at v3.12 77 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6 7struct sched_param { 8 int sched_priority; 9}; 10 11#include <asm/param.h> /* for HZ */ 12 13#include <linux/capability.h> 14#include <linux/threads.h> 15#include <linux/kernel.h> 16#include <linux/types.h> 17#include <linux/timex.h> 18#include <linux/jiffies.h> 19#include <linux/rbtree.h> 20#include <linux/thread_info.h> 21#include <linux/cpumask.h> 22#include <linux/errno.h> 23#include <linux/nodemask.h> 24#include <linux/mm_types.h> 25 26#include <asm/page.h> 27#include <asm/ptrace.h> 28#include <asm/cputime.h> 29 30#include <linux/smp.h> 31#include <linux/sem.h> 32#include <linux/signal.h> 33#include <linux/compiler.h> 34#include <linux/completion.h> 35#include <linux/pid.h> 36#include <linux/percpu.h> 37#include <linux/topology.h> 38#include <linux/proportions.h> 39#include <linux/seccomp.h> 40#include <linux/rcupdate.h> 41#include <linux/rculist.h> 42#include <linux/rtmutex.h> 43 44#include <linux/time.h> 45#include <linux/param.h> 46#include <linux/resource.h> 47#include <linux/timer.h> 48#include <linux/hrtimer.h> 49#include <linux/task_io_accounting.h> 50#include <linux/latencytop.h> 51#include <linux/cred.h> 52#include <linux/llist.h> 53#include <linux/uidgid.h> 54#include <linux/gfp.h> 55 56#include <asm/processor.h> 57 58struct exec_domain; 59struct futex_pi_state; 60struct robust_list_head; 61struct bio_list; 62struct fs_struct; 63struct perf_event_context; 64struct blk_plug; 65 66/* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72/* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82extern unsigned long avenrun[]; /* Load averages */ 83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85#define FSHIFT 11 /* nr of bits of precision */ 86#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89#define EXP_5 2014 /* 1/exp(5sec/5min) */ 90#define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92#define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97extern unsigned long total_forks; 98extern int nr_threads; 99DECLARE_PER_CPU(unsigned long, process_counts); 100extern int nr_processes(void); 101extern unsigned long nr_running(void); 102extern unsigned long nr_iowait(void); 103extern unsigned long nr_iowait_cpu(int cpu); 104extern unsigned long this_cpu_load(void); 105 106 107extern void calc_global_load(unsigned long ticks); 108extern void update_cpu_load_nohz(void); 109 110extern unsigned long get_parent_ip(unsigned long addr); 111 112extern void dump_cpu_task(int cpu); 113 114struct seq_file; 115struct cfs_rq; 116struct task_group; 117#ifdef CONFIG_SCHED_DEBUG 118extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 119extern void proc_sched_set_task(struct task_struct *p); 120extern void 121print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 122#endif 123 124/* 125 * Task state bitmask. NOTE! These bits are also 126 * encoded in fs/proc/array.c: get_task_state(). 127 * 128 * We have two separate sets of flags: task->state 129 * is about runnability, while task->exit_state are 130 * about the task exiting. Confusing, but this way 131 * modifying one set can't modify the other one by 132 * mistake. 133 */ 134#define TASK_RUNNING 0 135#define TASK_INTERRUPTIBLE 1 136#define TASK_UNINTERRUPTIBLE 2 137#define __TASK_STOPPED 4 138#define __TASK_TRACED 8 139/* in tsk->exit_state */ 140#define EXIT_ZOMBIE 16 141#define EXIT_DEAD 32 142/* in tsk->state again */ 143#define TASK_DEAD 64 144#define TASK_WAKEKILL 128 145#define TASK_WAKING 256 146#define TASK_PARKED 512 147#define TASK_STATE_MAX 1024 148 149#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 150 151extern char ___assert_task_state[1 - 2*!!( 152 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 153 154/* Convenience macros for the sake of set_task_state */ 155#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 156#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 157#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 158 159/* Convenience macros for the sake of wake_up */ 160#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 161#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 162 163/* get_task_state() */ 164#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 165 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 166 __TASK_TRACED) 167 168#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 169#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 170#define task_is_dead(task) ((task)->exit_state != 0) 171#define task_is_stopped_or_traced(task) \ 172 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 173#define task_contributes_to_load(task) \ 174 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 175 (task->flags & PF_FROZEN) == 0) 176 177#define __set_task_state(tsk, state_value) \ 178 do { (tsk)->state = (state_value); } while (0) 179#define set_task_state(tsk, state_value) \ 180 set_mb((tsk)->state, (state_value)) 181 182/* 183 * set_current_state() includes a barrier so that the write of current->state 184 * is correctly serialised wrt the caller's subsequent test of whether to 185 * actually sleep: 186 * 187 * set_current_state(TASK_UNINTERRUPTIBLE); 188 * if (do_i_need_to_sleep()) 189 * schedule(); 190 * 191 * If the caller does not need such serialisation then use __set_current_state() 192 */ 193#define __set_current_state(state_value) \ 194 do { current->state = (state_value); } while (0) 195#define set_current_state(state_value) \ 196 set_mb(current->state, (state_value)) 197 198/* Task command name length */ 199#define TASK_COMM_LEN 16 200 201#include <linux/spinlock.h> 202 203/* 204 * This serializes "schedule()" and also protects 205 * the run-queue from deletions/modifications (but 206 * _adding_ to the beginning of the run-queue has 207 * a separate lock). 208 */ 209extern rwlock_t tasklist_lock; 210extern spinlock_t mmlist_lock; 211 212struct task_struct; 213 214#ifdef CONFIG_PROVE_RCU 215extern int lockdep_tasklist_lock_is_held(void); 216#endif /* #ifdef CONFIG_PROVE_RCU */ 217 218extern void sched_init(void); 219extern void sched_init_smp(void); 220extern asmlinkage void schedule_tail(struct task_struct *prev); 221extern void init_idle(struct task_struct *idle, int cpu); 222extern void init_idle_bootup_task(struct task_struct *idle); 223 224extern int runqueue_is_locked(int cpu); 225 226#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 227extern void nohz_balance_enter_idle(int cpu); 228extern void set_cpu_sd_state_idle(void); 229extern int get_nohz_timer_target(void); 230#else 231static inline void nohz_balance_enter_idle(int cpu) { } 232static inline void set_cpu_sd_state_idle(void) { } 233#endif 234 235/* 236 * Only dump TASK_* tasks. (0 for all tasks) 237 */ 238extern void show_state_filter(unsigned long state_filter); 239 240static inline void show_state(void) 241{ 242 show_state_filter(0); 243} 244 245extern void show_regs(struct pt_regs *); 246 247/* 248 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 249 * task), SP is the stack pointer of the first frame that should be shown in the back 250 * trace (or NULL if the entire call-chain of the task should be shown). 251 */ 252extern void show_stack(struct task_struct *task, unsigned long *sp); 253 254void io_schedule(void); 255long io_schedule_timeout(long timeout); 256 257extern void cpu_init (void); 258extern void trap_init(void); 259extern void update_process_times(int user); 260extern void scheduler_tick(void); 261 262extern void sched_show_task(struct task_struct *p); 263 264#ifdef CONFIG_LOCKUP_DETECTOR 265extern void touch_softlockup_watchdog(void); 266extern void touch_softlockup_watchdog_sync(void); 267extern void touch_all_softlockup_watchdogs(void); 268extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 269 void __user *buffer, 270 size_t *lenp, loff_t *ppos); 271extern unsigned int softlockup_panic; 272void lockup_detector_init(void); 273#else 274static inline void touch_softlockup_watchdog(void) 275{ 276} 277static inline void touch_softlockup_watchdog_sync(void) 278{ 279} 280static inline void touch_all_softlockup_watchdogs(void) 281{ 282} 283static inline void lockup_detector_init(void) 284{ 285} 286#endif 287 288/* Attach to any functions which should be ignored in wchan output. */ 289#define __sched __attribute__((__section__(".sched.text"))) 290 291/* Linker adds these: start and end of __sched functions */ 292extern char __sched_text_start[], __sched_text_end[]; 293 294/* Is this address in the __sched functions? */ 295extern int in_sched_functions(unsigned long addr); 296 297#define MAX_SCHEDULE_TIMEOUT LONG_MAX 298extern signed long schedule_timeout(signed long timeout); 299extern signed long schedule_timeout_interruptible(signed long timeout); 300extern signed long schedule_timeout_killable(signed long timeout); 301extern signed long schedule_timeout_uninterruptible(signed long timeout); 302asmlinkage void schedule(void); 303extern void schedule_preempt_disabled(void); 304 305struct nsproxy; 306struct user_namespace; 307 308#ifdef CONFIG_MMU 309extern void arch_pick_mmap_layout(struct mm_struct *mm); 310extern unsigned long 311arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 312 unsigned long, unsigned long); 313extern unsigned long 314arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 315 unsigned long len, unsigned long pgoff, 316 unsigned long flags); 317#else 318static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 319#endif 320 321 322extern void set_dumpable(struct mm_struct *mm, int value); 323extern int get_dumpable(struct mm_struct *mm); 324 325/* mm flags */ 326/* dumpable bits */ 327#define MMF_DUMPABLE 0 /* core dump is permitted */ 328#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 329 330#define MMF_DUMPABLE_BITS 2 331#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 332 333/* coredump filter bits */ 334#define MMF_DUMP_ANON_PRIVATE 2 335#define MMF_DUMP_ANON_SHARED 3 336#define MMF_DUMP_MAPPED_PRIVATE 4 337#define MMF_DUMP_MAPPED_SHARED 5 338#define MMF_DUMP_ELF_HEADERS 6 339#define MMF_DUMP_HUGETLB_PRIVATE 7 340#define MMF_DUMP_HUGETLB_SHARED 8 341 342#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 343#define MMF_DUMP_FILTER_BITS 7 344#define MMF_DUMP_FILTER_MASK \ 345 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 346#define MMF_DUMP_FILTER_DEFAULT \ 347 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 348 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 349 350#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 351# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 352#else 353# define MMF_DUMP_MASK_DEFAULT_ELF 0 354#endif 355 /* leave room for more dump flags */ 356#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 357#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 358#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 359 360#define MMF_HAS_UPROBES 19 /* has uprobes */ 361#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 362 363#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 364 365struct sighand_struct { 366 atomic_t count; 367 struct k_sigaction action[_NSIG]; 368 spinlock_t siglock; 369 wait_queue_head_t signalfd_wqh; 370}; 371 372struct pacct_struct { 373 int ac_flag; 374 long ac_exitcode; 375 unsigned long ac_mem; 376 cputime_t ac_utime, ac_stime; 377 unsigned long ac_minflt, ac_majflt; 378}; 379 380struct cpu_itimer { 381 cputime_t expires; 382 cputime_t incr; 383 u32 error; 384 u32 incr_error; 385}; 386 387/** 388 * struct cputime - snaphsot of system and user cputime 389 * @utime: time spent in user mode 390 * @stime: time spent in system mode 391 * 392 * Gathers a generic snapshot of user and system time. 393 */ 394struct cputime { 395 cputime_t utime; 396 cputime_t stime; 397}; 398 399/** 400 * struct task_cputime - collected CPU time counts 401 * @utime: time spent in user mode, in &cputime_t units 402 * @stime: time spent in kernel mode, in &cputime_t units 403 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 404 * 405 * This is an extension of struct cputime that includes the total runtime 406 * spent by the task from the scheduler point of view. 407 * 408 * As a result, this structure groups together three kinds of CPU time 409 * that are tracked for threads and thread groups. Most things considering 410 * CPU time want to group these counts together and treat all three 411 * of them in parallel. 412 */ 413struct task_cputime { 414 cputime_t utime; 415 cputime_t stime; 416 unsigned long long sum_exec_runtime; 417}; 418/* Alternate field names when used to cache expirations. */ 419#define prof_exp stime 420#define virt_exp utime 421#define sched_exp sum_exec_runtime 422 423#define INIT_CPUTIME \ 424 (struct task_cputime) { \ 425 .utime = 0, \ 426 .stime = 0, \ 427 .sum_exec_runtime = 0, \ 428 } 429 430/* 431 * Disable preemption until the scheduler is running. 432 * Reset by start_kernel()->sched_init()->init_idle(). 433 * 434 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 435 * before the scheduler is active -- see should_resched(). 436 */ 437#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 438 439/** 440 * struct thread_group_cputimer - thread group interval timer counts 441 * @cputime: thread group interval timers. 442 * @running: non-zero when there are timers running and 443 * @cputime receives updates. 444 * @lock: lock for fields in this struct. 445 * 446 * This structure contains the version of task_cputime, above, that is 447 * used for thread group CPU timer calculations. 448 */ 449struct thread_group_cputimer { 450 struct task_cputime cputime; 451 int running; 452 raw_spinlock_t lock; 453}; 454 455#include <linux/rwsem.h> 456struct autogroup; 457 458/* 459 * NOTE! "signal_struct" does not have its own 460 * locking, because a shared signal_struct always 461 * implies a shared sighand_struct, so locking 462 * sighand_struct is always a proper superset of 463 * the locking of signal_struct. 464 */ 465struct signal_struct { 466 atomic_t sigcnt; 467 atomic_t live; 468 int nr_threads; 469 470 wait_queue_head_t wait_chldexit; /* for wait4() */ 471 472 /* current thread group signal load-balancing target: */ 473 struct task_struct *curr_target; 474 475 /* shared signal handling: */ 476 struct sigpending shared_pending; 477 478 /* thread group exit support */ 479 int group_exit_code; 480 /* overloaded: 481 * - notify group_exit_task when ->count is equal to notify_count 482 * - everyone except group_exit_task is stopped during signal delivery 483 * of fatal signals, group_exit_task processes the signal. 484 */ 485 int notify_count; 486 struct task_struct *group_exit_task; 487 488 /* thread group stop support, overloads group_exit_code too */ 489 int group_stop_count; 490 unsigned int flags; /* see SIGNAL_* flags below */ 491 492 /* 493 * PR_SET_CHILD_SUBREAPER marks a process, like a service 494 * manager, to re-parent orphan (double-forking) child processes 495 * to this process instead of 'init'. The service manager is 496 * able to receive SIGCHLD signals and is able to investigate 497 * the process until it calls wait(). All children of this 498 * process will inherit a flag if they should look for a 499 * child_subreaper process at exit. 500 */ 501 unsigned int is_child_subreaper:1; 502 unsigned int has_child_subreaper:1; 503 504 /* POSIX.1b Interval Timers */ 505 int posix_timer_id; 506 struct list_head posix_timers; 507 508 /* ITIMER_REAL timer for the process */ 509 struct hrtimer real_timer; 510 struct pid *leader_pid; 511 ktime_t it_real_incr; 512 513 /* 514 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 515 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 516 * values are defined to 0 and 1 respectively 517 */ 518 struct cpu_itimer it[2]; 519 520 /* 521 * Thread group totals for process CPU timers. 522 * See thread_group_cputimer(), et al, for details. 523 */ 524 struct thread_group_cputimer cputimer; 525 526 /* Earliest-expiration cache. */ 527 struct task_cputime cputime_expires; 528 529 struct list_head cpu_timers[3]; 530 531 struct pid *tty_old_pgrp; 532 533 /* boolean value for session group leader */ 534 int leader; 535 536 struct tty_struct *tty; /* NULL if no tty */ 537 538#ifdef CONFIG_SCHED_AUTOGROUP 539 struct autogroup *autogroup; 540#endif 541 /* 542 * Cumulative resource counters for dead threads in the group, 543 * and for reaped dead child processes forked by this group. 544 * Live threads maintain their own counters and add to these 545 * in __exit_signal, except for the group leader. 546 */ 547 cputime_t utime, stime, cutime, cstime; 548 cputime_t gtime; 549 cputime_t cgtime; 550#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 551 struct cputime prev_cputime; 552#endif 553 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 554 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 555 unsigned long inblock, oublock, cinblock, coublock; 556 unsigned long maxrss, cmaxrss; 557 struct task_io_accounting ioac; 558 559 /* 560 * Cumulative ns of schedule CPU time fo dead threads in the 561 * group, not including a zombie group leader, (This only differs 562 * from jiffies_to_ns(utime + stime) if sched_clock uses something 563 * other than jiffies.) 564 */ 565 unsigned long long sum_sched_runtime; 566 567 /* 568 * We don't bother to synchronize most readers of this at all, 569 * because there is no reader checking a limit that actually needs 570 * to get both rlim_cur and rlim_max atomically, and either one 571 * alone is a single word that can safely be read normally. 572 * getrlimit/setrlimit use task_lock(current->group_leader) to 573 * protect this instead of the siglock, because they really 574 * have no need to disable irqs. 575 */ 576 struct rlimit rlim[RLIM_NLIMITS]; 577 578#ifdef CONFIG_BSD_PROCESS_ACCT 579 struct pacct_struct pacct; /* per-process accounting information */ 580#endif 581#ifdef CONFIG_TASKSTATS 582 struct taskstats *stats; 583#endif 584#ifdef CONFIG_AUDIT 585 unsigned audit_tty; 586 unsigned audit_tty_log_passwd; 587 struct tty_audit_buf *tty_audit_buf; 588#endif 589#ifdef CONFIG_CGROUPS 590 /* 591 * group_rwsem prevents new tasks from entering the threadgroup and 592 * member tasks from exiting,a more specifically, setting of 593 * PF_EXITING. fork and exit paths are protected with this rwsem 594 * using threadgroup_change_begin/end(). Users which require 595 * threadgroup to remain stable should use threadgroup_[un]lock() 596 * which also takes care of exec path. Currently, cgroup is the 597 * only user. 598 */ 599 struct rw_semaphore group_rwsem; 600#endif 601 602 oom_flags_t oom_flags; 603 short oom_score_adj; /* OOM kill score adjustment */ 604 short oom_score_adj_min; /* OOM kill score adjustment min value. 605 * Only settable by CAP_SYS_RESOURCE. */ 606 607 struct mutex cred_guard_mutex; /* guard against foreign influences on 608 * credential calculations 609 * (notably. ptrace) */ 610}; 611 612/* 613 * Bits in flags field of signal_struct. 614 */ 615#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 616#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 617#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 618#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 619/* 620 * Pending notifications to parent. 621 */ 622#define SIGNAL_CLD_STOPPED 0x00000010 623#define SIGNAL_CLD_CONTINUED 0x00000020 624#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 625 626#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 627 628/* If true, all threads except ->group_exit_task have pending SIGKILL */ 629static inline int signal_group_exit(const struct signal_struct *sig) 630{ 631 return (sig->flags & SIGNAL_GROUP_EXIT) || 632 (sig->group_exit_task != NULL); 633} 634 635/* 636 * Some day this will be a full-fledged user tracking system.. 637 */ 638struct user_struct { 639 atomic_t __count; /* reference count */ 640 atomic_t processes; /* How many processes does this user have? */ 641 atomic_t files; /* How many open files does this user have? */ 642 atomic_t sigpending; /* How many pending signals does this user have? */ 643#ifdef CONFIG_INOTIFY_USER 644 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 645 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 646#endif 647#ifdef CONFIG_FANOTIFY 648 atomic_t fanotify_listeners; 649#endif 650#ifdef CONFIG_EPOLL 651 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 652#endif 653#ifdef CONFIG_POSIX_MQUEUE 654 /* protected by mq_lock */ 655 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 656#endif 657 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 658 659#ifdef CONFIG_KEYS 660 struct key *uid_keyring; /* UID specific keyring */ 661 struct key *session_keyring; /* UID's default session keyring */ 662#endif 663 664 /* Hash table maintenance information */ 665 struct hlist_node uidhash_node; 666 kuid_t uid; 667 668#ifdef CONFIG_PERF_EVENTS 669 atomic_long_t locked_vm; 670#endif 671}; 672 673extern int uids_sysfs_init(void); 674 675extern struct user_struct *find_user(kuid_t); 676 677extern struct user_struct root_user; 678#define INIT_USER (&root_user) 679 680 681struct backing_dev_info; 682struct reclaim_state; 683 684#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 685struct sched_info { 686 /* cumulative counters */ 687 unsigned long pcount; /* # of times run on this cpu */ 688 unsigned long long run_delay; /* time spent waiting on a runqueue */ 689 690 /* timestamps */ 691 unsigned long long last_arrival,/* when we last ran on a cpu */ 692 last_queued; /* when we were last queued to run */ 693}; 694#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 695 696#ifdef CONFIG_TASK_DELAY_ACCT 697struct task_delay_info { 698 spinlock_t lock; 699 unsigned int flags; /* Private per-task flags */ 700 701 /* For each stat XXX, add following, aligned appropriately 702 * 703 * struct timespec XXX_start, XXX_end; 704 * u64 XXX_delay; 705 * u32 XXX_count; 706 * 707 * Atomicity of updates to XXX_delay, XXX_count protected by 708 * single lock above (split into XXX_lock if contention is an issue). 709 */ 710 711 /* 712 * XXX_count is incremented on every XXX operation, the delay 713 * associated with the operation is added to XXX_delay. 714 * XXX_delay contains the accumulated delay time in nanoseconds. 715 */ 716 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 717 u64 blkio_delay; /* wait for sync block io completion */ 718 u64 swapin_delay; /* wait for swapin block io completion */ 719 u32 blkio_count; /* total count of the number of sync block */ 720 /* io operations performed */ 721 u32 swapin_count; /* total count of the number of swapin block */ 722 /* io operations performed */ 723 724 struct timespec freepages_start, freepages_end; 725 u64 freepages_delay; /* wait for memory reclaim */ 726 u32 freepages_count; /* total count of memory reclaim */ 727}; 728#endif /* CONFIG_TASK_DELAY_ACCT */ 729 730static inline int sched_info_on(void) 731{ 732#ifdef CONFIG_SCHEDSTATS 733 return 1; 734#elif defined(CONFIG_TASK_DELAY_ACCT) 735 extern int delayacct_on; 736 return delayacct_on; 737#else 738 return 0; 739#endif 740} 741 742enum cpu_idle_type { 743 CPU_IDLE, 744 CPU_NOT_IDLE, 745 CPU_NEWLY_IDLE, 746 CPU_MAX_IDLE_TYPES 747}; 748 749/* 750 * Increase resolution of cpu_power calculations 751 */ 752#define SCHED_POWER_SHIFT 10 753#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 754 755/* 756 * sched-domains (multiprocessor balancing) declarations: 757 */ 758#ifdef CONFIG_SMP 759#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 760#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 761#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 762#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 763#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 764#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 765#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 766#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 767#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 768#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 769#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 770#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 771 772extern int __weak arch_sd_sibiling_asym_packing(void); 773 774struct sched_domain_attr { 775 int relax_domain_level; 776}; 777 778#define SD_ATTR_INIT (struct sched_domain_attr) { \ 779 .relax_domain_level = -1, \ 780} 781 782extern int sched_domain_level_max; 783 784struct sched_group; 785 786struct sched_domain { 787 /* These fields must be setup */ 788 struct sched_domain *parent; /* top domain must be null terminated */ 789 struct sched_domain *child; /* bottom domain must be null terminated */ 790 struct sched_group *groups; /* the balancing groups of the domain */ 791 unsigned long min_interval; /* Minimum balance interval ms */ 792 unsigned long max_interval; /* Maximum balance interval ms */ 793 unsigned int busy_factor; /* less balancing by factor if busy */ 794 unsigned int imbalance_pct; /* No balance until over watermark */ 795 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 796 unsigned int busy_idx; 797 unsigned int idle_idx; 798 unsigned int newidle_idx; 799 unsigned int wake_idx; 800 unsigned int forkexec_idx; 801 unsigned int smt_gain; 802 803 int nohz_idle; /* NOHZ IDLE status */ 804 int flags; /* See SD_* */ 805 int level; 806 807 /* Runtime fields. */ 808 unsigned long last_balance; /* init to jiffies. units in jiffies */ 809 unsigned int balance_interval; /* initialise to 1. units in ms. */ 810 unsigned int nr_balance_failed; /* initialise to 0 */ 811 812 u64 last_update; 813 814#ifdef CONFIG_SCHEDSTATS 815 /* load_balance() stats */ 816 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 817 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 818 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 819 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 820 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 821 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 822 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 823 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 824 825 /* Active load balancing */ 826 unsigned int alb_count; 827 unsigned int alb_failed; 828 unsigned int alb_pushed; 829 830 /* SD_BALANCE_EXEC stats */ 831 unsigned int sbe_count; 832 unsigned int sbe_balanced; 833 unsigned int sbe_pushed; 834 835 /* SD_BALANCE_FORK stats */ 836 unsigned int sbf_count; 837 unsigned int sbf_balanced; 838 unsigned int sbf_pushed; 839 840 /* try_to_wake_up() stats */ 841 unsigned int ttwu_wake_remote; 842 unsigned int ttwu_move_affine; 843 unsigned int ttwu_move_balance; 844#endif 845#ifdef CONFIG_SCHED_DEBUG 846 char *name; 847#endif 848 union { 849 void *private; /* used during construction */ 850 struct rcu_head rcu; /* used during destruction */ 851 }; 852 853 unsigned int span_weight; 854 /* 855 * Span of all CPUs in this domain. 856 * 857 * NOTE: this field is variable length. (Allocated dynamically 858 * by attaching extra space to the end of the structure, 859 * depending on how many CPUs the kernel has booted up with) 860 */ 861 unsigned long span[0]; 862}; 863 864static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 865{ 866 return to_cpumask(sd->span); 867} 868 869extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 870 struct sched_domain_attr *dattr_new); 871 872/* Allocate an array of sched domains, for partition_sched_domains(). */ 873cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 874void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 875 876bool cpus_share_cache(int this_cpu, int that_cpu); 877 878#else /* CONFIG_SMP */ 879 880struct sched_domain_attr; 881 882static inline void 883partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 884 struct sched_domain_attr *dattr_new) 885{ 886} 887 888static inline bool cpus_share_cache(int this_cpu, int that_cpu) 889{ 890 return true; 891} 892 893#endif /* !CONFIG_SMP */ 894 895 896struct io_context; /* See blkdev.h */ 897 898 899#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 900extern void prefetch_stack(struct task_struct *t); 901#else 902static inline void prefetch_stack(struct task_struct *t) { } 903#endif 904 905struct audit_context; /* See audit.c */ 906struct mempolicy; 907struct pipe_inode_info; 908struct uts_namespace; 909 910struct load_weight { 911 unsigned long weight, inv_weight; 912}; 913 914struct sched_avg { 915 /* 916 * These sums represent an infinite geometric series and so are bound 917 * above by 1024/(1-y). Thus we only need a u32 to store them for all 918 * choices of y < 1-2^(-32)*1024. 919 */ 920 u32 runnable_avg_sum, runnable_avg_period; 921 u64 last_runnable_update; 922 s64 decay_count; 923 unsigned long load_avg_contrib; 924}; 925 926#ifdef CONFIG_SCHEDSTATS 927struct sched_statistics { 928 u64 wait_start; 929 u64 wait_max; 930 u64 wait_count; 931 u64 wait_sum; 932 u64 iowait_count; 933 u64 iowait_sum; 934 935 u64 sleep_start; 936 u64 sleep_max; 937 s64 sum_sleep_runtime; 938 939 u64 block_start; 940 u64 block_max; 941 u64 exec_max; 942 u64 slice_max; 943 944 u64 nr_migrations_cold; 945 u64 nr_failed_migrations_affine; 946 u64 nr_failed_migrations_running; 947 u64 nr_failed_migrations_hot; 948 u64 nr_forced_migrations; 949 950 u64 nr_wakeups; 951 u64 nr_wakeups_sync; 952 u64 nr_wakeups_migrate; 953 u64 nr_wakeups_local; 954 u64 nr_wakeups_remote; 955 u64 nr_wakeups_affine; 956 u64 nr_wakeups_affine_attempts; 957 u64 nr_wakeups_passive; 958 u64 nr_wakeups_idle; 959}; 960#endif 961 962struct sched_entity { 963 struct load_weight load; /* for load-balancing */ 964 struct rb_node run_node; 965 struct list_head group_node; 966 unsigned int on_rq; 967 968 u64 exec_start; 969 u64 sum_exec_runtime; 970 u64 vruntime; 971 u64 prev_sum_exec_runtime; 972 973 u64 nr_migrations; 974 975#ifdef CONFIG_SCHEDSTATS 976 struct sched_statistics statistics; 977#endif 978 979#ifdef CONFIG_FAIR_GROUP_SCHED 980 struct sched_entity *parent; 981 /* rq on which this entity is (to be) queued: */ 982 struct cfs_rq *cfs_rq; 983 /* rq "owned" by this entity/group: */ 984 struct cfs_rq *my_q; 985#endif 986 987#ifdef CONFIG_SMP 988 /* Per-entity load-tracking */ 989 struct sched_avg avg; 990#endif 991}; 992 993struct sched_rt_entity { 994 struct list_head run_list; 995 unsigned long timeout; 996 unsigned long watchdog_stamp; 997 unsigned int time_slice; 998 999 struct sched_rt_entity *back; 1000#ifdef CONFIG_RT_GROUP_SCHED 1001 struct sched_rt_entity *parent; 1002 /* rq on which this entity is (to be) queued: */ 1003 struct rt_rq *rt_rq; 1004 /* rq "owned" by this entity/group: */ 1005 struct rt_rq *my_q; 1006#endif 1007}; 1008 1009 1010struct rcu_node; 1011 1012enum perf_event_task_context { 1013 perf_invalid_context = -1, 1014 perf_hw_context = 0, 1015 perf_sw_context, 1016 perf_nr_task_contexts, 1017}; 1018 1019struct task_struct { 1020 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1021 void *stack; 1022 atomic_t usage; 1023 unsigned int flags; /* per process flags, defined below */ 1024 unsigned int ptrace; 1025 1026#ifdef CONFIG_SMP 1027 struct llist_node wake_entry; 1028 int on_cpu; 1029 struct task_struct *last_wakee; 1030 unsigned long wakee_flips; 1031 unsigned long wakee_flip_decay_ts; 1032#endif 1033 int on_rq; 1034 1035 int prio, static_prio, normal_prio; 1036 unsigned int rt_priority; 1037 const struct sched_class *sched_class; 1038 struct sched_entity se; 1039 struct sched_rt_entity rt; 1040#ifdef CONFIG_CGROUP_SCHED 1041 struct task_group *sched_task_group; 1042#endif 1043 1044#ifdef CONFIG_PREEMPT_NOTIFIERS 1045 /* list of struct preempt_notifier: */ 1046 struct hlist_head preempt_notifiers; 1047#endif 1048 1049 /* 1050 * fpu_counter contains the number of consecutive context switches 1051 * that the FPU is used. If this is over a threshold, the lazy fpu 1052 * saving becomes unlazy to save the trap. This is an unsigned char 1053 * so that after 256 times the counter wraps and the behavior turns 1054 * lazy again; this to deal with bursty apps that only use FPU for 1055 * a short time 1056 */ 1057 unsigned char fpu_counter; 1058#ifdef CONFIG_BLK_DEV_IO_TRACE 1059 unsigned int btrace_seq; 1060#endif 1061 1062 unsigned int policy; 1063 int nr_cpus_allowed; 1064 cpumask_t cpus_allowed; 1065 1066#ifdef CONFIG_PREEMPT_RCU 1067 int rcu_read_lock_nesting; 1068 char rcu_read_unlock_special; 1069 struct list_head rcu_node_entry; 1070#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1071#ifdef CONFIG_TREE_PREEMPT_RCU 1072 struct rcu_node *rcu_blocked_node; 1073#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1074#ifdef CONFIG_RCU_BOOST 1075 struct rt_mutex *rcu_boost_mutex; 1076#endif /* #ifdef CONFIG_RCU_BOOST */ 1077 1078#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1079 struct sched_info sched_info; 1080#endif 1081 1082 struct list_head tasks; 1083#ifdef CONFIG_SMP 1084 struct plist_node pushable_tasks; 1085#endif 1086 1087 struct mm_struct *mm, *active_mm; 1088#ifdef CONFIG_COMPAT_BRK 1089 unsigned brk_randomized:1; 1090#endif 1091#if defined(SPLIT_RSS_COUNTING) 1092 struct task_rss_stat rss_stat; 1093#endif 1094/* task state */ 1095 int exit_state; 1096 int exit_code, exit_signal; 1097 int pdeath_signal; /* The signal sent when the parent dies */ 1098 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1099 1100 /* Used for emulating ABI behavior of previous Linux versions */ 1101 unsigned int personality; 1102 1103 unsigned did_exec:1; 1104 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1105 * execve */ 1106 unsigned in_iowait:1; 1107 1108 /* task may not gain privileges */ 1109 unsigned no_new_privs:1; 1110 1111 /* Revert to default priority/policy when forking */ 1112 unsigned sched_reset_on_fork:1; 1113 unsigned sched_contributes_to_load:1; 1114 1115 pid_t pid; 1116 pid_t tgid; 1117 1118#ifdef CONFIG_CC_STACKPROTECTOR 1119 /* Canary value for the -fstack-protector gcc feature */ 1120 unsigned long stack_canary; 1121#endif 1122 /* 1123 * pointers to (original) parent process, youngest child, younger sibling, 1124 * older sibling, respectively. (p->father can be replaced with 1125 * p->real_parent->pid) 1126 */ 1127 struct task_struct __rcu *real_parent; /* real parent process */ 1128 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1129 /* 1130 * children/sibling forms the list of my natural children 1131 */ 1132 struct list_head children; /* list of my children */ 1133 struct list_head sibling; /* linkage in my parent's children list */ 1134 struct task_struct *group_leader; /* threadgroup leader */ 1135 1136 /* 1137 * ptraced is the list of tasks this task is using ptrace on. 1138 * This includes both natural children and PTRACE_ATTACH targets. 1139 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1140 */ 1141 struct list_head ptraced; 1142 struct list_head ptrace_entry; 1143 1144 /* PID/PID hash table linkage. */ 1145 struct pid_link pids[PIDTYPE_MAX]; 1146 struct list_head thread_group; 1147 1148 struct completion *vfork_done; /* for vfork() */ 1149 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1150 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1151 1152 cputime_t utime, stime, utimescaled, stimescaled; 1153 cputime_t gtime; 1154#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1155 struct cputime prev_cputime; 1156#endif 1157#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1158 seqlock_t vtime_seqlock; 1159 unsigned long long vtime_snap; 1160 enum { 1161 VTIME_SLEEPING = 0, 1162 VTIME_USER, 1163 VTIME_SYS, 1164 } vtime_snap_whence; 1165#endif 1166 unsigned long nvcsw, nivcsw; /* context switch counts */ 1167 struct timespec start_time; /* monotonic time */ 1168 struct timespec real_start_time; /* boot based time */ 1169/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1170 unsigned long min_flt, maj_flt; 1171 1172 struct task_cputime cputime_expires; 1173 struct list_head cpu_timers[3]; 1174 1175/* process credentials */ 1176 const struct cred __rcu *real_cred; /* objective and real subjective task 1177 * credentials (COW) */ 1178 const struct cred __rcu *cred; /* effective (overridable) subjective task 1179 * credentials (COW) */ 1180 char comm[TASK_COMM_LEN]; /* executable name excluding path 1181 - access with [gs]et_task_comm (which lock 1182 it with task_lock()) 1183 - initialized normally by setup_new_exec */ 1184/* file system info */ 1185 int link_count, total_link_count; 1186#ifdef CONFIG_SYSVIPC 1187/* ipc stuff */ 1188 struct sysv_sem sysvsem; 1189#endif 1190#ifdef CONFIG_DETECT_HUNG_TASK 1191/* hung task detection */ 1192 unsigned long last_switch_count; 1193#endif 1194/* CPU-specific state of this task */ 1195 struct thread_struct thread; 1196/* filesystem information */ 1197 struct fs_struct *fs; 1198/* open file information */ 1199 struct files_struct *files; 1200/* namespaces */ 1201 struct nsproxy *nsproxy; 1202/* signal handlers */ 1203 struct signal_struct *signal; 1204 struct sighand_struct *sighand; 1205 1206 sigset_t blocked, real_blocked; 1207 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1208 struct sigpending pending; 1209 1210 unsigned long sas_ss_sp; 1211 size_t sas_ss_size; 1212 int (*notifier)(void *priv); 1213 void *notifier_data; 1214 sigset_t *notifier_mask; 1215 struct callback_head *task_works; 1216 1217 struct audit_context *audit_context; 1218#ifdef CONFIG_AUDITSYSCALL 1219 kuid_t loginuid; 1220 unsigned int sessionid; 1221#endif 1222 struct seccomp seccomp; 1223 1224/* Thread group tracking */ 1225 u32 parent_exec_id; 1226 u32 self_exec_id; 1227/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1228 * mempolicy */ 1229 spinlock_t alloc_lock; 1230 1231 /* Protection of the PI data structures: */ 1232 raw_spinlock_t pi_lock; 1233 1234#ifdef CONFIG_RT_MUTEXES 1235 /* PI waiters blocked on a rt_mutex held by this task */ 1236 struct plist_head pi_waiters; 1237 /* Deadlock detection and priority inheritance handling */ 1238 struct rt_mutex_waiter *pi_blocked_on; 1239#endif 1240 1241#ifdef CONFIG_DEBUG_MUTEXES 1242 /* mutex deadlock detection */ 1243 struct mutex_waiter *blocked_on; 1244#endif 1245#ifdef CONFIG_TRACE_IRQFLAGS 1246 unsigned int irq_events; 1247 unsigned long hardirq_enable_ip; 1248 unsigned long hardirq_disable_ip; 1249 unsigned int hardirq_enable_event; 1250 unsigned int hardirq_disable_event; 1251 int hardirqs_enabled; 1252 int hardirq_context; 1253 unsigned long softirq_disable_ip; 1254 unsigned long softirq_enable_ip; 1255 unsigned int softirq_disable_event; 1256 unsigned int softirq_enable_event; 1257 int softirqs_enabled; 1258 int softirq_context; 1259#endif 1260#ifdef CONFIG_LOCKDEP 1261# define MAX_LOCK_DEPTH 48UL 1262 u64 curr_chain_key; 1263 int lockdep_depth; 1264 unsigned int lockdep_recursion; 1265 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1266 gfp_t lockdep_reclaim_gfp; 1267#endif 1268 1269/* journalling filesystem info */ 1270 void *journal_info; 1271 1272/* stacked block device info */ 1273 struct bio_list *bio_list; 1274 1275#ifdef CONFIG_BLOCK 1276/* stack plugging */ 1277 struct blk_plug *plug; 1278#endif 1279 1280/* VM state */ 1281 struct reclaim_state *reclaim_state; 1282 1283 struct backing_dev_info *backing_dev_info; 1284 1285 struct io_context *io_context; 1286 1287 unsigned long ptrace_message; 1288 siginfo_t *last_siginfo; /* For ptrace use. */ 1289 struct task_io_accounting ioac; 1290#if defined(CONFIG_TASK_XACCT) 1291 u64 acct_rss_mem1; /* accumulated rss usage */ 1292 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1293 cputime_t acct_timexpd; /* stime + utime since last update */ 1294#endif 1295#ifdef CONFIG_CPUSETS 1296 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1297 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1298 int cpuset_mem_spread_rotor; 1299 int cpuset_slab_spread_rotor; 1300#endif 1301#ifdef CONFIG_CGROUPS 1302 /* Control Group info protected by css_set_lock */ 1303 struct css_set __rcu *cgroups; 1304 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1305 struct list_head cg_list; 1306#endif 1307#ifdef CONFIG_FUTEX 1308 struct robust_list_head __user *robust_list; 1309#ifdef CONFIG_COMPAT 1310 struct compat_robust_list_head __user *compat_robust_list; 1311#endif 1312 struct list_head pi_state_list; 1313 struct futex_pi_state *pi_state_cache; 1314#endif 1315#ifdef CONFIG_PERF_EVENTS 1316 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1317 struct mutex perf_event_mutex; 1318 struct list_head perf_event_list; 1319#endif 1320#ifdef CONFIG_NUMA 1321 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1322 short il_next; 1323 short pref_node_fork; 1324#endif 1325#ifdef CONFIG_NUMA_BALANCING 1326 int numa_scan_seq; 1327 int numa_migrate_seq; 1328 unsigned int numa_scan_period; 1329 u64 node_stamp; /* migration stamp */ 1330 struct callback_head numa_work; 1331#endif /* CONFIG_NUMA_BALANCING */ 1332 1333 struct rcu_head rcu; 1334 1335 /* 1336 * cache last used pipe for splice 1337 */ 1338 struct pipe_inode_info *splice_pipe; 1339 1340 struct page_frag task_frag; 1341 1342#ifdef CONFIG_TASK_DELAY_ACCT 1343 struct task_delay_info *delays; 1344#endif 1345#ifdef CONFIG_FAULT_INJECTION 1346 int make_it_fail; 1347#endif 1348 /* 1349 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1350 * balance_dirty_pages() for some dirty throttling pause 1351 */ 1352 int nr_dirtied; 1353 int nr_dirtied_pause; 1354 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1355 1356#ifdef CONFIG_LATENCYTOP 1357 int latency_record_count; 1358 struct latency_record latency_record[LT_SAVECOUNT]; 1359#endif 1360 /* 1361 * time slack values; these are used to round up poll() and 1362 * select() etc timeout values. These are in nanoseconds. 1363 */ 1364 unsigned long timer_slack_ns; 1365 unsigned long default_timer_slack_ns; 1366 1367#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1368 /* Index of current stored address in ret_stack */ 1369 int curr_ret_stack; 1370 /* Stack of return addresses for return function tracing */ 1371 struct ftrace_ret_stack *ret_stack; 1372 /* time stamp for last schedule */ 1373 unsigned long long ftrace_timestamp; 1374 /* 1375 * Number of functions that haven't been traced 1376 * because of depth overrun. 1377 */ 1378 atomic_t trace_overrun; 1379 /* Pause for the tracing */ 1380 atomic_t tracing_graph_pause; 1381#endif 1382#ifdef CONFIG_TRACING 1383 /* state flags for use by tracers */ 1384 unsigned long trace; 1385 /* bitmask and counter of trace recursion */ 1386 unsigned long trace_recursion; 1387#endif /* CONFIG_TRACING */ 1388#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1389 struct memcg_batch_info { 1390 int do_batch; /* incremented when batch uncharge started */ 1391 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1392 unsigned long nr_pages; /* uncharged usage */ 1393 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1394 } memcg_batch; 1395 unsigned int memcg_kmem_skip_account; 1396 struct memcg_oom_info { 1397 struct mem_cgroup *memcg; 1398 gfp_t gfp_mask; 1399 int order; 1400 unsigned int may_oom:1; 1401 } memcg_oom; 1402#endif 1403#ifdef CONFIG_UPROBES 1404 struct uprobe_task *utask; 1405#endif 1406#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1407 unsigned int sequential_io; 1408 unsigned int sequential_io_avg; 1409#endif 1410}; 1411 1412/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1413#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1414 1415#ifdef CONFIG_NUMA_BALANCING 1416extern void task_numa_fault(int node, int pages, bool migrated); 1417extern void set_numabalancing_state(bool enabled); 1418#else 1419static inline void task_numa_fault(int node, int pages, bool migrated) 1420{ 1421} 1422static inline void set_numabalancing_state(bool enabled) 1423{ 1424} 1425#endif 1426 1427static inline struct pid *task_pid(struct task_struct *task) 1428{ 1429 return task->pids[PIDTYPE_PID].pid; 1430} 1431 1432static inline struct pid *task_tgid(struct task_struct *task) 1433{ 1434 return task->group_leader->pids[PIDTYPE_PID].pid; 1435} 1436 1437/* 1438 * Without tasklist or rcu lock it is not safe to dereference 1439 * the result of task_pgrp/task_session even if task == current, 1440 * we can race with another thread doing sys_setsid/sys_setpgid. 1441 */ 1442static inline struct pid *task_pgrp(struct task_struct *task) 1443{ 1444 return task->group_leader->pids[PIDTYPE_PGID].pid; 1445} 1446 1447static inline struct pid *task_session(struct task_struct *task) 1448{ 1449 return task->group_leader->pids[PIDTYPE_SID].pid; 1450} 1451 1452struct pid_namespace; 1453 1454/* 1455 * the helpers to get the task's different pids as they are seen 1456 * from various namespaces 1457 * 1458 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1459 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1460 * current. 1461 * task_xid_nr_ns() : id seen from the ns specified; 1462 * 1463 * set_task_vxid() : assigns a virtual id to a task; 1464 * 1465 * see also pid_nr() etc in include/linux/pid.h 1466 */ 1467pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1468 struct pid_namespace *ns); 1469 1470static inline pid_t task_pid_nr(struct task_struct *tsk) 1471{ 1472 return tsk->pid; 1473} 1474 1475static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1476 struct pid_namespace *ns) 1477{ 1478 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1479} 1480 1481static inline pid_t task_pid_vnr(struct task_struct *tsk) 1482{ 1483 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1484} 1485 1486 1487static inline pid_t task_tgid_nr(struct task_struct *tsk) 1488{ 1489 return tsk->tgid; 1490} 1491 1492pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1493 1494static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1495{ 1496 return pid_vnr(task_tgid(tsk)); 1497} 1498 1499 1500static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1501 struct pid_namespace *ns) 1502{ 1503 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1504} 1505 1506static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1507{ 1508 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1509} 1510 1511 1512static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1513 struct pid_namespace *ns) 1514{ 1515 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1516} 1517 1518static inline pid_t task_session_vnr(struct task_struct *tsk) 1519{ 1520 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1521} 1522 1523/* obsolete, do not use */ 1524static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1525{ 1526 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1527} 1528 1529/** 1530 * pid_alive - check that a task structure is not stale 1531 * @p: Task structure to be checked. 1532 * 1533 * Test if a process is not yet dead (at most zombie state) 1534 * If pid_alive fails, then pointers within the task structure 1535 * can be stale and must not be dereferenced. 1536 * 1537 * Return: 1 if the process is alive. 0 otherwise. 1538 */ 1539static inline int pid_alive(struct task_struct *p) 1540{ 1541 return p->pids[PIDTYPE_PID].pid != NULL; 1542} 1543 1544/** 1545 * is_global_init - check if a task structure is init 1546 * @tsk: Task structure to be checked. 1547 * 1548 * Check if a task structure is the first user space task the kernel created. 1549 * 1550 * Return: 1 if the task structure is init. 0 otherwise. 1551 */ 1552static inline int is_global_init(struct task_struct *tsk) 1553{ 1554 return tsk->pid == 1; 1555} 1556 1557extern struct pid *cad_pid; 1558 1559extern void free_task(struct task_struct *tsk); 1560#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1561 1562extern void __put_task_struct(struct task_struct *t); 1563 1564static inline void put_task_struct(struct task_struct *t) 1565{ 1566 if (atomic_dec_and_test(&t->usage)) 1567 __put_task_struct(t); 1568} 1569 1570#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1571extern void task_cputime(struct task_struct *t, 1572 cputime_t *utime, cputime_t *stime); 1573extern void task_cputime_scaled(struct task_struct *t, 1574 cputime_t *utimescaled, cputime_t *stimescaled); 1575extern cputime_t task_gtime(struct task_struct *t); 1576#else 1577static inline void task_cputime(struct task_struct *t, 1578 cputime_t *utime, cputime_t *stime) 1579{ 1580 if (utime) 1581 *utime = t->utime; 1582 if (stime) 1583 *stime = t->stime; 1584} 1585 1586static inline void task_cputime_scaled(struct task_struct *t, 1587 cputime_t *utimescaled, 1588 cputime_t *stimescaled) 1589{ 1590 if (utimescaled) 1591 *utimescaled = t->utimescaled; 1592 if (stimescaled) 1593 *stimescaled = t->stimescaled; 1594} 1595 1596static inline cputime_t task_gtime(struct task_struct *t) 1597{ 1598 return t->gtime; 1599} 1600#endif 1601extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1602extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1603 1604/* 1605 * Per process flags 1606 */ 1607#define PF_EXITING 0x00000004 /* getting shut down */ 1608#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1609#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1610#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1611#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1612#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1613#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1614#define PF_DUMPCORE 0x00000200 /* dumped core */ 1615#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1616#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1617#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1618#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1619#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1620#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1621#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1622#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1623#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1624#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1625#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1626#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1627#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1628#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1629#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1630#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1631#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1632#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1633#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1634#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1635#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1636#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1637 1638/* 1639 * Only the _current_ task can read/write to tsk->flags, but other 1640 * tasks can access tsk->flags in readonly mode for example 1641 * with tsk_used_math (like during threaded core dumping). 1642 * There is however an exception to this rule during ptrace 1643 * or during fork: the ptracer task is allowed to write to the 1644 * child->flags of its traced child (same goes for fork, the parent 1645 * can write to the child->flags), because we're guaranteed the 1646 * child is not running and in turn not changing child->flags 1647 * at the same time the parent does it. 1648 */ 1649#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1650#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1651#define clear_used_math() clear_stopped_child_used_math(current) 1652#define set_used_math() set_stopped_child_used_math(current) 1653#define conditional_stopped_child_used_math(condition, child) \ 1654 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1655#define conditional_used_math(condition) \ 1656 conditional_stopped_child_used_math(condition, current) 1657#define copy_to_stopped_child_used_math(child) \ 1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1659/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1660#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1661#define used_math() tsk_used_math(current) 1662 1663/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1664static inline gfp_t memalloc_noio_flags(gfp_t flags) 1665{ 1666 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1667 flags &= ~__GFP_IO; 1668 return flags; 1669} 1670 1671static inline unsigned int memalloc_noio_save(void) 1672{ 1673 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1674 current->flags |= PF_MEMALLOC_NOIO; 1675 return flags; 1676} 1677 1678static inline void memalloc_noio_restore(unsigned int flags) 1679{ 1680 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1681} 1682 1683/* 1684 * task->jobctl flags 1685 */ 1686#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1687 1688#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1689#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1690#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1691#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1692#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1693#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1694#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1695 1696#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1697#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1698#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1699#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1700#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1701#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1702#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1703 1704#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1705#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1706 1707extern bool task_set_jobctl_pending(struct task_struct *task, 1708 unsigned int mask); 1709extern void task_clear_jobctl_trapping(struct task_struct *task); 1710extern void task_clear_jobctl_pending(struct task_struct *task, 1711 unsigned int mask); 1712 1713#ifdef CONFIG_PREEMPT_RCU 1714 1715#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1716#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1717 1718static inline void rcu_copy_process(struct task_struct *p) 1719{ 1720 p->rcu_read_lock_nesting = 0; 1721 p->rcu_read_unlock_special = 0; 1722#ifdef CONFIG_TREE_PREEMPT_RCU 1723 p->rcu_blocked_node = NULL; 1724#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1725#ifdef CONFIG_RCU_BOOST 1726 p->rcu_boost_mutex = NULL; 1727#endif /* #ifdef CONFIG_RCU_BOOST */ 1728 INIT_LIST_HEAD(&p->rcu_node_entry); 1729} 1730 1731#else 1732 1733static inline void rcu_copy_process(struct task_struct *p) 1734{ 1735} 1736 1737#endif 1738 1739static inline void tsk_restore_flags(struct task_struct *task, 1740 unsigned long orig_flags, unsigned long flags) 1741{ 1742 task->flags &= ~flags; 1743 task->flags |= orig_flags & flags; 1744} 1745 1746#ifdef CONFIG_SMP 1747extern void do_set_cpus_allowed(struct task_struct *p, 1748 const struct cpumask *new_mask); 1749 1750extern int set_cpus_allowed_ptr(struct task_struct *p, 1751 const struct cpumask *new_mask); 1752#else 1753static inline void do_set_cpus_allowed(struct task_struct *p, 1754 const struct cpumask *new_mask) 1755{ 1756} 1757static inline int set_cpus_allowed_ptr(struct task_struct *p, 1758 const struct cpumask *new_mask) 1759{ 1760 if (!cpumask_test_cpu(0, new_mask)) 1761 return -EINVAL; 1762 return 0; 1763} 1764#endif 1765 1766#ifdef CONFIG_NO_HZ_COMMON 1767void calc_load_enter_idle(void); 1768void calc_load_exit_idle(void); 1769#else 1770static inline void calc_load_enter_idle(void) { } 1771static inline void calc_load_exit_idle(void) { } 1772#endif /* CONFIG_NO_HZ_COMMON */ 1773 1774#ifndef CONFIG_CPUMASK_OFFSTACK 1775static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1776{ 1777 return set_cpus_allowed_ptr(p, &new_mask); 1778} 1779#endif 1780 1781/* 1782 * Do not use outside of architecture code which knows its limitations. 1783 * 1784 * sched_clock() has no promise of monotonicity or bounded drift between 1785 * CPUs, use (which you should not) requires disabling IRQs. 1786 * 1787 * Please use one of the three interfaces below. 1788 */ 1789extern unsigned long long notrace sched_clock(void); 1790/* 1791 * See the comment in kernel/sched/clock.c 1792 */ 1793extern u64 cpu_clock(int cpu); 1794extern u64 local_clock(void); 1795extern u64 sched_clock_cpu(int cpu); 1796 1797 1798extern void sched_clock_init(void); 1799 1800#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1801static inline void sched_clock_tick(void) 1802{ 1803} 1804 1805static inline void sched_clock_idle_sleep_event(void) 1806{ 1807} 1808 1809static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1810{ 1811} 1812#else 1813/* 1814 * Architectures can set this to 1 if they have specified 1815 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1816 * but then during bootup it turns out that sched_clock() 1817 * is reliable after all: 1818 */ 1819extern int sched_clock_stable; 1820 1821extern void sched_clock_tick(void); 1822extern void sched_clock_idle_sleep_event(void); 1823extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1824#endif 1825 1826#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1827/* 1828 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1829 * The reason for this explicit opt-in is not to have perf penalty with 1830 * slow sched_clocks. 1831 */ 1832extern void enable_sched_clock_irqtime(void); 1833extern void disable_sched_clock_irqtime(void); 1834#else 1835static inline void enable_sched_clock_irqtime(void) {} 1836static inline void disable_sched_clock_irqtime(void) {} 1837#endif 1838 1839extern unsigned long long 1840task_sched_runtime(struct task_struct *task); 1841 1842/* sched_exec is called by processes performing an exec */ 1843#ifdef CONFIG_SMP 1844extern void sched_exec(void); 1845#else 1846#define sched_exec() {} 1847#endif 1848 1849extern void sched_clock_idle_sleep_event(void); 1850extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1851 1852#ifdef CONFIG_HOTPLUG_CPU 1853extern void idle_task_exit(void); 1854#else 1855static inline void idle_task_exit(void) {} 1856#endif 1857 1858#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1859extern void wake_up_nohz_cpu(int cpu); 1860#else 1861static inline void wake_up_nohz_cpu(int cpu) { } 1862#endif 1863 1864#ifdef CONFIG_NO_HZ_FULL 1865extern bool sched_can_stop_tick(void); 1866extern u64 scheduler_tick_max_deferment(void); 1867#else 1868static inline bool sched_can_stop_tick(void) { return false; } 1869#endif 1870 1871#ifdef CONFIG_SCHED_AUTOGROUP 1872extern void sched_autogroup_create_attach(struct task_struct *p); 1873extern void sched_autogroup_detach(struct task_struct *p); 1874extern void sched_autogroup_fork(struct signal_struct *sig); 1875extern void sched_autogroup_exit(struct signal_struct *sig); 1876#ifdef CONFIG_PROC_FS 1877extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1878extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1879#endif 1880#else 1881static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1882static inline void sched_autogroup_detach(struct task_struct *p) { } 1883static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1884static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1885#endif 1886 1887extern bool yield_to(struct task_struct *p, bool preempt); 1888extern void set_user_nice(struct task_struct *p, long nice); 1889extern int task_prio(const struct task_struct *p); 1890extern int task_nice(const struct task_struct *p); 1891extern int can_nice(const struct task_struct *p, const int nice); 1892extern int task_curr(const struct task_struct *p); 1893extern int idle_cpu(int cpu); 1894extern int sched_setscheduler(struct task_struct *, int, 1895 const struct sched_param *); 1896extern int sched_setscheduler_nocheck(struct task_struct *, int, 1897 const struct sched_param *); 1898extern struct task_struct *idle_task(int cpu); 1899/** 1900 * is_idle_task - is the specified task an idle task? 1901 * @p: the task in question. 1902 * 1903 * Return: 1 if @p is an idle task. 0 otherwise. 1904 */ 1905static inline bool is_idle_task(const struct task_struct *p) 1906{ 1907 return p->pid == 0; 1908} 1909extern struct task_struct *curr_task(int cpu); 1910extern void set_curr_task(int cpu, struct task_struct *p); 1911 1912void yield(void); 1913 1914/* 1915 * The default (Linux) execution domain. 1916 */ 1917extern struct exec_domain default_exec_domain; 1918 1919union thread_union { 1920 struct thread_info thread_info; 1921 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1922}; 1923 1924#ifndef __HAVE_ARCH_KSTACK_END 1925static inline int kstack_end(void *addr) 1926{ 1927 /* Reliable end of stack detection: 1928 * Some APM bios versions misalign the stack 1929 */ 1930 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1931} 1932#endif 1933 1934extern union thread_union init_thread_union; 1935extern struct task_struct init_task; 1936 1937extern struct mm_struct init_mm; 1938 1939extern struct pid_namespace init_pid_ns; 1940 1941/* 1942 * find a task by one of its numerical ids 1943 * 1944 * find_task_by_pid_ns(): 1945 * finds a task by its pid in the specified namespace 1946 * find_task_by_vpid(): 1947 * finds a task by its virtual pid 1948 * 1949 * see also find_vpid() etc in include/linux/pid.h 1950 */ 1951 1952extern struct task_struct *find_task_by_vpid(pid_t nr); 1953extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1954 struct pid_namespace *ns); 1955 1956/* per-UID process charging. */ 1957extern struct user_struct * alloc_uid(kuid_t); 1958static inline struct user_struct *get_uid(struct user_struct *u) 1959{ 1960 atomic_inc(&u->__count); 1961 return u; 1962} 1963extern void free_uid(struct user_struct *); 1964 1965#include <asm/current.h> 1966 1967extern void xtime_update(unsigned long ticks); 1968 1969extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1970extern int wake_up_process(struct task_struct *tsk); 1971extern void wake_up_new_task(struct task_struct *tsk); 1972#ifdef CONFIG_SMP 1973 extern void kick_process(struct task_struct *tsk); 1974#else 1975 static inline void kick_process(struct task_struct *tsk) { } 1976#endif 1977extern void sched_fork(struct task_struct *p); 1978extern void sched_dead(struct task_struct *p); 1979 1980extern void proc_caches_init(void); 1981extern void flush_signals(struct task_struct *); 1982extern void __flush_signals(struct task_struct *); 1983extern void ignore_signals(struct task_struct *); 1984extern void flush_signal_handlers(struct task_struct *, int force_default); 1985extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1986 1987static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1988{ 1989 unsigned long flags; 1990 int ret; 1991 1992 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1993 ret = dequeue_signal(tsk, mask, info); 1994 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1995 1996 return ret; 1997} 1998 1999extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2000 sigset_t *mask); 2001extern void unblock_all_signals(void); 2002extern void release_task(struct task_struct * p); 2003extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2004extern int force_sigsegv(int, struct task_struct *); 2005extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2006extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2007extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2008extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2009 const struct cred *, u32); 2010extern int kill_pgrp(struct pid *pid, int sig, int priv); 2011extern int kill_pid(struct pid *pid, int sig, int priv); 2012extern int kill_proc_info(int, struct siginfo *, pid_t); 2013extern __must_check bool do_notify_parent(struct task_struct *, int); 2014extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2015extern void force_sig(int, struct task_struct *); 2016extern int send_sig(int, struct task_struct *, int); 2017extern int zap_other_threads(struct task_struct *p); 2018extern struct sigqueue *sigqueue_alloc(void); 2019extern void sigqueue_free(struct sigqueue *); 2020extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2021extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2022 2023static inline void restore_saved_sigmask(void) 2024{ 2025 if (test_and_clear_restore_sigmask()) 2026 __set_current_blocked(&current->saved_sigmask); 2027} 2028 2029static inline sigset_t *sigmask_to_save(void) 2030{ 2031 sigset_t *res = &current->blocked; 2032 if (unlikely(test_restore_sigmask())) 2033 res = &current->saved_sigmask; 2034 return res; 2035} 2036 2037static inline int kill_cad_pid(int sig, int priv) 2038{ 2039 return kill_pid(cad_pid, sig, priv); 2040} 2041 2042/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2043#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2044#define SEND_SIG_PRIV ((struct siginfo *) 1) 2045#define SEND_SIG_FORCED ((struct siginfo *) 2) 2046 2047/* 2048 * True if we are on the alternate signal stack. 2049 */ 2050static inline int on_sig_stack(unsigned long sp) 2051{ 2052#ifdef CONFIG_STACK_GROWSUP 2053 return sp >= current->sas_ss_sp && 2054 sp - current->sas_ss_sp < current->sas_ss_size; 2055#else 2056 return sp > current->sas_ss_sp && 2057 sp - current->sas_ss_sp <= current->sas_ss_size; 2058#endif 2059} 2060 2061static inline int sas_ss_flags(unsigned long sp) 2062{ 2063 return (current->sas_ss_size == 0 ? SS_DISABLE 2064 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2065} 2066 2067static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2068{ 2069 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2070#ifdef CONFIG_STACK_GROWSUP 2071 return current->sas_ss_sp; 2072#else 2073 return current->sas_ss_sp + current->sas_ss_size; 2074#endif 2075 return sp; 2076} 2077 2078/* 2079 * Routines for handling mm_structs 2080 */ 2081extern struct mm_struct * mm_alloc(void); 2082 2083/* mmdrop drops the mm and the page tables */ 2084extern void __mmdrop(struct mm_struct *); 2085static inline void mmdrop(struct mm_struct * mm) 2086{ 2087 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2088 __mmdrop(mm); 2089} 2090 2091/* mmput gets rid of the mappings and all user-space */ 2092extern void mmput(struct mm_struct *); 2093/* Grab a reference to a task's mm, if it is not already going away */ 2094extern struct mm_struct *get_task_mm(struct task_struct *task); 2095/* 2096 * Grab a reference to a task's mm, if it is not already going away 2097 * and ptrace_may_access with the mode parameter passed to it 2098 * succeeds. 2099 */ 2100extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2101/* Remove the current tasks stale references to the old mm_struct */ 2102extern void mm_release(struct task_struct *, struct mm_struct *); 2103/* Allocate a new mm structure and copy contents from tsk->mm */ 2104extern struct mm_struct *dup_mm(struct task_struct *tsk); 2105 2106extern int copy_thread(unsigned long, unsigned long, unsigned long, 2107 struct task_struct *); 2108extern void flush_thread(void); 2109extern void exit_thread(void); 2110 2111extern void exit_files(struct task_struct *); 2112extern void __cleanup_sighand(struct sighand_struct *); 2113 2114extern void exit_itimers(struct signal_struct *); 2115extern void flush_itimer_signals(void); 2116 2117extern void do_group_exit(int); 2118 2119extern int allow_signal(int); 2120extern int disallow_signal(int); 2121 2122extern int do_execve(const char *, 2123 const char __user * const __user *, 2124 const char __user * const __user *); 2125extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2126struct task_struct *fork_idle(int); 2127extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2128 2129extern void set_task_comm(struct task_struct *tsk, char *from); 2130extern char *get_task_comm(char *to, struct task_struct *tsk); 2131 2132#ifdef CONFIG_SMP 2133void scheduler_ipi(void); 2134extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2135#else 2136static inline void scheduler_ipi(void) { } 2137static inline unsigned long wait_task_inactive(struct task_struct *p, 2138 long match_state) 2139{ 2140 return 1; 2141} 2142#endif 2143 2144#define next_task(p) \ 2145 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2146 2147#define for_each_process(p) \ 2148 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2149 2150extern bool current_is_single_threaded(void); 2151 2152/* 2153 * Careful: do_each_thread/while_each_thread is a double loop so 2154 * 'break' will not work as expected - use goto instead. 2155 */ 2156#define do_each_thread(g, t) \ 2157 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2158 2159#define while_each_thread(g, t) \ 2160 while ((t = next_thread(t)) != g) 2161 2162static inline int get_nr_threads(struct task_struct *tsk) 2163{ 2164 return tsk->signal->nr_threads; 2165} 2166 2167static inline bool thread_group_leader(struct task_struct *p) 2168{ 2169 return p->exit_signal >= 0; 2170} 2171 2172/* Do to the insanities of de_thread it is possible for a process 2173 * to have the pid of the thread group leader without actually being 2174 * the thread group leader. For iteration through the pids in proc 2175 * all we care about is that we have a task with the appropriate 2176 * pid, we don't actually care if we have the right task. 2177 */ 2178static inline bool has_group_leader_pid(struct task_struct *p) 2179{ 2180 return task_pid(p) == p->signal->leader_pid; 2181} 2182 2183static inline 2184bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2185{ 2186 return p1->signal == p2->signal; 2187} 2188 2189static inline struct task_struct *next_thread(const struct task_struct *p) 2190{ 2191 return list_entry_rcu(p->thread_group.next, 2192 struct task_struct, thread_group); 2193} 2194 2195static inline int thread_group_empty(struct task_struct *p) 2196{ 2197 return list_empty(&p->thread_group); 2198} 2199 2200#define delay_group_leader(p) \ 2201 (thread_group_leader(p) && !thread_group_empty(p)) 2202 2203/* 2204 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2205 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2206 * pins the final release of task.io_context. Also protects ->cpuset and 2207 * ->cgroup.subsys[]. And ->vfork_done. 2208 * 2209 * Nests both inside and outside of read_lock(&tasklist_lock). 2210 * It must not be nested with write_lock_irq(&tasklist_lock), 2211 * neither inside nor outside. 2212 */ 2213static inline void task_lock(struct task_struct *p) 2214{ 2215 spin_lock(&p->alloc_lock); 2216} 2217 2218static inline void task_unlock(struct task_struct *p) 2219{ 2220 spin_unlock(&p->alloc_lock); 2221} 2222 2223extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2224 unsigned long *flags); 2225 2226static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2227 unsigned long *flags) 2228{ 2229 struct sighand_struct *ret; 2230 2231 ret = __lock_task_sighand(tsk, flags); 2232 (void)__cond_lock(&tsk->sighand->siglock, ret); 2233 return ret; 2234} 2235 2236static inline void unlock_task_sighand(struct task_struct *tsk, 2237 unsigned long *flags) 2238{ 2239 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2240} 2241 2242#ifdef CONFIG_CGROUPS 2243static inline void threadgroup_change_begin(struct task_struct *tsk) 2244{ 2245 down_read(&tsk->signal->group_rwsem); 2246} 2247static inline void threadgroup_change_end(struct task_struct *tsk) 2248{ 2249 up_read(&tsk->signal->group_rwsem); 2250} 2251 2252/** 2253 * threadgroup_lock - lock threadgroup 2254 * @tsk: member task of the threadgroup to lock 2255 * 2256 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2257 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2258 * change ->group_leader/pid. This is useful for cases where the threadgroup 2259 * needs to stay stable across blockable operations. 2260 * 2261 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2262 * synchronization. While held, no new task will be added to threadgroup 2263 * and no existing live task will have its PF_EXITING set. 2264 * 2265 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2266 * sub-thread becomes a new leader. 2267 */ 2268static inline void threadgroup_lock(struct task_struct *tsk) 2269{ 2270 down_write(&tsk->signal->group_rwsem); 2271} 2272 2273/** 2274 * threadgroup_unlock - unlock threadgroup 2275 * @tsk: member task of the threadgroup to unlock 2276 * 2277 * Reverse threadgroup_lock(). 2278 */ 2279static inline void threadgroup_unlock(struct task_struct *tsk) 2280{ 2281 up_write(&tsk->signal->group_rwsem); 2282} 2283#else 2284static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2285static inline void threadgroup_change_end(struct task_struct *tsk) {} 2286static inline void threadgroup_lock(struct task_struct *tsk) {} 2287static inline void threadgroup_unlock(struct task_struct *tsk) {} 2288#endif 2289 2290#ifndef __HAVE_THREAD_FUNCTIONS 2291 2292#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2293#define task_stack_page(task) ((task)->stack) 2294 2295static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2296{ 2297 *task_thread_info(p) = *task_thread_info(org); 2298 task_thread_info(p)->task = p; 2299} 2300 2301static inline unsigned long *end_of_stack(struct task_struct *p) 2302{ 2303 return (unsigned long *)(task_thread_info(p) + 1); 2304} 2305 2306#endif 2307 2308static inline int object_is_on_stack(void *obj) 2309{ 2310 void *stack = task_stack_page(current); 2311 2312 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2313} 2314 2315extern void thread_info_cache_init(void); 2316 2317#ifdef CONFIG_DEBUG_STACK_USAGE 2318static inline unsigned long stack_not_used(struct task_struct *p) 2319{ 2320 unsigned long *n = end_of_stack(p); 2321 2322 do { /* Skip over canary */ 2323 n++; 2324 } while (!*n); 2325 2326 return (unsigned long)n - (unsigned long)end_of_stack(p); 2327} 2328#endif 2329 2330/* set thread flags in other task's structures 2331 * - see asm/thread_info.h for TIF_xxxx flags available 2332 */ 2333static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2334{ 2335 set_ti_thread_flag(task_thread_info(tsk), flag); 2336} 2337 2338static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2339{ 2340 clear_ti_thread_flag(task_thread_info(tsk), flag); 2341} 2342 2343static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2344{ 2345 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2346} 2347 2348static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2349{ 2350 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2351} 2352 2353static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2354{ 2355 return test_ti_thread_flag(task_thread_info(tsk), flag); 2356} 2357 2358static inline void set_tsk_need_resched(struct task_struct *tsk) 2359{ 2360 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2361} 2362 2363static inline void clear_tsk_need_resched(struct task_struct *tsk) 2364{ 2365 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2366} 2367 2368static inline int test_tsk_need_resched(struct task_struct *tsk) 2369{ 2370 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2371} 2372 2373static inline int restart_syscall(void) 2374{ 2375 set_tsk_thread_flag(current, TIF_SIGPENDING); 2376 return -ERESTARTNOINTR; 2377} 2378 2379static inline int signal_pending(struct task_struct *p) 2380{ 2381 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2382} 2383 2384static inline int __fatal_signal_pending(struct task_struct *p) 2385{ 2386 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2387} 2388 2389static inline int fatal_signal_pending(struct task_struct *p) 2390{ 2391 return signal_pending(p) && __fatal_signal_pending(p); 2392} 2393 2394static inline int signal_pending_state(long state, struct task_struct *p) 2395{ 2396 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2397 return 0; 2398 if (!signal_pending(p)) 2399 return 0; 2400 2401 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2402} 2403 2404static inline int need_resched(void) 2405{ 2406 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2407} 2408 2409/* 2410 * cond_resched() and cond_resched_lock(): latency reduction via 2411 * explicit rescheduling in places that are safe. The return 2412 * value indicates whether a reschedule was done in fact. 2413 * cond_resched_lock() will drop the spinlock before scheduling, 2414 * cond_resched_softirq() will enable bhs before scheduling. 2415 */ 2416extern int _cond_resched(void); 2417 2418#define cond_resched() ({ \ 2419 __might_sleep(__FILE__, __LINE__, 0); \ 2420 _cond_resched(); \ 2421}) 2422 2423extern int __cond_resched_lock(spinlock_t *lock); 2424 2425#ifdef CONFIG_PREEMPT_COUNT 2426#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2427#else 2428#define PREEMPT_LOCK_OFFSET 0 2429#endif 2430 2431#define cond_resched_lock(lock) ({ \ 2432 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2433 __cond_resched_lock(lock); \ 2434}) 2435 2436extern int __cond_resched_softirq(void); 2437 2438#define cond_resched_softirq() ({ \ 2439 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2440 __cond_resched_softirq(); \ 2441}) 2442 2443static inline void cond_resched_rcu(void) 2444{ 2445#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2446 rcu_read_unlock(); 2447 cond_resched(); 2448 rcu_read_lock(); 2449#endif 2450} 2451 2452/* 2453 * Does a critical section need to be broken due to another 2454 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2455 * but a general need for low latency) 2456 */ 2457static inline int spin_needbreak(spinlock_t *lock) 2458{ 2459#ifdef CONFIG_PREEMPT 2460 return spin_is_contended(lock); 2461#else 2462 return 0; 2463#endif 2464} 2465 2466/* 2467 * Idle thread specific functions to determine the need_resched 2468 * polling state. We have two versions, one based on TS_POLLING in 2469 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2470 * thread_info.flags 2471 */ 2472#ifdef TS_POLLING 2473static inline int tsk_is_polling(struct task_struct *p) 2474{ 2475 return task_thread_info(p)->status & TS_POLLING; 2476} 2477static inline void current_set_polling(void) 2478{ 2479 current_thread_info()->status |= TS_POLLING; 2480} 2481 2482static inline void current_clr_polling(void) 2483{ 2484 current_thread_info()->status &= ~TS_POLLING; 2485 smp_mb__after_clear_bit(); 2486} 2487#elif defined(TIF_POLLING_NRFLAG) 2488static inline int tsk_is_polling(struct task_struct *p) 2489{ 2490 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2491} 2492static inline void current_set_polling(void) 2493{ 2494 set_thread_flag(TIF_POLLING_NRFLAG); 2495} 2496 2497static inline void current_clr_polling(void) 2498{ 2499 clear_thread_flag(TIF_POLLING_NRFLAG); 2500} 2501#else 2502static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2503static inline void current_set_polling(void) { } 2504static inline void current_clr_polling(void) { } 2505#endif 2506 2507/* 2508 * Thread group CPU time accounting. 2509 */ 2510void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2511void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2512 2513static inline void thread_group_cputime_init(struct signal_struct *sig) 2514{ 2515 raw_spin_lock_init(&sig->cputimer.lock); 2516} 2517 2518/* 2519 * Reevaluate whether the task has signals pending delivery. 2520 * Wake the task if so. 2521 * This is required every time the blocked sigset_t changes. 2522 * callers must hold sighand->siglock. 2523 */ 2524extern void recalc_sigpending_and_wake(struct task_struct *t); 2525extern void recalc_sigpending(void); 2526 2527extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2528 2529static inline void signal_wake_up(struct task_struct *t, bool resume) 2530{ 2531 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2532} 2533static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2534{ 2535 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2536} 2537 2538/* 2539 * Wrappers for p->thread_info->cpu access. No-op on UP. 2540 */ 2541#ifdef CONFIG_SMP 2542 2543static inline unsigned int task_cpu(const struct task_struct *p) 2544{ 2545 return task_thread_info(p)->cpu; 2546} 2547 2548extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2549 2550#else 2551 2552static inline unsigned int task_cpu(const struct task_struct *p) 2553{ 2554 return 0; 2555} 2556 2557static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2558{ 2559} 2560 2561#endif /* CONFIG_SMP */ 2562 2563extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2564extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2565 2566#ifdef CONFIG_CGROUP_SCHED 2567extern struct task_group root_task_group; 2568#endif /* CONFIG_CGROUP_SCHED */ 2569 2570extern int task_can_switch_user(struct user_struct *up, 2571 struct task_struct *tsk); 2572 2573#ifdef CONFIG_TASK_XACCT 2574static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2575{ 2576 tsk->ioac.rchar += amt; 2577} 2578 2579static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2580{ 2581 tsk->ioac.wchar += amt; 2582} 2583 2584static inline void inc_syscr(struct task_struct *tsk) 2585{ 2586 tsk->ioac.syscr++; 2587} 2588 2589static inline void inc_syscw(struct task_struct *tsk) 2590{ 2591 tsk->ioac.syscw++; 2592} 2593#else 2594static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2595{ 2596} 2597 2598static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2599{ 2600} 2601 2602static inline void inc_syscr(struct task_struct *tsk) 2603{ 2604} 2605 2606static inline void inc_syscw(struct task_struct *tsk) 2607{ 2608} 2609#endif 2610 2611#ifndef TASK_SIZE_OF 2612#define TASK_SIZE_OF(tsk) TASK_SIZE 2613#endif 2614 2615#ifdef CONFIG_MM_OWNER 2616extern void mm_update_next_owner(struct mm_struct *mm); 2617extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2618#else 2619static inline void mm_update_next_owner(struct mm_struct *mm) 2620{ 2621} 2622 2623static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2624{ 2625} 2626#endif /* CONFIG_MM_OWNER */ 2627 2628static inline unsigned long task_rlimit(const struct task_struct *tsk, 2629 unsigned int limit) 2630{ 2631 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2632} 2633 2634static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2635 unsigned int limit) 2636{ 2637 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2638} 2639 2640static inline unsigned long rlimit(unsigned int limit) 2641{ 2642 return task_rlimit(current, limit); 2643} 2644 2645static inline unsigned long rlimit_max(unsigned int limit) 2646{ 2647 return task_rlimit_max(current, limit); 2648} 2649 2650#endif