 mddev->layout = mddev->new_layout; 3577 mddev->chunk_sectors = mddev->new_chunk_sectors; 3578 mddev->delta_disks = 0; 3579 mddev->reshape_backwards = 0; 3580 mddev->degraded = 0; 3581 if (mddev->pers->sync_request == NULL) { 3582 /* this is now an array without redundancy, so 3583 * it must always be in_sync 3584 */ 3585 mddev->in_sync = 1; 3586 del_timer_sync(&mddev->safemode_timer); 3587 } 3588 blk_set_stacking_limits(&mddev->queue->limits); 3589 pers->run(mddev); 3590 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3591 mddev_resume(mddev); 3592 sysfs_notify(&mddev->kobj, NULL, "level"); 3593 md_new_event(mddev); 3594 return rv; 3595} 3596 3597static struct md_sysfs_entry md_level = 3598__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3599 3600 3601static ssize_t 3602layout_show(struct mddev *mddev, char *page) 3603{ 3604 /* just a number, not meaningful for all levels */ 3605 if (mddev->reshape_position != MaxSector && 3606 mddev->layout != mddev->new_layout) 3607 return sprintf(page, "%d (%d)\n", 3608 mddev->new_layout, mddev->layout); 3609 return sprintf(page, "%d\n", mddev->layout); 3610} 3611 3612static ssize_t 3613layout_store(struct mddev *mddev, const char *buf, size_t len) 3614{ 3615 char *e; 3616 unsigned long n = simple_strtoul(buf, &e, 10); 3617 3618 if (!*buf || (*e && *e != '\n')) 3619 return -EINVAL; 3620 3621 if (mddev->pers) { 3622 int err; 3623 if (mddev->pers->check_reshape == NULL) 3624 return -EBUSY; 3625 mddev->new_layout = n; 3626 err = mddev->pers->check_reshape(mddev); 3627 if (err) { 3628 mddev->new_layout = mddev->layout; 3629 return err; 3630 } 3631 } else { 3632 mddev->new_layout = n; 3633 if (mddev->reshape_position == MaxSector) 3634 mddev->layout = n; 3635 } 3636 return len; 3637} 3638static struct md_sysfs_entry md_layout = 3639__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3640 3641 3642static ssize_t 3643raid_disks_show(struct mddev *mddev, char *page) 3644{ 3645 if (mddev->raid_disks == 0) 3646 return 0; 3647 if (mddev->reshape_position != MaxSector && 3648 mddev->delta_disks != 0) 3649 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3650 mddev->raid_disks - mddev->delta_disks); 3651 return sprintf(page, "%d\n", mddev->raid_disks); 3652} 3653 3654static int update_raid_disks(struct mddev *mddev, int raid_disks); 3655 3656static ssize_t 3657raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3658{ 3659 char *e; 3660 int rv = 0; 3661 unsigned long n = simple_strtoul(buf, &e, 10); 3662 3663 if (!*buf || (*e && *e != '\n')) 3664 return -EINVAL; 3665 3666 if (mddev->pers) 3667 rv = update_raid_disks(mddev, n); 3668 else if (mddev->reshape_position != MaxSector) { 3669 struct md_rdev *rdev; 3670 int olddisks = mddev->raid_disks - mddev->delta_disks; 3671 3672 rdev_for_each(rdev, mddev) { 3673 if (olddisks < n && 3674 rdev->data_offset < rdev->new_data_offset) 3675 return -EINVAL; 3676 if (olddisks > n && 3677 rdev->data_offset > rdev->new_data_offset) 3678 return -EINVAL; 3679 } 3680 mddev->delta_disks = n - olddisks; 3681 mddev->raid_disks = n; 3682 mddev->reshape_backwards = (mddev->delta_disks < 0); 3683 } else 3684 mddev->raid_disks = n; 3685 return rv ? rv : len; 3686} 3687static struct md_sysfs_entry md_raid_disks = 3688__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3689 3690static ssize_t 3691chunk_size_show(struct mddev *mddev, char *page) 3692{ 3693 if (mddev->reshape_position != MaxSector && 3694 mddev->chunk_sectors != mddev->new_chunk_sectors) 3695 return sprintf(page, "%d (%d)\n", 3696 mddev->new_chunk_sectors << 9, 3697 mddev->chunk_sectors << 9); 3698 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3699} 3700 3701static ssize_t 3702chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3703{ 3704 char *e; 3705 unsigned long n = simple_strtoul(buf, &e, 10); 3706 3707 if (!*buf || (*e && *e != '\n')) 3708 return -EINVAL; 3709 3710 if (mddev->pers) { 3711 int err; 3712 if (mddev->pers->check_reshape == NULL) 3713 return -EBUSY; 3714 mddev->new_chunk_sectors = n >> 9; 3715 err = mddev->pers->check_reshape(mddev); 3716 if (err) { 3717 mddev->new_chunk_sectors = mddev->chunk_sectors; 3718 return err; 3719 } 3720 } else { 3721 mddev->new_chunk_sectors = n >> 9; 3722 if (mddev->reshape_position == MaxSector) 3723 mddev->chunk_sectors = n >> 9; 3724 } 3725 return len; 3726} 3727static struct md_sysfs_entry md_chunk_size = 3728__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3729 3730static ssize_t 3731resync_start_show(struct mddev *mddev, char *page) 3732{ 3733 if (mddev->recovery_cp == MaxSector) 3734 return sprintf(page, "none\n"); 3735 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3736} 3737 3738static ssize_t 3739resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3740{ 3741 char *e; 3742 unsigned long long n = simple_strtoull(buf, &e, 10); 3743 3744 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3745 return -EBUSY; 3746 if (cmd_match(buf, "none")) 3747 n = MaxSector; 3748 else if (!*buf || (*e && *e != '\n')) 3749 return -EINVAL; 3750 3751 mddev->recovery_cp = n; 3752 if (mddev->pers) 3753 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3754 return len; 3755} 3756static struct md_sysfs_entry md_resync_start = 3757__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3758 3759/* 3760 * The array state can be: 3761 * 3762 * clear 3763 * No devices, no size, no level 3764 * Equivalent to STOP_ARRAY ioctl 3765 * inactive 3766 * May have some settings, but array is not active 3767 * all IO results in error 3768 * When written, doesn't tear down array, but just stops it 3769 * suspended (not supported yet) 3770 * All IO requests will block. The array can be reconfigured. 3771 * Writing this, if accepted, will block until array is quiescent 3772 * readonly 3773 * no resync can happen. no superblocks get written. 3774 * write requests fail 3775 * read-auto 3776 * like readonly, but behaves like 'clean' on a write request. 3777 * 3778 * clean - no pending writes, but otherwise active. 3779 * When written to inactive array, starts without resync 3780 * If a write request arrives then 3781 * if metadata is known, mark 'dirty' and switch to 'active'. 3782 * if not known, block and switch to write-pending 3783 * If written to an active array that has pending writes, then fails. 3784 * active 3785 * fully active: IO and resync can be happening. 3786 * When written to inactive array, starts with resync 3787 * 3788 * write-pending 3789 * clean, but writes are blocked waiting for 'active' to be written. 3790 * 3791 * active-idle 3792 * like active, but no writes have been seen for a while (100msec). 3793 * 3794 */ 3795enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3796 write_pending, active_idle, bad_word}; 3797static char *array_states[] = { 3798 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3799 "write-pending", "active-idle", NULL }; 3800 3801static int match_word(const char *word, char **list) 3802{ 3803 int n; 3804 for (n=0; list[n]; n++) 3805 if (cmd_match(word, list[n])) 3806 break; 3807 return n; 3808} 3809 3810static ssize_t 3811array_state_show(struct mddev *mddev, char *page) 3812{ 3813 enum array_state st = inactive; 3814 3815 if (mddev->pers) 3816 switch(mddev->ro) { 3817 case 1: 3818 st = readonly; 3819 break; 3820 case 2: 3821 st = read_auto; 3822 break; 3823 case 0: 3824 if (mddev->in_sync) 3825 st = clean; 3826 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3827 st = write_pending; 3828 else if (mddev->safemode) 3829 st = active_idle; 3830 else 3831 st = active; 3832 } 3833 else { 3834 if (list_empty(&mddev->disks) && 3835 mddev->raid_disks == 0 && 3836 mddev->dev_sectors == 0) 3837 st = clear; 3838 else 3839 st = inactive; 3840 } 3841 return sprintf(page, "%s\n", array_states[st]); 3842} 3843 3844static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3845static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3846static int do_md_run(struct mddev * mddev); 3847static int restart_array(struct mddev *mddev); 3848 3849static ssize_t 3850array_state_store(struct mddev *mddev, const char *buf, size_t len) 3851{ 3852 int err = -EINVAL; 3853 enum array_state st = match_word(buf, array_states); 3854 switch(st) { 3855 case bad_word: 3856 break; 3857 case clear: 3858 /* stopping an active array */ 3859 err = do_md_stop(mddev, 0, NULL); 3860 break; 3861 case inactive: 3862 /* stopping an active array */ 3863 if (mddev->pers) 3864 err = do_md_stop(mddev, 2, NULL); 3865 else 3866 err = 0; /* already inactive */ 3867 break; 3868 case suspended: 3869 break; /* not supported yet */ 3870 case readonly: 3871 if (mddev->pers) 3872 err = md_set_readonly(mddev, NULL); 3873 else { 3874 mddev->ro = 1; 3875 set_disk_ro(mddev->gendisk, 1); 3876 err = do_md_run(mddev); 3877 } 3878 break; 3879 case read_auto: 3880 if (mddev->pers) { 3881 if (mddev->ro == 0) 3882 err = md_set_readonly(mddev, NULL); 3883 else if (mddev->ro == 1) 3884 err = restart_array(mddev); 3885 if (err == 0) { 3886 mddev->ro = 2; 3887 set_disk_ro(mddev->gendisk, 0); 3888 } 3889 } else { 3890 mddev->ro = 2; 3891 err = do_md_run(mddev); 3892 } 3893 break; 3894 case clean: 3895 if (mddev->pers) { 3896 restart_array(mddev); 3897 spin_lock_irq(&mddev->write_lock); 3898 if (atomic_read(&mddev->writes_pending) == 0) { 3899 if (mddev->in_sync == 0) { 3900 mddev->in_sync = 1; 3901 if (mddev->safemode == 1) 3902 mddev->safemode = 0; 3903 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3904 } 3905 err = 0; 3906 } else 3907 err = -EBUSY; 3908 spin_unlock_irq(&mddev->write_lock); 3909 } else 3910 err = -EINVAL; 3911 break; 3912 case active: 3913 if (mddev->pers) { 3914 restart_array(mddev); 3915 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3916 wake_up(&mddev->sb_wait); 3917 err = 0; 3918 } else { 3919 mddev->ro = 0; 3920 set_disk_ro(mddev->gendisk, 0); 3921 err = do_md_run(mddev); 3922 } 3923 break; 3924 case write_pending: 3925 case active_idle: 3926 /* these cannot be set */ 3927 break; 3928 } 3929 if (err) 3930 return err; 3931 else { 3932 if (mddev->hold_active == UNTIL_IOCTL) 3933 mddev->hold_active = 0; 3934 sysfs_notify_dirent_safe(mddev->sysfs_state); 3935 return len; 3936 } 3937} 3938static struct md_sysfs_entry md_array_state = 3939__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3940 3941static ssize_t 3942max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3943 return sprintf(page, "%d\n", 3944 atomic_read(&mddev->max_corr_read_errors)); 3945} 3946 3947static ssize_t 3948max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3949{ 3950 char *e; 3951 unsigned long n = simple_strtoul(buf, &e, 10); 3952 3953 if (*buf && (*e == 0 || *e == '\n')) { 3954 atomic_set(&mddev->max_corr_read_errors, n); 3955 return len; 3956 } 3957 return -EINVAL; 3958} 3959 3960static struct md_sysfs_entry max_corr_read_errors = 3961__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3962 max_corrected_read_errors_store); 3963 3964static ssize_t 3965null_show(struct mddev *mddev, char *page) 3966{ 3967 return -EINVAL; 3968} 3969 3970static ssize_t 3971new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3972{ 3973 /* buf must be %d:%d\n? giving major and minor numbers */ 3974 /* The new device is added to the array. 3975 * If the array has a persistent superblock, we read the 3976 * superblock to initialise info and check validity. 3977 * Otherwise, only checking done is that in bind_rdev_to_array, 3978 * which mainly checks size. 3979 */ 3980 char *e; 3981 int major = simple_strtoul(buf, &e, 10); 3982 int minor; 3983 dev_t dev; 3984 struct md_rdev *rdev; 3985 int err; 3986 3987 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3988 return -EINVAL; 3989 minor = simple_strtoul(e+1, &e, 10); 3990 if (*e && *e != '\n') 3991 return -EINVAL; 3992 dev = MKDEV(major, minor); 3993 if (major != MAJOR(dev) || 3994 minor != MINOR(dev)) 3995 return -EOVERFLOW; 3996 3997 3998 if (mddev->persistent) { 3999 rdev = md_import_device(dev, mddev->major_version, 4000 mddev->minor_version); 4001 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4002 struct md_rdev *rdev0 4003 = list_entry(mddev->disks.next, 4004 struct md_rdev, same_set); 4005 err = super_types[mddev->major_version] 4006 .load_super(rdev, rdev0, mddev->minor_version); 4007 if (err < 0) 4008 goto out; 4009 } 4010 } else if (mddev->external) 4011 rdev = md_import_device(dev, -2, -1); 4012 else 4013 rdev = md_import_device(dev, -1, -1); 4014 4015 if (IS_ERR(rdev)) 4016 return PTR_ERR(rdev); 4017 err = bind_rdev_to_array(rdev, mddev); 4018 out: 4019 if (err) 4020 export_rdev(rdev); 4021 return err ? err : len; 4022} 4023 4024static struct md_sysfs_entry md_new_device = 4025__ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4026 4027static ssize_t 4028bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4029{ 4030 char *end; 4031 unsigned long chunk, end_chunk; 4032 4033 if (!mddev->bitmap) 4034 goto out; 4035 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4036 while (*buf) { 4037 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4038 if (buf == end) break; 4039 if (*end == '-') { /* range */ 4040 buf = end + 1; 4041 end_chunk = simple_strtoul(buf, &end, 0); 4042 if (buf == end) break; 4043 } 4044 if (*end && !isspace(*end)) break; 4045 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4046 buf = skip_spaces(end); 4047 } 4048 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4049out: 4050 return len; 4051} 4052 4053static struct md_sysfs_entry md_bitmap = 4054__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4055 4056static ssize_t 4057size_show(struct mddev *mddev, char *page) 4058{ 4059 return sprintf(page, "%llu\n", 4060 (unsigned long long)mddev->dev_sectors / 2); 4061} 4062 4063static int update_size(struct mddev *mddev, sector_t num_sectors); 4064 4065static ssize_t 4066size_store(struct mddev *mddev, const char *buf, size_t len) 4067{ 4068 /* If array is inactive, we can reduce the component size, but 4069 * not increase it (except from 0). 4070 * If array is active, we can try an on-line resize 4071 */ 4072 sector_t sectors; 4073 int err = strict_blocks_to_sectors(buf, &sectors); 4074 4075 if (err < 0) 4076 return err; 4077 if (mddev->pers) { 4078 err = update_size(mddev, sectors); 4079 md_update_sb(mddev, 1); 4080 } else { 4081 if (mddev->dev_sectors == 0 || 4082 mddev->dev_sectors > sectors) 4083 mddev->dev_sectors = sectors; 4084 else 4085 err = -ENOSPC; 4086 } 4087 return err ? err : len; 4088} 4089 4090static struct md_sysfs_entry md_size = 4091__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4092 4093 4094/* Metadata version. 4095 * This is one of 4096 * 'none' for arrays with no metadata (good luck...) 4097 * 'external' for arrays with externally managed metadata, 4098 * or N.M for internally known formats 4099 */ 4100static ssize_t 4101metadata_show(struct mddev *mddev, char *page) 4102{ 4103 if (mddev->persistent) 4104 return sprintf(page, "%d.%d\n", 4105 mddev->major_version, mddev->minor_version); 4106 else if (mddev->external) 4107 return sprintf(page, "external:%s\n", mddev->metadata_type); 4108 else 4109 return sprintf(page, "none\n"); 4110} 4111 4112static ssize_t 4113metadata_store(struct mddev *mddev, const char *buf, size_t len) 4114{ 4115 int major, minor; 4116 char *e; 4117 /* Changing the details of 'external' metadata is 4118 * always permitted. Otherwise there must be 4119 * no devices attached to the array. 4120 */ 4121 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4122 ; 4123 else if (!list_empty(&mddev->disks)) 4124 return -EBUSY; 4125 4126 if (cmd_match(buf, "none")) { 4127 mddev->persistent = 0; 4128 mddev->external = 0; 4129 mddev->major_version = 0; 4130 mddev->minor_version = 90; 4131 return len; 4132 } 4133 if (strncmp(buf, "external:", 9) == 0) { 4134 size_t namelen = len-9; 4135 if (namelen >= sizeof(mddev->metadata_type)) 4136 namelen = sizeof(mddev->metadata_type)-1; 4137 strncpy(mddev->metadata_type, buf+9, namelen); 4138 mddev->metadata_type[namelen] = 0; 4139 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4140 mddev->metadata_type[--namelen] = 0; 4141 mddev->persistent = 0; 4142 mddev->external = 1; 4143 mddev->major_version = 0; 4144 mddev->minor_version = 90; 4145 return len; 4146 } 4147 major = simple_strtoul(buf, &e, 10); 4148 if (e==buf || *e != '.') 4149 return -EINVAL; 4150 buf = e+1; 4151 minor = simple_strtoul(buf, &e, 10); 4152 if (e==buf || (*e && *e != '\n') ) 4153 return -EINVAL; 4154 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4155 return -ENOENT; 4156 mddev->major_version = major; 4157 mddev->minor_version = minor; 4158 mddev->persistent = 1; 4159 mddev->external = 0; 4160 return len; 4161} 4162 4163static struct md_sysfs_entry md_metadata = 4164__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4165 4166static ssize_t 4167action_show(struct mddev *mddev, char *page) 4168{ 4169 char *type = "idle"; 4170 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4171 type = "frozen"; 4172 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4173 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4174 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4175 type = "reshape"; 4176 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4177 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4178 type = "resync"; 4179 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4180 type = "check"; 4181 else 4182 type = "repair"; 4183 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4184 type = "recover"; 4185 } 4186 return sprintf(page, "%s\n", type); 4187} 4188 4189static ssize_t 4190action_store(struct mddev *mddev, const char *page, size_t len) 4191{ 4192 if (!mddev->pers || !mddev->pers->sync_request) 4193 return -EINVAL; 4194 4195 if (cmd_match(page, "frozen")) 4196 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4197 else 4198 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4199 4200 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4201 if (mddev->sync_thread) { 4202 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4203 md_reap_sync_thread(mddev); 4204 } 4205 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4206 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4207 return -EBUSY; 4208 else if (cmd_match(page, "resync")) 4209 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4210 else if (cmd_match(page, "recover")) { 4211 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4212 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4213 } else if (cmd_match(page, "reshape")) { 4214 int err; 4215 if (mddev->pers->start_reshape == NULL) 4216 return -EINVAL; 4217 err = mddev->pers->start_reshape(mddev); 4218 if (err) 4219 return err; 4220 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4221 } else { 4222 if (cmd_match(page, "check")) 4223 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4224 else if (!cmd_match(page, "repair")) 4225 return -EINVAL; 4226 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4227 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4228 } 4229 if (mddev->ro == 2) { 4230 /* A write to sync_action is enough to justify 4231 * canceling read-auto mode 4232 */ 4233 mddev->ro = 0; 4234 md_wakeup_thread(mddev->sync_thread); 4235 } 4236 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4237 md_wakeup_thread(mddev->thread); 4238 sysfs_notify_dirent_safe(mddev->sysfs_action); 4239 return len; 4240} 4241 4242static struct md_sysfs_entry md_scan_mode = 4243__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4244 4245static ssize_t 4246last_sync_action_show(struct mddev *mddev, char *page) 4247{ 4248 return sprintf(page, "%s\n", mddev->last_sync_action); 4249} 4250 4251static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4252 4253static ssize_t 4254mismatch_cnt_show(struct mddev *mddev, char *page) 4255{ 4256 return sprintf(page, "%llu\n", 4257 (unsigned long long) 4258 atomic64_read(&mddev->resync_mismatches)); 4259} 4260 4261static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4262 4263static ssize_t 4264sync_min_show(struct mddev *mddev, char *page) 4265{ 4266 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4267 mddev->sync_speed_min ? "local": "system"); 4268} 4269 4270static ssize_t 4271sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4272{ 4273 int min; 4274 char *e; 4275 if (strncmp(buf, "system", 6)==0) { 4276 mddev->sync_speed_min = 0; 4277 return len; 4278 } 4279 min = simple_strtoul(buf, &e, 10); 4280 if (buf == e || (*e && *e != '\n') || min <= 0) 4281 return -EINVAL; 4282 mddev->sync_speed_min = min; 4283 return len; 4284} 4285 4286static struct md_sysfs_entry md_sync_min = 4287__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4288 4289static ssize_t 4290sync_max_show(struct mddev *mddev, char *page) 4291{ 4292 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4293 mddev->sync_speed_max ? "local": "system"); 4294} 4295 4296static ssize_t 4297sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4298{ 4299 int max; 4300 char *e; 4301 if (strncmp(buf, "system", 6)==0) { 4302 mddev->sync_speed_max = 0; 4303 return len; 4304 } 4305 max = simple_strtoul(buf, &e, 10); 4306 if (buf == e || (*e && *e != '\n') || max <= 0) 4307 return -EINVAL; 4308 mddev->sync_speed_max = max; 4309 return len; 4310} 4311 4312static struct md_sysfs_entry md_sync_max = 4313__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4314 4315static ssize_t 4316degraded_show(struct mddev *mddev, char *page) 4317{ 4318 return sprintf(page, "%d\n", mddev->degraded); 4319} 4320static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4321 4322static ssize_t 4323sync_force_parallel_show(struct mddev *mddev, char *page) 4324{ 4325 return sprintf(page, "%d\n", mddev->parallel_resync); 4326} 4327 4328static ssize_t 4329sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4330{ 4331 long n; 4332 4333 if (kstrtol(buf, 10, &n)) 4334 return -EINVAL; 4335 4336 if (n != 0 && n != 1) 4337 return -EINVAL; 4338 4339 mddev->parallel_resync = n; 4340 4341 if (mddev->sync_thread) 4342 wake_up(&resync_wait); 4343 4344 return len; 4345} 4346 4347/* force parallel resync, even with shared block devices */ 4348static struct md_sysfs_entry md_sync_force_parallel = 4349__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4350 sync_force_parallel_show, sync_force_parallel_store); 4351 4352static ssize_t 4353sync_speed_show(struct mddev *mddev, char *page) 4354{ 4355 unsigned long resync, dt, db; 4356 if (mddev->curr_resync == 0) 4357 return sprintf(page, "none\n"); 4358 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4359 dt = (jiffies - mddev->resync_mark) / HZ; 4360 if (!dt) dt++; 4361 db = resync - mddev->resync_mark_cnt; 4362 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4363} 4364 4365static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4366 4367static ssize_t 4368sync_completed_show(struct mddev *mddev, char *page) 4369{ 4370 unsigned long long max_sectors, resync; 4371 4372 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4373 return sprintf(page, "none\n"); 4374 4375 if (mddev->curr_resync == 1 || 4376 mddev->curr_resync == 2) 4377 return sprintf(page, "delayed\n"); 4378 4379 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4380 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4381 max_sectors = mddev->resync_max_sectors; 4382 else 4383 max_sectors = mddev->dev_sectors; 4384 4385 resync = mddev->curr_resync_completed; 4386 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4387} 4388 4389static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4390 4391static ssize_t 4392min_sync_show(struct mddev *mddev, char *page) 4393{ 4394 return sprintf(page, "%llu\n", 4395 (unsigned long long)mddev->resync_min); 4396} 4397static ssize_t 4398min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4399{ 4400 unsigned long long min; 4401 if (kstrtoull(buf, 10, &min)) 4402 return -EINVAL; 4403 if (min > mddev->resync_max) 4404 return -EINVAL; 4405 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4406 return -EBUSY; 4407 4408 /* Must be a multiple of chunk_size */ 4409 if (mddev->chunk_sectors) { 4410 sector_t temp = min; 4411 if (sector_div(temp, mddev->chunk_sectors)) 4412 return -EINVAL; 4413 } 4414 mddev->resync_min = min; 4415 4416 return len; 4417} 4418 4419static struct md_sysfs_entry md_min_sync = 4420__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4421 4422static ssize_t 4423max_sync_show(struct mddev *mddev, char *page) 4424{ 4425 if (mddev->resync_max == MaxSector) 4426 return sprintf(page, "max\n"); 4427 else 4428 return sprintf(page, "%llu\n", 4429 (unsigned long long)mddev->resync_max); 4430} 4431static ssize_t 4432max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4433{ 4434 if (strncmp(buf, "max", 3) == 0) 4435 mddev->resync_max = MaxSector; 4436 else { 4437 unsigned long long max; 4438 if (kstrtoull(buf, 10, &max)) 4439 return -EINVAL; 4440 if (max < mddev->resync_min) 4441 return -EINVAL; 4442 if (max < mddev->resync_max && 4443 mddev->ro == 0 && 4444 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4445 return -EBUSY; 4446 4447 /* Must be a multiple of chunk_size */ 4448 if (mddev->chunk_sectors) { 4449 sector_t temp = max; 4450 if (sector_div(temp, mddev->chunk_sectors)) 4451 return -EINVAL; 4452 } 4453 mddev->resync_max = max; 4454 } 4455 wake_up(&mddev->recovery_wait); 4456 return len; 4457} 4458 4459static struct md_sysfs_entry md_max_sync = 4460__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4461 4462static ssize_t 4463suspend_lo_show(struct mddev *mddev, char *page) 4464{ 4465 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4466} 4467 4468static ssize_t 4469suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4470{ 4471 char *e; 4472 unsigned long long new = simple_strtoull(buf, &e, 10); 4473 unsigned long long old = mddev->suspend_lo; 4474 4475 if (mddev->pers == NULL || 4476 mddev->pers->quiesce == NULL) 4477 return -EINVAL; 4478 if (buf == e || (*e && *e != '\n')) 4479 return -EINVAL; 4480 4481 mddev->suspend_lo = new; 4482 if (new >= old) 4483 /* Shrinking suspended region */ 4484 mddev->pers->quiesce(mddev, 2); 4485 else { 4486 /* Expanding suspended region - need to wait */ 4487 mddev->pers->quiesce(mddev, 1); 4488 mddev->pers->quiesce(mddev, 0); 4489 } 4490 return len; 4491} 4492static struct md_sysfs_entry md_suspend_lo = 4493__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4494 4495 4496static ssize_t 4497suspend_hi_show(struct mddev *mddev, char *page) 4498{ 4499 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4500} 4501 4502static ssize_t 4503suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4504{ 4505 char *e; 4506 unsigned long long new = simple_strtoull(buf, &e, 10); 4507 unsigned long long old = mddev->suspend_hi; 4508 4509 if (mddev->pers == NULL || 4510 mddev->pers->quiesce == NULL) 4511 return -EINVAL; 4512 if (buf == e || (*e && *e != '\n')) 4513 return -EINVAL; 4514 4515 mddev->suspend_hi = new; 4516 if (new <= old) 4517 /* Shrinking suspended region */ 4518 mddev->pers->quiesce(mddev, 2); 4519 else { 4520 /* Expanding suspended region - need to wait */ 4521 mddev->pers->quiesce(mddev, 1); 4522 mddev->pers->quiesce(mddev, 0); 4523 } 4524 return len; 4525} 4526static struct md_sysfs_entry md_suspend_hi = 4527__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4528 4529static ssize_t 4530reshape_position_show(struct mddev *mddev, char *page) 4531{ 4532 if (mddev->reshape_position != MaxSector) 4533 return sprintf(page, "%llu\n", 4534 (unsigned long long)mddev->reshape_position); 4535 strcpy(page, "none\n"); 4536 return 5; 4537} 4538 4539static ssize_t 4540reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4541{ 4542 struct md_rdev *rdev; 4543 char *e; 4544 unsigned long long new = simple_strtoull(buf, &e, 10); 4545 if (mddev->pers) 4546 return -EBUSY; 4547 if (buf == e || (*e && *e != '\n')) 4548 return -EINVAL; 4549 mddev->reshape_position = new; 4550 mddev->delta_disks = 0; 4551 mddev->reshape_backwards = 0; 4552 mddev->new_level = mddev->level; 4553 mddev->new_layout = mddev->layout; 4554 mddev->new_chunk_sectors = mddev->chunk_sectors; 4555 rdev_for_each(rdev, mddev) 4556 rdev->new_data_offset = rdev->data_offset; 4557 return len; 4558} 4559 4560static struct md_sysfs_entry md_reshape_position = 4561__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4562 reshape_position_store); 4563 4564static ssize_t 4565reshape_direction_show(struct mddev *mddev, char *page) 4566{ 4567 return sprintf(page, "%s\n", 4568 mddev->reshape_backwards ? "backwards" : "forwards"); 4569} 4570 4571static ssize_t 4572reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4573{ 4574 int backwards = 0; 4575 if (cmd_match(buf, "forwards")) 4576 backwards = 0; 4577 else if (cmd_match(buf, "backwards")) 4578 backwards = 1; 4579 else 4580 return -EINVAL; 4581 if (mddev->reshape_backwards == backwards) 4582 return len; 4583 4584 /* check if we are allowed to change */ 4585 if (mddev->delta_disks) 4586 return -EBUSY; 4587 4588 if (mddev->persistent && 4589 mddev->major_version == 0) 4590 return -EINVAL; 4591 4592 mddev->reshape_backwards = backwards; 4593 return len; 4594} 4595 4596static struct md_sysfs_entry md_reshape_direction = 4597__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4598 reshape_direction_store); 4599 4600static ssize_t 4601array_size_show(struct mddev *mddev, char *page) 4602{ 4603 if (mddev->external_size) 4604 return sprintf(page, "%llu\n", 4605 (unsigned long long)mddev->array_sectors/2); 4606 else 4607 return sprintf(page, "default\n"); 4608} 4609 4610static ssize_t 4611array_size_store(struct mddev *mddev, const char *buf, size_t len) 4612{ 4613 sector_t sectors; 4614 4615 if (strncmp(buf, "default", 7) == 0) { 4616 if (mddev->pers) 4617 sectors = mddev->pers->size(mddev, 0, 0); 4618 else 4619 sectors = mddev->array_sectors; 4620 4621 mddev->external_size = 0; 4622 } else { 4623 if (strict_blocks_to_sectors(buf, &sectors) < 0) 4624 return -EINVAL; 4625 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4626 return -E2BIG; 4627 4628 mddev->external_size = 1; 4629 } 4630 4631 mddev->array_sectors = sectors; 4632 if (mddev->pers) { 4633 set_capacity(mddev->gendisk, mddev->array_sectors); 4634 revalidate_disk(mddev->gendisk); 4635 } 4636 return len; 4637} 4638 4639static struct md_sysfs_entry md_array_size = 4640__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4641 array_size_store); 4642 4643static struct attribute *md_default_attrs[] = { 4644 &md_level.attr, 4645 &md_layout.attr, 4646 &md_raid_disks.attr, 4647 &md_chunk_size.attr, 4648 &md_size.attr, 4649 &md_resync_start.attr, 4650 &md_metadata.attr, 4651 &md_new_device.attr, 4652 &md_safe_delay.attr, 4653 &md_array_state.attr, 4654 &md_reshape_position.attr, 4655 &md_reshape_direction.attr, 4656 &md_array_size.attr, 4657 &max_corr_read_errors.attr, 4658 NULL, 4659}; 4660 4661static struct attribute *md_redundancy_attrs[] = { 4662 &md_scan_mode.attr, 4663 &md_last_scan_mode.attr, 4664 &md_mismatches.attr, 4665 &md_sync_min.attr, 4666 &md_sync_max.attr, 4667 &md_sync_speed.attr, 4668 &md_sync_force_parallel.attr, 4669 &md_sync_completed.attr, 4670 &md_min_sync.attr, 4671 &md_max_sync.attr, 4672 &md_suspend_lo.attr, 4673 &md_suspend_hi.attr, 4674 &md_bitmap.attr, 4675 &md_degraded.attr, 4676 NULL, 4677}; 4678static struct attribute_group md_redundancy_group = { 4679 .name = NULL, 4680 .attrs = md_redundancy_attrs, 4681}; 4682 4683 4684static ssize_t 4685md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4686{ 4687 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4688 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4689 ssize_t rv; 4690 4691 if (!entry->show) 4692 return -EIO; 4693 spin_lock(&all_mddevs_lock); 4694 if (list_empty(&mddev->all_mddevs)) { 4695 spin_unlock(&all_mddevs_lock); 4696 return -EBUSY; 4697 } 4698 mddev_get(mddev); 4699 spin_unlock(&all_mddevs_lock); 4700 4701 rv = mddev_lock(mddev); 4702 if (!rv) { 4703 rv = entry->show(mddev, page); 4704 mddev_unlock(mddev); 4705 } 4706 mddev_put(mddev); 4707 return rv; 4708} 4709 4710static ssize_t 4711md_attr_store(struct kobject *kobj, struct attribute *attr, 4712 const char *page, size_t length) 4713{ 4714 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4715 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4716 ssize_t rv; 4717 4718 if (!entry->store) 4719 return -EIO; 4720 if (!capable(CAP_SYS_ADMIN)) 4721 return -EACCES; 4722 spin_lock(&all_mddevs_lock); 4723 if (list_empty(&mddev->all_mddevs)) { 4724 spin_unlock(&all_mddevs_lock); 4725 return -EBUSY; 4726 } 4727 mddev_get(mddev); 4728 spin_unlock(&all_mddevs_lock); 4729 if (entry->store == new_dev_store) 4730 flush_workqueue(md_misc_wq); 4731 rv = mddev_lock(mddev); 4732 if (!rv) { 4733 rv = entry->store(mddev, page, length); 4734 mddev_unlock(mddev); 4735 } 4736 mddev_put(mddev); 4737 return rv; 4738} 4739 4740static void md_free(struct kobject *ko) 4741{ 4742 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4743 4744 if (mddev->sysfs_state) 4745 sysfs_put(mddev->sysfs_state); 4746 4747 if (mddev->gendisk) { 4748 del_gendisk(mddev->gendisk); 4749 put_disk(mddev->gendisk); 4750 } 4751 if (mddev->queue) 4752 blk_cleanup_queue(mddev->queue); 4753 4754 kfree(mddev); 4755} 4756 4757static const struct sysfs_ops md_sysfs_ops = { 4758 .show = md_attr_show, 4759 .store = md_attr_store, 4760}; 4761static struct kobj_type md_ktype = { 4762 .release = md_free, 4763 .sysfs_ops = &md_sysfs_ops, 4764 .default_attrs = md_default_attrs, 4765}; 4766 4767int mdp_major = 0; 4768 4769static void mddev_delayed_delete(struct work_struct *ws) 4770{ 4771 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4772 4773 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4774 kobject_del(&mddev->kobj); 4775 kobject_put(&mddev->kobj); 4776} 4777 4778static int md_alloc(dev_t dev, char *name) 4779{ 4780 static DEFINE_MUTEX(disks_mutex); 4781 struct mddev *mddev = mddev_find(dev); 4782 struct gendisk *disk; 4783 int partitioned; 4784 int shift; 4785 int unit; 4786 int error; 4787 4788 if (!mddev) 4789 return -ENODEV; 4790 4791 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4792 shift = partitioned ? MdpMinorShift : 0; 4793 unit = MINOR(mddev->unit) >> shift; 4794 4795 /* wait for any previous instance of this device to be 4796 * completely removed (mddev_delayed_delete). 4797 */ 4798 flush_workqueue(md_misc_wq); 4799 4800 mutex_lock(&disks_mutex); 4801 error = -EEXIST; 4802 if (mddev->gendisk) 4803 goto abort; 4804 4805 if (name) { 4806 /* Need to ensure that 'name' is not a duplicate. 4807 */ 4808 struct mddev *mddev2; 4809 spin_lock(&all_mddevs_lock); 4810 4811 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4812 if (mddev2->gendisk && 4813 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4814 spin_unlock(&all_mddevs_lock); 4815 goto abort; 4816 } 4817 spin_unlock(&all_mddevs_lock); 4818 } 4819 4820 error = -ENOMEM; 4821 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4822 if (!mddev->queue) 4823 goto abort; 4824 mddev->queue->queuedata = mddev; 4825 4826 blk_queue_make_request(mddev->queue, md_make_request); 4827 blk_set_stacking_limits(&mddev->queue->limits); 4828 4829 disk = alloc_disk(1 << shift); 4830 if (!disk) { 4831 blk_cleanup_queue(mddev->queue); 4832 mddev->queue = NULL; 4833 goto abort; 4834 } 4835 disk->major = MAJOR(mddev->unit); 4836 disk->first_minor = unit << shift; 4837 if (name) 4838 strcpy(disk->disk_name, name); 4839 else if (partitioned) 4840 sprintf(disk->disk_name, "md_d%d", unit); 4841 else 4842 sprintf(disk->disk_name, "md%d", unit); 4843 disk->fops = &md_fops; 4844 disk->private_data = mddev; 4845 disk->queue = mddev->queue; 4846 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4847 /* Allow extended partitions. This makes the 4848 * 'mdp' device redundant, but we can't really 4849 * remove it now. 4850 */ 4851 disk->flags |= GENHD_FL_EXT_DEVT; 4852 mddev->gendisk = disk; 4853 /* As soon as we call add_disk(), another thread could get 4854 * through to md_open, so make sure it doesn't get too far 4855 */ 4856 mutex_lock(&mddev->open_mutex); 4857 add_disk(disk); 4858 4859 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4860 &disk_to_dev(disk)->kobj, "%s", "md"); 4861 if (error) { 4862 /* This isn't possible, but as kobject_init_and_add is marked 4863 * __must_check, we must do something with the result 4864 */ 4865 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4866 disk->disk_name); 4867 error = 0; 4868 } 4869 if (mddev->kobj.sd && 4870 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4871 printk(KERN_DEBUG "pointless warning\n"); 4872 mutex_unlock(&mddev->open_mutex); 4873 abort: 4874 mutex_unlock(&disks_mutex); 4875 if (!error && mddev->kobj.sd) { 4876 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4877 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4878 } 4879 mddev_put(mddev); 4880 return error; 4881} 4882 4883static struct kobject *md_probe(dev_t dev, int *part, void *data) 4884{ 4885 md_alloc(dev, NULL); 4886 return NULL; 4887} 4888 4889static int add_named_array(const char *val, struct kernel_param *kp) 4890{ 4891 /* val must be "md_*" where * is not all digits. 4892 * We allocate an array with a large free minor number, and 4893 * set the name to val. val must not already be an active name. 4894 */ 4895 int len = strlen(val); 4896 char buf[DISK_NAME_LEN]; 4897 4898 while (len && val[len-1] == '\n') 4899 len--; 4900 if (len >= DISK_NAME_LEN) 4901 return -E2BIG; 4902 strlcpy(buf, val, len+1); 4903 if (strncmp(buf, "md_", 3) != 0) 4904 return -EINVAL; 4905 return md_alloc(0, buf); 4906} 4907 4908static void md_safemode_timeout(unsigned long data) 4909{ 4910 struct mddev *mddev = (struct mddev *) data; 4911 4912 if (!atomic_read(&mddev->writes_pending)) { 4913 mddev->safemode = 1; 4914 if (mddev->external) 4915 sysfs_notify_dirent_safe(mddev->sysfs_state); 4916 } 4917 md_wakeup_thread(mddev->thread); 4918} 4919 4920static int start_dirty_degraded; 4921 4922int md_run(struct mddev *mddev) 4923{ 4924 int err; 4925 struct md_rdev *rdev; 4926 struct md_personality *pers; 4927 4928 if (list_empty(&mddev->disks)) 4929 /* cannot run an array with no devices.. */ 4930 return -EINVAL; 4931 4932 if (mddev->pers) 4933 return -EBUSY; 4934 /* Cannot run until previous stop completes properly */ 4935 if (mddev->sysfs_active) 4936 return -EBUSY; 4937 4938 /* 4939 * Analyze all RAID superblock(s) 4940 */ 4941 if (!mddev->raid_disks) { 4942 if (!mddev->persistent) 4943 return -EINVAL; 4944 analyze_sbs(mddev); 4945 } 4946 4947 if (mddev->level != LEVEL_NONE) 4948 request_module("md-level-%d", mddev->level); 4949 else if (mddev->clevel[0]) 4950 request_module("md-%s", mddev->clevel); 4951 4952 /* 4953 * Drop all container device buffers, from now on 4954 * the only valid external interface is through the md 4955 * device. 4956 */ 4957 rdev_for_each(rdev, mddev) { 4958 if (test_bit(Faulty, &rdev->flags)) 4959 continue; 4960 sync_blockdev(rdev->bdev); 4961 invalidate_bdev(rdev->bdev); 4962 4963 /* perform some consistency tests on the device. 4964 * We don't want the data to overlap the metadata, 4965 * Internal Bitmap issues have been handled elsewhere. 4966 */ 4967 if (rdev->meta_bdev) { 4968 /* Nothing to check */; 4969 } else if (rdev->data_offset < rdev->sb_start) { 4970 if (mddev->dev_sectors && 4971 rdev->data_offset + mddev->dev_sectors 4972 > rdev->sb_start) { 4973 printk("md: %s: data overlaps metadata\n", 4974 mdname(mddev)); 4975 return -EINVAL; 4976 } 4977 } else { 4978 if (rdev->sb_start + rdev->sb_size/512 4979 > rdev->data_offset) { 4980 printk("md: %s: metadata overlaps data\n", 4981 mdname(mddev)); 4982 return -EINVAL; 4983 } 4984 } 4985 sysfs_notify_dirent_safe(rdev->sysfs_state); 4986 } 4987 4988 if (mddev->bio_set == NULL) 4989 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 4990 4991 spin_lock(&pers_lock); 4992 pers = find_pers(mddev->level, mddev->clevel); 4993 if (!pers || !try_module_get(pers->owner)) { 4994 spin_unlock(&pers_lock); 4995 if (mddev->level != LEVEL_NONE) 4996 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4997 mddev->level); 4998 else 4999 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5000 mddev->clevel); 5001 return -EINVAL; 5002 } 5003 mddev->pers = pers; 5004 spin_unlock(&pers_lock); 5005 if (mddev->level != pers->level) { 5006 mddev->level = pers->level; 5007 mddev->new_level = pers->level; 5008 } 5009 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5010 5011 if (mddev->reshape_position != MaxSector && 5012 pers->start_reshape == NULL) { 5013 /* This personality cannot handle reshaping... */ 5014 mddev->pers = NULL; 5015 module_put(pers->owner); 5016 return -EINVAL; 5017 } 5018 5019 if (pers->sync_request) { 5020 /* Warn if this is a potentially silly 5021 * configuration. 5022 */ 5023 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5024 struct md_rdev *rdev2; 5025 int warned = 0; 5026 5027 rdev_for_each(rdev, mddev) 5028 rdev_for_each(rdev2, mddev) { 5029 if (rdev < rdev2 && 5030 rdev->bdev->bd_contains == 5031 rdev2->bdev->bd_contains) { 5032 printk(KERN_WARNING 5033 "%s: WARNING: %s appears to be" 5034 " on the same physical disk as" 5035 " %s.\n", 5036 mdname(mddev), 5037 bdevname(rdev->bdev,b), 5038 bdevname(rdev2->bdev,b2)); 5039 warned = 1; 5040 } 5041 } 5042 5043 if (warned) 5044 printk(KERN_WARNING 5045 "True protection against single-disk" 5046 " failure might be compromised.\n"); 5047 } 5048 5049 mddev->recovery = 0; 5050 /* may be over-ridden by personality */ 5051 mddev->resync_max_sectors = mddev->dev_sectors; 5052 5053 mddev->ok_start_degraded = start_dirty_degraded; 5054 5055 if (start_readonly && mddev->ro == 0) 5056 mddev->ro = 2; /* read-only, but switch on first write */ 5057 5058 err = mddev->pers->run(mddev); 5059 if (err) 5060 printk(KERN_ERR "md: pers->run() failed ...\n"); 5061 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5062 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5063 " but 'external_size' not in effect?\n", __func__); 5064 printk(KERN_ERR 5065 "md: invalid array_size %llu > default size %llu\n", 5066 (unsigned long long)mddev->array_sectors / 2, 5067 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5068 err = -EINVAL; 5069 mddev->pers->stop(mddev); 5070 } 5071 if (err == 0 && mddev->pers->sync_request && 5072 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5073 err = bitmap_create(mddev); 5074 if (err) { 5075 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5076 mdname(mddev), err); 5077 mddev->pers->stop(mddev); 5078 } 5079 } 5080 if (err) { 5081 module_put(mddev->pers->owner); 5082 mddev->pers = NULL; 5083 bitmap_destroy(mddev); 5084 return err; 5085 } 5086 if (mddev->pers->sync_request) { 5087 if (mddev->kobj.sd && 5088 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5089 printk(KERN_WARNING 5090 "md: cannot register extra attributes for %s\n", 5091 mdname(mddev)); 5092 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5093 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5094 mddev->ro = 0; 5095 5096 atomic_set(&mddev->writes_pending,0); 5097 atomic_set(&mddev->max_corr_read_errors, 5098 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5099 mddev->safemode = 0; 5100 mddev->safemode_timer.function = md_safemode_timeout; 5101 mddev->safemode_timer.data = (unsigned long) mddev; 5102 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5103 mddev->in_sync = 1; 5104 smp_wmb(); 5105 mddev->ready = 1; 5106 rdev_for_each(rdev, mddev) 5107 if (rdev->raid_disk >= 0) 5108 if (sysfs_link_rdev(mddev, rdev)) 5109 /* failure here is OK */; 5110 5111 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5112 5113 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5114 md_update_sb(mddev, 0); 5115 5116 md_new_event(mddev); 5117 sysfs_notify_dirent_safe(mddev->sysfs_state); 5118 sysfs_notify_dirent_safe(mddev->sysfs_action); 5119 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5120 return 0; 5121} 5122EXPORT_SYMBOL_GPL(md_run); 5123 5124static int do_md_run(struct mddev *mddev) 5125{ 5126 int err; 5127 5128 err = md_run(mddev); 5129 if (err) 5130 goto out; 5131 err = bitmap_load(mddev); 5132 if (err) { 5133 bitmap_destroy(mddev); 5134 goto out; 5135 } 5136 5137 md_wakeup_thread(mddev->thread); 5138 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5139 5140 set_capacity(mddev->gendisk, mddev->array_sectors); 5141 revalidate_disk(mddev->gendisk); 5142 mddev->changed = 1; 5143 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5144out: 5145 return err; 5146} 5147 5148static int restart_array(struct mddev *mddev) 5149{ 5150 struct gendisk *disk = mddev->gendisk; 5151 5152 /* Complain if it has no devices */ 5153 if (list_empty(&mddev->disks)) 5154 return -ENXIO; 5155 if (!mddev->pers) 5156 return -EINVAL; 5157 if (!mddev->ro) 5158 return -EBUSY; 5159 mddev->safemode = 0; 5160 mddev->ro = 0; 5161 set_disk_ro(disk, 0); 5162 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5163 mdname(mddev)); 5164 /* Kick recovery or resync if necessary */ 5165 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5166 md_wakeup_thread(mddev->thread); 5167 md_wakeup_thread(mddev->sync_thread); 5168 sysfs_notify_dirent_safe(mddev->sysfs_state); 5169 return 0; 5170} 5171 5172/* similar to deny_write_access, but accounts for our holding a reference 5173 * to the file ourselves */ 5174static int deny_bitmap_write_access(struct file * file) 5175{ 5176 struct inode *inode = file->f_mapping->host; 5177 5178 spin_lock(&inode->i_lock); 5179 if (atomic_read(&inode->i_writecount) > 1) { 5180 spin_unlock(&inode->i_lock); 5181 return -ETXTBSY; 5182 } 5183 atomic_set(&inode->i_writecount, -1); 5184 spin_unlock(&inode->i_lock); 5185 5186 return 0; 5187} 5188 5189void restore_bitmap_write_access(struct file *file) 5190{ 5191 struct inode *inode = file->f_mapping->host; 5192 5193 spin_lock(&inode->i_lock); 5194 atomic_set(&inode->i_writecount, 1); 5195 spin_unlock(&inode->i_lock); 5196} 5197 5198static void md_clean(struct mddev *mddev) 5199{ 5200 mddev->array_sectors = 0; 5201 mddev->external_size = 0; 5202 mddev->dev_sectors = 0; 5203 mddev->raid_disks = 0; 5204 mddev->recovery_cp = 0; 5205 mddev->resync_min = 0; 5206 mddev->resync_max = MaxSector; 5207 mddev->reshape_position = MaxSector; 5208 mddev->external = 0; 5209 mddev->persistent = 0; 5210 mddev->level = LEVEL_NONE; 5211 mddev->clevel[0] = 0; 5212 mddev->flags = 0; 5213 mddev->ro = 0; 5214 mddev->metadata_type[0] = 0; 5215 mddev->chunk_sectors = 0; 5216 mddev->ctime = mddev->utime = 0; 5217 mddev->layout = 0; 5218 mddev->max_disks = 0; 5219 mddev->events = 0; 5220 mddev->can_decrease_events = 0; 5221 mddev->delta_disks = 0; 5222 mddev->reshape_backwards = 0; 5223 mddev->new_level = LEVEL_NONE; 5224 mddev->new_layout = 0; 5225 mddev->new_chunk_sectors = 0; 5226 mddev->curr_resync = 0; 5227 atomic64_set(&mddev->resync_mismatches, 0); 5228 mddev->suspend_lo = mddev->suspend_hi = 0; 5229 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5230 mddev->recovery = 0; 5231 mddev->in_sync = 0; 5232 mddev->changed = 0; 5233 mddev->degraded = 0; 5234 mddev->safemode = 0; 5235 mddev->merge_check_needed = 0; 5236 mddev->bitmap_info.offset = 0; 5237 mddev->bitmap_info.default_offset = 0; 5238 mddev->bitmap_info.default_space = 0; 5239 mddev->bitmap_info.chunksize = 0; 5240 mddev->bitmap_info.daemon_sleep = 0; 5241 mddev->bitmap_info.max_write_behind = 0; 5242} 5243 5244static void __md_stop_writes(struct mddev *mddev) 5245{ 5246 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5247 if (mddev->sync_thread) { 5248 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5249 md_reap_sync_thread(mddev); 5250 } 5251 5252 del_timer_sync(&mddev->safemode_timer); 5253 5254 bitmap_flush(mddev); 5255 md_super_wait(mddev); 5256 5257 if (mddev->ro == 0 && 5258 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5259 /* mark array as shutdown cleanly */ 5260 mddev->in_sync = 1; 5261 md_update_sb(mddev, 1); 5262 } 5263} 5264 5265void md_stop_writes(struct mddev *mddev) 5266{ 5267 mddev_lock_nointr(mddev); 5268 __md_stop_writes(mddev); 5269 mddev_unlock(mddev); 5270} 5271EXPORT_SYMBOL_GPL(md_stop_writes); 5272 5273static void __md_stop(struct mddev *mddev) 5274{ 5275 mddev->ready = 0; 5276 mddev->pers->stop(mddev); 5277 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5278 mddev->to_remove = &md_redundancy_group; 5279 module_put(mddev->pers->owner); 5280 mddev->pers = NULL; 5281 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5282} 5283 5284void md_stop(struct mddev *mddev) 5285{ 5286 /* stop the array and free an attached data structures. 5287 * This is called from dm-raid 5288 */ 5289 __md_stop(mddev); 5290 bitmap_destroy(mddev); 5291 if (mddev->bio_set) 5292 bioset_free(mddev->bio_set); 5293} 5294 5295EXPORT_SYMBOL_GPL(md_stop); 5296 5297static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5298{ 5299 int err = 0; 5300 int did_freeze = 0; 5301 5302 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5303 did_freeze = 1; 5304 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5305 md_wakeup_thread(mddev->thread); 5306 } 5307 if (mddev->sync_thread) { 5308 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5309 /* Thread might be blocked waiting for metadata update 5310 * which will now never happen */ 5311 wake_up_process(mddev->sync_thread->tsk); 5312 } 5313 mddev_unlock(mddev); 5314 wait_event(resync_wait, mddev->sync_thread == NULL); 5315 mddev_lock_nointr(mddev); 5316 5317 mutex_lock(&mddev->open_mutex); 5318 if (atomic_read(&mddev->openers) > !!bdev || 5319 mddev->sync_thread || 5320 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5321 printk("md: %s still in use.\n",mdname(mddev)); 5322 if (did_freeze) { 5323 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5324 md_wakeup_thread(mddev->thread); 5325 } 5326 err = -EBUSY; 5327 goto out; 5328 } 5329 if (mddev->pers) { 5330 __md_stop_writes(mddev); 5331 5332 err = -ENXIO; 5333 if (mddev->ro==1) 5334 goto out; 5335 mddev->ro = 1; 5336 set_disk_ro(mddev->gendisk, 1); 5337 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5338 sysfs_notify_dirent_safe(mddev->sysfs_state); 5339 err = 0; 5340 } 5341out: 5342 mutex_unlock(&mddev->open_mutex); 5343 return err; 5344} 5345 5346/* mode: 5347 * 0 - completely stop and dis-assemble array 5348 * 2 - stop but do not disassemble array 5349 */ 5350static int do_md_stop(struct mddev * mddev, int mode, 5351 struct block_device *bdev) 5352{ 5353 struct gendisk *disk = mddev->gendisk; 5354 struct md_rdev *rdev; 5355 int did_freeze = 0; 5356 5357 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5358 did_freeze = 1; 5359 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5360 md_wakeup_thread(mddev->thread); 5361 } 5362 if (mddev->sync_thread) { 5363 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5364 /* Thread might be blocked waiting for metadata update 5365 * which will now never happen */ 5366 wake_up_process(mddev->sync_thread->tsk); 5367 } 5368 mddev_unlock(mddev); 5369 wait_event(resync_wait, mddev->sync_thread == NULL); 5370 mddev_lock_nointr(mddev); 5371 5372 mutex_lock(&mddev->open_mutex); 5373 if (atomic_read(&mddev->openers) > !!bdev || 5374 mddev->sysfs_active || 5375 mddev->sync_thread || 5376 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5377 printk("md: %s still in use.\n",mdname(mddev)); 5378 mutex_unlock(&mddev->open_mutex); 5379 if (did_freeze) { 5380 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5381 md_wakeup_thread(mddev->thread); 5382 } 5383 return -EBUSY; 5384 } 5385 if (mddev->pers) { 5386 if (mddev->ro) 5387 set_disk_ro(disk, 0); 5388 5389 __md_stop_writes(mddev); 5390 __md_stop(mddev); 5391 mddev->queue->merge_bvec_fn = NULL; 5392 mddev->queue->backing_dev_info.congested_fn = NULL; 5393 5394 /* tell userspace to handle 'inactive' */ 5395 sysfs_notify_dirent_safe(mddev->sysfs_state); 5396 5397 rdev_for_each(rdev, mddev) 5398 if (rdev->raid_disk >= 0) 5399 sysfs_unlink_rdev(mddev, rdev); 5400 5401 set_capacity(disk, 0); 5402 mutex_unlock(&mddev->open_mutex); 5403 mddev->changed = 1; 5404 revalidate_disk(disk); 5405 5406 if (mddev->ro) 5407 mddev->ro = 0; 5408 } else 5409 mutex_unlock(&mddev->open_mutex); 5410 /* 5411 * Free resources if final stop 5412 */ 5413 if (mode == 0) { 5414 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5415 5416 bitmap_destroy(mddev); 5417 if (mddev->bitmap_info.file) { 5418 restore_bitmap_write_access(mddev->bitmap_info.file); 5419 fput(mddev->bitmap_info.file); 5420 mddev->bitmap_info.file = NULL; 5421 } 5422 mddev->bitmap_info.offset = 0; 5423 5424 export_array(mddev); 5425 5426 md_clean(mddev); 5427 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5428 if (mddev->hold_active == UNTIL_STOP) 5429 mddev->hold_active = 0; 5430 } 5431 blk_integrity_unregister(disk); 5432 md_new_event(mddev); 5433 sysfs_notify_dirent_safe(mddev->sysfs_state); 5434 return 0; 5435} 5436 5437#ifndef MODULE 5438static void autorun_array(struct mddev *mddev) 5439{ 5440 struct md_rdev *rdev; 5441 int err; 5442 5443 if (list_empty(&mddev->disks)) 5444 return; 5445 5446 printk(KERN_INFO "md: running: "); 5447 5448 rdev_for_each(rdev, mddev) { 5449 char b[BDEVNAME_SIZE]; 5450 printk("<%s>", bdevname(rdev->bdev,b)); 5451 } 5452 printk("\n"); 5453 5454 err = do_md_run(mddev); 5455 if (err) { 5456 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5457 do_md_stop(mddev, 0, NULL); 5458 } 5459} 5460 5461/* 5462 * lets try to run arrays based on all disks that have arrived 5463 * until now. (those are in pending_raid_disks) 5464 * 5465 * the method: pick the first pending disk, collect all disks with 5466 * the same UUID, remove all from the pending list and put them into 5467 * the 'same_array' list. Then order this list based on superblock 5468 * update time (freshest comes first), kick out 'old' disks and 5469 * compare superblocks. If everything's fine then run it. 5470 * 5471 * If "unit" is allocated, then bump its reference count 5472 */ 5473static void autorun_devices(int part) 5474{ 5475 struct md_rdev *rdev0, *rdev, *tmp; 5476 struct mddev *mddev; 5477 char b[BDEVNAME_SIZE]; 5478 5479 printk(KERN_INFO "md: autorun ...\n"); 5480 while (!list_empty(&pending_raid_disks)) { 5481 int unit; 5482 dev_t dev; 5483 LIST_HEAD(candidates); 5484 rdev0 = list_entry(pending_raid_disks.next, 5485 struct md_rdev, same_set); 5486 5487 printk(KERN_INFO "md: considering %s ...\n", 5488 bdevname(rdev0->bdev,b)); 5489 INIT_LIST_HEAD(&candidates); 5490 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5491 if (super_90_load(rdev, rdev0, 0) >= 0) { 5492 printk(KERN_INFO "md: adding %s ...\n", 5493 bdevname(rdev->bdev,b)); 5494 list_move(&rdev->same_set, &candidates); 5495 } 5496 /* 5497 * now we have a set of devices, with all of them having 5498 * mostly sane superblocks. It's time to allocate the 5499 * mddev. 5500 */ 5501 if (part) { 5502 dev = MKDEV(mdp_major, 5503 rdev0->preferred_minor << MdpMinorShift); 5504 unit = MINOR(dev) >> MdpMinorShift; 5505 } else { 5506 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5507 unit = MINOR(dev); 5508 } 5509 if (rdev0->preferred_minor != unit) { 5510 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5511 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5512 break; 5513 } 5514 5515 md_probe(dev, NULL, NULL); 5516 mddev = mddev_find(dev); 5517 if (!mddev || !mddev->gendisk) { 5518 if (mddev) 5519 mddev_put(mddev); 5520 printk(KERN_ERR 5521 "md: cannot allocate memory for md drive.\n"); 5522 break; 5523 } 5524 if (mddev_lock(mddev)) 5525 printk(KERN_WARNING "md: %s locked, cannot run\n", 5526 mdname(mddev)); 5527 else if (mddev->raid_disks || mddev->major_version 5528 || !list_empty(&mddev->disks)) { 5529 printk(KERN_WARNING 5530 "md: %s already running, cannot run %s\n", 5531 mdname(mddev), bdevname(rdev0->bdev,b)); 5532 mddev_unlock(mddev); 5533 } else { 5534 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5535 mddev->persistent = 1; 5536 rdev_for_each_list(rdev, tmp, &candidates) { 5537 list_del_init(&rdev->same_set); 5538 if (bind_rdev_to_array(rdev, mddev)) 5539 export_rdev(rdev); 5540 } 5541 autorun_array(mddev); 5542 mddev_unlock(mddev); 5543 } 5544 /* on success, candidates will be empty, on error 5545 * it won't... 5546 */ 5547 rdev_for_each_list(rdev, tmp, &candidates) { 5548 list_del_init(&rdev->same_set); 5549 export_rdev(rdev); 5550 } 5551 mddev_put(mddev); 5552 } 5553 printk(KERN_INFO "md: ... autorun DONE.\n"); 5554} 5555#endif /* !MODULE */ 5556 5557static int get_version(void __user * arg) 5558{ 5559 mdu_version_t ver; 5560 5561 ver.major = MD_MAJOR_VERSION; 5562 ver.minor = MD_MINOR_VERSION; 5563 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5564 5565 if (copy_to_user(arg, &ver, sizeof(ver))) 5566 return -EFAULT; 5567 5568 return 0; 5569} 5570 5571static int get_array_info(struct mddev * mddev, void __user * arg) 5572{ 5573 mdu_array_info_t info; 5574 int nr,working,insync,failed,spare; 5575 struct md_rdev *rdev; 5576 5577 nr = working = insync = failed = spare = 0; 5578 rcu_read_lock(); 5579 rdev_for_each_rcu(rdev, mddev) { 5580 nr++; 5581 if (test_bit(Faulty, &rdev->flags)) 5582 failed++; 5583 else { 5584 working++; 5585 if (test_bit(In_sync, &rdev->flags)) 5586 insync++; 5587 else 5588 spare++; 5589 } 5590 } 5591 rcu_read_unlock(); 5592 5593 info.major_version = mddev->major_version; 5594 info.minor_version = mddev->minor_version; 5595 info.patch_version = MD_PATCHLEVEL_VERSION; 5596 info.ctime = mddev->ctime; 5597 info.level = mddev->level; 5598 info.size = mddev->dev_sectors / 2; 5599 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5600 info.size = -1; 5601 info.nr_disks = nr; 5602 info.raid_disks = mddev->raid_disks; 5603 info.md_minor = mddev->md_minor; 5604 info.not_persistent= !mddev->persistent; 5605 5606 info.utime = mddev->utime; 5607 info.state = 0; 5608 if (mddev->in_sync) 5609 info.state = (1<<MD_SB_CLEAN); 5610 if (mddev->bitmap && mddev->bitmap_info.offset) 5611 info.state = (1<<MD_SB_BITMAP_PRESENT); 5612 info.active_disks = insync; 5613 info.working_disks = working; 5614 info.failed_disks = failed; 5615 info.spare_disks = spare; 5616 5617 info.layout = mddev->layout; 5618 info.chunk_size = mddev->chunk_sectors << 9; 5619 5620 if (copy_to_user(arg, &info, sizeof(info))) 5621 return -EFAULT; 5622 5623 return 0; 5624} 5625 5626static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5627{ 5628 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5629 char *ptr, *buf = NULL; 5630 int err = -ENOMEM; 5631 5632 file = kmalloc(sizeof(*file), GFP_NOIO); 5633 5634 if (!file) 5635 goto out; 5636 5637 /* bitmap disabled, zero the first byte and copy out */ 5638 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5639 file->pathname[0] = '\0'; 5640 goto copy_out; 5641 } 5642 5643 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5644 if (!buf) 5645 goto out; 5646 5647 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5648 buf, sizeof(file->pathname)); 5649 if (IS_ERR(ptr)) 5650 goto out; 5651 5652 strcpy(file->pathname, ptr); 5653 5654copy_out: 5655 err = 0; 5656 if (copy_to_user(arg, file, sizeof(*file))) 5657 err = -EFAULT; 5658out: 5659 kfree(buf); 5660 kfree(file); 5661 return err; 5662} 5663 5664static int get_disk_info(struct mddev * mddev, void __user * arg) 5665{ 5666 mdu_disk_info_t info; 5667 struct md_rdev *rdev; 5668 5669 if (copy_from_user(&info, arg, sizeof(info))) 5670 return -EFAULT; 5671 5672 rcu_read_lock(); 5673 rdev = find_rdev_nr_rcu(mddev, info.number); 5674 if (rdev) { 5675 info.major = MAJOR(rdev->bdev->bd_dev); 5676 info.minor = MINOR(rdev->bdev->bd_dev); 5677 info.raid_disk = rdev->raid_disk; 5678 info.state = 0; 5679 if (test_bit(Faulty, &rdev->flags)) 5680 info.state |= (1<<MD_DISK_FAULTY); 5681 else if (test_bit(In_sync, &rdev->flags)) { 5682 info.state |= (1<<MD_DISK_ACTIVE); 5683 info.state |= (1<<MD_DISK_SYNC); 5684 } 5685 if (test_bit(WriteMostly, &rdev->flags)) 5686 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5687 } else { 5688 info.major = info.minor = 0; 5689 info.raid_disk = -1; 5690 info.state = (1<<MD_DISK_REMOVED); 5691 } 5692 rcu_read_unlock(); 5693 5694 if (copy_to_user(arg, &info, sizeof(info))) 5695 return -EFAULT; 5696 5697 return 0; 5698} 5699 5700static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5701{ 5702 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5703 struct md_rdev *rdev; 5704 dev_t dev = MKDEV(info->major,info->minor); 5705 5706 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5707 return -EOVERFLOW; 5708 5709 if (!mddev->raid_disks) { 5710 int err; 5711 /* expecting a device which has a superblock */ 5712 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5713 if (IS_ERR(rdev)) { 5714 printk(KERN_WARNING 5715 "md: md_import_device returned %ld\n", 5716 PTR_ERR(rdev)); 5717 return PTR_ERR(rdev); 5718 } 5719 if (!list_empty(&mddev->disks)) { 5720 struct md_rdev *rdev0 5721 = list_entry(mddev->disks.next, 5722 struct md_rdev, same_set); 5723 err = super_types[mddev->major_version] 5724 .load_super(rdev, rdev0, mddev->minor_version); 5725 if (err < 0) { 5726 printk(KERN_WARNING 5727 "md: %s has different UUID to %s\n", 5728 bdevname(rdev->bdev,b), 5729 bdevname(rdev0->bdev,b2)); 5730 export_rdev(rdev); 5731 return -EINVAL; 5732 } 5733 } 5734 err = bind_rdev_to_array(rdev, mddev); 5735 if (err) 5736 export_rdev(rdev); 5737 return err; 5738 } 5739 5740 /* 5741 * add_new_disk can be used once the array is assembled 5742 * to add "hot spares". They must already have a superblock 5743 * written 5744 */ 5745 if (mddev->pers) { 5746 int err; 5747 if (!mddev->pers->hot_add_disk) { 5748 printk(KERN_WARNING 5749 "%s: personality does not support diskops!\n", 5750 mdname(mddev)); 5751 return -EINVAL; 5752 } 5753 if (mddev->persistent) 5754 rdev = md_import_device(dev, mddev->major_version, 5755 mddev->minor_version); 5756 else 5757 rdev = md_import_device(dev, -1, -1); 5758 if (IS_ERR(rdev)) { 5759 printk(KERN_WARNING 5760 "md: md_import_device returned %ld\n", 5761 PTR_ERR(rdev)); 5762 return PTR_ERR(rdev); 5763 } 5764 /* set saved_raid_disk if appropriate */ 5765 if (!mddev->persistent) { 5766 if (info->state & (1<<MD_DISK_SYNC) && 5767 info->raid_disk < mddev->raid_disks) { 5768 rdev->raid_disk = info->raid_disk; 5769 set_bit(In_sync, &rdev->flags); 5770 clear_bit(Bitmap_sync, &rdev->flags); 5771 } else 5772 rdev->raid_disk = -1; 5773 } else 5774 super_types[mddev->major_version]. 5775 validate_super(mddev, rdev); 5776 if ((info->state & (1<<MD_DISK_SYNC)) && 5777 rdev->raid_disk != info->raid_disk) { 5778 /* This was a hot-add request, but events doesn't 5779 * match, so reject it. 5780 */ 5781 export_rdev(rdev); 5782 return -EINVAL; 5783 } 5784 5785 if (test_bit(In_sync, &rdev->flags)) 5786 rdev->saved_raid_disk = rdev->raid_disk; 5787 else 5788 rdev->saved_raid_disk = -1; 5789 5790 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5791 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5792 set_bit(WriteMostly, &rdev->flags); 5793 else 5794 clear_bit(WriteMostly, &rdev->flags); 5795 5796 rdev->raid_disk = -1; 5797 err = bind_rdev_to_array(rdev, mddev); 5798 if (!err && !mddev->pers->hot_remove_disk) { 5799 /* If there is hot_add_disk but no hot_remove_disk 5800 * then added disks for geometry changes, 5801 * and should be added immediately. 5802 */ 5803 super_types[mddev->major_version]. 5804 validate_super(mddev, rdev); 5805 err = mddev->pers->hot_add_disk(mddev, rdev); 5806 if (err) 5807 unbind_rdev_from_array(rdev); 5808 } 5809 if (err) 5810 export_rdev(rdev); 5811 else 5812 sysfs_notify_dirent_safe(rdev->sysfs_state); 5813 5814 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5815 if (mddev->degraded) 5816 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5817 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5818 if (!err) 5819 md_new_event(mddev); 5820 md_wakeup_thread(mddev->thread); 5821 return err; 5822 } 5823 5824 /* otherwise, add_new_disk is only allowed 5825 * for major_version==0 superblocks 5826 */ 5827 if (mddev->major_version != 0) { 5828 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5829 mdname(mddev)); 5830 return -EINVAL; 5831 } 5832 5833 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5834 int err; 5835 rdev = md_import_device(dev, -1, 0); 5836 if (IS_ERR(rdev)) { 5837 printk(KERN_WARNING 5838 "md: error, md_import_device() returned %ld\n", 5839 PTR_ERR(rdev)); 5840 return PTR_ERR(rdev); 5841 } 5842 rdev->desc_nr = info->number; 5843 if (info->raid_disk < mddev->raid_disks) 5844 rdev->raid_disk = info->raid_disk; 5845 else 5846 rdev->raid_disk = -1; 5847 5848 if (rdev->raid_disk < mddev->raid_disks) 5849 if (info->state & (1<<MD_DISK_SYNC)) 5850 set_bit(In_sync, &rdev->flags); 5851 5852 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5853 set_bit(WriteMostly, &rdev->flags); 5854 5855 if (!mddev->persistent) { 5856 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5857 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5858 } else 5859 rdev->sb_start = calc_dev_sboffset(rdev); 5860 rdev->sectors = rdev->sb_start; 5861 5862 err = bind_rdev_to_array(rdev, mddev); 5863 if (err) { 5864 export_rdev(rdev); 5865 return err; 5866 } 5867 } 5868 5869 return 0; 5870} 5871 5872static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5873{ 5874 char b[BDEVNAME_SIZE]; 5875 struct md_rdev *rdev; 5876 5877 rdev = find_rdev(mddev, dev); 5878 if (!rdev) 5879 return -ENXIO; 5880 5881 clear_bit(Blocked, &rdev->flags); 5882 remove_and_add_spares(mddev, rdev); 5883 5884 if (rdev->raid_disk >= 0) 5885 goto busy; 5886 5887 kick_rdev_from_array(rdev); 5888 md_update_sb(mddev, 1); 5889 md_new_event(mddev); 5890 5891 return 0; 5892busy: 5893 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5894 bdevname(rdev->bdev,b), mdname(mddev)); 5895 return -EBUSY; 5896} 5897 5898static int hot_add_disk(struct mddev * mddev, dev_t dev) 5899{ 5900 char b[BDEVNAME_SIZE]; 5901 int err; 5902 struct md_rdev *rdev; 5903 5904 if (!mddev->pers) 5905 return -ENODEV; 5906 5907 if (mddev->major_version != 0) { 5908 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5909 " version-0 superblocks.\n", 5910 mdname(mddev)); 5911 return -EINVAL; 5912 } 5913 if (!mddev->pers->hot_add_disk) { 5914 printk(KERN_WARNING 5915 "%s: personality does not support diskops!\n", 5916 mdname(mddev)); 5917 return -EINVAL; 5918 } 5919 5920 rdev = md_import_device(dev, -1, 0); 5921 if (IS_ERR(rdev)) { 5922 printk(KERN_WARNING 5923 "md: error, md_import_device() returned %ld\n", 5924 PTR_ERR(rdev)); 5925 return -EINVAL; 5926 } 5927 5928 if (mddev->persistent) 5929 rdev->sb_start = calc_dev_sboffset(rdev); 5930 else 5931 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5932 5933 rdev->sectors = rdev->sb_start; 5934 5935 if (test_bit(Faulty, &rdev->flags)) { 5936 printk(KERN_WARNING 5937 "md: can not hot-add faulty %s disk to %s!\n", 5938 bdevname(rdev->bdev,b), mdname(mddev)); 5939 err = -EINVAL; 5940 goto abort_export; 5941 } 5942 clear_bit(In_sync, &rdev->flags); 5943 rdev->desc_nr = -1; 5944 rdev->saved_raid_disk = -1; 5945 err = bind_rdev_to_array(rdev, mddev); 5946 if (err) 5947 goto abort_export; 5948 5949 /* 5950 * The rest should better be atomic, we can have disk failures 5951 * noticed in interrupt contexts ... 5952 */ 5953 5954 rdev->raid_disk = -1; 5955 5956 md_update_sb(mddev, 1); 5957 5958 /* 5959 * Kick recovery, maybe this spare has to be added to the 5960 * array immediately. 5961 */ 5962 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5963 md_wakeup_thread(mddev->thread); 5964 md_new_event(mddev); 5965 return 0; 5966 5967abort_export: 5968 export_rdev(rdev); 5969 return err; 5970} 5971 5972static int set_bitmap_file(struct mddev *mddev, int fd) 5973{ 5974 int err; 5975 5976 if (mddev->pers) { 5977 if (!mddev->pers->quiesce) 5978 return -EBUSY; 5979 if (mddev->recovery || mddev->sync_thread) 5980 return -EBUSY; 5981 /* we should be able to change the bitmap.. */ 5982 } 5983 5984 5985 if (fd >= 0) { 5986 if (mddev->bitmap) 5987 return -EEXIST; /* cannot add when bitmap is present */ 5988 mddev->bitmap_info.file = fget(fd); 5989 5990 if (mddev->bitmap_info.file == NULL) { 5991 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5992 mdname(mddev)); 5993 return -EBADF; 5994 } 5995 5996 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5997 if (err) { 5998 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5999 mdname(mddev)); 6000 fput(mddev->bitmap_info.file); 6001 mddev->bitmap_info.file = NULL; 6002 return err; 6003 } 6004 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6005 } else if (mddev->bitmap == NULL) 6006 return -ENOENT; /* cannot remove what isn't there */ 6007 err = 0; 6008 if (mddev->pers) { 6009 mddev->pers->quiesce(mddev, 1); 6010 if (fd >= 0) { 6011 err = bitmap_create(mddev); 6012 if (!err) 6013 err = bitmap_load(mddev); 6014 } 6015 if (fd < 0 || err) { 6016 bitmap_destroy(mddev); 6017 fd = -1; /* make sure to put the file */ 6018 } 6019 mddev->pers->quiesce(mddev, 0); 6020 } 6021 if (fd < 0) { 6022 if (mddev->bitmap_info.file) { 6023 restore_bitmap_write_access(mddev->bitmap_info.file); 6024 fput(mddev->bitmap_info.file); 6025 } 6026 mddev->bitmap_info.file = NULL; 6027 } 6028 6029 return err; 6030} 6031 6032/* 6033 * set_array_info is used two different ways 6034 * The original usage is when creating a new array. 6035 * In this usage, raid_disks is > 0 and it together with 6036 * level, size, not_persistent,layout,chunksize determine the 6037 * shape of the array. 6038 * This will always create an array with a type-0.90.0 superblock. 6039 * The newer usage is when assembling an array. 6040 * In this case raid_disks will be 0, and the major_version field is 6041 * use to determine which style super-blocks are to be found on the devices. 6042 * The minor and patch _version numbers are also kept incase the 6043 * super_block handler wishes to interpret them. 6044 */ 6045static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6046{ 6047 6048 if (info->raid_disks == 0) { 6049 /* just setting version number for superblock loading */ 6050 if (info->major_version < 0 || 6051 info->major_version >= ARRAY_SIZE(super_types) || 6052 super_types[info->major_version].name == NULL) { 6053 /* maybe try to auto-load a module? */ 6054 printk(KERN_INFO 6055 "md: superblock version %d not known\n", 6056 info->major_version); 6057 return -EINVAL; 6058 } 6059 mddev->major_version = info->major_version; 6060 mddev->minor_version = info->minor_version; 6061 mddev->patch_version = info->patch_version; 6062 mddev->persistent = !info->not_persistent; 6063 /* ensure mddev_put doesn't delete this now that there 6064 * is some minimal configuration. 6065 */ 6066 mddev->ctime = get_seconds(); 6067 return 0; 6068 } 6069 mddev->major_version = MD_MAJOR_VERSION; 6070 mddev->minor_version = MD_MINOR_VERSION; 6071 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6072 mddev->ctime = get_seconds(); 6073 6074 mddev->level = info->level; 6075 mddev->clevel[0] = 0; 6076 mddev->dev_sectors = 2 * (sector_t)info->size; 6077 mddev->raid_disks = info->raid_disks; 6078 /* don't set md_minor, it is determined by which /dev/md* was 6079 * openned 6080 */ 6081 if (info->state & (1<<MD_SB_CLEAN)) 6082 mddev->recovery_cp = MaxSector; 6083 else 6084 mddev->recovery_cp = 0; 6085 mddev->persistent = ! info->not_persistent; 6086 mddev->external = 0; 6087 6088 mddev->layout = info->layout; 6089 mddev->chunk_sectors = info->chunk_size >> 9; 6090 6091 mddev->max_disks = MD_SB_DISKS; 6092 6093 if (mddev->persistent) 6094 mddev->flags = 0; 6095 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6096 6097 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6098 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6099 mddev->bitmap_info.offset = 0; 6100 6101 mddev->reshape_position = MaxSector; 6102 6103 /* 6104 * Generate a 128 bit UUID 6105 */ 6106 get_random_bytes(mddev->uuid, 16); 6107 6108 mddev->new_level = mddev->level; 6109 mddev->new_chunk_sectors = mddev->chunk_sectors; 6110 mddev->new_layout = mddev->layout; 6111 mddev->delta_disks = 0; 6112 mddev->reshape_backwards = 0; 6113 6114 return 0; 6115} 6116 6117void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6118{ 6119 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6120 6121 if (mddev->external_size) 6122 return; 6123 6124 mddev->array_sectors = array_sectors; 6125} 6126EXPORT_SYMBOL(md_set_array_sectors); 6127 6128static int update_size(struct mddev *mddev, sector_t num_sectors) 6129{ 6130 struct md_rdev *rdev; 6131 int rv; 6132 int fit = (num_sectors == 0); 6133 6134 if (mddev->pers->resize == NULL) 6135 return -EINVAL; 6136 /* The "num_sectors" is the number of sectors of each device that 6137 * is used. This can only make sense for arrays with redundancy. 6138 * linear and raid0 always use whatever space is available. We can only 6139 * consider changing this number if no resync or reconstruction is 6140 * happening, and if the new size is acceptable. It must fit before the 6141 * sb_start or, if that is <data_offset, it must fit before the size 6142 * of each device. If num_sectors is zero, we find the largest size 6143 * that fits. 6144 */ 6145 if (mddev->sync_thread) 6146 return -EBUSY; 6147 6148 rdev_for_each(rdev, mddev) { 6149 sector_t avail = rdev->sectors; 6150 6151 if (fit && (num_sectors == 0 || num_sectors > avail)) 6152 num_sectors = avail; 6153 if (avail < num_sectors) 6154 return -ENOSPC; 6155 } 6156 rv = mddev->pers->resize(mddev, num_sectors); 6157 if (!rv) 6158 revalidate_disk(mddev->gendisk); 6159 return rv; 6160} 6161 6162static int update_raid_disks(struct mddev *mddev, int raid_disks) 6163{ 6164 int rv; 6165 struct md_rdev *rdev; 6166 /* change the number of raid disks */ 6167 if (mddev->pers->check_reshape == NULL) 6168 return -EINVAL; 6169 if (raid_disks <= 0 || 6170 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6171 return -EINVAL; 6172 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6173 return -EBUSY; 6174 6175 rdev_for_each(rdev, mddev) { 6176 if (mddev->raid_disks < raid_disks && 6177 rdev->data_offset < rdev->new_data_offset) 6178 return -EINVAL; 6179 if (mddev->raid_disks > raid_disks && 6180 rdev->data_offset > rdev->new_data_offset) 6181 return -EINVAL; 6182 } 6183 6184 mddev->delta_disks = raid_disks - mddev->raid_disks; 6185 if (mddev->delta_disks < 0) 6186 mddev->reshape_backwards = 1; 6187 else if (mddev->delta_disks > 0) 6188 mddev->reshape_backwards = 0; 6189 6190 rv = mddev->pers->check_reshape(mddev); 6191 if (rv < 0) { 6192 mddev->delta_disks = 0; 6193 mddev->reshape_backwards = 0; 6194 } 6195 return rv; 6196} 6197 6198 6199/* 6200 * update_array_info is used to change the configuration of an 6201 * on-line array. 6202 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6203 * fields in the info are checked against the array. 6204 * Any differences that cannot be handled will cause an error. 6205 * Normally, only one change can be managed at a time. 6206 */ 6207static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6208{ 6209 int rv = 0; 6210 int cnt = 0; 6211 int state = 0; 6212 6213 /* calculate expected state,ignoring low bits */ 6214 if (mddev->bitmap && mddev->bitmap_info.offset) 6215 state |= (1 << MD_SB_BITMAP_PRESENT); 6216 6217 if (mddev->major_version != info->major_version || 6218 mddev->minor_version != info->minor_version || 6219/* mddev->patch_version != info->patch_version || */ 6220 mddev->ctime != info->ctime || 6221 mddev->level != info->level || 6222/* mddev->layout != info->layout || */ 6223 !mddev->persistent != info->not_persistent|| 6224 mddev->chunk_sectors != info->chunk_size >> 9 || 6225 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6226 ((state^info->state) & 0xfffffe00) 6227 ) 6228 return -EINVAL; 6229 /* Check there is only one change */ 6230 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6231 cnt++; 6232 if (mddev->raid_disks != info->raid_disks) 6233 cnt++; 6234 if (mddev->layout != info->layout) 6235 cnt++; 6236 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6237 cnt++; 6238 if (cnt == 0) 6239 return 0; 6240 if (cnt > 1) 6241 return -EINVAL; 6242 6243 if (mddev->layout != info->layout) { 6244 /* Change layout 6245 * we don't need to do anything at the md level, the 6246 * personality will take care of it all. 6247 */ 6248 if (mddev->pers->check_reshape == NULL) 6249 return -EINVAL; 6250 else { 6251 mddev->new_layout = info->layout; 6252 rv = mddev->pers->check_reshape(mddev); 6253 if (rv) 6254 mddev->new_layout = mddev->layout; 6255 return rv; 6256 } 6257 } 6258 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6259 rv = update_size(mddev, (sector_t)info->size * 2); 6260 6261 if (mddev->raid_disks != info->raid_disks) 6262 rv = update_raid_disks(mddev, info->raid_disks); 6263 6264 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6265 if (mddev->pers->quiesce == NULL) 6266 return -EINVAL; 6267 if (mddev->recovery || mddev->sync_thread) 6268 return -EBUSY; 6269 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6270 /* add the bitmap */ 6271 if (mddev->bitmap) 6272 return -EEXIST; 6273 if (mddev->bitmap_info.default_offset == 0) 6274 return -EINVAL; 6275 mddev->bitmap_info.offset = 6276 mddev->bitmap_info.default_offset; 6277 mddev->bitmap_info.space = 6278 mddev->bitmap_info.default_space; 6279 mddev->pers->quiesce(mddev, 1); 6280 rv = bitmap_create(mddev); 6281 if (!rv) 6282 rv = bitmap_load(mddev); 6283 if (rv) 6284 bitmap_destroy(mddev); 6285 mddev->pers->quiesce(mddev, 0); 6286 } else { 6287 /* remove the bitmap */ 6288 if (!mddev->bitmap) 6289 return -ENOENT; 6290 if (mddev->bitmap->storage.file) 6291 return -EINVAL; 6292 mddev->pers->quiesce(mddev, 1); 6293 bitmap_destroy(mddev); 6294 mddev->pers->quiesce(mddev, 0); 6295 mddev->bitmap_info.offset = 0; 6296 } 6297 } 6298 md_update_sb(mddev, 1); 6299 return rv; 6300} 6301 6302static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6303{ 6304 struct md_rdev *rdev; 6305 int err = 0; 6306 6307 if (mddev->pers == NULL) 6308 return -ENODEV; 6309 6310 rcu_read_lock(); 6311 rdev = find_rdev_rcu(mddev, dev); 6312 if (!rdev) 6313 err = -ENODEV; 6314 else { 6315 md_error(mddev, rdev); 6316 if (!test_bit(Faulty, &rdev->flags)) 6317 err = -EBUSY; 6318 } 6319 rcu_read_unlock(); 6320 return err; 6321} 6322 6323/* 6324 * We have a problem here : there is no easy way to give a CHS 6325 * virtual geometry. We currently pretend that we have a 2 heads 6326 * 4 sectors (with a BIG number of cylinders...). This drives 6327 * dosfs just mad... ;-) 6328 */ 6329static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6330{ 6331 struct mddev *mddev = bdev->bd_disk->private_data; 6332 6333 geo->heads = 2; 6334 geo->sectors = 4; 6335 geo->cylinders = mddev->array_sectors / 8; 6336 return 0; 6337} 6338 6339static int md_ioctl(struct block_device *bdev, fmode_t mode, 6340 unsigned int cmd, unsigned long arg) 6341{ 6342 int err = 0; 6343 void __user *argp = (void __user *)arg; 6344 struct mddev *mddev = NULL; 6345 int ro; 6346 6347 switch (cmd) { 6348 case RAID_VERSION: 6349 case GET_ARRAY_INFO: 6350 case GET_DISK_INFO: 6351 break; 6352 default: 6353 if (!capable(CAP_SYS_ADMIN)) 6354 return -EACCES; 6355 } 6356 6357 /* 6358 * Commands dealing with the RAID driver but not any 6359 * particular array: 6360 */ 6361 switch (cmd) { 6362 case RAID_VERSION: 6363 err = get_version(argp); 6364 goto done; 6365 6366 case PRINT_RAID_DEBUG: 6367 err = 0; 6368 md_print_devices(); 6369 goto done; 6370 6371#ifndef MODULE 6372 case RAID_AUTORUN: 6373 err = 0; 6374 autostart_arrays(arg); 6375 goto done; 6376#endif 6377 default:; 6378 } 6379 6380 /* 6381 * Commands creating/starting a new array: 6382 */ 6383 6384 mddev = bdev->bd_disk->private_data; 6385 6386 if (!mddev) { 6387 BUG(); 6388 goto abort; 6389 } 6390 6391 /* Some actions do not requires the mutex */ 6392 switch (cmd) { 6393 case GET_ARRAY_INFO: 6394 if (!mddev->raid_disks && !mddev->external) 6395 err = -ENODEV; 6396 else 6397 err = get_array_info(mddev, argp); 6398 goto abort; 6399 6400 case GET_DISK_INFO: 6401 if (!mddev->raid_disks && !mddev->external) 6402 err = -ENODEV; 6403 else 6404 err = get_disk_info(mddev, argp); 6405 goto abort; 6406 6407 case SET_DISK_FAULTY: 6408 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6409 goto abort; 6410 } 6411 6412 if (cmd == ADD_NEW_DISK) 6413 /* need to ensure md_delayed_delete() has completed */ 6414 flush_workqueue(md_misc_wq); 6415 6416 if (cmd == HOT_REMOVE_DISK) 6417 /* need to ensure recovery thread has run */ 6418 wait_event_interruptible_timeout(mddev->sb_wait, 6419 !test_bit(MD_RECOVERY_NEEDED, 6420 &mddev->flags), 6421 msecs_to_jiffies(5000)); 6422 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6423 /* Need to flush page cache, and ensure no-one else opens 6424 * and writes 6425 */ 6426 mutex_lock(&mddev->open_mutex); 6427 if (atomic_read(&mddev->openers) > 1) { 6428 mutex_unlock(&mddev->open_mutex); 6429 err = -EBUSY; 6430 goto abort; 6431 } 6432 set_bit(MD_STILL_CLOSED, &mddev->flags); 6433 mutex_unlock(&mddev->open_mutex); 6434 sync_blockdev(bdev); 6435 } 6436 err = mddev_lock(mddev); 6437 if (err) { 6438 printk(KERN_INFO 6439 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6440 err, cmd); 6441 goto abort; 6442 } 6443 6444 if (cmd == SET_ARRAY_INFO) { 6445 mdu_array_info_t info; 6446 if (!arg) 6447 memset(&info, 0, sizeof(info)); 6448 else if (copy_from_user(&info, argp, sizeof(info))) { 6449 err = -EFAULT; 6450 goto abort_unlock; 6451 } 6452 if (mddev->pers) { 6453 err = update_array_info(mddev, &info); 6454 if (err) { 6455 printk(KERN_WARNING "md: couldn't update" 6456 " array info. %d\n", err); 6457 goto abort_unlock; 6458 } 6459 goto done_unlock; 6460 } 6461 if (!list_empty(&mddev->disks)) { 6462 printk(KERN_WARNING 6463 "md: array %s already has disks!\n", 6464 mdname(mddev)); 6465 err = -EBUSY; 6466 goto abort_unlock; 6467 } 6468 if (mddev->raid_disks) { 6469 printk(KERN_WARNING 6470 "md: array %s already initialised!\n", 6471 mdname(mddev)); 6472 err = -EBUSY; 6473 goto abort_unlock; 6474 } 6475 err = set_array_info(mddev, &info); 6476 if (err) { 6477 printk(KERN_WARNING "md: couldn't set" 6478 " array info. %d\n", err); 6479 goto abort_unlock; 6480 } 6481 goto done_unlock; 6482 } 6483 6484 /* 6485 * Commands querying/configuring an existing array: 6486 */ 6487 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6488 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6489 if ((!mddev->raid_disks && !mddev->external) 6490 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6491 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6492 && cmd != GET_BITMAP_FILE) { 6493 err = -ENODEV; 6494 goto abort_unlock; 6495 } 6496 6497 /* 6498 * Commands even a read-only array can execute: 6499 */ 6500 switch (cmd) { 6501 case GET_BITMAP_FILE: 6502 err = get_bitmap_file(mddev, argp); 6503 goto done_unlock; 6504 6505 case RESTART_ARRAY_RW: 6506 err = restart_array(mddev); 6507 goto done_unlock; 6508 6509 case STOP_ARRAY: 6510 err = do_md_stop(mddev, 0, bdev); 6511 goto done_unlock; 6512 6513 case STOP_ARRAY_RO: 6514 err = md_set_readonly(mddev, bdev); 6515 goto done_unlock; 6516 6517 case HOT_REMOVE_DISK: 6518 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6519 goto done_unlock; 6520 6521 case ADD_NEW_DISK: 6522 /* We can support ADD_NEW_DISK on read-only arrays 6523 * on if we are re-adding a preexisting device. 6524 * So require mddev->pers and MD_DISK_SYNC. 6525 */ 6526 if (mddev->pers) { 6527 mdu_disk_info_t info; 6528 if (copy_from_user(&info, argp, sizeof(info))) 6529 err = -EFAULT; 6530 else if (!(info.state & (1<<MD_DISK_SYNC))) 6531 /* Need to clear read-only for this */ 6532 break; 6533 else 6534 err = add_new_disk(mddev, &info); 6535 goto done_unlock; 6536 } 6537 break; 6538 6539 case BLKROSET: 6540 if (get_user(ro, (int __user *)(arg))) { 6541 err = -EFAULT; 6542 goto done_unlock; 6543 } 6544 err = -EINVAL; 6545 6546 /* if the bdev is going readonly the value of mddev->ro 6547 * does not matter, no writes are coming 6548 */ 6549 if (ro) 6550 goto done_unlock; 6551 6552 /* are we are already prepared for writes? */ 6553 if (mddev->ro != 1) 6554 goto done_unlock; 6555 6556 /* transitioning to readauto need only happen for 6557 * arrays that call md_write_start 6558 */ 6559 if (mddev->pers) { 6560 err = restart_array(mddev); 6561 if (err == 0) { 6562 mddev->ro = 2; 6563 set_disk_ro(mddev->gendisk, 0); 6564 } 6565 } 6566 goto done_unlock; 6567 } 6568 6569 /* 6570 * The remaining ioctls are changing the state of the 6571 * superblock, so we do not allow them on read-only arrays. 6572 * However non-MD ioctls (e.g. get-size) will still come through 6573 * here and hit the 'default' below, so only disallow 6574 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6575 */ 6576 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6577 if (mddev->ro == 2) { 6578 mddev->ro = 0; 6579 sysfs_notify_dirent_safe(mddev->sysfs_state); 6580 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6581 /* mddev_unlock will wake thread */ 6582 /* If a device failed while we were read-only, we 6583 * need to make sure the metadata is updated now. 6584 */ 6585 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6586 mddev_unlock(mddev); 6587 wait_event(mddev->sb_wait, 6588 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6589 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6590 mddev_lock_nointr(mddev); 6591 } 6592 } else { 6593 err = -EROFS; 6594 goto abort_unlock; 6595 } 6596 } 6597 6598 switch (cmd) { 6599 case ADD_NEW_DISK: 6600 { 6601 mdu_disk_info_t info; 6602 if (copy_from_user(&info, argp, sizeof(info))) 6603 err = -EFAULT; 6604 else 6605 err = add_new_disk(mddev, &info); 6606 goto done_unlock; 6607 } 6608 6609 case HOT_ADD_DISK: 6610 err = hot_add_disk(mddev, new_decode_dev(arg)); 6611 goto done_unlock; 6612 6613 case RUN_ARRAY: 6614 err = do_md_run(mddev); 6615 goto done_unlock; 6616 6617 case SET_BITMAP_FILE: 6618 err = set_bitmap_file(mddev, (int)arg); 6619 goto done_unlock; 6620 6621 default: 6622 err = -EINVAL; 6623 goto abort_unlock; 6624 } 6625 6626done_unlock: 6627abort_unlock: 6628 if (mddev->hold_active == UNTIL_IOCTL && 6629 err != -EINVAL) 6630 mddev->hold_active = 0; 6631 mddev_unlock(mddev); 6632 6633 return err; 6634done: 6635 if (err) 6636 MD_BUG(); 6637abort: 6638 return err; 6639} 6640#ifdef CONFIG_COMPAT 6641static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6642 unsigned int cmd, unsigned long arg) 6643{ 6644 switch (cmd) { 6645 case HOT_REMOVE_DISK: 6646 case HOT_ADD_DISK: 6647 case SET_DISK_FAULTY: 6648 case SET_BITMAP_FILE: 6649 /* These take in integer arg, do not convert */ 6650 break; 6651 default: 6652 arg = (unsigned long)compat_ptr(arg); 6653 break; 6654 } 6655 6656 return md_ioctl(bdev, mode, cmd, arg); 6657} 6658#endif /* CONFIG_COMPAT */ 6659 6660static int md_open(struct block_device *bdev, fmode_t mode) 6661{ 6662 /* 6663 * Succeed if we can lock the mddev, which confirms that 6664 * it isn't being stopped right now. 6665 */ 6666 struct mddev *mddev = mddev_find(bdev->bd_dev); 6667 int err; 6668 6669 if (!mddev) 6670 return -ENODEV; 6671 6672 if (mddev->gendisk != bdev->bd_disk) { 6673 /* we are racing with mddev_put which is discarding this 6674 * bd_disk. 6675 */ 6676 mddev_put(mddev); 6677 /* Wait until bdev->bd_disk is definitely gone */ 6678 flush_workqueue(md_misc_wq); 6679 /* Then retry the open from the top */ 6680 return -ERESTARTSYS; 6681 } 6682 BUG_ON(mddev != bdev->bd_disk->private_data); 6683 6684 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6685 goto out; 6686 6687 err = 0; 6688 atomic_inc(&mddev->openers); 6689 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6690 mutex_unlock(&mddev->open_mutex); 6691 6692 check_disk_change(bdev); 6693 out: 6694 return err; 6695} 6696 6697static void md_release(struct gendisk *disk, fmode_t mode) 6698{ 6699 struct mddev *mddev = disk->private_data; 6700 6701 BUG_ON(!mddev); 6702 atomic_dec(&mddev->openers); 6703 mddev_put(mddev); 6704} 6705 6706static int md_media_changed(struct gendisk *disk) 6707{ 6708 struct mddev *mddev = disk->private_data; 6709 6710 return mddev->changed; 6711} 6712 6713static int md_revalidate(struct gendisk *disk) 6714{ 6715 struct mddev *mddev = disk->private_data; 6716 6717 mddev->changed = 0; 6718 return 0; 6719} 6720static const struct block_device_operations md_fops = 6721{ 6722 .owner = THIS_MODULE, 6723 .open = md_open, 6724 .release = md_release, 6725 .ioctl = md_ioctl, 6726#ifdef CONFIG_COMPAT 6727 .compat_ioctl = md_compat_ioctl, 6728#endif 6729 .getgeo = md_getgeo, 6730 .media_changed = md_media_changed, 6731 .revalidate_disk= md_revalidate, 6732}; 6733 6734static int md_thread(void * arg) 6735{ 6736 struct md_thread *thread = arg; 6737 6738 /* 6739 * md_thread is a 'system-thread', it's priority should be very 6740 * high. We avoid resource deadlocks individually in each 6741 * raid personality. (RAID5 does preallocation) We also use RR and 6742 * the very same RT priority as kswapd, thus we will never get 6743 * into a priority inversion deadlock. 6744 * 6745 * we definitely have to have equal or higher priority than 6746 * bdflush, otherwise bdflush will deadlock if there are too 6747 * many dirty RAID5 blocks. 6748 */ 6749 6750 allow_signal(SIGKILL); 6751 while (!kthread_should_stop()) { 6752 6753 /* We need to wait INTERRUPTIBLE so that 6754 * we don't add to the load-average. 6755 * That means we need to be sure no signals are 6756 * pending 6757 */ 6758 if (signal_pending(current)) 6759 flush_signals(current); 6760 6761 wait_event_interruptible_timeout 6762 (thread->wqueue, 6763 test_bit(THREAD_WAKEUP, &thread->flags) 6764 || kthread_should_stop(), 6765 thread->timeout); 6766 6767 clear_bit(THREAD_WAKEUP, &thread->flags); 6768 if (!kthread_should_stop()) 6769 thread->run(thread); 6770 } 6771 6772 return 0; 6773} 6774 6775void md_wakeup_thread(struct md_thread *thread) 6776{ 6777 if (thread) { 6778 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6779 set_bit(THREAD_WAKEUP, &thread->flags); 6780 wake_up(&thread->wqueue); 6781 } 6782} 6783 6784struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6785 struct mddev *mddev, const char *name) 6786{ 6787 struct md_thread *thread; 6788 6789 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6790 if (!thread) 6791 return NULL; 6792 6793 init_waitqueue_head(&thread->wqueue); 6794 6795 thread->run = run; 6796 thread->mddev = mddev; 6797 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6798 thread->tsk = kthread_run(md_thread, thread, 6799 "%s_%s", 6800 mdname(thread->mddev), 6801 name); 6802 if (IS_ERR(thread->tsk)) { 6803 kfree(thread); 6804 return NULL; 6805 } 6806 return thread; 6807} 6808 6809void md_unregister_thread(struct md_thread **threadp) 6810{ 6811 struct md_thread *thread = *threadp; 6812 if (!thread) 6813 return; 6814 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6815 /* Locking ensures that mddev_unlock does not wake_up a 6816 * non-existent thread 6817 */ 6818 spin_lock(&pers_lock); 6819 *threadp = NULL; 6820 spin_unlock(&pers_lock); 6821 6822 kthread_stop(thread->tsk); 6823 kfree(thread); 6824} 6825 6826void md_error(struct mddev *mddev, struct md_rdev *rdev) 6827{ 6828 if (!mddev) { 6829 MD_BUG(); 6830 return; 6831 } 6832 6833 if (!rdev || test_bit(Faulty, &rdev->flags)) 6834 return; 6835 6836 if (!mddev->pers || !mddev->pers->error_handler) 6837 return; 6838 mddev->pers->error_handler(mddev,rdev); 6839 if (mddev->degraded) 6840 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6841 sysfs_notify_dirent_safe(rdev->sysfs_state); 6842 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6843 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6844 md_wakeup_thread(mddev->thread); 6845 if (mddev->event_work.func) 6846 queue_work(md_misc_wq, &mddev->event_work); 6847 md_new_event_inintr(mddev); 6848} 6849 6850/* seq_file implementation /proc/mdstat */ 6851 6852static void status_unused(struct seq_file *seq) 6853{ 6854 int i = 0; 6855 struct md_rdev *rdev; 6856 6857 seq_printf(seq, "unused devices: "); 6858 6859 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6860 char b[BDEVNAME_SIZE]; 6861 i++; 6862 seq_printf(seq, "%s ", 6863 bdevname(rdev->bdev,b)); 6864 } 6865 if (!i) 6866 seq_printf(seq, "<none>"); 6867 6868 seq_printf(seq, "\n"); 6869} 6870 6871 6872static void status_resync(struct seq_file *seq, struct mddev * mddev) 6873{ 6874 sector_t max_sectors, resync, res; 6875 unsigned long dt, db; 6876 sector_t rt; 6877 int scale; 6878 unsigned int per_milli; 6879 6880 if (mddev->curr_resync <= 3) 6881 resync = 0; 6882 else 6883 resync = mddev->curr_resync 6884 - atomic_read(&mddev->recovery_active); 6885 6886 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6887 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6888 max_sectors = mddev->resync_max_sectors; 6889 else 6890 max_sectors = mddev->dev_sectors; 6891 6892 /* 6893 * Should not happen. 6894 */ 6895 if (!max_sectors) { 6896 MD_BUG(); 6897 return; 6898 } 6899 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6900 * in a sector_t, and (max_sectors>>scale) will fit in a 6901 * u32, as those are the requirements for sector_div. 6902 * Thus 'scale' must be at least 10 6903 */ 6904 scale = 10; 6905 if (sizeof(sector_t) > sizeof(unsigned long)) { 6906 while ( max_sectors/2 > (1ULL<<(scale+32))) 6907 scale++; 6908 } 6909 res = (resync>>scale)*1000; 6910 sector_div(res, (u32)((max_sectors>>scale)+1)); 6911 6912 per_milli = res; 6913 { 6914 int i, x = per_milli/50, y = 20-x; 6915 seq_printf(seq, "["); 6916 for (i = 0; i < x; i++) 6917 seq_printf(seq, "="); 6918 seq_printf(seq, ">"); 6919 for (i = 0; i < y; i++) 6920 seq_printf(seq, "."); 6921 seq_printf(seq, "] "); 6922 } 6923 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6924 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6925 "reshape" : 6926 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6927 "check" : 6928 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6929 "resync" : "recovery"))), 6930 per_milli/10, per_milli % 10, 6931 (unsigned long long) resync/2, 6932 (unsigned long long) max_sectors/2); 6933 6934 /* 6935 * dt: time from mark until now 6936 * db: blocks written from mark until now 6937 * rt: remaining time 6938 * 6939 * rt is a sector_t, so could be 32bit or 64bit. 6940 * So we divide before multiply in case it is 32bit and close 6941 * to the limit. 6942 * We scale the divisor (db) by 32 to avoid losing precision 6943 * near the end of resync when the number of remaining sectors 6944 * is close to 'db'. 6945 * We then divide rt by 32 after multiplying by db to compensate. 6946 * The '+1' avoids division by zero if db is very small. 6947 */ 6948 dt = ((jiffies - mddev->resync_mark) / HZ); 6949 if (!dt) dt++; 6950 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6951 - mddev->resync_mark_cnt; 6952 6953 rt = max_sectors - resync; /* number of remaining sectors */ 6954 sector_div(rt, db/32+1); 6955 rt *= dt; 6956 rt >>= 5; 6957 6958 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6959 ((unsigned long)rt % 60)/6); 6960 6961 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6962} 6963 6964static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6965{ 6966 struct list_head *tmp; 6967 loff_t l = *pos; 6968 struct mddev *mddev; 6969 6970 if (l >= 0x10000) 6971 return NULL; 6972 if (!l--) 6973 /* header */ 6974 return (void*)1; 6975 6976 spin_lock(&all_mddevs_lock); 6977 list_for_each(tmp,&all_mddevs) 6978 if (!l--) { 6979 mddev = list_entry(tmp, struct mddev, all_mddevs); 6980 mddev_get(mddev); 6981 spin_unlock(&all_mddevs_lock); 6982 return mddev; 6983 } 6984 spin_unlock(&all_mddevs_lock); 6985 if (!l--) 6986 return (void*)2;/* tail */ 6987 return NULL; 6988} 6989 6990static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6991{ 6992 struct list_head *tmp; 6993 struct mddev *next_mddev, *mddev = v; 6994 6995 ++*pos; 6996 if (v == (void*)2) 6997 return NULL; 6998 6999 spin_lock(&all_mddevs_lock); 7000 if (v == (void*)1) 7001 tmp = all_mddevs.next; 7002 else 7003 tmp = mddev->all_mddevs.next; 7004 if (tmp != &all_mddevs) 7005 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7006 else { 7007 next_mddev = (void*)2; 7008 *pos = 0x10000; 7009 } 7010 spin_unlock(&all_mddevs_lock); 7011 7012 if (v != (void*)1) 7013 mddev_put(mddev); 7014 return next_mddev; 7015 7016} 7017 7018static void md_seq_stop(struct seq_file *seq, void *v) 7019{ 7020 struct mddev *mddev = v; 7021 7022 if (mddev && v != (void*)1 && v != (void*)2) 7023 mddev_put(mddev); 7024} 7025 7026static int md_seq_show(struct seq_file *seq, void *v) 7027{ 7028 struct mddev *mddev = v; 7029 sector_t sectors; 7030 struct md_rdev *rdev; 7031 7032 if (v == (void*)1) { 7033 struct md_personality *pers; 7034 seq_printf(seq, "Personalities : "); 7035 spin_lock(&pers_lock); 7036 list_for_each_entry(pers, &pers_list, list) 7037 seq_printf(seq, "[%s] ", pers->name); 7038 7039 spin_unlock(&pers_lock); 7040 seq_printf(seq, "\n"); 7041 seq->poll_event = atomic_read(&md_event_count); 7042 return 0; 7043 } 7044 if (v == (void*)2) { 7045 status_unused(seq); 7046 return 0; 7047 } 7048 7049 if (mddev_lock(mddev) < 0) 7050 return -EINTR; 7051 7052 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7053 seq_printf(seq, "%s : %sactive", mdname(mddev), 7054 mddev->pers ? "" : "in"); 7055 if (mddev->pers) { 7056 if (mddev->ro==1) 7057 seq_printf(seq, " (read-only)"); 7058 if (mddev->ro==2) 7059 seq_printf(seq, " (auto-read-only)"); 7060 seq_printf(seq, " %s", mddev->pers->name); 7061 } 7062 7063 sectors = 0; 7064 rdev_for_each(rdev, mddev) { 7065 char b[BDEVNAME_SIZE]; 7066 seq_printf(seq, " %s[%d]", 7067 bdevname(rdev->bdev,b), rdev->desc_nr); 7068 if (test_bit(WriteMostly, &rdev->flags)) 7069 seq_printf(seq, "(W)"); 7070 if (test_bit(Faulty, &rdev->flags)) { 7071 seq_printf(seq, "(F)"); 7072 continue; 7073 } 7074 if (rdev->raid_disk < 0) 7075 seq_printf(seq, "(S)"); /* spare */ 7076 if (test_bit(Replacement, &rdev->flags)) 7077 seq_printf(seq, "(R)"); 7078 sectors += rdev->sectors; 7079 } 7080 7081 if (!list_empty(&mddev->disks)) { 7082 if (mddev->pers) 7083 seq_printf(seq, "\n %llu blocks", 7084 (unsigned long long) 7085 mddev->array_sectors / 2); 7086 else 7087 seq_printf(seq, "\n %llu blocks", 7088 (unsigned long long)sectors / 2); 7089 } 7090 if (mddev->persistent) { 7091 if (mddev->major_version != 0 || 7092 mddev->minor_version != 90) { 7093 seq_printf(seq," super %d.%d", 7094 mddev->major_version, 7095 mddev->minor_version); 7096 } 7097 } else if (mddev->external) 7098 seq_printf(seq, " super external:%s", 7099 mddev->metadata_type); 7100 else 7101 seq_printf(seq, " super non-persistent"); 7102 7103 if (mddev->pers) { 7104 mddev->pers->status(seq, mddev); 7105 seq_printf(seq, "\n "); 7106 if (mddev->pers->sync_request) { 7107 if (mddev->curr_resync > 2) { 7108 status_resync(seq, mddev); 7109 seq_printf(seq, "\n "); 7110 } else if (mddev->curr_resync >= 1) 7111 seq_printf(seq, "\tresync=DELAYED\n "); 7112 else if (mddev->recovery_cp < MaxSector) 7113 seq_printf(seq, "\tresync=PENDING\n "); 7114 } 7115 } else 7116 seq_printf(seq, "\n "); 7117 7118 bitmap_status(seq, mddev->bitmap); 7119 7120 seq_printf(seq, "\n"); 7121 } 7122 mddev_unlock(mddev); 7123 7124 return 0; 7125} 7126 7127static const struct seq_operations md_seq_ops = { 7128 .start = md_seq_start, 7129 .next = md_seq_next, 7130 .stop = md_seq_stop, 7131 .show = md_seq_show, 7132}; 7133 7134static int md_seq_open(struct inode *inode, struct file *file) 7135{ 7136 struct seq_file *seq; 7137 int error; 7138 7139 error = seq_open(file, &md_seq_ops); 7140 if (error) 7141 return error; 7142 7143 seq = file->private_data; 7144 seq->poll_event = atomic_read(&md_event_count); 7145 return error; 7146} 7147 7148static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7149{ 7150 struct seq_file *seq = filp->private_data; 7151 int mask; 7152 7153 poll_wait(filp, &md_event_waiters, wait); 7154 7155 /* always allow read */ 7156 mask = POLLIN | POLLRDNORM; 7157 7158 if (seq->poll_event != atomic_read(&md_event_count)) 7159 mask |= POLLERR | POLLPRI; 7160 return mask; 7161} 7162 7163static const struct file_operations md_seq_fops = { 7164 .owner = THIS_MODULE, 7165 .open = md_seq_open, 7166 .read = seq_read, 7167 .llseek = seq_lseek, 7168 .release = seq_release_private, 7169 .poll = mdstat_poll, 7170}; 7171 7172int register_md_personality(struct md_personality *p) 7173{ 7174 spin_lock(&pers_lock); 7175 list_add_tail(&p->list, &pers_list); 7176 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7177 spin_unlock(&pers_lock); 7178 return 0; 7179} 7180 7181int unregister_md_personality(struct md_personality *p) 7182{ 7183 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7184 spin_lock(&pers_lock); 7185 list_del_init(&p->list); 7186 spin_unlock(&pers_lock); 7187 return 0; 7188} 7189 7190static int is_mddev_idle(struct mddev *mddev, int init) 7191{ 7192 struct md_rdev * rdev; 7193 int idle; 7194 int curr_events; 7195 7196 idle = 1; 7197 rcu_read_lock(); 7198 rdev_for_each_rcu(rdev, mddev) { 7199 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7200 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7201 (int)part_stat_read(&disk->part0, sectors[1]) - 7202 atomic_read(&disk->sync_io); 7203 /* sync IO will cause sync_io to increase before the disk_stats 7204 * as sync_io is counted when a request starts, and 7205 * disk_stats is counted when it completes. 7206 * So resync activity will cause curr_events to be smaller than 7207 * when there was no such activity. 7208 * non-sync IO will cause disk_stat to increase without 7209 * increasing sync_io so curr_events will (eventually) 7210 * be larger than it was before. Once it becomes 7211 * substantially larger, the test below will cause 7212 * the array to appear non-idle, and resync will slow 7213 * down. 7214 * If there is a lot of outstanding resync activity when 7215 * we set last_event to curr_events, then all that activity 7216 * completing might cause the array to appear non-idle 7217 * and resync will be slowed down even though there might 7218 * not have been non-resync activity. This will only 7219 * happen once though. 'last_events' will soon reflect 7220 * the state where there is little or no outstanding 7221 * resync requests, and further resync activity will 7222 * always make curr_events less than last_events. 7223 * 7224 */ 7225 if (init || curr_events - rdev->last_events > 64) { 7226 rdev->last_events = curr_events; 7227 idle = 0; 7228 } 7229 } 7230 rcu_read_unlock(); 7231 return idle; 7232} 7233 7234void md_done_sync(struct mddev *mddev, int blocks, int ok) 7235{ 7236 /* another "blocks" (512byte) blocks have been synced */ 7237 atomic_sub(blocks, &mddev->recovery_active); 7238 wake_up(&mddev->recovery_wait); 7239 if (!ok) { 7240 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7241 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7242 md_wakeup_thread(mddev->thread); 7243 // stop recovery, signal do_sync .... 7244 } 7245} 7246 7247 7248/* md_write_start(mddev, bi) 7249 * If we need to update some array metadata (e.g. 'active' flag 7250 * in superblock) before writing, schedule a superblock update 7251 * and wait for it to complete. 7252 */ 7253void md_write_start(struct mddev *mddev, struct bio *bi) 7254{ 7255 int did_change = 0; 7256 if (bio_data_dir(bi) != WRITE) 7257 return; 7258 7259 BUG_ON(mddev->ro == 1); 7260 if (mddev->ro == 2) { 7261 /* need to switch to read/write */ 7262 mddev->ro = 0; 7263 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7264 md_wakeup_thread(mddev->thread); 7265 md_wakeup_thread(mddev->sync_thread); 7266 did_change = 1; 7267 } 7268 atomic_inc(&mddev->writes_pending); 7269 if (mddev->safemode == 1) 7270 mddev->safemode = 0; 7271 if (mddev->in_sync) { 7272 spin_lock_irq(&mddev->write_lock); 7273 if (mddev->in_sync) { 7274 mddev->in_sync = 0; 7275 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7276 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7277 md_wakeup_thread(mddev->thread); 7278 did_change = 1; 7279 } 7280 spin_unlock_irq(&mddev->write_lock); 7281 } 7282 if (did_change) 7283 sysfs_notify_dirent_safe(mddev->sysfs_state); 7284 wait_event(mddev->sb_wait, 7285 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7286} 7287 7288void md_write_end(struct mddev *mddev) 7289{ 7290 if (atomic_dec_and_test(&mddev->writes_pending)) { 7291 if (mddev->safemode == 2) 7292 md_wakeup_thread(mddev->thread); 7293 else if (mddev->safemode_delay) 7294 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7295 } 7296} 7297 7298/* md_allow_write(mddev) 7299 * Calling this ensures that the array is marked 'active' so that writes 7300 * may proceed without blocking. It is important to call this before 7301 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7302 * Must be called with mddev_lock held. 7303 * 7304 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7305 * is dropped, so return -EAGAIN after notifying userspace. 7306 */ 7307int md_allow_write(struct mddev *mddev) 7308{ 7309 if (!mddev->pers) 7310 return 0; 7311 if (mddev->ro) 7312 return 0; 7313 if (!mddev->pers->sync_request) 7314 return 0; 7315 7316 spin_lock_irq(&mddev->write_lock); 7317 if (mddev->in_sync) { 7318 mddev->in_sync = 0; 7319 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7320 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7321 if (mddev->safemode_delay && 7322 mddev->safemode == 0) 7323 mddev->safemode = 1; 7324 spin_unlock_irq(&mddev->write_lock); 7325 md_update_sb(mddev, 0); 7326 sysfs_notify_dirent_safe(mddev->sysfs_state); 7327 } else 7328 spin_unlock_irq(&mddev->write_lock); 7329 7330 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7331 return -EAGAIN; 7332 else 7333 return 0; 7334} 7335EXPORT_SYMBOL_GPL(md_allow_write); 7336 7337#define SYNC_MARKS 10 7338#define SYNC_MARK_STEP (3*HZ) 7339#define UPDATE_FREQUENCY (5*60*HZ) 7340void md_do_sync(struct md_thread *thread) 7341{ 7342 struct mddev *mddev = thread->mddev; 7343 struct mddev *mddev2; 7344 unsigned int currspeed = 0, 7345 window; 7346 sector_t max_sectors,j, io_sectors; 7347 unsigned long mark[SYNC_MARKS]; 7348 unsigned long update_time; 7349 sector_t mark_cnt[SYNC_MARKS]; 7350 int last_mark,m; 7351 struct list_head *tmp; 7352 sector_t last_check; 7353 int skipped = 0; 7354 struct md_rdev *rdev; 7355 char *desc, *action = NULL; 7356 struct blk_plug plug; 7357 7358 /* just incase thread restarts... */ 7359 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7360 return; 7361 if (mddev->ro) /* never try to sync a read-only array */ 7362 return; 7363 7364 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7365 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7366 desc = "data-check"; 7367 action = "check"; 7368 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7369 desc = "requested-resync"; 7370 action = "repair"; 7371 } else 7372 desc = "resync"; 7373 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7374 desc = "reshape"; 7375 else 7376 desc = "recovery"; 7377 7378 mddev->last_sync_action = action ?: desc; 7379 7380 /* we overload curr_resync somewhat here. 7381 * 0 == not engaged in resync at all 7382 * 2 == checking that there is no conflict with another sync 7383 * 1 == like 2, but have yielded to allow conflicting resync to 7384 * commense 7385 * other == active in resync - this many blocks 7386 * 7387 * Before starting a resync we must have set curr_resync to 7388 * 2, and then checked that every "conflicting" array has curr_resync 7389 * less than ours. When we find one that is the same or higher 7390 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7391 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7392 * This will mean we have to start checking from the beginning again. 7393 * 7394 */ 7395 7396 do { 7397 mddev->curr_resync = 2; 7398 7399 try_again: 7400 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7401 goto skip; 7402 for_each_mddev(mddev2, tmp) { 7403 if (mddev2 == mddev) 7404 continue; 7405 if (!mddev->parallel_resync 7406 && mddev2->curr_resync 7407 && match_mddev_units(mddev, mddev2)) { 7408 DEFINE_WAIT(wq); 7409 if (mddev < mddev2 && mddev->curr_resync == 2) { 7410 /* arbitrarily yield */ 7411 mddev->curr_resync = 1; 7412 wake_up(&resync_wait); 7413 } 7414 if (mddev > mddev2 && mddev->curr_resync == 1) 7415 /* no need to wait here, we can wait the next 7416 * time 'round when curr_resync == 2 7417 */ 7418 continue; 7419 /* We need to wait 'interruptible' so as not to 7420 * contribute to the load average, and not to 7421 * be caught by 'softlockup' 7422 */ 7423 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7424 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7425 mddev2->curr_resync >= mddev->curr_resync) { 7426 printk(KERN_INFO "md: delaying %s of %s" 7427 " until %s has finished (they" 7428 " share one or more physical units)\n", 7429 desc, mdname(mddev), mdname(mddev2)); 7430 mddev_put(mddev2); 7431 if (signal_pending(current)) 7432 flush_signals(current); 7433 schedule(); 7434 finish_wait(&resync_wait, &wq); 7435 goto try_again; 7436 } 7437 finish_wait(&resync_wait, &wq); 7438 } 7439 } 7440 } while (mddev->curr_resync < 2); 7441 7442 j = 0; 7443 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7444 /* resync follows the size requested by the personality, 7445 * which defaults to physical size, but can be virtual size 7446 */ 7447 max_sectors = mddev->resync_max_sectors; 7448 atomic64_set(&mddev->resync_mismatches, 0); 7449 /* we don't use the checkpoint if there's a bitmap */ 7450 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7451 j = mddev->resync_min; 7452 else if (!mddev->bitmap) 7453 j = mddev->recovery_cp; 7454 7455 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7456 max_sectors = mddev->resync_max_sectors; 7457 else { 7458 /* recovery follows the physical size of devices */ 7459 max_sectors = mddev->dev_sectors; 7460 j = MaxSector; 7461 rcu_read_lock(); 7462 rdev_for_each_rcu(rdev, mddev) 7463 if (rdev->raid_disk >= 0 && 7464 !test_bit(Faulty, &rdev->flags) && 7465 !test_bit(In_sync, &rdev->flags) && 7466 rdev->recovery_offset < j) 7467 j = rdev->recovery_offset; 7468 rcu_read_unlock(); 7469 } 7470 7471 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7472 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7473 " %d KB/sec/disk.\n", speed_min(mddev)); 7474 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7475 "(but not more than %d KB/sec) for %s.\n", 7476 speed_max(mddev), desc); 7477 7478 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7479 7480 io_sectors = 0; 7481 for (m = 0; m < SYNC_MARKS; m++) { 7482 mark[m] = jiffies; 7483 mark_cnt[m] = io_sectors; 7484 } 7485 last_mark = 0; 7486 mddev->resync_mark = mark[last_mark]; 7487 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7488 7489 /* 7490 * Tune reconstruction: 7491 */ 7492 window = 32*(PAGE_SIZE/512); 7493 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7494 window/2, (unsigned long long)max_sectors/2); 7495 7496 atomic_set(&mddev->recovery_active, 0); 7497 last_check = 0; 7498 7499 if (j>2) { 7500 printk(KERN_INFO 7501 "md: resuming %s of %s from checkpoint.\n", 7502 desc, mdname(mddev)); 7503 mddev->curr_resync = j; 7504 } else 7505 mddev->curr_resync = 3; /* no longer delayed */ 7506 mddev->curr_resync_completed = j; 7507 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7508 md_new_event(mddev); 7509 update_time = jiffies; 7510 7511 blk_start_plug(&plug); 7512 while (j < max_sectors) { 7513 sector_t sectors; 7514 7515 skipped = 0; 7516 7517 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7518 ((mddev->curr_resync > mddev->curr_resync_completed && 7519 (mddev->curr_resync - mddev->curr_resync_completed) 7520 > (max_sectors >> 4)) || 7521 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7522 (j - mddev->curr_resync_completed)*2 7523 >= mddev->resync_max - mddev->curr_resync_completed 7524 )) { 7525 /* time to update curr_resync_completed */ 7526 wait_event(mddev->recovery_wait, 7527 atomic_read(&mddev->recovery_active) == 0); 7528 mddev->curr_resync_completed = j; 7529 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7530 j > mddev->recovery_cp) 7531 mddev->recovery_cp = j; 7532 update_time = jiffies; 7533 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7534 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7535 } 7536 7537 while (j >= mddev->resync_max && 7538 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7539 /* As this condition is controlled by user-space, 7540 * we can block indefinitely, so use '_interruptible' 7541 * to avoid triggering warnings. 7542 */ 7543 flush_signals(current); /* just in case */ 7544 wait_event_interruptible(mddev->recovery_wait, 7545 mddev->resync_max > j 7546 || test_bit(MD_RECOVERY_INTR, 7547 &mddev->recovery)); 7548 } 7549 7550 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7551 break; 7552 7553 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7554 currspeed < speed_min(mddev)); 7555 if (sectors == 0) { 7556 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7557 break; 7558 } 7559 7560 if (!skipped) { /* actual IO requested */ 7561 io_sectors += sectors; 7562 atomic_add(sectors, &mddev->recovery_active); 7563 } 7564 7565 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7566 break; 7567 7568 j += sectors; 7569 if (j > 2) 7570 mddev->curr_resync = j; 7571 mddev->curr_mark_cnt = io_sectors; 7572 if (last_check == 0) 7573 /* this is the earliest that rebuild will be 7574 * visible in /proc/mdstat 7575 */ 7576 md_new_event(mddev); 7577 7578 if (last_check + window > io_sectors || j == max_sectors) 7579 continue; 7580 7581 last_check = io_sectors; 7582 repeat: 7583 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7584 /* step marks */ 7585 int next = (last_mark+1) % SYNC_MARKS; 7586 7587 mddev->resync_mark = mark[next]; 7588 mddev->resync_mark_cnt = mark_cnt[next]; 7589 mark[next] = jiffies; 7590 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7591 last_mark = next; 7592 } 7593 7594 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7595 break; 7596 7597 /* 7598 * this loop exits only if either when we are slower than 7599 * the 'hard' speed limit, or the system was IO-idle for 7600 * a jiffy. 7601 * the system might be non-idle CPU-wise, but we only care 7602 * about not overloading the IO subsystem. (things like an 7603 * e2fsck being done on the RAID array should execute fast) 7604 */ 7605 cond_resched(); 7606 7607 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7608 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7609 7610 if (currspeed > speed_min(mddev)) { 7611 if ((currspeed > speed_max(mddev)) || 7612 !is_mddev_idle(mddev, 0)) { 7613 msleep(500); 7614 goto repeat; 7615 } 7616 } 7617 } 7618 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7619 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7620 ? "interrupted" : "done"); 7621 /* 7622 * this also signals 'finished resyncing' to md_stop 7623 */ 7624 blk_finish_plug(&plug); 7625 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7626 7627 /* tell personality that we are finished */ 7628 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7629 7630 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7631 mddev->curr_resync > 2) { 7632 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7633 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7634 if (mddev->curr_resync >= mddev->recovery_cp) { 7635 printk(KERN_INFO 7636 "md: checkpointing %s of %s.\n", 7637 desc, mdname(mddev)); 7638 if (test_bit(MD_RECOVERY_ERROR, 7639 &mddev->recovery)) 7640 mddev->recovery_cp = 7641 mddev->curr_resync_completed; 7642 else 7643 mddev->recovery_cp = 7644 mddev->curr_resync; 7645 } 7646 } else 7647 mddev->recovery_cp = MaxSector; 7648 } else { 7649 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7650 mddev->curr_resync = MaxSector; 7651 rcu_read_lock(); 7652 rdev_for_each_rcu(rdev, mddev) 7653 if (rdev->raid_disk >= 0 && 7654 mddev->delta_disks >= 0 && 7655 !test_bit(Faulty, &rdev->flags) && 7656 !test_bit(In_sync, &rdev->flags) && 7657 rdev->recovery_offset < mddev->curr_resync) 7658 rdev->recovery_offset = mddev->curr_resync; 7659 rcu_read_unlock(); 7660 } 7661 } 7662 skip: 7663 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7664 7665 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7666 /* We completed so min/max setting can be forgotten if used. */ 7667 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7668 mddev->resync_min = 0; 7669 mddev->resync_max = MaxSector; 7670 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7671 mddev->resync_min = mddev->curr_resync_completed; 7672 mddev->curr_resync = 0; 7673 wake_up(&resync_wait); 7674 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7675 md_wakeup_thread(mddev->thread); 7676 return; 7677} 7678EXPORT_SYMBOL_GPL(md_do_sync); 7679 7680static int remove_and_add_spares(struct mddev *mddev, 7681 struct md_rdev *this) 7682{ 7683 struct md_rdev *rdev; 7684 int spares = 0; 7685 int removed = 0; 7686 7687 rdev_for_each(rdev, mddev) 7688 if ((this == NULL || rdev == this) && 7689 rdev->raid_disk >= 0 && 7690 !test_bit(Blocked, &rdev->flags) && 7691 (test_bit(Faulty, &rdev->flags) || 7692 ! test_bit(In_sync, &rdev->flags)) && 7693 atomic_read(&rdev->nr_pending)==0) { 7694 if (mddev->pers->hot_remove_disk( 7695 mddev, rdev) == 0) { 7696 sysfs_unlink_rdev(mddev, rdev); 7697 rdev->raid_disk = -1; 7698 removed++; 7699 } 7700 } 7701 if (removed && mddev->kobj.sd) 7702 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7703 7704 if (this) 7705 goto no_add; 7706 7707 rdev_for_each(rdev, mddev) { 7708 if (rdev->raid_disk >= 0 && 7709 !test_bit(In_sync, &rdev->flags) && 7710 !test_bit(Faulty, &rdev->flags)) 7711 spares++; 7712 if (rdev->raid_disk >= 0) 7713 continue; 7714 if (test_bit(Faulty, &rdev->flags)) 7715 continue; 7716 if (mddev->ro && 7717 ! (rdev->saved_raid_disk >= 0 && 7718 !test_bit(Bitmap_sync, &rdev->flags))) 7719 continue; 7720 7721 rdev->recovery_offset = 0; 7722 if (mddev->pers-> 7723 hot_add_disk(mddev, rdev) == 0) { 7724 if (sysfs_link_rdev(mddev, rdev)) 7725 /* failure here is OK */; 7726 spares++; 7727 md_new_event(mddev); 7728 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7729 } 7730 } 7731no_add: 7732 if (removed) 7733 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7734 return spares; 7735} 7736 7737/* 7738 * This routine is regularly called by all per-raid-array threads to 7739 * deal with generic issues like resync and super-block update. 7740 * Raid personalities that don't have a thread (linear/raid0) do not 7741 * need this as they never do any recovery or update the superblock. 7742 * 7743 * It does not do any resync itself, but rather "forks" off other threads 7744 * to do that as needed. 7745 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7746 * "->recovery" and create a thread at ->sync_thread. 7747 * When the thread finishes it sets MD_RECOVERY_DONE 7748 * and wakeups up this thread which will reap the thread and finish up. 7749 * This thread also removes any faulty devices (with nr_pending == 0). 7750 * 7751 * The overall approach is: 7752 * 1/ if the superblock needs updating, update it. 7753 * 2/ If a recovery thread is running, don't do anything else. 7754 * 3/ If recovery has finished, clean up, possibly marking spares active. 7755 * 4/ If there are any faulty devices, remove them. 7756 * 5/ If array is degraded, try to add spares devices 7757 * 6/ If array has spares or is not in-sync, start a resync thread. 7758 */ 7759void md_check_recovery(struct mddev *mddev) 7760{ 7761 if (mddev->suspended) 7762 return; 7763 7764 if (mddev->bitmap) 7765 bitmap_daemon_work(mddev); 7766 7767 if (signal_pending(current)) { 7768 if (mddev->pers->sync_request && !mddev->external) { 7769 printk(KERN_INFO "md: %s in immediate safe mode\n", 7770 mdname(mddev)); 7771 mddev->safemode = 2; 7772 } 7773 flush_signals(current); 7774 } 7775 7776 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7777 return; 7778 if ( ! ( 7779 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 7780 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7781 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7782 (mddev->external == 0 && mddev->safemode == 1) || 7783 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7784 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7785 )) 7786 return; 7787 7788 if (mddev_trylock(mddev)) { 7789 int spares = 0; 7790 7791 if (mddev->ro) { 7792 /* On a read-only array we can: 7793 * - remove failed devices 7794 * - add already-in_sync devices if the array itself 7795 * is in-sync. 7796 * As we only add devices that are already in-sync, 7797 * we can activate the spares immediately. 7798 */ 7799 remove_and_add_spares(mddev, NULL); 7800 /* There is no thread, but we need to call 7801 * ->spare_active and clear saved_raid_disk 7802 */ 7803 md_reap_sync_thread(mddev); 7804 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7805 goto unlock; 7806 } 7807 7808 if (!mddev->external) { 7809 int did_change = 0; 7810 spin_lock_irq(&mddev->write_lock); 7811 if (mddev->safemode && 7812 !atomic_read(&mddev->writes_pending) && 7813 !mddev->in_sync && 7814 mddev->recovery_cp == MaxSector) { 7815 mddev->in_sync = 1; 7816 did_change = 1; 7817 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7818 } 7819 if (mddev->safemode == 1) 7820 mddev->safemode = 0; 7821 spin_unlock_irq(&mddev->write_lock); 7822 if (did_change) 7823 sysfs_notify_dirent_safe(mddev->sysfs_state); 7824 } 7825 7826 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7827 md_update_sb(mddev, 0); 7828 7829 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7830 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7831 /* resync/recovery still happening */ 7832 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7833 goto unlock; 7834 } 7835 if (mddev->sync_thread) { 7836 md_reap_sync_thread(mddev); 7837 goto unlock; 7838 } 7839 /* Set RUNNING before clearing NEEDED to avoid 7840 * any transients in the value of "sync_action". 7841 */ 7842 mddev->curr_resync_completed = 0; 7843 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7844 /* Clear some bits that don't mean anything, but 7845 * might be left set 7846 */ 7847 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7848 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7849 7850 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7851 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7852 goto unlock; 7853 /* no recovery is running. 7854 * remove any failed drives, then 7855 * add spares if possible. 7856 * Spares are also removed and re-added, to allow 7857 * the personality to fail the re-add. 7858 */ 7859 7860 if (mddev->reshape_position != MaxSector) { 7861 if (mddev->pers->check_reshape == NULL || 7862 mddev->pers->check_reshape(mddev) != 0) 7863 /* Cannot proceed */ 7864 goto unlock; 7865 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7866 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7867 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7868 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7869 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7870 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7871 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7872 } else if (mddev->recovery_cp < MaxSector) { 7873 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7874 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7875 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7876 /* nothing to be done ... */ 7877 goto unlock; 7878 7879 if (mddev->pers->sync_request) { 7880 if (spares) { 7881 /* We are adding a device or devices to an array 7882 * which has the bitmap stored on all devices. 7883 * So make sure all bitmap pages get written 7884 */ 7885 bitmap_write_all(mddev->bitmap); 7886 } 7887 mddev->sync_thread = md_register_thread(md_do_sync, 7888 mddev, 7889 "resync"); 7890 if (!mddev->sync_thread) { 7891 printk(KERN_ERR "%s: could not start resync" 7892 " thread...\n", 7893 mdname(mddev)); 7894 /* leave the spares where they are, it shouldn't hurt */ 7895 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7896 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7897 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7898 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7899 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7900 } else 7901 md_wakeup_thread(mddev->sync_thread); 7902 sysfs_notify_dirent_safe(mddev->sysfs_action); 7903 md_new_event(mddev); 7904 } 7905 unlock: 7906 wake_up(&mddev->sb_wait); 7907 7908 if (!mddev->sync_thread) { 7909 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7910 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7911 &mddev->recovery)) 7912 if (mddev->sysfs_action) 7913 sysfs_notify_dirent_safe(mddev->sysfs_action); 7914 } 7915 mddev_unlock(mddev); 7916 } 7917} 7918 7919void md_reap_sync_thread(struct mddev *mddev) 7920{ 7921 struct md_rdev *rdev; 7922 7923 /* resync has finished, collect result */ 7924 md_unregister_thread(&mddev->sync_thread); 7925 wake_up(&resync_wait); 7926 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7927 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7928 /* success...*/ 7929 /* activate any spares */ 7930 if (mddev->pers->spare_active(mddev)) { 7931 sysfs_notify(&mddev->kobj, NULL, 7932 "degraded"); 7933 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7934 } 7935 } 7936 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7937 mddev->pers->finish_reshape) 7938 mddev->pers->finish_reshape(mddev); 7939 7940 /* If array is no-longer degraded, then any saved_raid_disk 7941 * information must be scrapped. Also if any device is now 7942 * In_sync we must scrape the saved_raid_disk for that device 7943 * do the superblock for an incrementally recovered device 7944 * written out. 7945 */ 7946 rdev_for_each(rdev, mddev) 7947 if (!mddev->degraded || 7948 test_bit(In_sync, &rdev->flags)) 7949 rdev->saved_raid_disk = -1; 7950 7951 md_update_sb(mddev, 1); 7952 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7953 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7954 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7955 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7956 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7957 /* flag recovery needed just to double check */ 7958 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7959 sysfs_notify_dirent_safe(mddev->sysfs_action); 7960 md_new_event(mddev); 7961 if (mddev->event_work.func) 7962 queue_work(md_misc_wq, &mddev->event_work); 7963} 7964 7965void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7966{ 7967 sysfs_notify_dirent_safe(rdev->sysfs_state); 7968 wait_event_timeout(rdev->blocked_wait, 7969 !test_bit(Blocked, &rdev->flags) && 7970 !test_bit(BlockedBadBlocks, &rdev->flags), 7971 msecs_to_jiffies(5000)); 7972 rdev_dec_pending(rdev, mddev); 7973} 7974EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7975 7976void md_finish_reshape(struct mddev *mddev) 7977{ 7978 /* called be personality module when reshape completes. */ 7979 struct md_rdev *rdev; 7980 7981 rdev_for_each(rdev, mddev) { 7982 if (rdev->data_offset > rdev->new_data_offset) 7983 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7984 else 7985 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7986 rdev->data_offset = rdev->new_data_offset; 7987 } 7988} 7989EXPORT_SYMBOL(md_finish_reshape); 7990 7991/* Bad block management. 7992 * We can record which blocks on each device are 'bad' and so just 7993 * fail those blocks, or that stripe, rather than the whole device. 7994 * Entries in the bad-block table are 64bits wide. This comprises: 7995 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7996 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7997 * A 'shift' can be set so that larger blocks are tracked and 7998 * consequently larger devices can be covered. 7999 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8000 * 8001 * Locking of the bad-block table uses a seqlock so md_is_badblock 8002 * might need to retry if it is very unlucky. 8003 * We will sometimes want to check for bad blocks in a bi_end_io function, 8004 * so we use the write_seqlock_irq variant. 8005 * 8006 * When looking for a bad block we specify a range and want to 8007 * know if any block in the range is bad. So we binary-search 8008 * to the last range that starts at-or-before the given endpoint, 8009 * (or "before the sector after the target range") 8010 * then see if it ends after the given start. 8011 * We return 8012 * 0 if there are no known bad blocks in the range 8013 * 1 if there are known bad block which are all acknowledged 8014 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8015 * plus the start/length of the first bad section we overlap. 8016 */ 8017int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8018 sector_t *first_bad, int *bad_sectors) 8019{ 8020 int hi; 8021 int lo; 8022 u64 *p = bb->page; 8023 int rv; 8024 sector_t target = s + sectors; 8025 unsigned seq; 8026 8027 if (bb->shift > 0) { 8028 /* round the start down, and the end up */ 8029 s >>= bb->shift; 8030 target += (1<<bb->shift) - 1; 8031 target >>= bb->shift; 8032 sectors = target - s; 8033 } 8034 /* 'target' is now the first block after the bad range */ 8035 8036retry: 8037 seq = read_seqbegin(&bb->lock); 8038 lo = 0; 8039 rv = 0; 8040 hi = bb->count; 8041 8042 /* Binary search between lo and hi for 'target' 8043 * i.e. for the last range that starts before 'target' 8044 */ 8045 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8046 * are known not to be the last range before target. 8047 * VARIANT: hi-lo is the number of possible 8048 * ranges, and decreases until it reaches 1 8049 */ 8050 while (hi - lo > 1) { 8051 int mid = (lo + hi) / 2; 8052 sector_t a = BB_OFFSET(p[mid]); 8053 if (a < target) 8054 /* This could still be the one, earlier ranges 8055 * could not. */ 8056 lo = mid; 8057 else 8058 /* This and later ranges are definitely out. */ 8059 hi = mid; 8060 } 8061 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8062 if (hi > lo) { 8063 /* need to check all range that end after 's' to see if 8064 * any are unacknowledged. 8065 */ 8066 while (lo >= 0 && 8067 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8068 if (BB_OFFSET(p[lo]) < target) { 8069 /* starts before the end, and finishes after 8070 * the start, so they must overlap 8071 */ 8072 if (rv != -1 && BB_ACK(p[lo])) 8073 rv = 1; 8074 else 8075 rv = -1; 8076 *first_bad = BB_OFFSET(p[lo]); 8077 *bad_sectors = BB_LEN(p[lo]); 8078 } 8079 lo--; 8080 } 8081 } 8082 8083 if (read_seqretry(&bb->lock, seq)) 8084 goto retry; 8085 8086 return rv; 8087} 8088EXPORT_SYMBOL_GPL(md_is_badblock); 8089 8090/* 8091 * Add a range of bad blocks to the table. 8092 * This might extend the table, or might contract it 8093 * if two adjacent ranges can be merged. 8094 * We binary-search to find the 'insertion' point, then 8095 * decide how best to handle it. 8096 */ 8097static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8098 int acknowledged) 8099{ 8100 u64 *p; 8101 int lo, hi; 8102 int rv = 1; 8103 unsigned long flags; 8104 8105 if (bb->shift < 0) 8106 /* badblocks are disabled */ 8107 return 0; 8108 8109 if (bb->shift) { 8110 /* round the start down, and the end up */ 8111 sector_t next = s + sectors; 8112 s >>= bb->shift; 8113 next += (1<<bb->shift) - 1; 8114 next >>= bb->shift; 8115 sectors = next - s; 8116 } 8117 8118 write_seqlock_irqsave(&bb->lock, flags); 8119 8120 p = bb->page; 8121 lo = 0; 8122 hi = bb->count; 8123 /* Find the last range that starts at-or-before 's' */ 8124 while (hi - lo > 1) { 8125 int mid = (lo + hi) / 2; 8126 sector_t a = BB_OFFSET(p[mid]); 8127 if (a <= s) 8128 lo = mid; 8129 else 8130 hi = mid; 8131 } 8132 if (hi > lo && BB_OFFSET(p[lo]) > s) 8133 hi = lo; 8134 8135 if (hi > lo) { 8136 /* we found a range that might merge with the start 8137 * of our new range 8138 */ 8139 sector_t a = BB_OFFSET(p[lo]); 8140 sector_t e = a + BB_LEN(p[lo]); 8141 int ack = BB_ACK(p[lo]); 8142 if (e >= s) { 8143 /* Yes, we can merge with a previous range */ 8144 if (s == a && s + sectors >= e) 8145 /* new range covers old */ 8146 ack = acknowledged; 8147 else 8148 ack = ack && acknowledged; 8149 8150 if (e < s + sectors) 8151 e = s + sectors; 8152 if (e - a <= BB_MAX_LEN) { 8153 p[lo] = BB_MAKE(a, e-a, ack); 8154 s = e; 8155 } else { 8156 /* does not all fit in one range, 8157 * make p[lo] maximal 8158 */ 8159 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8160 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8161 s = a + BB_MAX_LEN; 8162 } 8163 sectors = e - s; 8164 } 8165 } 8166 if (sectors && hi < bb->count) { 8167 /* 'hi' points to the first range that starts after 's'. 8168 * Maybe we can merge with the start of that range */ 8169 sector_t a = BB_OFFSET(p[hi]); 8170 sector_t e = a + BB_LEN(p[hi]); 8171 int ack = BB_ACK(p[hi]); 8172 if (a <= s + sectors) { 8173 /* merging is possible */ 8174 if (e <= s + sectors) { 8175 /* full overlap */ 8176 e = s + sectors; 8177 ack = acknowledged; 8178 } else 8179 ack = ack && acknowledged; 8180 8181 a = s; 8182 if (e - a <= BB_MAX_LEN) { 8183 p[hi] = BB_MAKE(a, e-a, ack); 8184 s = e; 8185 } else { 8186 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8187 s = a + BB_MAX_LEN; 8188 } 8189 sectors = e - s; 8190 lo = hi; 8191 hi++; 8192 } 8193 } 8194 if (sectors == 0 && hi < bb->count) { 8195 /* we might be able to combine lo and hi */ 8196 /* Note: 's' is at the end of 'lo' */ 8197 sector_t a = BB_OFFSET(p[hi]); 8198 int lolen = BB_LEN(p[lo]); 8199 int hilen = BB_LEN(p[hi]); 8200 int newlen = lolen + hilen - (s - a); 8201 if (s >= a && newlen < BB_MAX_LEN) { 8202 /* yes, we can combine them */ 8203 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8204 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8205 memmove(p + hi, p + hi + 1, 8206 (bb->count - hi - 1) * 8); 8207 bb->count--; 8208 } 8209 } 8210 while (sectors) { 8211 /* didn't merge (it all). 8212 * Need to add a range just before 'hi' */ 8213 if (bb->count >= MD_MAX_BADBLOCKS) { 8214 /* No room for more */ 8215 rv = 0; 8216 break; 8217 } else { 8218 int this_sectors = sectors; 8219 memmove(p + hi + 1, p + hi, 8220 (bb->count - hi) * 8); 8221 bb->count++; 8222 8223 if (this_sectors > BB_MAX_LEN) 8224 this_sectors = BB_MAX_LEN; 8225 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8226 sectors -= this_sectors; 8227 s += this_sectors; 8228 } 8229 } 8230 8231 bb->changed = 1; 8232 if (!acknowledged) 8233 bb->unacked_exist = 1; 8234 write_sequnlock_irqrestore(&bb->lock, flags); 8235 8236 return rv; 8237} 8238 8239int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8240 int is_new) 8241{ 8242 int rv; 8243 if (is_new) 8244 s += rdev->new_data_offset; 8245 else 8246 s += rdev->data_offset; 8247 rv = md_set_badblocks(&rdev->badblocks, 8248 s, sectors, 0); 8249 if (rv) { 8250 /* Make sure they get written out promptly */ 8251 sysfs_notify_dirent_safe(rdev->sysfs_state); 8252 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8253 md_wakeup_thread(rdev->mddev->thread); 8254 } 8255 return rv; 8256} 8257EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8258 8259/* 8260 * Remove a range of bad blocks from the table. 8261 * This may involve extending the table if we spilt a region, 8262 * but it must not fail. So if the table becomes full, we just 8263 * drop the remove request. 8264 */ 8265static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8266{ 8267 u64 *p; 8268 int lo, hi; 8269 sector_t target = s + sectors; 8270 int rv = 0; 8271 8272 if (bb->shift > 0) { 8273 /* When clearing we round the start up and the end down. 8274 * This should not matter as the shift should align with 8275 * the block size and no rounding should ever be needed. 8276 * However it is better the think a block is bad when it 8277 * isn't than to think a block is not bad when it is. 8278 */ 8279 s += (1<<bb->shift) - 1; 8280 s >>= bb->shift; 8281 target >>= bb->shift; 8282 sectors = target - s; 8283 } 8284 8285 write_seqlock_irq(&bb->lock); 8286 8287 p = bb->page; 8288 lo = 0; 8289 hi = bb->count; 8290 /* Find the last range that starts before 'target' */ 8291 while (hi - lo > 1) { 8292 int mid = (lo + hi) / 2; 8293 sector_t a = BB_OFFSET(p[mid]); 8294 if (a < target) 8295 lo = mid; 8296 else 8297 hi = mid; 8298 } 8299 if (hi > lo) { 8300 /* p[lo] is the last range that could overlap the 8301 * current range. Earlier ranges could also overlap, 8302 * but only this one can overlap the end of the range. 8303 */ 8304 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8305 /* Partial overlap, leave the tail of this range */ 8306 int ack = BB_ACK(p[lo]); 8307 sector_t a = BB_OFFSET(p[lo]); 8308 sector_t end = a + BB_LEN(p[lo]); 8309 8310 if (a < s) { 8311 /* we need to split this range */ 8312 if (bb->count >= MD_MAX_BADBLOCKS) { 8313 rv = 0; 8314 goto out; 8315 } 8316 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8317 bb->count++; 8318 p[lo] = BB_MAKE(a, s-a, ack); 8319 lo++; 8320 } 8321 p[lo] = BB_MAKE(target, end - target, ack); 8322 /* there is no longer an overlap */ 8323 hi = lo; 8324 lo--; 8325 } 8326 while (lo >= 0 && 8327 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8328 /* This range does overlap */ 8329 if (BB_OFFSET(p[lo]) < s) { 8330 /* Keep the early parts of this range. */ 8331 int ack = BB_ACK(p[lo]); 8332 sector_t start = BB_OFFSET(p[lo]); 8333 p[lo] = BB_MAKE(start, s - start, ack); 8334 /* now low doesn't overlap, so.. */ 8335 break; 8336 } 8337 lo--; 8338 } 8339 /* 'lo' is strictly before, 'hi' is strictly after, 8340 * anything between needs to be discarded 8341 */ 8342 if (hi - lo > 1) { 8343 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8344 bb->count -= (hi - lo - 1); 8345 } 8346 } 8347 8348 bb->changed = 1; 8349out: 8350 write_sequnlock_irq(&bb->lock); 8351 return rv; 8352} 8353 8354int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8355 int is_new) 8356{ 8357 if (is_new) 8358 s += rdev->new_data_offset; 8359 else 8360 s += rdev->data_offset; 8361 return md_clear_badblocks(&rdev->badblocks, 8362 s, sectors); 8363} 8364EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8365 8366/* 8367 * Acknowledge all bad blocks in a list. 8368 * This only succeeds if ->changed is clear. It is used by 8369 * in-kernel metadata updates 8370 */ 8371void md_ack_all_badblocks(struct badblocks *bb) 8372{ 8373 if (bb->page == NULL || bb->changed) 8374 /* no point even trying */ 8375 return; 8376 write_seqlock_irq(&bb->lock); 8377 8378 if (bb->changed == 0 && bb->unacked_exist) { 8379 u64 *p = bb->page; 8380 int i; 8381 for (i = 0; i < bb->count ; i++) { 8382 if (!BB_ACK(p[i])) { 8383 sector_t start = BB_OFFSET(p[i]); 8384 int len = BB_LEN(p[i]); 8385 p[i] = BB_MAKE(start, len, 1); 8386 } 8387 } 8388 bb->unacked_exist = 0; 8389 } 8390 write_sequnlock_irq(&bb->lock); 8391} 8392EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8393 8394/* sysfs access to bad-blocks list. 8395 * We present two files. 8396 * 'bad-blocks' lists sector numbers and lengths of ranges that 8397 * are recorded as bad. The list is truncated to fit within 8398 * the one-page limit of sysfs. 8399 * Writing "sector length" to this file adds an acknowledged 8400 * bad block list. 8401 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8402 * been acknowledged. Writing to this file adds bad blocks 8403 * without acknowledging them. This is largely for testing. 8404 */ 8405 8406static ssize_t 8407badblocks_show(struct badblocks *bb, char *page, int unack) 8408{ 8409 size_t len; 8410 int i; 8411 u64 *p = bb->page; 8412 unsigned seq; 8413 8414 if (bb->shift < 0) 8415 return 0; 8416 8417retry: 8418 seq = read_seqbegin(&bb->lock); 8419 8420 len = 0; 8421 i = 0; 8422 8423 while (len < PAGE_SIZE && i < bb->count) { 8424 sector_t s = BB_OFFSET(p[i]); 8425 unsigned int length = BB_LEN(p[i]); 8426 int ack = BB_ACK(p[i]); 8427 i++; 8428 8429 if (unack && ack) 8430 continue; 8431 8432 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8433 (unsigned long long)s << bb->shift, 8434 length << bb->shift); 8435 } 8436 if (unack && len == 0) 8437 bb->unacked_exist = 0; 8438 8439 if (read_seqretry(&bb->lock, seq)) 8440 goto retry; 8441 8442 return len; 8443} 8444 8445#define DO_DEBUG 1 8446 8447static ssize_t 8448badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8449{ 8450 unsigned long long sector; 8451 int length; 8452 char newline; 8453#ifdef DO_DEBUG 8454 /* Allow clearing via sysfs *only* for testing/debugging. 8455 * Normally only a successful write may clear a badblock 8456 */ 8457 int clear = 0; 8458 if (page[0] == '-') { 8459 clear = 1; 8460 page++; 8461 } 8462#endif /* DO_DEBUG */ 8463 8464 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) { 8465 case 3: 8466 if (newline != '\n') 8467 return -EINVAL; 8468 case 2: 8469 if (length <= 0) 8470 return -EINVAL; 8471 break; 8472 default: 8473 return -EINVAL; 8474 } 8475 8476#ifdef DO_DEBUG 8477 if (clear) { 8478 md_clear_badblocks(bb, sector, length); 8479 return len; 8480 } 8481#endif /* DO_DEBUG */ 8482 if (md_set_badblocks(bb, sector, length, !unack)) 8483 return len; 8484 else 8485 return -ENOSPC; 8486} 8487 8488static int md_notify_reboot(struct notifier_block *this, 8489 unsigned long code, void *x) 8490{ 8491 struct list_head *tmp; 8492 struct mddev *mddev; 8493 int need_delay = 0; 8494 8495 for_each_mddev(mddev, tmp) { 8496 if (mddev_trylock(mddev)) { 8497 if (mddev->pers) 8498 __md_stop_writes(mddev); 8499 mddev->safemode = 2; 8500 mddev_unlock(mddev); 8501 } 8502 need_delay = 1; 8503 } 8504 /* 8505 * certain more exotic SCSI devices are known to be 8506 * volatile wrt too early system reboots. While the 8507 * right place to handle this issue is the given 8508 * driver, we do want to have a safe RAID driver ... 8509 */ 8510 if (need_delay) 8511 mdelay(1000*1); 8512 8513 return NOTIFY_DONE; 8514} 8515 8516static struct notifier_block md_notifier = { 8517 .notifier_call = md_notify_reboot, 8518 .next = NULL, 8519 .priority = INT_MAX, /* before any real devices */ 8520}; 8521 8522static void md_geninit(void) 8523{ 8524 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8525 8526 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8527} 8528 8529static int __init md_init(void) 8530{ 8531 int ret = -ENOMEM; 8532 8533 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8534 if (!md_wq) 8535 goto err_wq; 8536 8537 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8538 if (!md_misc_wq) 8539 goto err_misc_wq; 8540 8541 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8542 goto err_md; 8543 8544 if ((ret = register_blkdev(0, "mdp")) < 0) 8545 goto err_mdp; 8546 mdp_major = ret; 8547 8548 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8549 md_probe, NULL, NULL); 8550 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8551 md_probe, NULL, NULL); 8552 8553 register_reboot_notifier(&md_notifier); 8554 raid_table_header = register_sysctl_table(raid_root_table); 8555 8556 md_geninit(); 8557 return 0; 8558 8559err_mdp: 8560 unregister_blkdev(MD_MAJOR, "md"); 8561err_md: 8562 destroy_workqueue(md_misc_wq); 8563err_misc_wq: 8564 destroy_workqueue(md_wq); 8565err_wq: 8566 return ret; 8567} 8568 8569#ifndef MODULE 8570 8571/* 8572 * Searches all registered partitions for autorun RAID arrays 8573 * at boot time. 8574 */ 8575 8576static LIST_HEAD(all_detected_devices); 8577struct detected_devices_node { 8578 struct list_head list; 8579 dev_t dev; 8580}; 8581 8582void md_autodetect_dev(dev_t dev) 8583{ 8584 struct detected_devices_node *node_detected_dev; 8585 8586 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8587 if (node_detected_dev) { 8588 node_detected_dev->dev = dev; 8589 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8590 } else { 8591 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8592 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8593 } 8594} 8595 8596 8597static void autostart_arrays(int part) 8598{ 8599 struct md_rdev *rdev; 8600 struct detected_devices_node *node_detected_dev; 8601 dev_t dev; 8602 int i_scanned, i_passed; 8603 8604 i_scanned = 0; 8605 i_passed = 0; 8606 8607 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8608 8609 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8610 i_scanned++; 8611 node_detected_dev = list_entry(all_detected_devices.next, 8612 struct detected_devices_node, list); 8613 list_del(&node_detected_dev->list); 8614 dev = node_detected_dev->dev; 8615 kfree(node_detected_dev); 8616 rdev = md_import_device(dev,0, 90); 8617 if (IS_ERR(rdev)) 8618 continue; 8619 8620 if (test_bit(Faulty, &rdev->flags)) { 8621 MD_BUG(); 8622 continue; 8623 } 8624 set_bit(AutoDetected, &rdev->flags); 8625 list_add(&rdev->same_set, &pending_raid_disks); 8626 i_passed++; 8627 } 8628 8629 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8630 i_scanned, i_passed); 8631 8632 autorun_devices(part); 8633} 8634 8635#endif /* !MODULE */ 8636 8637static __exit void md_exit(void) 8638{ 8639 struct mddev *mddev; 8640 struct list_head *tmp; 8641 8642 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8643 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8644 8645 unregister_blkdev(MD_MAJOR,"md"); 8646 unregister_blkdev(mdp_major, "mdp"); 8647 unregister_reboot_notifier(&md_notifier); 8648 unregister_sysctl_table(raid_table_header); 8649 remove_proc_entry("mdstat", NULL); 8650 for_each_mddev(mddev, tmp) { 8651 export_array(mddev); 8652 mddev->hold_active = 0; 8653 } 8654 destroy_workqueue(md_misc_wq); 8655 destroy_workqueue(md_wq); 8656} 8657 8658subsys_initcall(md_init); 8659module_exit(md_exit) 8660 8661static int get_ro(char *buffer, struct kernel_param *kp) 8662{ 8663 return sprintf(buffer, "%d", start_readonly); 8664} 8665static int set_ro(const char *val, struct kernel_param *kp) 8666{ 8667 char *e; 8668 int num = simple_strtoul(val, &e, 10); 8669 if (*val && (*e == '\0' || *e == '\n')) { 8670 start_readonly = num; 8671 return 0; 8672 } 8673 return -EINVAL; 8674} 8675 8676module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8677module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8678 8679module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8680 8681EXPORT_SYMBOL(register_md_personality); 8682EXPORT_SYMBOL(unregister_md_personality); 8683EXPORT_SYMBOL(md_error); 8684EXPORT_SYMBOL(md_done_sync); 8685EXPORT_SYMBOL(md_write_start); 8686EXPORT_SYMBOL(md_write_end); 8687EXPORT_SYMBOL(md_register_thread); 8688EXPORT_SYMBOL(md_unregister_thread); 8689EXPORT_SYMBOL(md_wakeup_thread); 8690EXPORT_SYMBOL(md_check_recovery); 8691EXPORT_SYMBOL(md_reap_sync_thread); 8692MODULE_LICENSE("GPL"); 8693MODULE_DESCRIPTION("MD RAID framework"); 8694MODULE_ALIAS("md"); 8695MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);