at v3.13-rc2 3611 lines 108 kB view raw
1/* 2 * linux/fs/ext3/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000 23 */ 24 25#include <linux/highuid.h> 26#include <linux/quotaops.h> 27#include <linux/writeback.h> 28#include <linux/mpage.h> 29#include <linux/namei.h> 30#include <linux/aio.h> 31#include "ext3.h" 32#include "xattr.h" 33#include "acl.h" 34 35static int ext3_writepage_trans_blocks(struct inode *inode); 36static int ext3_block_truncate_page(struct inode *inode, loff_t from); 37 38/* 39 * Test whether an inode is a fast symlink. 40 */ 41static int ext3_inode_is_fast_symlink(struct inode *inode) 42{ 43 int ea_blocks = EXT3_I(inode)->i_file_acl ? 44 (inode->i_sb->s_blocksize >> 9) : 0; 45 46 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 47} 48 49/* 50 * The ext3 forget function must perform a revoke if we are freeing data 51 * which has been journaled. Metadata (eg. indirect blocks) must be 52 * revoked in all cases. 53 * 54 * "bh" may be NULL: a metadata block may have been freed from memory 55 * but there may still be a record of it in the journal, and that record 56 * still needs to be revoked. 57 */ 58int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode, 59 struct buffer_head *bh, ext3_fsblk_t blocknr) 60{ 61 int err; 62 63 might_sleep(); 64 65 trace_ext3_forget(inode, is_metadata, blocknr); 66 BUFFER_TRACE(bh, "enter"); 67 68 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 69 "data mode %lx\n", 70 bh, is_metadata, inode->i_mode, 71 test_opt(inode->i_sb, DATA_FLAGS)); 72 73 /* Never use the revoke function if we are doing full data 74 * journaling: there is no need to, and a V1 superblock won't 75 * support it. Otherwise, only skip the revoke on un-journaled 76 * data blocks. */ 77 78 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA || 79 (!is_metadata && !ext3_should_journal_data(inode))) { 80 if (bh) { 81 BUFFER_TRACE(bh, "call journal_forget"); 82 return ext3_journal_forget(handle, bh); 83 } 84 return 0; 85 } 86 87 /* 88 * data!=journal && (is_metadata || should_journal_data(inode)) 89 */ 90 BUFFER_TRACE(bh, "call ext3_journal_revoke"); 91 err = ext3_journal_revoke(handle, blocknr, bh); 92 if (err) 93 ext3_abort(inode->i_sb, __func__, 94 "error %d when attempting revoke", err); 95 BUFFER_TRACE(bh, "exit"); 96 return err; 97} 98 99/* 100 * Work out how many blocks we need to proceed with the next chunk of a 101 * truncate transaction. 102 */ 103static unsigned long blocks_for_truncate(struct inode *inode) 104{ 105 unsigned long needed; 106 107 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 108 109 /* Give ourselves just enough room to cope with inodes in which 110 * i_blocks is corrupt: we've seen disk corruptions in the past 111 * which resulted in random data in an inode which looked enough 112 * like a regular file for ext3 to try to delete it. Things 113 * will go a bit crazy if that happens, but at least we should 114 * try not to panic the whole kernel. */ 115 if (needed < 2) 116 needed = 2; 117 118 /* But we need to bound the transaction so we don't overflow the 119 * journal. */ 120 if (needed > EXT3_MAX_TRANS_DATA) 121 needed = EXT3_MAX_TRANS_DATA; 122 123 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 124} 125 126/* 127 * Truncate transactions can be complex and absolutely huge. So we need to 128 * be able to restart the transaction at a conventient checkpoint to make 129 * sure we don't overflow the journal. 130 * 131 * start_transaction gets us a new handle for a truncate transaction, 132 * and extend_transaction tries to extend the existing one a bit. If 133 * extend fails, we need to propagate the failure up and restart the 134 * transaction in the top-level truncate loop. --sct 135 */ 136static handle_t *start_transaction(struct inode *inode) 137{ 138 handle_t *result; 139 140 result = ext3_journal_start(inode, blocks_for_truncate(inode)); 141 if (!IS_ERR(result)) 142 return result; 143 144 ext3_std_error(inode->i_sb, PTR_ERR(result)); 145 return result; 146} 147 148/* 149 * Try to extend this transaction for the purposes of truncation. 150 * 151 * Returns 0 if we managed to create more room. If we can't create more 152 * room, and the transaction must be restarted we return 1. 153 */ 154static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 155{ 156 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS) 157 return 0; 158 if (!ext3_journal_extend(handle, blocks_for_truncate(inode))) 159 return 0; 160 return 1; 161} 162 163/* 164 * Restart the transaction associated with *handle. This does a commit, 165 * so before we call here everything must be consistently dirtied against 166 * this transaction. 167 */ 168static int truncate_restart_transaction(handle_t *handle, struct inode *inode) 169{ 170 int ret; 171 172 jbd_debug(2, "restarting handle %p\n", handle); 173 /* 174 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle 175 * At this moment, get_block can be called only for blocks inside 176 * i_size since page cache has been already dropped and writes are 177 * blocked by i_mutex. So we can safely drop the truncate_mutex. 178 */ 179 mutex_unlock(&EXT3_I(inode)->truncate_mutex); 180 ret = ext3_journal_restart(handle, blocks_for_truncate(inode)); 181 mutex_lock(&EXT3_I(inode)->truncate_mutex); 182 return ret; 183} 184 185/* 186 * Called at inode eviction from icache 187 */ 188void ext3_evict_inode (struct inode *inode) 189{ 190 struct ext3_inode_info *ei = EXT3_I(inode); 191 struct ext3_block_alloc_info *rsv; 192 handle_t *handle; 193 int want_delete = 0; 194 195 trace_ext3_evict_inode(inode); 196 if (!inode->i_nlink && !is_bad_inode(inode)) { 197 dquot_initialize(inode); 198 want_delete = 1; 199 } 200 201 /* 202 * When journalling data dirty buffers are tracked only in the journal. 203 * So although mm thinks everything is clean and ready for reaping the 204 * inode might still have some pages to write in the running 205 * transaction or waiting to be checkpointed. Thus calling 206 * journal_invalidatepage() (via truncate_inode_pages()) to discard 207 * these buffers can cause data loss. Also even if we did not discard 208 * these buffers, we would have no way to find them after the inode 209 * is reaped and thus user could see stale data if he tries to read 210 * them before the transaction is checkpointed. So be careful and 211 * force everything to disk here... We use ei->i_datasync_tid to 212 * store the newest transaction containing inode's data. 213 * 214 * Note that directories do not have this problem because they don't 215 * use page cache. 216 * 217 * The s_journal check handles the case when ext3_get_journal() fails 218 * and puts the journal inode. 219 */ 220 if (inode->i_nlink && ext3_should_journal_data(inode) && 221 EXT3_SB(inode->i_sb)->s_journal && 222 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 223 inode->i_ino != EXT3_JOURNAL_INO) { 224 tid_t commit_tid = atomic_read(&ei->i_datasync_tid); 225 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal; 226 227 log_start_commit(journal, commit_tid); 228 log_wait_commit(journal, commit_tid); 229 filemap_write_and_wait(&inode->i_data); 230 } 231 truncate_inode_pages(&inode->i_data, 0); 232 233 ext3_discard_reservation(inode); 234 rsv = ei->i_block_alloc_info; 235 ei->i_block_alloc_info = NULL; 236 if (unlikely(rsv)) 237 kfree(rsv); 238 239 if (!want_delete) 240 goto no_delete; 241 242 handle = start_transaction(inode); 243 if (IS_ERR(handle)) { 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext3_orphan_del(NULL, inode); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 handle->h_sync = 1; 255 inode->i_size = 0; 256 if (inode->i_blocks) 257 ext3_truncate(inode); 258 /* 259 * Kill off the orphan record created when the inode lost the last 260 * link. Note that ext3_orphan_del() has to be able to cope with the 261 * deletion of a non-existent orphan - ext3_truncate() could 262 * have removed the record. 263 */ 264 ext3_orphan_del(handle, inode); 265 ei->i_dtime = get_seconds(); 266 267 /* 268 * One subtle ordering requirement: if anything has gone wrong 269 * (transaction abort, IO errors, whatever), then we can still 270 * do these next steps (the fs will already have been marked as 271 * having errors), but we can't free the inode if the mark_dirty 272 * fails. 273 */ 274 if (ext3_mark_inode_dirty(handle, inode)) { 275 /* If that failed, just dquot_drop() and be done with that */ 276 dquot_drop(inode); 277 clear_inode(inode); 278 } else { 279 ext3_xattr_delete_inode(handle, inode); 280 dquot_free_inode(inode); 281 dquot_drop(inode); 282 clear_inode(inode); 283 ext3_free_inode(handle, inode); 284 } 285 ext3_journal_stop(handle); 286 return; 287no_delete: 288 clear_inode(inode); 289 dquot_drop(inode); 290} 291 292typedef struct { 293 __le32 *p; 294 __le32 key; 295 struct buffer_head *bh; 296} Indirect; 297 298static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 299{ 300 p->key = *(p->p = v); 301 p->bh = bh; 302} 303 304static int verify_chain(Indirect *from, Indirect *to) 305{ 306 while (from <= to && from->key == *from->p) 307 from++; 308 return (from > to); 309} 310 311/** 312 * ext3_block_to_path - parse the block number into array of offsets 313 * @inode: inode in question (we are only interested in its superblock) 314 * @i_block: block number to be parsed 315 * @offsets: array to store the offsets in 316 * @boundary: set this non-zero if the referred-to block is likely to be 317 * followed (on disk) by an indirect block. 318 * 319 * To store the locations of file's data ext3 uses a data structure common 320 * for UNIX filesystems - tree of pointers anchored in the inode, with 321 * data blocks at leaves and indirect blocks in intermediate nodes. 322 * This function translates the block number into path in that tree - 323 * return value is the path length and @offsets[n] is the offset of 324 * pointer to (n+1)th node in the nth one. If @block is out of range 325 * (negative or too large) warning is printed and zero returned. 326 * 327 * Note: function doesn't find node addresses, so no IO is needed. All 328 * we need to know is the capacity of indirect blocks (taken from the 329 * inode->i_sb). 330 */ 331 332/* 333 * Portability note: the last comparison (check that we fit into triple 334 * indirect block) is spelled differently, because otherwise on an 335 * architecture with 32-bit longs and 8Kb pages we might get into trouble 336 * if our filesystem had 8Kb blocks. We might use long long, but that would 337 * kill us on x86. Oh, well, at least the sign propagation does not matter - 338 * i_block would have to be negative in the very beginning, so we would not 339 * get there at all. 340 */ 341 342static int ext3_block_to_path(struct inode *inode, 343 long i_block, int offsets[4], int *boundary) 344{ 345 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb); 346 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb); 347 const long direct_blocks = EXT3_NDIR_BLOCKS, 348 indirect_blocks = ptrs, 349 double_blocks = (1 << (ptrs_bits * 2)); 350 int n = 0; 351 int final = 0; 352 353 if (i_block < 0) { 354 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0"); 355 } else if (i_block < direct_blocks) { 356 offsets[n++] = i_block; 357 final = direct_blocks; 358 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 359 offsets[n++] = EXT3_IND_BLOCK; 360 offsets[n++] = i_block; 361 final = ptrs; 362 } else if ((i_block -= indirect_blocks) < double_blocks) { 363 offsets[n++] = EXT3_DIND_BLOCK; 364 offsets[n++] = i_block >> ptrs_bits; 365 offsets[n++] = i_block & (ptrs - 1); 366 final = ptrs; 367 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 368 offsets[n++] = EXT3_TIND_BLOCK; 369 offsets[n++] = i_block >> (ptrs_bits * 2); 370 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 371 offsets[n++] = i_block & (ptrs - 1); 372 final = ptrs; 373 } else { 374 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big"); 375 } 376 if (boundary) 377 *boundary = final - 1 - (i_block & (ptrs - 1)); 378 return n; 379} 380 381/** 382 * ext3_get_branch - read the chain of indirect blocks leading to data 383 * @inode: inode in question 384 * @depth: depth of the chain (1 - direct pointer, etc.) 385 * @offsets: offsets of pointers in inode/indirect blocks 386 * @chain: place to store the result 387 * @err: here we store the error value 388 * 389 * Function fills the array of triples <key, p, bh> and returns %NULL 390 * if everything went OK or the pointer to the last filled triple 391 * (incomplete one) otherwise. Upon the return chain[i].key contains 392 * the number of (i+1)-th block in the chain (as it is stored in memory, 393 * i.e. little-endian 32-bit), chain[i].p contains the address of that 394 * number (it points into struct inode for i==0 and into the bh->b_data 395 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 396 * block for i>0 and NULL for i==0. In other words, it holds the block 397 * numbers of the chain, addresses they were taken from (and where we can 398 * verify that chain did not change) and buffer_heads hosting these 399 * numbers. 400 * 401 * Function stops when it stumbles upon zero pointer (absent block) 402 * (pointer to last triple returned, *@err == 0) 403 * or when it gets an IO error reading an indirect block 404 * (ditto, *@err == -EIO) 405 * or when it notices that chain had been changed while it was reading 406 * (ditto, *@err == -EAGAIN) 407 * or when it reads all @depth-1 indirect blocks successfully and finds 408 * the whole chain, all way to the data (returns %NULL, *err == 0). 409 */ 410static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets, 411 Indirect chain[4], int *err) 412{ 413 struct super_block *sb = inode->i_sb; 414 Indirect *p = chain; 415 struct buffer_head *bh; 416 417 *err = 0; 418 /* i_data is not going away, no lock needed */ 419 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets); 420 if (!p->key) 421 goto no_block; 422 while (--depth) { 423 bh = sb_bread(sb, le32_to_cpu(p->key)); 424 if (!bh) 425 goto failure; 426 /* Reader: pointers */ 427 if (!verify_chain(chain, p)) 428 goto changed; 429 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 430 /* Reader: end */ 431 if (!p->key) 432 goto no_block; 433 } 434 return NULL; 435 436changed: 437 brelse(bh); 438 *err = -EAGAIN; 439 goto no_block; 440failure: 441 *err = -EIO; 442no_block: 443 return p; 444} 445 446/** 447 * ext3_find_near - find a place for allocation with sufficient locality 448 * @inode: owner 449 * @ind: descriptor of indirect block. 450 * 451 * This function returns the preferred place for block allocation. 452 * It is used when heuristic for sequential allocation fails. 453 * Rules are: 454 * + if there is a block to the left of our position - allocate near it. 455 * + if pointer will live in indirect block - allocate near that block. 456 * + if pointer will live in inode - allocate in the same 457 * cylinder group. 458 * 459 * In the latter case we colour the starting block by the callers PID to 460 * prevent it from clashing with concurrent allocations for a different inode 461 * in the same block group. The PID is used here so that functionally related 462 * files will be close-by on-disk. 463 * 464 * Caller must make sure that @ind is valid and will stay that way. 465 */ 466static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind) 467{ 468 struct ext3_inode_info *ei = EXT3_I(inode); 469 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 470 __le32 *p; 471 ext3_fsblk_t bg_start; 472 ext3_grpblk_t colour; 473 474 /* Try to find previous block */ 475 for (p = ind->p - 1; p >= start; p--) { 476 if (*p) 477 return le32_to_cpu(*p); 478 } 479 480 /* No such thing, so let's try location of indirect block */ 481 if (ind->bh) 482 return ind->bh->b_blocknr; 483 484 /* 485 * It is going to be referred to from the inode itself? OK, just put it 486 * into the same cylinder group then. 487 */ 488 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group); 489 colour = (current->pid % 16) * 490 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16); 491 return bg_start + colour; 492} 493 494/** 495 * ext3_find_goal - find a preferred place for allocation. 496 * @inode: owner 497 * @block: block we want 498 * @partial: pointer to the last triple within a chain 499 * 500 * Normally this function find the preferred place for block allocation, 501 * returns it. 502 */ 503 504static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block, 505 Indirect *partial) 506{ 507 struct ext3_block_alloc_info *block_i; 508 509 block_i = EXT3_I(inode)->i_block_alloc_info; 510 511 /* 512 * try the heuristic for sequential allocation, 513 * failing that at least try to get decent locality. 514 */ 515 if (block_i && (block == block_i->last_alloc_logical_block + 1) 516 && (block_i->last_alloc_physical_block != 0)) { 517 return block_i->last_alloc_physical_block + 1; 518 } 519 520 return ext3_find_near(inode, partial); 521} 522 523/** 524 * ext3_blks_to_allocate - Look up the block map and count the number 525 * of direct blocks need to be allocated for the given branch. 526 * 527 * @branch: chain of indirect blocks 528 * @k: number of blocks need for indirect blocks 529 * @blks: number of data blocks to be mapped. 530 * @blocks_to_boundary: the offset in the indirect block 531 * 532 * return the total number of blocks to be allocate, including the 533 * direct and indirect blocks. 534 */ 535static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 536 int blocks_to_boundary) 537{ 538 unsigned long count = 0; 539 540 /* 541 * Simple case, [t,d]Indirect block(s) has not allocated yet 542 * then it's clear blocks on that path have not allocated 543 */ 544 if (k > 0) { 545 /* right now we don't handle cross boundary allocation */ 546 if (blks < blocks_to_boundary + 1) 547 count += blks; 548 else 549 count += blocks_to_boundary + 1; 550 return count; 551 } 552 553 count++; 554 while (count < blks && count <= blocks_to_boundary && 555 le32_to_cpu(*(branch[0].p + count)) == 0) { 556 count++; 557 } 558 return count; 559} 560 561/** 562 * ext3_alloc_blocks - multiple allocate blocks needed for a branch 563 * @handle: handle for this transaction 564 * @inode: owner 565 * @goal: preferred place for allocation 566 * @indirect_blks: the number of blocks need to allocate for indirect 567 * blocks 568 * @blks: number of blocks need to allocated for direct blocks 569 * @new_blocks: on return it will store the new block numbers for 570 * the indirect blocks(if needed) and the first direct block, 571 * @err: here we store the error value 572 * 573 * return the number of direct blocks allocated 574 */ 575static int ext3_alloc_blocks(handle_t *handle, struct inode *inode, 576 ext3_fsblk_t goal, int indirect_blks, int blks, 577 ext3_fsblk_t new_blocks[4], int *err) 578{ 579 int target, i; 580 unsigned long count = 0; 581 int index = 0; 582 ext3_fsblk_t current_block = 0; 583 int ret = 0; 584 585 /* 586 * Here we try to allocate the requested multiple blocks at once, 587 * on a best-effort basis. 588 * To build a branch, we should allocate blocks for 589 * the indirect blocks(if not allocated yet), and at least 590 * the first direct block of this branch. That's the 591 * minimum number of blocks need to allocate(required) 592 */ 593 target = blks + indirect_blks; 594 595 while (1) { 596 count = target; 597 /* allocating blocks for indirect blocks and direct blocks */ 598 current_block = ext3_new_blocks(handle,inode,goal,&count,err); 599 if (*err) 600 goto failed_out; 601 602 target -= count; 603 /* allocate blocks for indirect blocks */ 604 while (index < indirect_blks && count) { 605 new_blocks[index++] = current_block++; 606 count--; 607 } 608 609 if (count > 0) 610 break; 611 } 612 613 /* save the new block number for the first direct block */ 614 new_blocks[index] = current_block; 615 616 /* total number of blocks allocated for direct blocks */ 617 ret = count; 618 *err = 0; 619 return ret; 620failed_out: 621 for (i = 0; i <index; i++) 622 ext3_free_blocks(handle, inode, new_blocks[i], 1); 623 return ret; 624} 625 626/** 627 * ext3_alloc_branch - allocate and set up a chain of blocks. 628 * @handle: handle for this transaction 629 * @inode: owner 630 * @indirect_blks: number of allocated indirect blocks 631 * @blks: number of allocated direct blocks 632 * @goal: preferred place for allocation 633 * @offsets: offsets (in the blocks) to store the pointers to next. 634 * @branch: place to store the chain in. 635 * 636 * This function allocates blocks, zeroes out all but the last one, 637 * links them into chain and (if we are synchronous) writes them to disk. 638 * In other words, it prepares a branch that can be spliced onto the 639 * inode. It stores the information about that chain in the branch[], in 640 * the same format as ext3_get_branch() would do. We are calling it after 641 * we had read the existing part of chain and partial points to the last 642 * triple of that (one with zero ->key). Upon the exit we have the same 643 * picture as after the successful ext3_get_block(), except that in one 644 * place chain is disconnected - *branch->p is still zero (we did not 645 * set the last link), but branch->key contains the number that should 646 * be placed into *branch->p to fill that gap. 647 * 648 * If allocation fails we free all blocks we've allocated (and forget 649 * their buffer_heads) and return the error value the from failed 650 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain 651 * as described above and return 0. 652 */ 653static int ext3_alloc_branch(handle_t *handle, struct inode *inode, 654 int indirect_blks, int *blks, ext3_fsblk_t goal, 655 int *offsets, Indirect *branch) 656{ 657 int blocksize = inode->i_sb->s_blocksize; 658 int i, n = 0; 659 int err = 0; 660 struct buffer_head *bh; 661 int num; 662 ext3_fsblk_t new_blocks[4]; 663 ext3_fsblk_t current_block; 664 665 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks, 666 *blks, new_blocks, &err); 667 if (err) 668 return err; 669 670 branch[0].key = cpu_to_le32(new_blocks[0]); 671 /* 672 * metadata blocks and data blocks are allocated. 673 */ 674 for (n = 1; n <= indirect_blks; n++) { 675 /* 676 * Get buffer_head for parent block, zero it out 677 * and set the pointer to new one, then send 678 * parent to disk. 679 */ 680 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 681 if (unlikely(!bh)) { 682 err = -ENOMEM; 683 goto failed; 684 } 685 branch[n].bh = bh; 686 lock_buffer(bh); 687 BUFFER_TRACE(bh, "call get_create_access"); 688 err = ext3_journal_get_create_access(handle, bh); 689 if (err) { 690 unlock_buffer(bh); 691 brelse(bh); 692 goto failed; 693 } 694 695 memset(bh->b_data, 0, blocksize); 696 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 697 branch[n].key = cpu_to_le32(new_blocks[n]); 698 *branch[n].p = branch[n].key; 699 if ( n == indirect_blks) { 700 current_block = new_blocks[n]; 701 /* 702 * End of chain, update the last new metablock of 703 * the chain to point to the new allocated 704 * data blocks numbers 705 */ 706 for (i=1; i < num; i++) 707 *(branch[n].p + i) = cpu_to_le32(++current_block); 708 } 709 BUFFER_TRACE(bh, "marking uptodate"); 710 set_buffer_uptodate(bh); 711 unlock_buffer(bh); 712 713 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 714 err = ext3_journal_dirty_metadata(handle, bh); 715 if (err) 716 goto failed; 717 } 718 *blks = num; 719 return err; 720failed: 721 /* Allocation failed, free what we already allocated */ 722 for (i = 1; i <= n ; i++) { 723 BUFFER_TRACE(branch[i].bh, "call journal_forget"); 724 ext3_journal_forget(handle, branch[i].bh); 725 } 726 for (i = 0; i < indirect_blks; i++) 727 ext3_free_blocks(handle, inode, new_blocks[i], 1); 728 729 ext3_free_blocks(handle, inode, new_blocks[i], num); 730 731 return err; 732} 733 734/** 735 * ext3_splice_branch - splice the allocated branch onto inode. 736 * @handle: handle for this transaction 737 * @inode: owner 738 * @block: (logical) number of block we are adding 739 * @where: location of missing link 740 * @num: number of indirect blocks we are adding 741 * @blks: number of direct blocks we are adding 742 * 743 * This function fills the missing link and does all housekeeping needed in 744 * inode (->i_blocks, etc.). In case of success we end up with the full 745 * chain to new block and return 0. 746 */ 747static int ext3_splice_branch(handle_t *handle, struct inode *inode, 748 long block, Indirect *where, int num, int blks) 749{ 750 int i; 751 int err = 0; 752 struct ext3_block_alloc_info *block_i; 753 ext3_fsblk_t current_block; 754 struct ext3_inode_info *ei = EXT3_I(inode); 755 struct timespec now; 756 757 block_i = ei->i_block_alloc_info; 758 /* 759 * If we're splicing into a [td]indirect block (as opposed to the 760 * inode) then we need to get write access to the [td]indirect block 761 * before the splice. 762 */ 763 if (where->bh) { 764 BUFFER_TRACE(where->bh, "get_write_access"); 765 err = ext3_journal_get_write_access(handle, where->bh); 766 if (err) 767 goto err_out; 768 } 769 /* That's it */ 770 771 *where->p = where->key; 772 773 /* 774 * Update the host buffer_head or inode to point to more just allocated 775 * direct blocks blocks 776 */ 777 if (num == 0 && blks > 1) { 778 current_block = le32_to_cpu(where->key) + 1; 779 for (i = 1; i < blks; i++) 780 *(where->p + i ) = cpu_to_le32(current_block++); 781 } 782 783 /* 784 * update the most recently allocated logical & physical block 785 * in i_block_alloc_info, to assist find the proper goal block for next 786 * allocation 787 */ 788 if (block_i) { 789 block_i->last_alloc_logical_block = block + blks - 1; 790 block_i->last_alloc_physical_block = 791 le32_to_cpu(where[num].key) + blks - 1; 792 } 793 794 /* We are done with atomic stuff, now do the rest of housekeeping */ 795 now = CURRENT_TIME_SEC; 796 if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) { 797 inode->i_ctime = now; 798 ext3_mark_inode_dirty(handle, inode); 799 } 800 /* ext3_mark_inode_dirty already updated i_sync_tid */ 801 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 802 803 /* had we spliced it onto indirect block? */ 804 if (where->bh) { 805 /* 806 * If we spliced it onto an indirect block, we haven't 807 * altered the inode. Note however that if it is being spliced 808 * onto an indirect block at the very end of the file (the 809 * file is growing) then we *will* alter the inode to reflect 810 * the new i_size. But that is not done here - it is done in 811 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode. 812 */ 813 jbd_debug(5, "splicing indirect only\n"); 814 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata"); 815 err = ext3_journal_dirty_metadata(handle, where->bh); 816 if (err) 817 goto err_out; 818 } else { 819 /* 820 * OK, we spliced it into the inode itself on a direct block. 821 * Inode was dirtied above. 822 */ 823 jbd_debug(5, "splicing direct\n"); 824 } 825 return err; 826 827err_out: 828 for (i = 1; i <= num; i++) { 829 BUFFER_TRACE(where[i].bh, "call journal_forget"); 830 ext3_journal_forget(handle, where[i].bh); 831 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); 832 } 833 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); 834 835 return err; 836} 837 838/* 839 * Allocation strategy is simple: if we have to allocate something, we will 840 * have to go the whole way to leaf. So let's do it before attaching anything 841 * to tree, set linkage between the newborn blocks, write them if sync is 842 * required, recheck the path, free and repeat if check fails, otherwise 843 * set the last missing link (that will protect us from any truncate-generated 844 * removals - all blocks on the path are immune now) and possibly force the 845 * write on the parent block. 846 * That has a nice additional property: no special recovery from the failed 847 * allocations is needed - we simply release blocks and do not touch anything 848 * reachable from inode. 849 * 850 * `handle' can be NULL if create == 0. 851 * 852 * The BKL may not be held on entry here. Be sure to take it early. 853 * return > 0, # of blocks mapped or allocated. 854 * return = 0, if plain lookup failed. 855 * return < 0, error case. 856 */ 857int ext3_get_blocks_handle(handle_t *handle, struct inode *inode, 858 sector_t iblock, unsigned long maxblocks, 859 struct buffer_head *bh_result, 860 int create) 861{ 862 int err = -EIO; 863 int offsets[4]; 864 Indirect chain[4]; 865 Indirect *partial; 866 ext3_fsblk_t goal; 867 int indirect_blks; 868 int blocks_to_boundary = 0; 869 int depth; 870 struct ext3_inode_info *ei = EXT3_I(inode); 871 int count = 0; 872 ext3_fsblk_t first_block = 0; 873 874 875 trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create); 876 J_ASSERT(handle != NULL || create == 0); 877 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 878 879 if (depth == 0) 880 goto out; 881 882 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 883 884 /* Simplest case - block found, no allocation needed */ 885 if (!partial) { 886 first_block = le32_to_cpu(chain[depth - 1].key); 887 clear_buffer_new(bh_result); 888 count++; 889 /*map more blocks*/ 890 while (count < maxblocks && count <= blocks_to_boundary) { 891 ext3_fsblk_t blk; 892 893 if (!verify_chain(chain, chain + depth - 1)) { 894 /* 895 * Indirect block might be removed by 896 * truncate while we were reading it. 897 * Handling of that case: forget what we've 898 * got now. Flag the err as EAGAIN, so it 899 * will reread. 900 */ 901 err = -EAGAIN; 902 count = 0; 903 break; 904 } 905 blk = le32_to_cpu(*(chain[depth-1].p + count)); 906 907 if (blk == first_block + count) 908 count++; 909 else 910 break; 911 } 912 if (err != -EAGAIN) 913 goto got_it; 914 } 915 916 /* Next simple case - plain lookup or failed read of indirect block */ 917 if (!create || err == -EIO) 918 goto cleanup; 919 920 /* 921 * Block out ext3_truncate while we alter the tree 922 */ 923 mutex_lock(&ei->truncate_mutex); 924 925 /* 926 * If the indirect block is missing while we are reading 927 * the chain(ext3_get_branch() returns -EAGAIN err), or 928 * if the chain has been changed after we grab the semaphore, 929 * (either because another process truncated this branch, or 930 * another get_block allocated this branch) re-grab the chain to see if 931 * the request block has been allocated or not. 932 * 933 * Since we already block the truncate/other get_block 934 * at this point, we will have the current copy of the chain when we 935 * splice the branch into the tree. 936 */ 937 if (err == -EAGAIN || !verify_chain(chain, partial)) { 938 while (partial > chain) { 939 brelse(partial->bh); 940 partial--; 941 } 942 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 943 if (!partial) { 944 count++; 945 mutex_unlock(&ei->truncate_mutex); 946 if (err) 947 goto cleanup; 948 clear_buffer_new(bh_result); 949 goto got_it; 950 } 951 } 952 953 /* 954 * Okay, we need to do block allocation. Lazily initialize the block 955 * allocation info here if necessary 956 */ 957 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 958 ext3_init_block_alloc_info(inode); 959 960 goal = ext3_find_goal(inode, iblock, partial); 961 962 /* the number of blocks need to allocate for [d,t]indirect blocks */ 963 indirect_blks = (chain + depth) - partial - 1; 964 965 /* 966 * Next look up the indirect map to count the totoal number of 967 * direct blocks to allocate for this branch. 968 */ 969 count = ext3_blks_to_allocate(partial, indirect_blks, 970 maxblocks, blocks_to_boundary); 971 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal, 972 offsets + (partial - chain), partial); 973 974 /* 975 * The ext3_splice_branch call will free and forget any buffers 976 * on the new chain if there is a failure, but that risks using 977 * up transaction credits, especially for bitmaps where the 978 * credits cannot be returned. Can we handle this somehow? We 979 * may need to return -EAGAIN upwards in the worst case. --sct 980 */ 981 if (!err) 982 err = ext3_splice_branch(handle, inode, iblock, 983 partial, indirect_blks, count); 984 mutex_unlock(&ei->truncate_mutex); 985 if (err) 986 goto cleanup; 987 988 set_buffer_new(bh_result); 989got_it: 990 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 991 if (count > blocks_to_boundary) 992 set_buffer_boundary(bh_result); 993 err = count; 994 /* Clean up and exit */ 995 partial = chain + depth - 1; /* the whole chain */ 996cleanup: 997 while (partial > chain) { 998 BUFFER_TRACE(partial->bh, "call brelse"); 999 brelse(partial->bh); 1000 partial--; 1001 } 1002 BUFFER_TRACE(bh_result, "returned"); 1003out: 1004 trace_ext3_get_blocks_exit(inode, iblock, 1005 depth ? le32_to_cpu(chain[depth-1].key) : 0, 1006 count, err); 1007 return err; 1008} 1009 1010/* Maximum number of blocks we map for direct IO at once. */ 1011#define DIO_MAX_BLOCKS 4096 1012/* 1013 * Number of credits we need for writing DIO_MAX_BLOCKS: 1014 * We need sb + group descriptor + bitmap + inode -> 4 1015 * For B blocks with A block pointers per block we need: 1016 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 1017 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 1018 */ 1019#define DIO_CREDITS 25 1020 1021static int ext3_get_block(struct inode *inode, sector_t iblock, 1022 struct buffer_head *bh_result, int create) 1023{ 1024 handle_t *handle = ext3_journal_current_handle(); 1025 int ret = 0, started = 0; 1026 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1027 1028 if (create && !handle) { /* Direct IO write... */ 1029 if (max_blocks > DIO_MAX_BLOCKS) 1030 max_blocks = DIO_MAX_BLOCKS; 1031 handle = ext3_journal_start(inode, DIO_CREDITS + 1032 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb)); 1033 if (IS_ERR(handle)) { 1034 ret = PTR_ERR(handle); 1035 goto out; 1036 } 1037 started = 1; 1038 } 1039 1040 ret = ext3_get_blocks_handle(handle, inode, iblock, 1041 max_blocks, bh_result, create); 1042 if (ret > 0) { 1043 bh_result->b_size = (ret << inode->i_blkbits); 1044 ret = 0; 1045 } 1046 if (started) 1047 ext3_journal_stop(handle); 1048out: 1049 return ret; 1050} 1051 1052int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1053 u64 start, u64 len) 1054{ 1055 return generic_block_fiemap(inode, fieinfo, start, len, 1056 ext3_get_block); 1057} 1058 1059/* 1060 * `handle' can be NULL if create is zero 1061 */ 1062struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode, 1063 long block, int create, int *errp) 1064{ 1065 struct buffer_head dummy; 1066 int fatal = 0, err; 1067 1068 J_ASSERT(handle != NULL || create == 0); 1069 1070 dummy.b_state = 0; 1071 dummy.b_blocknr = -1000; 1072 buffer_trace_init(&dummy.b_history); 1073 err = ext3_get_blocks_handle(handle, inode, block, 1, 1074 &dummy, create); 1075 /* 1076 * ext3_get_blocks_handle() returns number of blocks 1077 * mapped. 0 in case of a HOLE. 1078 */ 1079 if (err > 0) { 1080 WARN_ON(err > 1); 1081 err = 0; 1082 } 1083 *errp = err; 1084 if (!err && buffer_mapped(&dummy)) { 1085 struct buffer_head *bh; 1086 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1087 if (unlikely(!bh)) { 1088 *errp = -ENOMEM; 1089 goto err; 1090 } 1091 if (buffer_new(&dummy)) { 1092 J_ASSERT(create != 0); 1093 J_ASSERT(handle != NULL); 1094 1095 /* 1096 * Now that we do not always journal data, we should 1097 * keep in mind whether this should always journal the 1098 * new buffer as metadata. For now, regular file 1099 * writes use ext3_get_block instead, so it's not a 1100 * problem. 1101 */ 1102 lock_buffer(bh); 1103 BUFFER_TRACE(bh, "call get_create_access"); 1104 fatal = ext3_journal_get_create_access(handle, bh); 1105 if (!fatal && !buffer_uptodate(bh)) { 1106 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1107 set_buffer_uptodate(bh); 1108 } 1109 unlock_buffer(bh); 1110 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 1111 err = ext3_journal_dirty_metadata(handle, bh); 1112 if (!fatal) 1113 fatal = err; 1114 } else { 1115 BUFFER_TRACE(bh, "not a new buffer"); 1116 } 1117 if (fatal) { 1118 *errp = fatal; 1119 brelse(bh); 1120 bh = NULL; 1121 } 1122 return bh; 1123 } 1124err: 1125 return NULL; 1126} 1127 1128struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode, 1129 int block, int create, int *err) 1130{ 1131 struct buffer_head * bh; 1132 1133 bh = ext3_getblk(handle, inode, block, create, err); 1134 if (!bh) 1135 return bh; 1136 if (bh_uptodate_or_lock(bh)) 1137 return bh; 1138 get_bh(bh); 1139 bh->b_end_io = end_buffer_read_sync; 1140 submit_bh(READ | REQ_META | REQ_PRIO, bh); 1141 wait_on_buffer(bh); 1142 if (buffer_uptodate(bh)) 1143 return bh; 1144 put_bh(bh); 1145 *err = -EIO; 1146 return NULL; 1147} 1148 1149static int walk_page_buffers( handle_t *handle, 1150 struct buffer_head *head, 1151 unsigned from, 1152 unsigned to, 1153 int *partial, 1154 int (*fn)( handle_t *handle, 1155 struct buffer_head *bh)) 1156{ 1157 struct buffer_head *bh; 1158 unsigned block_start, block_end; 1159 unsigned blocksize = head->b_size; 1160 int err, ret = 0; 1161 struct buffer_head *next; 1162 1163 for ( bh = head, block_start = 0; 1164 ret == 0 && (bh != head || !block_start); 1165 block_start = block_end, bh = next) 1166 { 1167 next = bh->b_this_page; 1168 block_end = block_start + blocksize; 1169 if (block_end <= from || block_start >= to) { 1170 if (partial && !buffer_uptodate(bh)) 1171 *partial = 1; 1172 continue; 1173 } 1174 err = (*fn)(handle, bh); 1175 if (!ret) 1176 ret = err; 1177 } 1178 return ret; 1179} 1180 1181/* 1182 * To preserve ordering, it is essential that the hole instantiation and 1183 * the data write be encapsulated in a single transaction. We cannot 1184 * close off a transaction and start a new one between the ext3_get_block() 1185 * and the commit_write(). So doing the journal_start at the start of 1186 * prepare_write() is the right place. 1187 * 1188 * Also, this function can nest inside ext3_writepage() -> 1189 * block_write_full_page(). In that case, we *know* that ext3_writepage() 1190 * has generated enough buffer credits to do the whole page. So we won't 1191 * block on the journal in that case, which is good, because the caller may 1192 * be PF_MEMALLOC. 1193 * 1194 * By accident, ext3 can be reentered when a transaction is open via 1195 * quota file writes. If we were to commit the transaction while thus 1196 * reentered, there can be a deadlock - we would be holding a quota 1197 * lock, and the commit would never complete if another thread had a 1198 * transaction open and was blocking on the quota lock - a ranking 1199 * violation. 1200 * 1201 * So what we do is to rely on the fact that journal_stop/journal_start 1202 * will _not_ run commit under these circumstances because handle->h_ref 1203 * is elevated. We'll still have enough credits for the tiny quotafile 1204 * write. 1205 */ 1206static int do_journal_get_write_access(handle_t *handle, 1207 struct buffer_head *bh) 1208{ 1209 int dirty = buffer_dirty(bh); 1210 int ret; 1211 1212 if (!buffer_mapped(bh) || buffer_freed(bh)) 1213 return 0; 1214 /* 1215 * __block_prepare_write() could have dirtied some buffers. Clean 1216 * the dirty bit as jbd2_journal_get_write_access() could complain 1217 * otherwise about fs integrity issues. Setting of the dirty bit 1218 * by __block_prepare_write() isn't a real problem here as we clear 1219 * the bit before releasing a page lock and thus writeback cannot 1220 * ever write the buffer. 1221 */ 1222 if (dirty) 1223 clear_buffer_dirty(bh); 1224 ret = ext3_journal_get_write_access(handle, bh); 1225 if (!ret && dirty) 1226 ret = ext3_journal_dirty_metadata(handle, bh); 1227 return ret; 1228} 1229 1230/* 1231 * Truncate blocks that were not used by write. We have to truncate the 1232 * pagecache as well so that corresponding buffers get properly unmapped. 1233 */ 1234static void ext3_truncate_failed_write(struct inode *inode) 1235{ 1236 truncate_inode_pages(inode->i_mapping, inode->i_size); 1237 ext3_truncate(inode); 1238} 1239 1240/* 1241 * Truncate blocks that were not used by direct IO write. We have to zero out 1242 * the last file block as well because direct IO might have written to it. 1243 */ 1244static void ext3_truncate_failed_direct_write(struct inode *inode) 1245{ 1246 ext3_block_truncate_page(inode, inode->i_size); 1247 ext3_truncate(inode); 1248} 1249 1250static int ext3_write_begin(struct file *file, struct address_space *mapping, 1251 loff_t pos, unsigned len, unsigned flags, 1252 struct page **pagep, void **fsdata) 1253{ 1254 struct inode *inode = mapping->host; 1255 int ret; 1256 handle_t *handle; 1257 int retries = 0; 1258 struct page *page; 1259 pgoff_t index; 1260 unsigned from, to; 1261 /* Reserve one block more for addition to orphan list in case 1262 * we allocate blocks but write fails for some reason */ 1263 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1; 1264 1265 trace_ext3_write_begin(inode, pos, len, flags); 1266 1267 index = pos >> PAGE_CACHE_SHIFT; 1268 from = pos & (PAGE_CACHE_SIZE - 1); 1269 to = from + len; 1270 1271retry: 1272 page = grab_cache_page_write_begin(mapping, index, flags); 1273 if (!page) 1274 return -ENOMEM; 1275 *pagep = page; 1276 1277 handle = ext3_journal_start(inode, needed_blocks); 1278 if (IS_ERR(handle)) { 1279 unlock_page(page); 1280 page_cache_release(page); 1281 ret = PTR_ERR(handle); 1282 goto out; 1283 } 1284 ret = __block_write_begin(page, pos, len, ext3_get_block); 1285 if (ret) 1286 goto write_begin_failed; 1287 1288 if (ext3_should_journal_data(inode)) { 1289 ret = walk_page_buffers(handle, page_buffers(page), 1290 from, to, NULL, do_journal_get_write_access); 1291 } 1292write_begin_failed: 1293 if (ret) { 1294 /* 1295 * block_write_begin may have instantiated a few blocks 1296 * outside i_size. Trim these off again. Don't need 1297 * i_size_read because we hold i_mutex. 1298 * 1299 * Add inode to orphan list in case we crash before truncate 1300 * finishes. Do this only if ext3_can_truncate() agrees so 1301 * that orphan processing code is happy. 1302 */ 1303 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1304 ext3_orphan_add(handle, inode); 1305 ext3_journal_stop(handle); 1306 unlock_page(page); 1307 page_cache_release(page); 1308 if (pos + len > inode->i_size) 1309 ext3_truncate_failed_write(inode); 1310 } 1311 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1312 goto retry; 1313out: 1314 return ret; 1315} 1316 1317 1318int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1319{ 1320 int err = journal_dirty_data(handle, bh); 1321 if (err) 1322 ext3_journal_abort_handle(__func__, __func__, 1323 bh, handle, err); 1324 return err; 1325} 1326 1327/* For ordered writepage and write_end functions */ 1328static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1329{ 1330 /* 1331 * Write could have mapped the buffer but it didn't copy the data in 1332 * yet. So avoid filing such buffer into a transaction. 1333 */ 1334 if (buffer_mapped(bh) && buffer_uptodate(bh)) 1335 return ext3_journal_dirty_data(handle, bh); 1336 return 0; 1337} 1338 1339/* For write_end() in data=journal mode */ 1340static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1341{ 1342 if (!buffer_mapped(bh) || buffer_freed(bh)) 1343 return 0; 1344 set_buffer_uptodate(bh); 1345 return ext3_journal_dirty_metadata(handle, bh); 1346} 1347 1348/* 1349 * This is nasty and subtle: ext3_write_begin() could have allocated blocks 1350 * for the whole page but later we failed to copy the data in. Update inode 1351 * size according to what we managed to copy. The rest is going to be 1352 * truncated in write_end function. 1353 */ 1354static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied) 1355{ 1356 /* What matters to us is i_disksize. We don't write i_size anywhere */ 1357 if (pos + copied > inode->i_size) 1358 i_size_write(inode, pos + copied); 1359 if (pos + copied > EXT3_I(inode)->i_disksize) { 1360 EXT3_I(inode)->i_disksize = pos + copied; 1361 mark_inode_dirty(inode); 1362 } 1363} 1364 1365/* 1366 * We need to pick up the new inode size which generic_commit_write gave us 1367 * `file' can be NULL - eg, when called from page_symlink(). 1368 * 1369 * ext3 never places buffers on inode->i_mapping->private_list. metadata 1370 * buffers are managed internally. 1371 */ 1372static int ext3_ordered_write_end(struct file *file, 1373 struct address_space *mapping, 1374 loff_t pos, unsigned len, unsigned copied, 1375 struct page *page, void *fsdata) 1376{ 1377 handle_t *handle = ext3_journal_current_handle(); 1378 struct inode *inode = file->f_mapping->host; 1379 unsigned from, to; 1380 int ret = 0, ret2; 1381 1382 trace_ext3_ordered_write_end(inode, pos, len, copied); 1383 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1384 1385 from = pos & (PAGE_CACHE_SIZE - 1); 1386 to = from + copied; 1387 ret = walk_page_buffers(handle, page_buffers(page), 1388 from, to, NULL, journal_dirty_data_fn); 1389 1390 if (ret == 0) 1391 update_file_sizes(inode, pos, copied); 1392 /* 1393 * There may be allocated blocks outside of i_size because 1394 * we failed to copy some data. Prepare for truncate. 1395 */ 1396 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1397 ext3_orphan_add(handle, inode); 1398 ret2 = ext3_journal_stop(handle); 1399 if (!ret) 1400 ret = ret2; 1401 unlock_page(page); 1402 page_cache_release(page); 1403 1404 if (pos + len > inode->i_size) 1405 ext3_truncate_failed_write(inode); 1406 return ret ? ret : copied; 1407} 1408 1409static int ext3_writeback_write_end(struct file *file, 1410 struct address_space *mapping, 1411 loff_t pos, unsigned len, unsigned copied, 1412 struct page *page, void *fsdata) 1413{ 1414 handle_t *handle = ext3_journal_current_handle(); 1415 struct inode *inode = file->f_mapping->host; 1416 int ret; 1417 1418 trace_ext3_writeback_write_end(inode, pos, len, copied); 1419 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1420 update_file_sizes(inode, pos, copied); 1421 /* 1422 * There may be allocated blocks outside of i_size because 1423 * we failed to copy some data. Prepare for truncate. 1424 */ 1425 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1426 ext3_orphan_add(handle, inode); 1427 ret = ext3_journal_stop(handle); 1428 unlock_page(page); 1429 page_cache_release(page); 1430 1431 if (pos + len > inode->i_size) 1432 ext3_truncate_failed_write(inode); 1433 return ret ? ret : copied; 1434} 1435 1436static int ext3_journalled_write_end(struct file *file, 1437 struct address_space *mapping, 1438 loff_t pos, unsigned len, unsigned copied, 1439 struct page *page, void *fsdata) 1440{ 1441 handle_t *handle = ext3_journal_current_handle(); 1442 struct inode *inode = mapping->host; 1443 struct ext3_inode_info *ei = EXT3_I(inode); 1444 int ret = 0, ret2; 1445 int partial = 0; 1446 unsigned from, to; 1447 1448 trace_ext3_journalled_write_end(inode, pos, len, copied); 1449 from = pos & (PAGE_CACHE_SIZE - 1); 1450 to = from + len; 1451 1452 if (copied < len) { 1453 if (!PageUptodate(page)) 1454 copied = 0; 1455 page_zero_new_buffers(page, from + copied, to); 1456 to = from + copied; 1457 } 1458 1459 ret = walk_page_buffers(handle, page_buffers(page), from, 1460 to, &partial, write_end_fn); 1461 if (!partial) 1462 SetPageUptodate(page); 1463 1464 if (pos + copied > inode->i_size) 1465 i_size_write(inode, pos + copied); 1466 /* 1467 * There may be allocated blocks outside of i_size because 1468 * we failed to copy some data. Prepare for truncate. 1469 */ 1470 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1471 ext3_orphan_add(handle, inode); 1472 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1473 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 1474 if (inode->i_size > ei->i_disksize) { 1475 ei->i_disksize = inode->i_size; 1476 ret2 = ext3_mark_inode_dirty(handle, inode); 1477 if (!ret) 1478 ret = ret2; 1479 } 1480 1481 ret2 = ext3_journal_stop(handle); 1482 if (!ret) 1483 ret = ret2; 1484 unlock_page(page); 1485 page_cache_release(page); 1486 1487 if (pos + len > inode->i_size) 1488 ext3_truncate_failed_write(inode); 1489 return ret ? ret : copied; 1490} 1491 1492/* 1493 * bmap() is special. It gets used by applications such as lilo and by 1494 * the swapper to find the on-disk block of a specific piece of data. 1495 * 1496 * Naturally, this is dangerous if the block concerned is still in the 1497 * journal. If somebody makes a swapfile on an ext3 data-journaling 1498 * filesystem and enables swap, then they may get a nasty shock when the 1499 * data getting swapped to that swapfile suddenly gets overwritten by 1500 * the original zero's written out previously to the journal and 1501 * awaiting writeback in the kernel's buffer cache. 1502 * 1503 * So, if we see any bmap calls here on a modified, data-journaled file, 1504 * take extra steps to flush any blocks which might be in the cache. 1505 */ 1506static sector_t ext3_bmap(struct address_space *mapping, sector_t block) 1507{ 1508 struct inode *inode = mapping->host; 1509 journal_t *journal; 1510 int err; 1511 1512 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) { 1513 /* 1514 * This is a REALLY heavyweight approach, but the use of 1515 * bmap on dirty files is expected to be extremely rare: 1516 * only if we run lilo or swapon on a freshly made file 1517 * do we expect this to happen. 1518 * 1519 * (bmap requires CAP_SYS_RAWIO so this does not 1520 * represent an unprivileged user DOS attack --- we'd be 1521 * in trouble if mortal users could trigger this path at 1522 * will.) 1523 * 1524 * NB. EXT3_STATE_JDATA is not set on files other than 1525 * regular files. If somebody wants to bmap a directory 1526 * or symlink and gets confused because the buffer 1527 * hasn't yet been flushed to disk, they deserve 1528 * everything they get. 1529 */ 1530 1531 ext3_clear_inode_state(inode, EXT3_STATE_JDATA); 1532 journal = EXT3_JOURNAL(inode); 1533 journal_lock_updates(journal); 1534 err = journal_flush(journal); 1535 journal_unlock_updates(journal); 1536 1537 if (err) 1538 return 0; 1539 } 1540 1541 return generic_block_bmap(mapping,block,ext3_get_block); 1542} 1543 1544static int bget_one(handle_t *handle, struct buffer_head *bh) 1545{ 1546 get_bh(bh); 1547 return 0; 1548} 1549 1550static int bput_one(handle_t *handle, struct buffer_head *bh) 1551{ 1552 put_bh(bh); 1553 return 0; 1554} 1555 1556static int buffer_unmapped(handle_t *handle, struct buffer_head *bh) 1557{ 1558 return !buffer_mapped(bh); 1559} 1560 1561/* 1562 * Note that we always start a transaction even if we're not journalling 1563 * data. This is to preserve ordering: any hole instantiation within 1564 * __block_write_full_page -> ext3_get_block() should be journalled 1565 * along with the data so we don't crash and then get metadata which 1566 * refers to old data. 1567 * 1568 * In all journalling modes block_write_full_page() will start the I/O. 1569 * 1570 * Problem: 1571 * 1572 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1573 * ext3_writepage() 1574 * 1575 * Similar for: 1576 * 1577 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1578 * 1579 * Same applies to ext3_get_block(). We will deadlock on various things like 1580 * lock_journal and i_truncate_mutex. 1581 * 1582 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1583 * allocations fail. 1584 * 1585 * 16May01: If we're reentered then journal_current_handle() will be 1586 * non-zero. We simply *return*. 1587 * 1588 * 1 July 2001: @@@ FIXME: 1589 * In journalled data mode, a data buffer may be metadata against the 1590 * current transaction. But the same file is part of a shared mapping 1591 * and someone does a writepage() on it. 1592 * 1593 * We will move the buffer onto the async_data list, but *after* it has 1594 * been dirtied. So there's a small window where we have dirty data on 1595 * BJ_Metadata. 1596 * 1597 * Note that this only applies to the last partial page in the file. The 1598 * bit which block_write_full_page() uses prepare/commit for. (That's 1599 * broken code anyway: it's wrong for msync()). 1600 * 1601 * It's a rare case: affects the final partial page, for journalled data 1602 * where the file is subject to bith write() and writepage() in the same 1603 * transction. To fix it we'll need a custom block_write_full_page(). 1604 * We'll probably need that anyway for journalling writepage() output. 1605 * 1606 * We don't honour synchronous mounts for writepage(). That would be 1607 * disastrous. Any write() or metadata operation will sync the fs for 1608 * us. 1609 * 1610 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1611 * we don't need to open a transaction here. 1612 */ 1613static int ext3_ordered_writepage(struct page *page, 1614 struct writeback_control *wbc) 1615{ 1616 struct inode *inode = page->mapping->host; 1617 struct buffer_head *page_bufs; 1618 handle_t *handle = NULL; 1619 int ret = 0; 1620 int err; 1621 1622 J_ASSERT(PageLocked(page)); 1623 /* 1624 * We don't want to warn for emergency remount. The condition is 1625 * ordered to avoid dereferencing inode->i_sb in non-error case to 1626 * avoid slow-downs. 1627 */ 1628 WARN_ON_ONCE(IS_RDONLY(inode) && 1629 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1630 1631 /* 1632 * We give up here if we're reentered, because it might be for a 1633 * different filesystem. 1634 */ 1635 if (ext3_journal_current_handle()) 1636 goto out_fail; 1637 1638 trace_ext3_ordered_writepage(page); 1639 if (!page_has_buffers(page)) { 1640 create_empty_buffers(page, inode->i_sb->s_blocksize, 1641 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1642 page_bufs = page_buffers(page); 1643 } else { 1644 page_bufs = page_buffers(page); 1645 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE, 1646 NULL, buffer_unmapped)) { 1647 /* Provide NULL get_block() to catch bugs if buffers 1648 * weren't really mapped */ 1649 return block_write_full_page(page, NULL, wbc); 1650 } 1651 } 1652 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1653 1654 if (IS_ERR(handle)) { 1655 ret = PTR_ERR(handle); 1656 goto out_fail; 1657 } 1658 1659 walk_page_buffers(handle, page_bufs, 0, 1660 PAGE_CACHE_SIZE, NULL, bget_one); 1661 1662 ret = block_write_full_page(page, ext3_get_block, wbc); 1663 1664 /* 1665 * The page can become unlocked at any point now, and 1666 * truncate can then come in and change things. So we 1667 * can't touch *page from now on. But *page_bufs is 1668 * safe due to elevated refcount. 1669 */ 1670 1671 /* 1672 * And attach them to the current transaction. But only if 1673 * block_write_full_page() succeeded. Otherwise they are unmapped, 1674 * and generally junk. 1675 */ 1676 if (ret == 0) { 1677 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1678 NULL, journal_dirty_data_fn); 1679 if (!ret) 1680 ret = err; 1681 } 1682 walk_page_buffers(handle, page_bufs, 0, 1683 PAGE_CACHE_SIZE, NULL, bput_one); 1684 err = ext3_journal_stop(handle); 1685 if (!ret) 1686 ret = err; 1687 return ret; 1688 1689out_fail: 1690 redirty_page_for_writepage(wbc, page); 1691 unlock_page(page); 1692 return ret; 1693} 1694 1695static int ext3_writeback_writepage(struct page *page, 1696 struct writeback_control *wbc) 1697{ 1698 struct inode *inode = page->mapping->host; 1699 handle_t *handle = NULL; 1700 int ret = 0; 1701 int err; 1702 1703 J_ASSERT(PageLocked(page)); 1704 /* 1705 * We don't want to warn for emergency remount. The condition is 1706 * ordered to avoid dereferencing inode->i_sb in non-error case to 1707 * avoid slow-downs. 1708 */ 1709 WARN_ON_ONCE(IS_RDONLY(inode) && 1710 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1711 1712 if (ext3_journal_current_handle()) 1713 goto out_fail; 1714 1715 trace_ext3_writeback_writepage(page); 1716 if (page_has_buffers(page)) { 1717 if (!walk_page_buffers(NULL, page_buffers(page), 0, 1718 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) { 1719 /* Provide NULL get_block() to catch bugs if buffers 1720 * weren't really mapped */ 1721 return block_write_full_page(page, NULL, wbc); 1722 } 1723 } 1724 1725 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1726 if (IS_ERR(handle)) { 1727 ret = PTR_ERR(handle); 1728 goto out_fail; 1729 } 1730 1731 ret = block_write_full_page(page, ext3_get_block, wbc); 1732 1733 err = ext3_journal_stop(handle); 1734 if (!ret) 1735 ret = err; 1736 return ret; 1737 1738out_fail: 1739 redirty_page_for_writepage(wbc, page); 1740 unlock_page(page); 1741 return ret; 1742} 1743 1744static int ext3_journalled_writepage(struct page *page, 1745 struct writeback_control *wbc) 1746{ 1747 struct inode *inode = page->mapping->host; 1748 handle_t *handle = NULL; 1749 int ret = 0; 1750 int err; 1751 1752 J_ASSERT(PageLocked(page)); 1753 /* 1754 * We don't want to warn for emergency remount. The condition is 1755 * ordered to avoid dereferencing inode->i_sb in non-error case to 1756 * avoid slow-downs. 1757 */ 1758 WARN_ON_ONCE(IS_RDONLY(inode) && 1759 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1760 1761 if (ext3_journal_current_handle()) 1762 goto no_write; 1763 1764 trace_ext3_journalled_writepage(page); 1765 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1766 if (IS_ERR(handle)) { 1767 ret = PTR_ERR(handle); 1768 goto no_write; 1769 } 1770 1771 if (!page_has_buffers(page) || PageChecked(page)) { 1772 /* 1773 * It's mmapped pagecache. Add buffers and journal it. There 1774 * doesn't seem much point in redirtying the page here. 1775 */ 1776 ClearPageChecked(page); 1777 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE, 1778 ext3_get_block); 1779 if (ret != 0) { 1780 ext3_journal_stop(handle); 1781 goto out_unlock; 1782 } 1783 ret = walk_page_buffers(handle, page_buffers(page), 0, 1784 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1785 1786 err = walk_page_buffers(handle, page_buffers(page), 0, 1787 PAGE_CACHE_SIZE, NULL, write_end_fn); 1788 if (ret == 0) 1789 ret = err; 1790 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1791 atomic_set(&EXT3_I(inode)->i_datasync_tid, 1792 handle->h_transaction->t_tid); 1793 unlock_page(page); 1794 } else { 1795 /* 1796 * It may be a page full of checkpoint-mode buffers. We don't 1797 * really know unless we go poke around in the buffer_heads. 1798 * But block_write_full_page will do the right thing. 1799 */ 1800 ret = block_write_full_page(page, ext3_get_block, wbc); 1801 } 1802 err = ext3_journal_stop(handle); 1803 if (!ret) 1804 ret = err; 1805out: 1806 return ret; 1807 1808no_write: 1809 redirty_page_for_writepage(wbc, page); 1810out_unlock: 1811 unlock_page(page); 1812 goto out; 1813} 1814 1815static int ext3_readpage(struct file *file, struct page *page) 1816{ 1817 trace_ext3_readpage(page); 1818 return mpage_readpage(page, ext3_get_block); 1819} 1820 1821static int 1822ext3_readpages(struct file *file, struct address_space *mapping, 1823 struct list_head *pages, unsigned nr_pages) 1824{ 1825 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block); 1826} 1827 1828static void ext3_invalidatepage(struct page *page, unsigned int offset, 1829 unsigned int length) 1830{ 1831 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1832 1833 trace_ext3_invalidatepage(page, offset, length); 1834 1835 /* 1836 * If it's a full truncate we just forget about the pending dirtying 1837 */ 1838 if (offset == 0 && length == PAGE_CACHE_SIZE) 1839 ClearPageChecked(page); 1840 1841 journal_invalidatepage(journal, page, offset, length); 1842} 1843 1844static int ext3_releasepage(struct page *page, gfp_t wait) 1845{ 1846 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1847 1848 trace_ext3_releasepage(page); 1849 WARN_ON(PageChecked(page)); 1850 if (!page_has_buffers(page)) 1851 return 0; 1852 return journal_try_to_free_buffers(journal, page, wait); 1853} 1854 1855/* 1856 * If the O_DIRECT write will extend the file then add this inode to the 1857 * orphan list. So recovery will truncate it back to the original size 1858 * if the machine crashes during the write. 1859 * 1860 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1861 * crashes then stale disk data _may_ be exposed inside the file. But current 1862 * VFS code falls back into buffered path in that case so we are safe. 1863 */ 1864static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb, 1865 const struct iovec *iov, loff_t offset, 1866 unsigned long nr_segs) 1867{ 1868 struct file *file = iocb->ki_filp; 1869 struct inode *inode = file->f_mapping->host; 1870 struct ext3_inode_info *ei = EXT3_I(inode); 1871 handle_t *handle; 1872 ssize_t ret; 1873 int orphan = 0; 1874 size_t count = iov_length(iov, nr_segs); 1875 int retries = 0; 1876 1877 trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 1878 1879 if (rw == WRITE) { 1880 loff_t final_size = offset + count; 1881 1882 if (final_size > inode->i_size) { 1883 /* Credits for sb + inode write */ 1884 handle = ext3_journal_start(inode, 2); 1885 if (IS_ERR(handle)) { 1886 ret = PTR_ERR(handle); 1887 goto out; 1888 } 1889 ret = ext3_orphan_add(handle, inode); 1890 if (ret) { 1891 ext3_journal_stop(handle); 1892 goto out; 1893 } 1894 orphan = 1; 1895 ei->i_disksize = inode->i_size; 1896 ext3_journal_stop(handle); 1897 } 1898 } 1899 1900retry: 1901 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 1902 ext3_get_block); 1903 /* 1904 * In case of error extending write may have instantiated a few 1905 * blocks outside i_size. Trim these off again. 1906 */ 1907 if (unlikely((rw & WRITE) && ret < 0)) { 1908 loff_t isize = i_size_read(inode); 1909 loff_t end = offset + iov_length(iov, nr_segs); 1910 1911 if (end > isize) 1912 ext3_truncate_failed_direct_write(inode); 1913 } 1914 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1915 goto retry; 1916 1917 if (orphan) { 1918 int err; 1919 1920 /* Credits for sb + inode write */ 1921 handle = ext3_journal_start(inode, 2); 1922 if (IS_ERR(handle)) { 1923 /* This is really bad luck. We've written the data 1924 * but cannot extend i_size. Truncate allocated blocks 1925 * and pretend the write failed... */ 1926 ext3_truncate_failed_direct_write(inode); 1927 ret = PTR_ERR(handle); 1928 goto out; 1929 } 1930 if (inode->i_nlink) 1931 ext3_orphan_del(handle, inode); 1932 if (ret > 0) { 1933 loff_t end = offset + ret; 1934 if (end > inode->i_size) { 1935 ei->i_disksize = end; 1936 i_size_write(inode, end); 1937 /* 1938 * We're going to return a positive `ret' 1939 * here due to non-zero-length I/O, so there's 1940 * no way of reporting error returns from 1941 * ext3_mark_inode_dirty() to userspace. So 1942 * ignore it. 1943 */ 1944 ext3_mark_inode_dirty(handle, inode); 1945 } 1946 } 1947 err = ext3_journal_stop(handle); 1948 if (ret == 0) 1949 ret = err; 1950 } 1951out: 1952 trace_ext3_direct_IO_exit(inode, offset, 1953 iov_length(iov, nr_segs), rw, ret); 1954 return ret; 1955} 1956 1957/* 1958 * Pages can be marked dirty completely asynchronously from ext3's journalling 1959 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1960 * much here because ->set_page_dirty is called under VFS locks. The page is 1961 * not necessarily locked. 1962 * 1963 * We cannot just dirty the page and leave attached buffers clean, because the 1964 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1965 * or jbddirty because all the journalling code will explode. 1966 * 1967 * So what we do is to mark the page "pending dirty" and next time writepage 1968 * is called, propagate that into the buffers appropriately. 1969 */ 1970static int ext3_journalled_set_page_dirty(struct page *page) 1971{ 1972 SetPageChecked(page); 1973 return __set_page_dirty_nobuffers(page); 1974} 1975 1976static const struct address_space_operations ext3_ordered_aops = { 1977 .readpage = ext3_readpage, 1978 .readpages = ext3_readpages, 1979 .writepage = ext3_ordered_writepage, 1980 .write_begin = ext3_write_begin, 1981 .write_end = ext3_ordered_write_end, 1982 .bmap = ext3_bmap, 1983 .invalidatepage = ext3_invalidatepage, 1984 .releasepage = ext3_releasepage, 1985 .direct_IO = ext3_direct_IO, 1986 .migratepage = buffer_migrate_page, 1987 .is_partially_uptodate = block_is_partially_uptodate, 1988 .is_dirty_writeback = buffer_check_dirty_writeback, 1989 .error_remove_page = generic_error_remove_page, 1990}; 1991 1992static const struct address_space_operations ext3_writeback_aops = { 1993 .readpage = ext3_readpage, 1994 .readpages = ext3_readpages, 1995 .writepage = ext3_writeback_writepage, 1996 .write_begin = ext3_write_begin, 1997 .write_end = ext3_writeback_write_end, 1998 .bmap = ext3_bmap, 1999 .invalidatepage = ext3_invalidatepage, 2000 .releasepage = ext3_releasepage, 2001 .direct_IO = ext3_direct_IO, 2002 .migratepage = buffer_migrate_page, 2003 .is_partially_uptodate = block_is_partially_uptodate, 2004 .error_remove_page = generic_error_remove_page, 2005}; 2006 2007static const struct address_space_operations ext3_journalled_aops = { 2008 .readpage = ext3_readpage, 2009 .readpages = ext3_readpages, 2010 .writepage = ext3_journalled_writepage, 2011 .write_begin = ext3_write_begin, 2012 .write_end = ext3_journalled_write_end, 2013 .set_page_dirty = ext3_journalled_set_page_dirty, 2014 .bmap = ext3_bmap, 2015 .invalidatepage = ext3_invalidatepage, 2016 .releasepage = ext3_releasepage, 2017 .is_partially_uptodate = block_is_partially_uptodate, 2018 .error_remove_page = generic_error_remove_page, 2019}; 2020 2021void ext3_set_aops(struct inode *inode) 2022{ 2023 if (ext3_should_order_data(inode)) 2024 inode->i_mapping->a_ops = &ext3_ordered_aops; 2025 else if (ext3_should_writeback_data(inode)) 2026 inode->i_mapping->a_ops = &ext3_writeback_aops; 2027 else 2028 inode->i_mapping->a_ops = &ext3_journalled_aops; 2029} 2030 2031/* 2032 * ext3_block_truncate_page() zeroes out a mapping from file offset `from' 2033 * up to the end of the block which corresponds to `from'. 2034 * This required during truncate. We need to physically zero the tail end 2035 * of that block so it doesn't yield old data if the file is later grown. 2036 */ 2037static int ext3_block_truncate_page(struct inode *inode, loff_t from) 2038{ 2039 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2040 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 2041 unsigned blocksize, iblock, length, pos; 2042 struct page *page; 2043 handle_t *handle = NULL; 2044 struct buffer_head *bh; 2045 int err = 0; 2046 2047 /* Truncated on block boundary - nothing to do */ 2048 blocksize = inode->i_sb->s_blocksize; 2049 if ((from & (blocksize - 1)) == 0) 2050 return 0; 2051 2052 page = grab_cache_page(inode->i_mapping, index); 2053 if (!page) 2054 return -ENOMEM; 2055 length = blocksize - (offset & (blocksize - 1)); 2056 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2057 2058 if (!page_has_buffers(page)) 2059 create_empty_buffers(page, blocksize, 0); 2060 2061 /* Find the buffer that contains "offset" */ 2062 bh = page_buffers(page); 2063 pos = blocksize; 2064 while (offset >= pos) { 2065 bh = bh->b_this_page; 2066 iblock++; 2067 pos += blocksize; 2068 } 2069 2070 err = 0; 2071 if (buffer_freed(bh)) { 2072 BUFFER_TRACE(bh, "freed: skip"); 2073 goto unlock; 2074 } 2075 2076 if (!buffer_mapped(bh)) { 2077 BUFFER_TRACE(bh, "unmapped"); 2078 ext3_get_block(inode, iblock, bh, 0); 2079 /* unmapped? It's a hole - nothing to do */ 2080 if (!buffer_mapped(bh)) { 2081 BUFFER_TRACE(bh, "still unmapped"); 2082 goto unlock; 2083 } 2084 } 2085 2086 /* Ok, it's mapped. Make sure it's up-to-date */ 2087 if (PageUptodate(page)) 2088 set_buffer_uptodate(bh); 2089 2090 if (!bh_uptodate_or_lock(bh)) { 2091 err = bh_submit_read(bh); 2092 /* Uhhuh. Read error. Complain and punt. */ 2093 if (err) 2094 goto unlock; 2095 } 2096 2097 /* data=writeback mode doesn't need transaction to zero-out data */ 2098 if (!ext3_should_writeback_data(inode)) { 2099 /* We journal at most one block */ 2100 handle = ext3_journal_start(inode, 1); 2101 if (IS_ERR(handle)) { 2102 clear_highpage(page); 2103 flush_dcache_page(page); 2104 err = PTR_ERR(handle); 2105 goto unlock; 2106 } 2107 } 2108 2109 if (ext3_should_journal_data(inode)) { 2110 BUFFER_TRACE(bh, "get write access"); 2111 err = ext3_journal_get_write_access(handle, bh); 2112 if (err) 2113 goto stop; 2114 } 2115 2116 zero_user(page, offset, length); 2117 BUFFER_TRACE(bh, "zeroed end of block"); 2118 2119 err = 0; 2120 if (ext3_should_journal_data(inode)) { 2121 err = ext3_journal_dirty_metadata(handle, bh); 2122 } else { 2123 if (ext3_should_order_data(inode)) 2124 err = ext3_journal_dirty_data(handle, bh); 2125 mark_buffer_dirty(bh); 2126 } 2127stop: 2128 if (handle) 2129 ext3_journal_stop(handle); 2130 2131unlock: 2132 unlock_page(page); 2133 page_cache_release(page); 2134 return err; 2135} 2136 2137/* 2138 * Probably it should be a library function... search for first non-zero word 2139 * or memcmp with zero_page, whatever is better for particular architecture. 2140 * Linus? 2141 */ 2142static inline int all_zeroes(__le32 *p, __le32 *q) 2143{ 2144 while (p < q) 2145 if (*p++) 2146 return 0; 2147 return 1; 2148} 2149 2150/** 2151 * ext3_find_shared - find the indirect blocks for partial truncation. 2152 * @inode: inode in question 2153 * @depth: depth of the affected branch 2154 * @offsets: offsets of pointers in that branch (see ext3_block_to_path) 2155 * @chain: place to store the pointers to partial indirect blocks 2156 * @top: place to the (detached) top of branch 2157 * 2158 * This is a helper function used by ext3_truncate(). 2159 * 2160 * When we do truncate() we may have to clean the ends of several 2161 * indirect blocks but leave the blocks themselves alive. Block is 2162 * partially truncated if some data below the new i_size is referred 2163 * from it (and it is on the path to the first completely truncated 2164 * data block, indeed). We have to free the top of that path along 2165 * with everything to the right of the path. Since no allocation 2166 * past the truncation point is possible until ext3_truncate() 2167 * finishes, we may safely do the latter, but top of branch may 2168 * require special attention - pageout below the truncation point 2169 * might try to populate it. 2170 * 2171 * We atomically detach the top of branch from the tree, store the 2172 * block number of its root in *@top, pointers to buffer_heads of 2173 * partially truncated blocks - in @chain[].bh and pointers to 2174 * their last elements that should not be removed - in 2175 * @chain[].p. Return value is the pointer to last filled element 2176 * of @chain. 2177 * 2178 * The work left to caller to do the actual freeing of subtrees: 2179 * a) free the subtree starting from *@top 2180 * b) free the subtrees whose roots are stored in 2181 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2182 * c) free the subtrees growing from the inode past the @chain[0]. 2183 * (no partially truncated stuff there). */ 2184 2185static Indirect *ext3_find_shared(struct inode *inode, int depth, 2186 int offsets[4], Indirect chain[4], __le32 *top) 2187{ 2188 Indirect *partial, *p; 2189 int k, err; 2190 2191 *top = 0; 2192 /* Make k index the deepest non-null offset + 1 */ 2193 for (k = depth; k > 1 && !offsets[k-1]; k--) 2194 ; 2195 partial = ext3_get_branch(inode, k, offsets, chain, &err); 2196 /* Writer: pointers */ 2197 if (!partial) 2198 partial = chain + k-1; 2199 /* 2200 * If the branch acquired continuation since we've looked at it - 2201 * fine, it should all survive and (new) top doesn't belong to us. 2202 */ 2203 if (!partial->key && *partial->p) 2204 /* Writer: end */ 2205 goto no_top; 2206 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 2207 ; 2208 /* 2209 * OK, we've found the last block that must survive. The rest of our 2210 * branch should be detached before unlocking. However, if that rest 2211 * of branch is all ours and does not grow immediately from the inode 2212 * it's easier to cheat and just decrement partial->p. 2213 */ 2214 if (p == chain + k - 1 && p > chain) { 2215 p->p--; 2216 } else { 2217 *top = *p->p; 2218 /* Nope, don't do this in ext3. Must leave the tree intact */ 2219#if 0 2220 *p->p = 0; 2221#endif 2222 } 2223 /* Writer: end */ 2224 2225 while(partial > p) { 2226 brelse(partial->bh); 2227 partial--; 2228 } 2229no_top: 2230 return partial; 2231} 2232 2233/* 2234 * Zero a number of block pointers in either an inode or an indirect block. 2235 * If we restart the transaction we must again get write access to the 2236 * indirect block for further modification. 2237 * 2238 * We release `count' blocks on disk, but (last - first) may be greater 2239 * than `count' because there can be holes in there. 2240 */ 2241static void ext3_clear_blocks(handle_t *handle, struct inode *inode, 2242 struct buffer_head *bh, ext3_fsblk_t block_to_free, 2243 unsigned long count, __le32 *first, __le32 *last) 2244{ 2245 __le32 *p; 2246 if (try_to_extend_transaction(handle, inode)) { 2247 if (bh) { 2248 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 2249 if (ext3_journal_dirty_metadata(handle, bh)) 2250 return; 2251 } 2252 ext3_mark_inode_dirty(handle, inode); 2253 truncate_restart_transaction(handle, inode); 2254 if (bh) { 2255 BUFFER_TRACE(bh, "retaking write access"); 2256 if (ext3_journal_get_write_access(handle, bh)) 2257 return; 2258 } 2259 } 2260 2261 /* 2262 * Any buffers which are on the journal will be in memory. We find 2263 * them on the hash table so journal_revoke() will run journal_forget() 2264 * on them. We've already detached each block from the file, so 2265 * bforget() in journal_forget() should be safe. 2266 * 2267 * AKPM: turn on bforget in journal_forget()!!! 2268 */ 2269 for (p = first; p < last; p++) { 2270 u32 nr = le32_to_cpu(*p); 2271 if (nr) { 2272 struct buffer_head *bh; 2273 2274 *p = 0; 2275 bh = sb_find_get_block(inode->i_sb, nr); 2276 ext3_forget(handle, 0, inode, bh, nr); 2277 } 2278 } 2279 2280 ext3_free_blocks(handle, inode, block_to_free, count); 2281} 2282 2283/** 2284 * ext3_free_data - free a list of data blocks 2285 * @handle: handle for this transaction 2286 * @inode: inode we are dealing with 2287 * @this_bh: indirect buffer_head which contains *@first and *@last 2288 * @first: array of block numbers 2289 * @last: points immediately past the end of array 2290 * 2291 * We are freeing all blocks referred from that array (numbers are stored as 2292 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2293 * 2294 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2295 * blocks are contiguous then releasing them at one time will only affect one 2296 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2297 * actually use a lot of journal space. 2298 * 2299 * @this_bh will be %NULL if @first and @last point into the inode's direct 2300 * block pointers. 2301 */ 2302static void ext3_free_data(handle_t *handle, struct inode *inode, 2303 struct buffer_head *this_bh, 2304 __le32 *first, __le32 *last) 2305{ 2306 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2307 unsigned long count = 0; /* Number of blocks in the run */ 2308 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2309 corresponding to 2310 block_to_free */ 2311 ext3_fsblk_t nr; /* Current block # */ 2312 __le32 *p; /* Pointer into inode/ind 2313 for current block */ 2314 int err; 2315 2316 if (this_bh) { /* For indirect block */ 2317 BUFFER_TRACE(this_bh, "get_write_access"); 2318 err = ext3_journal_get_write_access(handle, this_bh); 2319 /* Important: if we can't update the indirect pointers 2320 * to the blocks, we can't free them. */ 2321 if (err) 2322 return; 2323 } 2324 2325 for (p = first; p < last; p++) { 2326 nr = le32_to_cpu(*p); 2327 if (nr) { 2328 /* accumulate blocks to free if they're contiguous */ 2329 if (count == 0) { 2330 block_to_free = nr; 2331 block_to_free_p = p; 2332 count = 1; 2333 } else if (nr == block_to_free + count) { 2334 count++; 2335 } else { 2336 ext3_clear_blocks(handle, inode, this_bh, 2337 block_to_free, 2338 count, block_to_free_p, p); 2339 block_to_free = nr; 2340 block_to_free_p = p; 2341 count = 1; 2342 } 2343 } 2344 } 2345 2346 if (count > 0) 2347 ext3_clear_blocks(handle, inode, this_bh, block_to_free, 2348 count, block_to_free_p, p); 2349 2350 if (this_bh) { 2351 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata"); 2352 2353 /* 2354 * The buffer head should have an attached journal head at this 2355 * point. However, if the data is corrupted and an indirect 2356 * block pointed to itself, it would have been detached when 2357 * the block was cleared. Check for this instead of OOPSing. 2358 */ 2359 if (bh2jh(this_bh)) 2360 ext3_journal_dirty_metadata(handle, this_bh); 2361 else 2362 ext3_error(inode->i_sb, "ext3_free_data", 2363 "circular indirect block detected, " 2364 "inode=%lu, block=%llu", 2365 inode->i_ino, 2366 (unsigned long long)this_bh->b_blocknr); 2367 } 2368} 2369 2370/** 2371 * ext3_free_branches - free an array of branches 2372 * @handle: JBD handle for this transaction 2373 * @inode: inode we are dealing with 2374 * @parent_bh: the buffer_head which contains *@first and *@last 2375 * @first: array of block numbers 2376 * @last: pointer immediately past the end of array 2377 * @depth: depth of the branches to free 2378 * 2379 * We are freeing all blocks referred from these branches (numbers are 2380 * stored as little-endian 32-bit) and updating @inode->i_blocks 2381 * appropriately. 2382 */ 2383static void ext3_free_branches(handle_t *handle, struct inode *inode, 2384 struct buffer_head *parent_bh, 2385 __le32 *first, __le32 *last, int depth) 2386{ 2387 ext3_fsblk_t nr; 2388 __le32 *p; 2389 2390 if (is_handle_aborted(handle)) 2391 return; 2392 2393 if (depth--) { 2394 struct buffer_head *bh; 2395 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2396 p = last; 2397 while (--p >= first) { 2398 nr = le32_to_cpu(*p); 2399 if (!nr) 2400 continue; /* A hole */ 2401 2402 /* Go read the buffer for the next level down */ 2403 bh = sb_bread(inode->i_sb, nr); 2404 2405 /* 2406 * A read failure? Report error and clear slot 2407 * (should be rare). 2408 */ 2409 if (!bh) { 2410 ext3_error(inode->i_sb, "ext3_free_branches", 2411 "Read failure, inode=%lu, block="E3FSBLK, 2412 inode->i_ino, nr); 2413 continue; 2414 } 2415 2416 /* This zaps the entire block. Bottom up. */ 2417 BUFFER_TRACE(bh, "free child branches"); 2418 ext3_free_branches(handle, inode, bh, 2419 (__le32*)bh->b_data, 2420 (__le32*)bh->b_data + addr_per_block, 2421 depth); 2422 2423 /* 2424 * Everything below this this pointer has been 2425 * released. Now let this top-of-subtree go. 2426 * 2427 * We want the freeing of this indirect block to be 2428 * atomic in the journal with the updating of the 2429 * bitmap block which owns it. So make some room in 2430 * the journal. 2431 * 2432 * We zero the parent pointer *after* freeing its 2433 * pointee in the bitmaps, so if extend_transaction() 2434 * for some reason fails to put the bitmap changes and 2435 * the release into the same transaction, recovery 2436 * will merely complain about releasing a free block, 2437 * rather than leaking blocks. 2438 */ 2439 if (is_handle_aborted(handle)) 2440 return; 2441 if (try_to_extend_transaction(handle, inode)) { 2442 ext3_mark_inode_dirty(handle, inode); 2443 truncate_restart_transaction(handle, inode); 2444 } 2445 2446 /* 2447 * We've probably journalled the indirect block several 2448 * times during the truncate. But it's no longer 2449 * needed and we now drop it from the transaction via 2450 * journal_revoke(). 2451 * 2452 * That's easy if it's exclusively part of this 2453 * transaction. But if it's part of the committing 2454 * transaction then journal_forget() will simply 2455 * brelse() it. That means that if the underlying 2456 * block is reallocated in ext3_get_block(), 2457 * unmap_underlying_metadata() will find this block 2458 * and will try to get rid of it. damn, damn. Thus 2459 * we don't allow a block to be reallocated until 2460 * a transaction freeing it has fully committed. 2461 * 2462 * We also have to make sure journal replay after a 2463 * crash does not overwrite non-journaled data blocks 2464 * with old metadata when the block got reallocated for 2465 * data. Thus we have to store a revoke record for a 2466 * block in the same transaction in which we free the 2467 * block. 2468 */ 2469 ext3_forget(handle, 1, inode, bh, bh->b_blocknr); 2470 2471 ext3_free_blocks(handle, inode, nr, 1); 2472 2473 if (parent_bh) { 2474 /* 2475 * The block which we have just freed is 2476 * pointed to by an indirect block: journal it 2477 */ 2478 BUFFER_TRACE(parent_bh, "get_write_access"); 2479 if (!ext3_journal_get_write_access(handle, 2480 parent_bh)){ 2481 *p = 0; 2482 BUFFER_TRACE(parent_bh, 2483 "call ext3_journal_dirty_metadata"); 2484 ext3_journal_dirty_metadata(handle, 2485 parent_bh); 2486 } 2487 } 2488 } 2489 } else { 2490 /* We have reached the bottom of the tree. */ 2491 BUFFER_TRACE(parent_bh, "free data blocks"); 2492 ext3_free_data(handle, inode, parent_bh, first, last); 2493 } 2494} 2495 2496int ext3_can_truncate(struct inode *inode) 2497{ 2498 if (S_ISREG(inode->i_mode)) 2499 return 1; 2500 if (S_ISDIR(inode->i_mode)) 2501 return 1; 2502 if (S_ISLNK(inode->i_mode)) 2503 return !ext3_inode_is_fast_symlink(inode); 2504 return 0; 2505} 2506 2507/* 2508 * ext3_truncate() 2509 * 2510 * We block out ext3_get_block() block instantiations across the entire 2511 * transaction, and VFS/VM ensures that ext3_truncate() cannot run 2512 * simultaneously on behalf of the same inode. 2513 * 2514 * As we work through the truncate and commit bits of it to the journal there 2515 * is one core, guiding principle: the file's tree must always be consistent on 2516 * disk. We must be able to restart the truncate after a crash. 2517 * 2518 * The file's tree may be transiently inconsistent in memory (although it 2519 * probably isn't), but whenever we close off and commit a journal transaction, 2520 * the contents of (the filesystem + the journal) must be consistent and 2521 * restartable. It's pretty simple, really: bottom up, right to left (although 2522 * left-to-right works OK too). 2523 * 2524 * Note that at recovery time, journal replay occurs *before* the restart of 2525 * truncate against the orphan inode list. 2526 * 2527 * The committed inode has the new, desired i_size (which is the same as 2528 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see 2529 * that this inode's truncate did not complete and it will again call 2530 * ext3_truncate() to have another go. So there will be instantiated blocks 2531 * to the right of the truncation point in a crashed ext3 filesystem. But 2532 * that's fine - as long as they are linked from the inode, the post-crash 2533 * ext3_truncate() run will find them and release them. 2534 */ 2535void ext3_truncate(struct inode *inode) 2536{ 2537 handle_t *handle; 2538 struct ext3_inode_info *ei = EXT3_I(inode); 2539 __le32 *i_data = ei->i_data; 2540 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2541 int offsets[4]; 2542 Indirect chain[4]; 2543 Indirect *partial; 2544 __le32 nr = 0; 2545 int n; 2546 long last_block; 2547 unsigned blocksize = inode->i_sb->s_blocksize; 2548 2549 trace_ext3_truncate_enter(inode); 2550 2551 if (!ext3_can_truncate(inode)) 2552 goto out_notrans; 2553 2554 if (inode->i_size == 0 && ext3_should_writeback_data(inode)) 2555 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE); 2556 2557 handle = start_transaction(inode); 2558 if (IS_ERR(handle)) 2559 goto out_notrans; 2560 2561 last_block = (inode->i_size + blocksize-1) 2562 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb); 2563 n = ext3_block_to_path(inode, last_block, offsets, NULL); 2564 if (n == 0) 2565 goto out_stop; /* error */ 2566 2567 /* 2568 * OK. This truncate is going to happen. We add the inode to the 2569 * orphan list, so that if this truncate spans multiple transactions, 2570 * and we crash, we will resume the truncate when the filesystem 2571 * recovers. It also marks the inode dirty, to catch the new size. 2572 * 2573 * Implication: the file must always be in a sane, consistent 2574 * truncatable state while each transaction commits. 2575 */ 2576 if (ext3_orphan_add(handle, inode)) 2577 goto out_stop; 2578 2579 /* 2580 * The orphan list entry will now protect us from any crash which 2581 * occurs before the truncate completes, so it is now safe to propagate 2582 * the new, shorter inode size (held for now in i_size) into the 2583 * on-disk inode. We do this via i_disksize, which is the value which 2584 * ext3 *really* writes onto the disk inode. 2585 */ 2586 ei->i_disksize = inode->i_size; 2587 2588 /* 2589 * From here we block out all ext3_get_block() callers who want to 2590 * modify the block allocation tree. 2591 */ 2592 mutex_lock(&ei->truncate_mutex); 2593 2594 if (n == 1) { /* direct blocks */ 2595 ext3_free_data(handle, inode, NULL, i_data+offsets[0], 2596 i_data + EXT3_NDIR_BLOCKS); 2597 goto do_indirects; 2598 } 2599 2600 partial = ext3_find_shared(inode, n, offsets, chain, &nr); 2601 /* Kill the top of shared branch (not detached) */ 2602 if (nr) { 2603 if (partial == chain) { 2604 /* Shared branch grows from the inode */ 2605 ext3_free_branches(handle, inode, NULL, 2606 &nr, &nr+1, (chain+n-1) - partial); 2607 *partial->p = 0; 2608 /* 2609 * We mark the inode dirty prior to restart, 2610 * and prior to stop. No need for it here. 2611 */ 2612 } else { 2613 /* Shared branch grows from an indirect block */ 2614 ext3_free_branches(handle, inode, partial->bh, 2615 partial->p, 2616 partial->p+1, (chain+n-1) - partial); 2617 } 2618 } 2619 /* Clear the ends of indirect blocks on the shared branch */ 2620 while (partial > chain) { 2621 ext3_free_branches(handle, inode, partial->bh, partial->p + 1, 2622 (__le32*)partial->bh->b_data+addr_per_block, 2623 (chain+n-1) - partial); 2624 BUFFER_TRACE(partial->bh, "call brelse"); 2625 brelse (partial->bh); 2626 partial--; 2627 } 2628do_indirects: 2629 /* Kill the remaining (whole) subtrees */ 2630 switch (offsets[0]) { 2631 default: 2632 nr = i_data[EXT3_IND_BLOCK]; 2633 if (nr) { 2634 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2635 i_data[EXT3_IND_BLOCK] = 0; 2636 } 2637 case EXT3_IND_BLOCK: 2638 nr = i_data[EXT3_DIND_BLOCK]; 2639 if (nr) { 2640 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2641 i_data[EXT3_DIND_BLOCK] = 0; 2642 } 2643 case EXT3_DIND_BLOCK: 2644 nr = i_data[EXT3_TIND_BLOCK]; 2645 if (nr) { 2646 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2647 i_data[EXT3_TIND_BLOCK] = 0; 2648 } 2649 case EXT3_TIND_BLOCK: 2650 ; 2651 } 2652 2653 ext3_discard_reservation(inode); 2654 2655 mutex_unlock(&ei->truncate_mutex); 2656 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 2657 ext3_mark_inode_dirty(handle, inode); 2658 2659 /* 2660 * In a multi-transaction truncate, we only make the final transaction 2661 * synchronous 2662 */ 2663 if (IS_SYNC(inode)) 2664 handle->h_sync = 1; 2665out_stop: 2666 /* 2667 * If this was a simple ftruncate(), and the file will remain alive 2668 * then we need to clear up the orphan record which we created above. 2669 * However, if this was a real unlink then we were called by 2670 * ext3_evict_inode(), and we allow that function to clean up the 2671 * orphan info for us. 2672 */ 2673 if (inode->i_nlink) 2674 ext3_orphan_del(handle, inode); 2675 2676 ext3_journal_stop(handle); 2677 trace_ext3_truncate_exit(inode); 2678 return; 2679out_notrans: 2680 /* 2681 * Delete the inode from orphan list so that it doesn't stay there 2682 * forever and trigger assertion on umount. 2683 */ 2684 if (inode->i_nlink) 2685 ext3_orphan_del(NULL, inode); 2686 trace_ext3_truncate_exit(inode); 2687} 2688 2689static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb, 2690 unsigned long ino, struct ext3_iloc *iloc) 2691{ 2692 unsigned long block_group; 2693 unsigned long offset; 2694 ext3_fsblk_t block; 2695 struct ext3_group_desc *gdp; 2696 2697 if (!ext3_valid_inum(sb, ino)) { 2698 /* 2699 * This error is already checked for in namei.c unless we are 2700 * looking at an NFS filehandle, in which case no error 2701 * report is needed 2702 */ 2703 return 0; 2704 } 2705 2706 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); 2707 gdp = ext3_get_group_desc(sb, block_group, NULL); 2708 if (!gdp) 2709 return 0; 2710 /* 2711 * Figure out the offset within the block group inode table 2712 */ 2713 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) * 2714 EXT3_INODE_SIZE(sb); 2715 block = le32_to_cpu(gdp->bg_inode_table) + 2716 (offset >> EXT3_BLOCK_SIZE_BITS(sb)); 2717 2718 iloc->block_group = block_group; 2719 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1); 2720 return block; 2721} 2722 2723/* 2724 * ext3_get_inode_loc returns with an extra refcount against the inode's 2725 * underlying buffer_head on success. If 'in_mem' is true, we have all 2726 * data in memory that is needed to recreate the on-disk version of this 2727 * inode. 2728 */ 2729static int __ext3_get_inode_loc(struct inode *inode, 2730 struct ext3_iloc *iloc, int in_mem) 2731{ 2732 ext3_fsblk_t block; 2733 struct buffer_head *bh; 2734 2735 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2736 if (!block) 2737 return -EIO; 2738 2739 bh = sb_getblk(inode->i_sb, block); 2740 if (unlikely(!bh)) { 2741 ext3_error (inode->i_sb, "ext3_get_inode_loc", 2742 "unable to read inode block - " 2743 "inode=%lu, block="E3FSBLK, 2744 inode->i_ino, block); 2745 return -ENOMEM; 2746 } 2747 if (!buffer_uptodate(bh)) { 2748 lock_buffer(bh); 2749 2750 /* 2751 * If the buffer has the write error flag, we have failed 2752 * to write out another inode in the same block. In this 2753 * case, we don't have to read the block because we may 2754 * read the old inode data successfully. 2755 */ 2756 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 2757 set_buffer_uptodate(bh); 2758 2759 if (buffer_uptodate(bh)) { 2760 /* someone brought it uptodate while we waited */ 2761 unlock_buffer(bh); 2762 goto has_buffer; 2763 } 2764 2765 /* 2766 * If we have all information of the inode in memory and this 2767 * is the only valid inode in the block, we need not read the 2768 * block. 2769 */ 2770 if (in_mem) { 2771 struct buffer_head *bitmap_bh; 2772 struct ext3_group_desc *desc; 2773 int inodes_per_buffer; 2774 int inode_offset, i; 2775 int block_group; 2776 int start; 2777 2778 block_group = (inode->i_ino - 1) / 2779 EXT3_INODES_PER_GROUP(inode->i_sb); 2780 inodes_per_buffer = bh->b_size / 2781 EXT3_INODE_SIZE(inode->i_sb); 2782 inode_offset = ((inode->i_ino - 1) % 2783 EXT3_INODES_PER_GROUP(inode->i_sb)); 2784 start = inode_offset & ~(inodes_per_buffer - 1); 2785 2786 /* Is the inode bitmap in cache? */ 2787 desc = ext3_get_group_desc(inode->i_sb, 2788 block_group, NULL); 2789 if (!desc) 2790 goto make_io; 2791 2792 bitmap_bh = sb_getblk(inode->i_sb, 2793 le32_to_cpu(desc->bg_inode_bitmap)); 2794 if (unlikely(!bitmap_bh)) 2795 goto make_io; 2796 2797 /* 2798 * If the inode bitmap isn't in cache then the 2799 * optimisation may end up performing two reads instead 2800 * of one, so skip it. 2801 */ 2802 if (!buffer_uptodate(bitmap_bh)) { 2803 brelse(bitmap_bh); 2804 goto make_io; 2805 } 2806 for (i = start; i < start + inodes_per_buffer; i++) { 2807 if (i == inode_offset) 2808 continue; 2809 if (ext3_test_bit(i, bitmap_bh->b_data)) 2810 break; 2811 } 2812 brelse(bitmap_bh); 2813 if (i == start + inodes_per_buffer) { 2814 /* all other inodes are free, so skip I/O */ 2815 memset(bh->b_data, 0, bh->b_size); 2816 set_buffer_uptodate(bh); 2817 unlock_buffer(bh); 2818 goto has_buffer; 2819 } 2820 } 2821 2822make_io: 2823 /* 2824 * There are other valid inodes in the buffer, this inode 2825 * has in-inode xattrs, or we don't have this inode in memory. 2826 * Read the block from disk. 2827 */ 2828 trace_ext3_load_inode(inode); 2829 get_bh(bh); 2830 bh->b_end_io = end_buffer_read_sync; 2831 submit_bh(READ | REQ_META | REQ_PRIO, bh); 2832 wait_on_buffer(bh); 2833 if (!buffer_uptodate(bh)) { 2834 ext3_error(inode->i_sb, "ext3_get_inode_loc", 2835 "unable to read inode block - " 2836 "inode=%lu, block="E3FSBLK, 2837 inode->i_ino, block); 2838 brelse(bh); 2839 return -EIO; 2840 } 2841 } 2842has_buffer: 2843 iloc->bh = bh; 2844 return 0; 2845} 2846 2847int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc) 2848{ 2849 /* We have all inode data except xattrs in memory here. */ 2850 return __ext3_get_inode_loc(inode, iloc, 2851 !ext3_test_inode_state(inode, EXT3_STATE_XATTR)); 2852} 2853 2854void ext3_set_inode_flags(struct inode *inode) 2855{ 2856 unsigned int flags = EXT3_I(inode)->i_flags; 2857 2858 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2859 if (flags & EXT3_SYNC_FL) 2860 inode->i_flags |= S_SYNC; 2861 if (flags & EXT3_APPEND_FL) 2862 inode->i_flags |= S_APPEND; 2863 if (flags & EXT3_IMMUTABLE_FL) 2864 inode->i_flags |= S_IMMUTABLE; 2865 if (flags & EXT3_NOATIME_FL) 2866 inode->i_flags |= S_NOATIME; 2867 if (flags & EXT3_DIRSYNC_FL) 2868 inode->i_flags |= S_DIRSYNC; 2869} 2870 2871/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */ 2872void ext3_get_inode_flags(struct ext3_inode_info *ei) 2873{ 2874 unsigned int flags = ei->vfs_inode.i_flags; 2875 2876 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL| 2877 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL); 2878 if (flags & S_SYNC) 2879 ei->i_flags |= EXT3_SYNC_FL; 2880 if (flags & S_APPEND) 2881 ei->i_flags |= EXT3_APPEND_FL; 2882 if (flags & S_IMMUTABLE) 2883 ei->i_flags |= EXT3_IMMUTABLE_FL; 2884 if (flags & S_NOATIME) 2885 ei->i_flags |= EXT3_NOATIME_FL; 2886 if (flags & S_DIRSYNC) 2887 ei->i_flags |= EXT3_DIRSYNC_FL; 2888} 2889 2890struct inode *ext3_iget(struct super_block *sb, unsigned long ino) 2891{ 2892 struct ext3_iloc iloc; 2893 struct ext3_inode *raw_inode; 2894 struct ext3_inode_info *ei; 2895 struct buffer_head *bh; 2896 struct inode *inode; 2897 journal_t *journal = EXT3_SB(sb)->s_journal; 2898 transaction_t *transaction; 2899 long ret; 2900 int block; 2901 uid_t i_uid; 2902 gid_t i_gid; 2903 2904 inode = iget_locked(sb, ino); 2905 if (!inode) 2906 return ERR_PTR(-ENOMEM); 2907 if (!(inode->i_state & I_NEW)) 2908 return inode; 2909 2910 ei = EXT3_I(inode); 2911 ei->i_block_alloc_info = NULL; 2912 2913 ret = __ext3_get_inode_loc(inode, &iloc, 0); 2914 if (ret < 0) 2915 goto bad_inode; 2916 bh = iloc.bh; 2917 raw_inode = ext3_raw_inode(&iloc); 2918 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2919 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2920 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2921 if(!(test_opt (inode->i_sb, NO_UID32))) { 2922 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2923 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2924 } 2925 i_uid_write(inode, i_uid); 2926 i_gid_write(inode, i_gid); 2927 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 2928 inode->i_size = le32_to_cpu(raw_inode->i_size); 2929 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); 2930 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); 2931 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); 2932 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; 2933 2934 ei->i_state_flags = 0; 2935 ei->i_dir_start_lookup = 0; 2936 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2937 /* We now have enough fields to check if the inode was active or not. 2938 * This is needed because nfsd might try to access dead inodes 2939 * the test is that same one that e2fsck uses 2940 * NeilBrown 1999oct15 2941 */ 2942 if (inode->i_nlink == 0) { 2943 if (inode->i_mode == 0 || 2944 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { 2945 /* this inode is deleted */ 2946 brelse (bh); 2947 ret = -ESTALE; 2948 goto bad_inode; 2949 } 2950 /* The only unlinked inodes we let through here have 2951 * valid i_mode and are being read by the orphan 2952 * recovery code: that's fine, we're about to complete 2953 * the process of deleting those. */ 2954 } 2955 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 2956 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2957#ifdef EXT3_FRAGMENTS 2958 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 2959 ei->i_frag_no = raw_inode->i_frag; 2960 ei->i_frag_size = raw_inode->i_fsize; 2961#endif 2962 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 2963 if (!S_ISREG(inode->i_mode)) { 2964 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 2965 } else { 2966 inode->i_size |= 2967 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 2968 } 2969 ei->i_disksize = inode->i_size; 2970 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2971 ei->i_block_group = iloc.block_group; 2972 /* 2973 * NOTE! The in-memory inode i_data array is in little-endian order 2974 * even on big-endian machines: we do NOT byteswap the block numbers! 2975 */ 2976 for (block = 0; block < EXT3_N_BLOCKS; block++) 2977 ei->i_data[block] = raw_inode->i_block[block]; 2978 INIT_LIST_HEAD(&ei->i_orphan); 2979 2980 /* 2981 * Set transaction id's of transactions that have to be committed 2982 * to finish f[data]sync. We set them to currently running transaction 2983 * as we cannot be sure that the inode or some of its metadata isn't 2984 * part of the transaction - the inode could have been reclaimed and 2985 * now it is reread from disk. 2986 */ 2987 if (journal) { 2988 tid_t tid; 2989 2990 spin_lock(&journal->j_state_lock); 2991 if (journal->j_running_transaction) 2992 transaction = journal->j_running_transaction; 2993 else 2994 transaction = journal->j_committing_transaction; 2995 if (transaction) 2996 tid = transaction->t_tid; 2997 else 2998 tid = journal->j_commit_sequence; 2999 spin_unlock(&journal->j_state_lock); 3000 atomic_set(&ei->i_sync_tid, tid); 3001 atomic_set(&ei->i_datasync_tid, tid); 3002 } 3003 3004 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 && 3005 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) { 3006 /* 3007 * When mke2fs creates big inodes it does not zero out 3008 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE, 3009 * so ignore those first few inodes. 3010 */ 3011 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3012 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3013 EXT3_INODE_SIZE(inode->i_sb)) { 3014 brelse (bh); 3015 ret = -EIO; 3016 goto bad_inode; 3017 } 3018 if (ei->i_extra_isize == 0) { 3019 /* The extra space is currently unused. Use it. */ 3020 ei->i_extra_isize = sizeof(struct ext3_inode) - 3021 EXT3_GOOD_OLD_INODE_SIZE; 3022 } else { 3023 __le32 *magic = (void *)raw_inode + 3024 EXT3_GOOD_OLD_INODE_SIZE + 3025 ei->i_extra_isize; 3026 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC)) 3027 ext3_set_inode_state(inode, EXT3_STATE_XATTR); 3028 } 3029 } else 3030 ei->i_extra_isize = 0; 3031 3032 if (S_ISREG(inode->i_mode)) { 3033 inode->i_op = &ext3_file_inode_operations; 3034 inode->i_fop = &ext3_file_operations; 3035 ext3_set_aops(inode); 3036 } else if (S_ISDIR(inode->i_mode)) { 3037 inode->i_op = &ext3_dir_inode_operations; 3038 inode->i_fop = &ext3_dir_operations; 3039 } else if (S_ISLNK(inode->i_mode)) { 3040 if (ext3_inode_is_fast_symlink(inode)) { 3041 inode->i_op = &ext3_fast_symlink_inode_operations; 3042 nd_terminate_link(ei->i_data, inode->i_size, 3043 sizeof(ei->i_data) - 1); 3044 } else { 3045 inode->i_op = &ext3_symlink_inode_operations; 3046 ext3_set_aops(inode); 3047 } 3048 } else { 3049 inode->i_op = &ext3_special_inode_operations; 3050 if (raw_inode->i_block[0]) 3051 init_special_inode(inode, inode->i_mode, 3052 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3053 else 3054 init_special_inode(inode, inode->i_mode, 3055 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3056 } 3057 brelse (iloc.bh); 3058 ext3_set_inode_flags(inode); 3059 unlock_new_inode(inode); 3060 return inode; 3061 3062bad_inode: 3063 iget_failed(inode); 3064 return ERR_PTR(ret); 3065} 3066 3067/* 3068 * Post the struct inode info into an on-disk inode location in the 3069 * buffer-cache. This gobbles the caller's reference to the 3070 * buffer_head in the inode location struct. 3071 * 3072 * The caller must have write access to iloc->bh. 3073 */ 3074static int ext3_do_update_inode(handle_t *handle, 3075 struct inode *inode, 3076 struct ext3_iloc *iloc) 3077{ 3078 struct ext3_inode *raw_inode = ext3_raw_inode(iloc); 3079 struct ext3_inode_info *ei = EXT3_I(inode); 3080 struct buffer_head *bh = iloc->bh; 3081 int err = 0, rc, block; 3082 int need_datasync = 0; 3083 __le32 disksize; 3084 uid_t i_uid; 3085 gid_t i_gid; 3086 3087again: 3088 /* we can't allow multiple procs in here at once, its a bit racey */ 3089 lock_buffer(bh); 3090 3091 /* For fields not not tracking in the in-memory inode, 3092 * initialise them to zero for new inodes. */ 3093 if (ext3_test_inode_state(inode, EXT3_STATE_NEW)) 3094 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); 3095 3096 ext3_get_inode_flags(ei); 3097 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3098 i_uid = i_uid_read(inode); 3099 i_gid = i_gid_read(inode); 3100 if(!(test_opt(inode->i_sb, NO_UID32))) { 3101 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 3102 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 3103/* 3104 * Fix up interoperability with old kernels. Otherwise, old inodes get 3105 * re-used with the upper 16 bits of the uid/gid intact 3106 */ 3107 if(!ei->i_dtime) { 3108 raw_inode->i_uid_high = 3109 cpu_to_le16(high_16_bits(i_uid)); 3110 raw_inode->i_gid_high = 3111 cpu_to_le16(high_16_bits(i_gid)); 3112 } else { 3113 raw_inode->i_uid_high = 0; 3114 raw_inode->i_gid_high = 0; 3115 } 3116 } else { 3117 raw_inode->i_uid_low = 3118 cpu_to_le16(fs_high2lowuid(i_uid)); 3119 raw_inode->i_gid_low = 3120 cpu_to_le16(fs_high2lowgid(i_gid)); 3121 raw_inode->i_uid_high = 0; 3122 raw_inode->i_gid_high = 0; 3123 } 3124 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3125 disksize = cpu_to_le32(ei->i_disksize); 3126 if (disksize != raw_inode->i_size) { 3127 need_datasync = 1; 3128 raw_inode->i_size = disksize; 3129 } 3130 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 3131 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 3132 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 3133 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 3134 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3135 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 3136#ifdef EXT3_FRAGMENTS 3137 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 3138 raw_inode->i_frag = ei->i_frag_no; 3139 raw_inode->i_fsize = ei->i_frag_size; 3140#endif 3141 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 3142 if (!S_ISREG(inode->i_mode)) { 3143 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 3144 } else { 3145 disksize = cpu_to_le32(ei->i_disksize >> 32); 3146 if (disksize != raw_inode->i_size_high) { 3147 raw_inode->i_size_high = disksize; 3148 need_datasync = 1; 3149 } 3150 if (ei->i_disksize > 0x7fffffffULL) { 3151 struct super_block *sb = inode->i_sb; 3152 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb, 3153 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) || 3154 EXT3_SB(sb)->s_es->s_rev_level == 3155 cpu_to_le32(EXT3_GOOD_OLD_REV)) { 3156 /* If this is the first large file 3157 * created, add a flag to the superblock. 3158 */ 3159 unlock_buffer(bh); 3160 err = ext3_journal_get_write_access(handle, 3161 EXT3_SB(sb)->s_sbh); 3162 if (err) 3163 goto out_brelse; 3164 3165 ext3_update_dynamic_rev(sb); 3166 EXT3_SET_RO_COMPAT_FEATURE(sb, 3167 EXT3_FEATURE_RO_COMPAT_LARGE_FILE); 3168 handle->h_sync = 1; 3169 err = ext3_journal_dirty_metadata(handle, 3170 EXT3_SB(sb)->s_sbh); 3171 /* get our lock and start over */ 3172 goto again; 3173 } 3174 } 3175 } 3176 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3177 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3178 if (old_valid_dev(inode->i_rdev)) { 3179 raw_inode->i_block[0] = 3180 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3181 raw_inode->i_block[1] = 0; 3182 } else { 3183 raw_inode->i_block[0] = 0; 3184 raw_inode->i_block[1] = 3185 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3186 raw_inode->i_block[2] = 0; 3187 } 3188 } else for (block = 0; block < EXT3_N_BLOCKS; block++) 3189 raw_inode->i_block[block] = ei->i_data[block]; 3190 3191 if (ei->i_extra_isize) 3192 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3193 3194 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 3195 unlock_buffer(bh); 3196 rc = ext3_journal_dirty_metadata(handle, bh); 3197 if (!err) 3198 err = rc; 3199 ext3_clear_inode_state(inode, EXT3_STATE_NEW); 3200 3201 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid); 3202 if (need_datasync) 3203 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 3204out_brelse: 3205 brelse (bh); 3206 ext3_std_error(inode->i_sb, err); 3207 return err; 3208} 3209 3210/* 3211 * ext3_write_inode() 3212 * 3213 * We are called from a few places: 3214 * 3215 * - Within generic_file_write() for O_SYNC files. 3216 * Here, there will be no transaction running. We wait for any running 3217 * transaction to commit. 3218 * 3219 * - Within sys_sync(), kupdate and such. 3220 * We wait on commit, if tol to. 3221 * 3222 * - Within prune_icache() (PF_MEMALLOC == true) 3223 * Here we simply return. We can't afford to block kswapd on the 3224 * journal commit. 3225 * 3226 * In all cases it is actually safe for us to return without doing anything, 3227 * because the inode has been copied into a raw inode buffer in 3228 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3229 * knfsd. 3230 * 3231 * Note that we are absolutely dependent upon all inode dirtiers doing the 3232 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3233 * which we are interested. 3234 * 3235 * It would be a bug for them to not do this. The code: 3236 * 3237 * mark_inode_dirty(inode) 3238 * stuff(); 3239 * inode->i_size = expr; 3240 * 3241 * is in error because a kswapd-driven write_inode() could occur while 3242 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3243 * will no longer be on the superblock's dirty inode list. 3244 */ 3245int ext3_write_inode(struct inode *inode, struct writeback_control *wbc) 3246{ 3247 if (current->flags & PF_MEMALLOC) 3248 return 0; 3249 3250 if (ext3_journal_current_handle()) { 3251 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3252 dump_stack(); 3253 return -EIO; 3254 } 3255 3256 if (wbc->sync_mode != WB_SYNC_ALL) 3257 return 0; 3258 3259 return ext3_force_commit(inode->i_sb); 3260} 3261 3262/* 3263 * ext3_setattr() 3264 * 3265 * Called from notify_change. 3266 * 3267 * We want to trap VFS attempts to truncate the file as soon as 3268 * possible. In particular, we want to make sure that when the VFS 3269 * shrinks i_size, we put the inode on the orphan list and modify 3270 * i_disksize immediately, so that during the subsequent flushing of 3271 * dirty pages and freeing of disk blocks, we can guarantee that any 3272 * commit will leave the blocks being flushed in an unused state on 3273 * disk. (On recovery, the inode will get truncated and the blocks will 3274 * be freed, so we have a strong guarantee that no future commit will 3275 * leave these blocks visible to the user.) 3276 * 3277 * Called with inode->sem down. 3278 */ 3279int ext3_setattr(struct dentry *dentry, struct iattr *attr) 3280{ 3281 struct inode *inode = dentry->d_inode; 3282 int error, rc = 0; 3283 const unsigned int ia_valid = attr->ia_valid; 3284 3285 error = inode_change_ok(inode, attr); 3286 if (error) 3287 return error; 3288 3289 if (is_quota_modification(inode, attr)) 3290 dquot_initialize(inode); 3291 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3292 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3293 handle_t *handle; 3294 3295 /* (user+group)*(old+new) structure, inode write (sb, 3296 * inode block, ? - but truncate inode update has it) */ 3297 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3298 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3); 3299 if (IS_ERR(handle)) { 3300 error = PTR_ERR(handle); 3301 goto err_out; 3302 } 3303 error = dquot_transfer(inode, attr); 3304 if (error) { 3305 ext3_journal_stop(handle); 3306 return error; 3307 } 3308 /* Update corresponding info in inode so that everything is in 3309 * one transaction */ 3310 if (attr->ia_valid & ATTR_UID) 3311 inode->i_uid = attr->ia_uid; 3312 if (attr->ia_valid & ATTR_GID) 3313 inode->i_gid = attr->ia_gid; 3314 error = ext3_mark_inode_dirty(handle, inode); 3315 ext3_journal_stop(handle); 3316 } 3317 3318 if (attr->ia_valid & ATTR_SIZE) 3319 inode_dio_wait(inode); 3320 3321 if (S_ISREG(inode->i_mode) && 3322 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3323 handle_t *handle; 3324 3325 handle = ext3_journal_start(inode, 3); 3326 if (IS_ERR(handle)) { 3327 error = PTR_ERR(handle); 3328 goto err_out; 3329 } 3330 3331 error = ext3_orphan_add(handle, inode); 3332 if (error) { 3333 ext3_journal_stop(handle); 3334 goto err_out; 3335 } 3336 EXT3_I(inode)->i_disksize = attr->ia_size; 3337 error = ext3_mark_inode_dirty(handle, inode); 3338 ext3_journal_stop(handle); 3339 if (error) { 3340 /* Some hard fs error must have happened. Bail out. */ 3341 ext3_orphan_del(NULL, inode); 3342 goto err_out; 3343 } 3344 rc = ext3_block_truncate_page(inode, attr->ia_size); 3345 if (rc) { 3346 /* Cleanup orphan list and exit */ 3347 handle = ext3_journal_start(inode, 3); 3348 if (IS_ERR(handle)) { 3349 ext3_orphan_del(NULL, inode); 3350 goto err_out; 3351 } 3352 ext3_orphan_del(handle, inode); 3353 ext3_journal_stop(handle); 3354 goto err_out; 3355 } 3356 } 3357 3358 if ((attr->ia_valid & ATTR_SIZE) && 3359 attr->ia_size != i_size_read(inode)) { 3360 truncate_setsize(inode, attr->ia_size); 3361 ext3_truncate(inode); 3362 } 3363 3364 setattr_copy(inode, attr); 3365 mark_inode_dirty(inode); 3366 3367 if (ia_valid & ATTR_MODE) 3368 rc = ext3_acl_chmod(inode); 3369 3370err_out: 3371 ext3_std_error(inode->i_sb, error); 3372 if (!error) 3373 error = rc; 3374 return error; 3375} 3376 3377 3378/* 3379 * How many blocks doth make a writepage()? 3380 * 3381 * With N blocks per page, it may be: 3382 * N data blocks 3383 * 2 indirect block 3384 * 2 dindirect 3385 * 1 tindirect 3386 * N+5 bitmap blocks (from the above) 3387 * N+5 group descriptor summary blocks 3388 * 1 inode block 3389 * 1 superblock. 3390 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files 3391 * 3392 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS 3393 * 3394 * With ordered or writeback data it's the same, less the N data blocks. 3395 * 3396 * If the inode's direct blocks can hold an integral number of pages then a 3397 * page cannot straddle two indirect blocks, and we can only touch one indirect 3398 * and dindirect block, and the "5" above becomes "3". 3399 * 3400 * This still overestimates under most circumstances. If we were to pass the 3401 * start and end offsets in here as well we could do block_to_path() on each 3402 * block and work out the exact number of indirects which are touched. Pah. 3403 */ 3404 3405static int ext3_writepage_trans_blocks(struct inode *inode) 3406{ 3407 int bpp = ext3_journal_blocks_per_page(inode); 3408 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3; 3409 int ret; 3410 3411 if (ext3_should_journal_data(inode)) 3412 ret = 3 * (bpp + indirects) + 2; 3413 else 3414 ret = 2 * (bpp + indirects) + indirects + 2; 3415 3416#ifdef CONFIG_QUOTA 3417 /* We know that structure was already allocated during dquot_initialize so 3418 * we will be updating only the data blocks + inodes */ 3419 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 3420#endif 3421 3422 return ret; 3423} 3424 3425/* 3426 * The caller must have previously called ext3_reserve_inode_write(). 3427 * Give this, we know that the caller already has write access to iloc->bh. 3428 */ 3429int ext3_mark_iloc_dirty(handle_t *handle, 3430 struct inode *inode, struct ext3_iloc *iloc) 3431{ 3432 int err = 0; 3433 3434 /* the do_update_inode consumes one bh->b_count */ 3435 get_bh(iloc->bh); 3436 3437 /* ext3_do_update_inode() does journal_dirty_metadata */ 3438 err = ext3_do_update_inode(handle, inode, iloc); 3439 put_bh(iloc->bh); 3440 return err; 3441} 3442 3443/* 3444 * On success, We end up with an outstanding reference count against 3445 * iloc->bh. This _must_ be cleaned up later. 3446 */ 3447 3448int 3449ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 3450 struct ext3_iloc *iloc) 3451{ 3452 int err = 0; 3453 if (handle) { 3454 err = ext3_get_inode_loc(inode, iloc); 3455 if (!err) { 3456 BUFFER_TRACE(iloc->bh, "get_write_access"); 3457 err = ext3_journal_get_write_access(handle, iloc->bh); 3458 if (err) { 3459 brelse(iloc->bh); 3460 iloc->bh = NULL; 3461 } 3462 } 3463 } 3464 ext3_std_error(inode->i_sb, err); 3465 return err; 3466} 3467 3468/* 3469 * What we do here is to mark the in-core inode as clean with respect to inode 3470 * dirtiness (it may still be data-dirty). 3471 * This means that the in-core inode may be reaped by prune_icache 3472 * without having to perform any I/O. This is a very good thing, 3473 * because *any* task may call prune_icache - even ones which 3474 * have a transaction open against a different journal. 3475 * 3476 * Is this cheating? Not really. Sure, we haven't written the 3477 * inode out, but prune_icache isn't a user-visible syncing function. 3478 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3479 * we start and wait on commits. 3480 */ 3481int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode) 3482{ 3483 struct ext3_iloc iloc; 3484 int err; 3485 3486 might_sleep(); 3487 trace_ext3_mark_inode_dirty(inode, _RET_IP_); 3488 err = ext3_reserve_inode_write(handle, inode, &iloc); 3489 if (!err) 3490 err = ext3_mark_iloc_dirty(handle, inode, &iloc); 3491 return err; 3492} 3493 3494/* 3495 * ext3_dirty_inode() is called from __mark_inode_dirty() 3496 * 3497 * We're really interested in the case where a file is being extended. 3498 * i_size has been changed by generic_commit_write() and we thus need 3499 * to include the updated inode in the current transaction. 3500 * 3501 * Also, dquot_alloc_space() will always dirty the inode when blocks 3502 * are allocated to the file. 3503 * 3504 * If the inode is marked synchronous, we don't honour that here - doing 3505 * so would cause a commit on atime updates, which we don't bother doing. 3506 * We handle synchronous inodes at the highest possible level. 3507 */ 3508void ext3_dirty_inode(struct inode *inode, int flags) 3509{ 3510 handle_t *current_handle = ext3_journal_current_handle(); 3511 handle_t *handle; 3512 3513 handle = ext3_journal_start(inode, 2); 3514 if (IS_ERR(handle)) 3515 goto out; 3516 if (current_handle && 3517 current_handle->h_transaction != handle->h_transaction) { 3518 /* This task has a transaction open against a different fs */ 3519 printk(KERN_EMERG "%s: transactions do not match!\n", 3520 __func__); 3521 } else { 3522 jbd_debug(5, "marking dirty. outer handle=%p\n", 3523 current_handle); 3524 ext3_mark_inode_dirty(handle, inode); 3525 } 3526 ext3_journal_stop(handle); 3527out: 3528 return; 3529} 3530 3531#if 0 3532/* 3533 * Bind an inode's backing buffer_head into this transaction, to prevent 3534 * it from being flushed to disk early. Unlike 3535 * ext3_reserve_inode_write, this leaves behind no bh reference and 3536 * returns no iloc structure, so the caller needs to repeat the iloc 3537 * lookup to mark the inode dirty later. 3538 */ 3539static int ext3_pin_inode(handle_t *handle, struct inode *inode) 3540{ 3541 struct ext3_iloc iloc; 3542 3543 int err = 0; 3544 if (handle) { 3545 err = ext3_get_inode_loc(inode, &iloc); 3546 if (!err) { 3547 BUFFER_TRACE(iloc.bh, "get_write_access"); 3548 err = journal_get_write_access(handle, iloc.bh); 3549 if (!err) 3550 err = ext3_journal_dirty_metadata(handle, 3551 iloc.bh); 3552 brelse(iloc.bh); 3553 } 3554 } 3555 ext3_std_error(inode->i_sb, err); 3556 return err; 3557} 3558#endif 3559 3560int ext3_change_inode_journal_flag(struct inode *inode, int val) 3561{ 3562 journal_t *journal; 3563 handle_t *handle; 3564 int err; 3565 3566 /* 3567 * We have to be very careful here: changing a data block's 3568 * journaling status dynamically is dangerous. If we write a 3569 * data block to the journal, change the status and then delete 3570 * that block, we risk forgetting to revoke the old log record 3571 * from the journal and so a subsequent replay can corrupt data. 3572 * So, first we make sure that the journal is empty and that 3573 * nobody is changing anything. 3574 */ 3575 3576 journal = EXT3_JOURNAL(inode); 3577 if (is_journal_aborted(journal)) 3578 return -EROFS; 3579 3580 journal_lock_updates(journal); 3581 journal_flush(journal); 3582 3583 /* 3584 * OK, there are no updates running now, and all cached data is 3585 * synced to disk. We are now in a completely consistent state 3586 * which doesn't have anything in the journal, and we know that 3587 * no filesystem updates are running, so it is safe to modify 3588 * the inode's in-core data-journaling state flag now. 3589 */ 3590 3591 if (val) 3592 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL; 3593 else 3594 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL; 3595 ext3_set_aops(inode); 3596 3597 journal_unlock_updates(journal); 3598 3599 /* Finally we can mark the inode as dirty. */ 3600 3601 handle = ext3_journal_start(inode, 1); 3602 if (IS_ERR(handle)) 3603 return PTR_ERR(handle); 3604 3605 err = ext3_mark_inode_dirty(handle, inode); 3606 handle->h_sync = 1; 3607 ext3_journal_stop(handle); 3608 ext3_std_error(inode->i_sb, err); 3609 3610 return err; 3611}