at v3.12 20 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 22 */ 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * See also the comment on struct slab_rcu in mm/slab.c. 57 */ 58#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 59#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 60#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 61 62/* Flag to prevent checks on free */ 63#ifdef CONFIG_DEBUG_OBJECTS 64# define SLAB_DEBUG_OBJECTS 0x00400000UL 65#else 66# define SLAB_DEBUG_OBJECTS 0x00000000UL 67#endif 68 69#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 70 71/* Don't track use of uninitialized memory */ 72#ifdef CONFIG_KMEMCHECK 73# define SLAB_NOTRACK 0x01000000UL 74#else 75# define SLAB_NOTRACK 0x00000000UL 76#endif 77#ifdef CONFIG_FAILSLAB 78# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 79#else 80# define SLAB_FAILSLAB 0x00000000UL 81#endif 82 83/* The following flags affect the page allocator grouping pages by mobility */ 84#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 85#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 86/* 87 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 88 * 89 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 90 * 91 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 92 * Both make kfree a no-op. 93 */ 94#define ZERO_SIZE_PTR ((void *)16) 95 96#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 97 (unsigned long)ZERO_SIZE_PTR) 98 99#include <linux/kmemleak.h> 100 101struct mem_cgroup; 102/* 103 * struct kmem_cache related prototypes 104 */ 105void __init kmem_cache_init(void); 106int slab_is_available(void); 107 108struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 109 unsigned long, 110 void (*)(void *)); 111struct kmem_cache * 112kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t, 113 unsigned long, void (*)(void *), struct kmem_cache *); 114void kmem_cache_destroy(struct kmem_cache *); 115int kmem_cache_shrink(struct kmem_cache *); 116void kmem_cache_free(struct kmem_cache *, void *); 117 118/* 119 * Please use this macro to create slab caches. Simply specify the 120 * name of the structure and maybe some flags that are listed above. 121 * 122 * The alignment of the struct determines object alignment. If you 123 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 124 * then the objects will be properly aligned in SMP configurations. 125 */ 126#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 127 sizeof(struct __struct), __alignof__(struct __struct),\ 128 (__flags), NULL) 129 130/* 131 * Common kmalloc functions provided by all allocators 132 */ 133void * __must_check __krealloc(const void *, size_t, gfp_t); 134void * __must_check krealloc(const void *, size_t, gfp_t); 135void kfree(const void *); 136void kzfree(const void *); 137size_t ksize(const void *); 138 139/* 140 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 141 * alignment larger than the alignment of a 64-bit integer. 142 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 143 */ 144#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 145#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 146#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 147#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 148#else 149#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 150#endif 151 152#ifdef CONFIG_SLOB 153/* 154 * Common fields provided in kmem_cache by all slab allocators 155 * This struct is either used directly by the allocator (SLOB) 156 * or the allocator must include definitions for all fields 157 * provided in kmem_cache_common in their definition of kmem_cache. 158 * 159 * Once we can do anonymous structs (C11 standard) we could put a 160 * anonymous struct definition in these allocators so that the 161 * separate allocations in the kmem_cache structure of SLAB and 162 * SLUB is no longer needed. 163 */ 164struct kmem_cache { 165 unsigned int object_size;/* The original size of the object */ 166 unsigned int size; /* The aligned/padded/added on size */ 167 unsigned int align; /* Alignment as calculated */ 168 unsigned long flags; /* Active flags on the slab */ 169 const char *name; /* Slab name for sysfs */ 170 int refcount; /* Use counter */ 171 void (*ctor)(void *); /* Called on object slot creation */ 172 struct list_head list; /* List of all slab caches on the system */ 173}; 174 175#endif /* CONFIG_SLOB */ 176 177/* 178 * Kmalloc array related definitions 179 */ 180 181#ifdef CONFIG_SLAB 182/* 183 * The largest kmalloc size supported by the SLAB allocators is 184 * 32 megabyte (2^25) or the maximum allocatable page order if that is 185 * less than 32 MB. 186 * 187 * WARNING: Its not easy to increase this value since the allocators have 188 * to do various tricks to work around compiler limitations in order to 189 * ensure proper constant folding. 190 */ 191#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 192 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 193#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 194#ifndef KMALLOC_SHIFT_LOW 195#define KMALLOC_SHIFT_LOW 5 196#endif 197#endif 198 199#ifdef CONFIG_SLUB 200/* 201 * SLUB allocates up to order 2 pages directly and otherwise 202 * passes the request to the page allocator. 203 */ 204#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 205#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 206#ifndef KMALLOC_SHIFT_LOW 207#define KMALLOC_SHIFT_LOW 3 208#endif 209#endif 210 211#ifdef CONFIG_SLOB 212/* 213 * SLOB passes all page size and larger requests to the page allocator. 214 * No kmalloc array is necessary since objects of different sizes can 215 * be allocated from the same page. 216 */ 217#define KMALLOC_SHIFT_MAX 30 218#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 219#ifndef KMALLOC_SHIFT_LOW 220#define KMALLOC_SHIFT_LOW 3 221#endif 222#endif 223 224/* Maximum allocatable size */ 225#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 226/* Maximum size for which we actually use a slab cache */ 227#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 228/* Maximum order allocatable via the slab allocagtor */ 229#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 230 231/* 232 * Kmalloc subsystem. 233 */ 234#ifndef KMALLOC_MIN_SIZE 235#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 236#endif 237 238#ifndef CONFIG_SLOB 239extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 240#ifdef CONFIG_ZONE_DMA 241extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 242#endif 243 244/* 245 * Figure out which kmalloc slab an allocation of a certain size 246 * belongs to. 247 * 0 = zero alloc 248 * 1 = 65 .. 96 bytes 249 * 2 = 120 .. 192 bytes 250 * n = 2^(n-1) .. 2^n -1 251 */ 252static __always_inline int kmalloc_index(size_t size) 253{ 254 if (!size) 255 return 0; 256 257 if (size <= KMALLOC_MIN_SIZE) 258 return KMALLOC_SHIFT_LOW; 259 260 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 261 return 1; 262 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 263 return 2; 264 if (size <= 8) return 3; 265 if (size <= 16) return 4; 266 if (size <= 32) return 5; 267 if (size <= 64) return 6; 268 if (size <= 128) return 7; 269 if (size <= 256) return 8; 270 if (size <= 512) return 9; 271 if (size <= 1024) return 10; 272 if (size <= 2 * 1024) return 11; 273 if (size <= 4 * 1024) return 12; 274 if (size <= 8 * 1024) return 13; 275 if (size <= 16 * 1024) return 14; 276 if (size <= 32 * 1024) return 15; 277 if (size <= 64 * 1024) return 16; 278 if (size <= 128 * 1024) return 17; 279 if (size <= 256 * 1024) return 18; 280 if (size <= 512 * 1024) return 19; 281 if (size <= 1024 * 1024) return 20; 282 if (size <= 2 * 1024 * 1024) return 21; 283 if (size <= 4 * 1024 * 1024) return 22; 284 if (size <= 8 * 1024 * 1024) return 23; 285 if (size <= 16 * 1024 * 1024) return 24; 286 if (size <= 32 * 1024 * 1024) return 25; 287 if (size <= 64 * 1024 * 1024) return 26; 288 BUG(); 289 290 /* Will never be reached. Needed because the compiler may complain */ 291 return -1; 292} 293#endif /* !CONFIG_SLOB */ 294 295void *__kmalloc(size_t size, gfp_t flags); 296void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags); 297 298#ifdef CONFIG_NUMA 299void *__kmalloc_node(size_t size, gfp_t flags, int node); 300void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 301#else 302static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 303{ 304 return __kmalloc(size, flags); 305} 306 307static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 308{ 309 return kmem_cache_alloc(s, flags); 310} 311#endif 312 313#ifdef CONFIG_TRACING 314extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t); 315 316#ifdef CONFIG_NUMA 317extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 318 gfp_t gfpflags, 319 int node, size_t size); 320#else 321static __always_inline void * 322kmem_cache_alloc_node_trace(struct kmem_cache *s, 323 gfp_t gfpflags, 324 int node, size_t size) 325{ 326 return kmem_cache_alloc_trace(s, gfpflags, size); 327} 328#endif /* CONFIG_NUMA */ 329 330#else /* CONFIG_TRACING */ 331static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 332 gfp_t flags, size_t size) 333{ 334 return kmem_cache_alloc(s, flags); 335} 336 337static __always_inline void * 338kmem_cache_alloc_node_trace(struct kmem_cache *s, 339 gfp_t gfpflags, 340 int node, size_t size) 341{ 342 return kmem_cache_alloc_node(s, gfpflags, node); 343} 344#endif /* CONFIG_TRACING */ 345 346#ifdef CONFIG_SLAB 347#include <linux/slab_def.h> 348#endif 349 350#ifdef CONFIG_SLUB 351#include <linux/slub_def.h> 352#endif 353 354static __always_inline void * 355kmalloc_order(size_t size, gfp_t flags, unsigned int order) 356{ 357 void *ret; 358 359 flags |= (__GFP_COMP | __GFP_KMEMCG); 360 ret = (void *) __get_free_pages(flags, order); 361 kmemleak_alloc(ret, size, 1, flags); 362 return ret; 363} 364 365#ifdef CONFIG_TRACING 366extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 367#else 368static __always_inline void * 369kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 370{ 371 return kmalloc_order(size, flags, order); 372} 373#endif 374 375static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 376{ 377 unsigned int order = get_order(size); 378 return kmalloc_order_trace(size, flags, order); 379} 380 381/** 382 * kmalloc - allocate memory 383 * @size: how many bytes of memory are required. 384 * @flags: the type of memory to allocate (see kcalloc). 385 * 386 * kmalloc is the normal method of allocating memory 387 * for objects smaller than page size in the kernel. 388 */ 389static __always_inline void *kmalloc(size_t size, gfp_t flags) 390{ 391 if (__builtin_constant_p(size)) { 392 if (size > KMALLOC_MAX_CACHE_SIZE) 393 return kmalloc_large(size, flags); 394#ifndef CONFIG_SLOB 395 if (!(flags & GFP_DMA)) { 396 int index = kmalloc_index(size); 397 398 if (!index) 399 return ZERO_SIZE_PTR; 400 401 return kmem_cache_alloc_trace(kmalloc_caches[index], 402 flags, size); 403 } 404#endif 405 } 406 return __kmalloc(size, flags); 407} 408 409/* 410 * Determine size used for the nth kmalloc cache. 411 * return size or 0 if a kmalloc cache for that 412 * size does not exist 413 */ 414static __always_inline int kmalloc_size(int n) 415{ 416#ifndef CONFIG_SLOB 417 if (n > 2) 418 return 1 << n; 419 420 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 421 return 96; 422 423 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 424 return 192; 425#endif 426 return 0; 427} 428 429static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 430{ 431#ifndef CONFIG_SLOB 432 if (__builtin_constant_p(size) && 433 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 434 int i = kmalloc_index(size); 435 436 if (!i) 437 return ZERO_SIZE_PTR; 438 439 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 440 flags, node, size); 441 } 442#endif 443 return __kmalloc_node(size, flags, node); 444} 445 446/* 447 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 448 * Intended for arches that get misalignment faults even for 64 bit integer 449 * aligned buffers. 450 */ 451#ifndef ARCH_SLAB_MINALIGN 452#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 453#endif 454/* 455 * This is the main placeholder for memcg-related information in kmem caches. 456 * struct kmem_cache will hold a pointer to it, so the memory cost while 457 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it 458 * would otherwise be if that would be bundled in kmem_cache: we'll need an 459 * extra pointer chase. But the trade off clearly lays in favor of not 460 * penalizing non-users. 461 * 462 * Both the root cache and the child caches will have it. For the root cache, 463 * this will hold a dynamically allocated array large enough to hold 464 * information about the currently limited memcgs in the system. 465 * 466 * Child caches will hold extra metadata needed for its operation. Fields are: 467 * 468 * @memcg: pointer to the memcg this cache belongs to 469 * @list: list_head for the list of all caches in this memcg 470 * @root_cache: pointer to the global, root cache, this cache was derived from 471 * @dead: set to true after the memcg dies; the cache may still be around. 472 * @nr_pages: number of pages that belongs to this cache. 473 * @destroy: worker to be called whenever we are ready, or believe we may be 474 * ready, to destroy this cache. 475 */ 476struct memcg_cache_params { 477 bool is_root_cache; 478 union { 479 struct kmem_cache *memcg_caches[0]; 480 struct { 481 struct mem_cgroup *memcg; 482 struct list_head list; 483 struct kmem_cache *root_cache; 484 bool dead; 485 atomic_t nr_pages; 486 struct work_struct destroy; 487 }; 488 }; 489}; 490 491int memcg_update_all_caches(int num_memcgs); 492 493struct seq_file; 494int cache_show(struct kmem_cache *s, struct seq_file *m); 495void print_slabinfo_header(struct seq_file *m); 496 497/** 498 * kmalloc - allocate memory 499 * @size: how many bytes of memory are required. 500 * @flags: the type of memory to allocate. 501 * 502 * The @flags argument may be one of: 503 * 504 * %GFP_USER - Allocate memory on behalf of user. May sleep. 505 * 506 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 507 * 508 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 509 * For example, use this inside interrupt handlers. 510 * 511 * %GFP_HIGHUSER - Allocate pages from high memory. 512 * 513 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 514 * 515 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 516 * 517 * %GFP_NOWAIT - Allocation will not sleep. 518 * 519 * %GFP_THISNODE - Allocate node-local memory only. 520 * 521 * %GFP_DMA - Allocation suitable for DMA. 522 * Should only be used for kmalloc() caches. Otherwise, use a 523 * slab created with SLAB_DMA. 524 * 525 * Also it is possible to set different flags by OR'ing 526 * in one or more of the following additional @flags: 527 * 528 * %__GFP_COLD - Request cache-cold pages instead of 529 * trying to return cache-warm pages. 530 * 531 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 532 * 533 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 534 * (think twice before using). 535 * 536 * %__GFP_NORETRY - If memory is not immediately available, 537 * then give up at once. 538 * 539 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 540 * 541 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 542 * 543 * There are other flags available as well, but these are not intended 544 * for general use, and so are not documented here. For a full list of 545 * potential flags, always refer to linux/gfp.h. 546 * 547 * kmalloc is the normal method of allocating memory 548 * in the kernel. 549 */ 550static __always_inline void *kmalloc(size_t size, gfp_t flags); 551 552/** 553 * kmalloc_array - allocate memory for an array. 554 * @n: number of elements. 555 * @size: element size. 556 * @flags: the type of memory to allocate (see kmalloc). 557 */ 558static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 559{ 560 if (size != 0 && n > SIZE_MAX / size) 561 return NULL; 562 return __kmalloc(n * size, flags); 563} 564 565/** 566 * kcalloc - allocate memory for an array. The memory is set to zero. 567 * @n: number of elements. 568 * @size: element size. 569 * @flags: the type of memory to allocate (see kmalloc). 570 */ 571static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 572{ 573 return kmalloc_array(n, size, flags | __GFP_ZERO); 574} 575 576/* 577 * kmalloc_track_caller is a special version of kmalloc that records the 578 * calling function of the routine calling it for slab leak tracking instead 579 * of just the calling function (confusing, eh?). 580 * It's useful when the call to kmalloc comes from a widely-used standard 581 * allocator where we care about the real place the memory allocation 582 * request comes from. 583 */ 584#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 585 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 586 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 587extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 588#define kmalloc_track_caller(size, flags) \ 589 __kmalloc_track_caller(size, flags, _RET_IP_) 590#else 591#define kmalloc_track_caller(size, flags) \ 592 __kmalloc(size, flags) 593#endif /* DEBUG_SLAB */ 594 595#ifdef CONFIG_NUMA 596/* 597 * kmalloc_node_track_caller is a special version of kmalloc_node that 598 * records the calling function of the routine calling it for slab leak 599 * tracking instead of just the calling function (confusing, eh?). 600 * It's useful when the call to kmalloc_node comes from a widely-used 601 * standard allocator where we care about the real place the memory 602 * allocation request comes from. 603 */ 604#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 605 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 606 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 607extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 608#define kmalloc_node_track_caller(size, flags, node) \ 609 __kmalloc_node_track_caller(size, flags, node, \ 610 _RET_IP_) 611#else 612#define kmalloc_node_track_caller(size, flags, node) \ 613 __kmalloc_node(size, flags, node) 614#endif 615 616#else /* CONFIG_NUMA */ 617 618#define kmalloc_node_track_caller(size, flags, node) \ 619 kmalloc_track_caller(size, flags) 620 621#endif /* CONFIG_NUMA */ 622 623/* 624 * Shortcuts 625 */ 626static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 627{ 628 return kmem_cache_alloc(k, flags | __GFP_ZERO); 629} 630 631/** 632 * kzalloc - allocate memory. The memory is set to zero. 633 * @size: how many bytes of memory are required. 634 * @flags: the type of memory to allocate (see kmalloc). 635 */ 636static inline void *kzalloc(size_t size, gfp_t flags) 637{ 638 return kmalloc(size, flags | __GFP_ZERO); 639} 640 641/** 642 * kzalloc_node - allocate zeroed memory from a particular memory node. 643 * @size: how many bytes of memory are required. 644 * @flags: the type of memory to allocate (see kmalloc). 645 * @node: memory node from which to allocate 646 */ 647static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 648{ 649 return kmalloc_node(size, flags | __GFP_ZERO, node); 650} 651 652/* 653 * Determine the size of a slab object 654 */ 655static inline unsigned int kmem_cache_size(struct kmem_cache *s) 656{ 657 return s->object_size; 658} 659 660void __init kmem_cache_init_late(void); 661 662#endif /* _LINUX_SLAB_H */