at v3.13-rc2 12 kB view raw
1/* flow.c: Generic flow cache. 2 * 3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) 4 * Copyright (C) 2003 David S. Miller (davem@redhat.com) 5 */ 6 7#include <linux/kernel.h> 8#include <linux/module.h> 9#include <linux/list.h> 10#include <linux/jhash.h> 11#include <linux/interrupt.h> 12#include <linux/mm.h> 13#include <linux/random.h> 14#include <linux/init.h> 15#include <linux/slab.h> 16#include <linux/smp.h> 17#include <linux/completion.h> 18#include <linux/percpu.h> 19#include <linux/bitops.h> 20#include <linux/notifier.h> 21#include <linux/cpu.h> 22#include <linux/cpumask.h> 23#include <linux/mutex.h> 24#include <net/flow.h> 25#include <linux/atomic.h> 26#include <linux/security.h> 27 28struct flow_cache_entry { 29 union { 30 struct hlist_node hlist; 31 struct list_head gc_list; 32 } u; 33 struct net *net; 34 u16 family; 35 u8 dir; 36 u32 genid; 37 struct flowi key; 38 struct flow_cache_object *object; 39}; 40 41struct flow_cache_percpu { 42 struct hlist_head *hash_table; 43 int hash_count; 44 u32 hash_rnd; 45 int hash_rnd_recalc; 46 struct tasklet_struct flush_tasklet; 47}; 48 49struct flow_flush_info { 50 struct flow_cache *cache; 51 atomic_t cpuleft; 52 struct completion completion; 53}; 54 55struct flow_cache { 56 u32 hash_shift; 57 struct flow_cache_percpu __percpu *percpu; 58 struct notifier_block hotcpu_notifier; 59 int low_watermark; 60 int high_watermark; 61 struct timer_list rnd_timer; 62}; 63 64atomic_t flow_cache_genid = ATOMIC_INIT(0); 65EXPORT_SYMBOL(flow_cache_genid); 66static struct flow_cache flow_cache_global; 67static struct kmem_cache *flow_cachep __read_mostly; 68 69static DEFINE_SPINLOCK(flow_cache_gc_lock); 70static LIST_HEAD(flow_cache_gc_list); 71 72#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift) 73#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) 74 75static void flow_cache_new_hashrnd(unsigned long arg) 76{ 77 struct flow_cache *fc = (void *) arg; 78 int i; 79 80 for_each_possible_cpu(i) 81 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; 82 83 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 84 add_timer(&fc->rnd_timer); 85} 86 87static int flow_entry_valid(struct flow_cache_entry *fle) 88{ 89 if (atomic_read(&flow_cache_genid) != fle->genid) 90 return 0; 91 if (fle->object && !fle->object->ops->check(fle->object)) 92 return 0; 93 return 1; 94} 95 96static void flow_entry_kill(struct flow_cache_entry *fle) 97{ 98 if (fle->object) 99 fle->object->ops->delete(fle->object); 100 kmem_cache_free(flow_cachep, fle); 101} 102 103static void flow_cache_gc_task(struct work_struct *work) 104{ 105 struct list_head gc_list; 106 struct flow_cache_entry *fce, *n; 107 108 INIT_LIST_HEAD(&gc_list); 109 spin_lock_bh(&flow_cache_gc_lock); 110 list_splice_tail_init(&flow_cache_gc_list, &gc_list); 111 spin_unlock_bh(&flow_cache_gc_lock); 112 113 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) 114 flow_entry_kill(fce); 115} 116static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task); 117 118static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp, 119 int deleted, struct list_head *gc_list) 120{ 121 if (deleted) { 122 fcp->hash_count -= deleted; 123 spin_lock_bh(&flow_cache_gc_lock); 124 list_splice_tail(gc_list, &flow_cache_gc_list); 125 spin_unlock_bh(&flow_cache_gc_lock); 126 schedule_work(&flow_cache_gc_work); 127 } 128} 129 130static void __flow_cache_shrink(struct flow_cache *fc, 131 struct flow_cache_percpu *fcp, 132 int shrink_to) 133{ 134 struct flow_cache_entry *fle; 135 struct hlist_node *tmp; 136 LIST_HEAD(gc_list); 137 int i, deleted = 0; 138 139 for (i = 0; i < flow_cache_hash_size(fc); i++) { 140 int saved = 0; 141 142 hlist_for_each_entry_safe(fle, tmp, 143 &fcp->hash_table[i], u.hlist) { 144 if (saved < shrink_to && 145 flow_entry_valid(fle)) { 146 saved++; 147 } else { 148 deleted++; 149 hlist_del(&fle->u.hlist); 150 list_add_tail(&fle->u.gc_list, &gc_list); 151 } 152 } 153 } 154 155 flow_cache_queue_garbage(fcp, deleted, &gc_list); 156} 157 158static void flow_cache_shrink(struct flow_cache *fc, 159 struct flow_cache_percpu *fcp) 160{ 161 int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); 162 163 __flow_cache_shrink(fc, fcp, shrink_to); 164} 165 166static void flow_new_hash_rnd(struct flow_cache *fc, 167 struct flow_cache_percpu *fcp) 168{ 169 get_random_bytes(&fcp->hash_rnd, sizeof(u32)); 170 fcp->hash_rnd_recalc = 0; 171 __flow_cache_shrink(fc, fcp, 0); 172} 173 174static u32 flow_hash_code(struct flow_cache *fc, 175 struct flow_cache_percpu *fcp, 176 const struct flowi *key, 177 size_t keysize) 178{ 179 const u32 *k = (const u32 *) key; 180 const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32); 181 182 return jhash2(k, length, fcp->hash_rnd) 183 & (flow_cache_hash_size(fc) - 1); 184} 185 186/* I hear what you're saying, use memcmp. But memcmp cannot make 187 * important assumptions that we can here, such as alignment. 188 */ 189static int flow_key_compare(const struct flowi *key1, const struct flowi *key2, 190 size_t keysize) 191{ 192 const flow_compare_t *k1, *k1_lim, *k2; 193 194 k1 = (const flow_compare_t *) key1; 195 k1_lim = k1 + keysize; 196 197 k2 = (const flow_compare_t *) key2; 198 199 do { 200 if (*k1++ != *k2++) 201 return 1; 202 } while (k1 < k1_lim); 203 204 return 0; 205} 206 207struct flow_cache_object * 208flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir, 209 flow_resolve_t resolver, void *ctx) 210{ 211 struct flow_cache *fc = &flow_cache_global; 212 struct flow_cache_percpu *fcp; 213 struct flow_cache_entry *fle, *tfle; 214 struct flow_cache_object *flo; 215 size_t keysize; 216 unsigned int hash; 217 218 local_bh_disable(); 219 fcp = this_cpu_ptr(fc->percpu); 220 221 fle = NULL; 222 flo = NULL; 223 224 keysize = flow_key_size(family); 225 if (!keysize) 226 goto nocache; 227 228 /* Packet really early in init? Making flow_cache_init a 229 * pre-smp initcall would solve this. --RR */ 230 if (!fcp->hash_table) 231 goto nocache; 232 233 if (fcp->hash_rnd_recalc) 234 flow_new_hash_rnd(fc, fcp); 235 236 hash = flow_hash_code(fc, fcp, key, keysize); 237 hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) { 238 if (tfle->net == net && 239 tfle->family == family && 240 tfle->dir == dir && 241 flow_key_compare(key, &tfle->key, keysize) == 0) { 242 fle = tfle; 243 break; 244 } 245 } 246 247 if (unlikely(!fle)) { 248 if (fcp->hash_count > fc->high_watermark) 249 flow_cache_shrink(fc, fcp); 250 251 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); 252 if (fle) { 253 fle->net = net; 254 fle->family = family; 255 fle->dir = dir; 256 memcpy(&fle->key, key, keysize * sizeof(flow_compare_t)); 257 fle->object = NULL; 258 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]); 259 fcp->hash_count++; 260 } 261 } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) { 262 flo = fle->object; 263 if (!flo) 264 goto ret_object; 265 flo = flo->ops->get(flo); 266 if (flo) 267 goto ret_object; 268 } else if (fle->object) { 269 flo = fle->object; 270 flo->ops->delete(flo); 271 fle->object = NULL; 272 } 273 274nocache: 275 flo = NULL; 276 if (fle) { 277 flo = fle->object; 278 fle->object = NULL; 279 } 280 flo = resolver(net, key, family, dir, flo, ctx); 281 if (fle) { 282 fle->genid = atomic_read(&flow_cache_genid); 283 if (!IS_ERR(flo)) 284 fle->object = flo; 285 else 286 fle->genid--; 287 } else { 288 if (!IS_ERR_OR_NULL(flo)) 289 flo->ops->delete(flo); 290 } 291ret_object: 292 local_bh_enable(); 293 return flo; 294} 295EXPORT_SYMBOL(flow_cache_lookup); 296 297static void flow_cache_flush_tasklet(unsigned long data) 298{ 299 struct flow_flush_info *info = (void *)data; 300 struct flow_cache *fc = info->cache; 301 struct flow_cache_percpu *fcp; 302 struct flow_cache_entry *fle; 303 struct hlist_node *tmp; 304 LIST_HEAD(gc_list); 305 int i, deleted = 0; 306 307 fcp = this_cpu_ptr(fc->percpu); 308 for (i = 0; i < flow_cache_hash_size(fc); i++) { 309 hlist_for_each_entry_safe(fle, tmp, 310 &fcp->hash_table[i], u.hlist) { 311 if (flow_entry_valid(fle)) 312 continue; 313 314 deleted++; 315 hlist_del(&fle->u.hlist); 316 list_add_tail(&fle->u.gc_list, &gc_list); 317 } 318 } 319 320 flow_cache_queue_garbage(fcp, deleted, &gc_list); 321 322 if (atomic_dec_and_test(&info->cpuleft)) 323 complete(&info->completion); 324} 325 326/* 327 * Return whether a cpu needs flushing. Conservatively, we assume 328 * the presence of any entries means the core may require flushing, 329 * since the flow_cache_ops.check() function may assume it's running 330 * on the same core as the per-cpu cache component. 331 */ 332static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu) 333{ 334 struct flow_cache_percpu *fcp; 335 int i; 336 337 fcp = per_cpu_ptr(fc->percpu, cpu); 338 for (i = 0; i < flow_cache_hash_size(fc); i++) 339 if (!hlist_empty(&fcp->hash_table[i])) 340 return 0; 341 return 1; 342} 343 344static void flow_cache_flush_per_cpu(void *data) 345{ 346 struct flow_flush_info *info = data; 347 struct tasklet_struct *tasklet; 348 349 tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet; 350 tasklet->data = (unsigned long)info; 351 tasklet_schedule(tasklet); 352} 353 354void flow_cache_flush(void) 355{ 356 struct flow_flush_info info; 357 static DEFINE_MUTEX(flow_flush_sem); 358 cpumask_var_t mask; 359 int i, self; 360 361 /* Track which cpus need flushing to avoid disturbing all cores. */ 362 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 363 return; 364 cpumask_clear(mask); 365 366 /* Don't want cpus going down or up during this. */ 367 get_online_cpus(); 368 mutex_lock(&flow_flush_sem); 369 info.cache = &flow_cache_global; 370 for_each_online_cpu(i) 371 if (!flow_cache_percpu_empty(info.cache, i)) 372 cpumask_set_cpu(i, mask); 373 atomic_set(&info.cpuleft, cpumask_weight(mask)); 374 if (atomic_read(&info.cpuleft) == 0) 375 goto done; 376 377 init_completion(&info.completion); 378 379 local_bh_disable(); 380 self = cpumask_test_and_clear_cpu(smp_processor_id(), mask); 381 on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0); 382 if (self) 383 flow_cache_flush_tasklet((unsigned long)&info); 384 local_bh_enable(); 385 386 wait_for_completion(&info.completion); 387 388done: 389 mutex_unlock(&flow_flush_sem); 390 put_online_cpus(); 391 free_cpumask_var(mask); 392} 393 394static void flow_cache_flush_task(struct work_struct *work) 395{ 396 flow_cache_flush(); 397} 398 399static DECLARE_WORK(flow_cache_flush_work, flow_cache_flush_task); 400 401void flow_cache_flush_deferred(void) 402{ 403 schedule_work(&flow_cache_flush_work); 404} 405 406static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu) 407{ 408 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 409 size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc); 410 411 if (!fcp->hash_table) { 412 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 413 if (!fcp->hash_table) { 414 pr_err("NET: failed to allocate flow cache sz %zu\n", sz); 415 return -ENOMEM; 416 } 417 fcp->hash_rnd_recalc = 1; 418 fcp->hash_count = 0; 419 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); 420 } 421 return 0; 422} 423 424static int flow_cache_cpu(struct notifier_block *nfb, 425 unsigned long action, 426 void *hcpu) 427{ 428 struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier); 429 int res, cpu = (unsigned long) hcpu; 430 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 431 432 switch (action) { 433 case CPU_UP_PREPARE: 434 case CPU_UP_PREPARE_FROZEN: 435 res = flow_cache_cpu_prepare(fc, cpu); 436 if (res) 437 return notifier_from_errno(res); 438 break; 439 case CPU_DEAD: 440 case CPU_DEAD_FROZEN: 441 __flow_cache_shrink(fc, fcp, 0); 442 break; 443 } 444 return NOTIFY_OK; 445} 446 447static int __init flow_cache_init(struct flow_cache *fc) 448{ 449 int i; 450 451 fc->hash_shift = 10; 452 fc->low_watermark = 2 * flow_cache_hash_size(fc); 453 fc->high_watermark = 4 * flow_cache_hash_size(fc); 454 455 fc->percpu = alloc_percpu(struct flow_cache_percpu); 456 if (!fc->percpu) 457 return -ENOMEM; 458 459 for_each_online_cpu(i) { 460 if (flow_cache_cpu_prepare(fc, i)) 461 goto err; 462 } 463 fc->hotcpu_notifier = (struct notifier_block){ 464 .notifier_call = flow_cache_cpu, 465 }; 466 register_hotcpu_notifier(&fc->hotcpu_notifier); 467 468 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, 469 (unsigned long) fc); 470 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 471 add_timer(&fc->rnd_timer); 472 473 return 0; 474 475err: 476 for_each_possible_cpu(i) { 477 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 478 kfree(fcp->hash_table); 479 fcp->hash_table = NULL; 480 } 481 482 free_percpu(fc->percpu); 483 fc->percpu = NULL; 484 485 return -ENOMEM; 486} 487 488static int __init flow_cache_init_global(void) 489{ 490 flow_cachep = kmem_cache_create("flow_cache", 491 sizeof(struct flow_cache_entry), 492 0, SLAB_PANIC, NULL); 493 494 return flow_cache_init(&flow_cache_global); 495} 496 497module_init(flow_cache_init_global);