at v3.12 61 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/bit_spinlock.h> 19#include <linux/shrinker.h> 20 21struct mempolicy; 22struct anon_vma; 23struct anon_vma_chain; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30 31static inline void set_max_mapnr(unsigned long limit) 32{ 33 max_mapnr = limit; 34} 35#else 36static inline void set_max_mapnr(unsigned long limit) { } 37#endif 38 39extern unsigned long totalram_pages; 40extern void * high_memory; 41extern int page_cluster; 42 43#ifdef CONFIG_SYSCTL 44extern int sysctl_legacy_va_layout; 45#else 46#define sysctl_legacy_va_layout 0 47#endif 48 49#include <asm/page.h> 50#include <asm/pgtable.h> 51#include <asm/processor.h> 52 53extern unsigned long sysctl_user_reserve_kbytes; 54extern unsigned long sysctl_admin_reserve_kbytes; 55 56#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 57 58/* to align the pointer to the (next) page boundary */ 59#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 60 61/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 62#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 63 64/* 65 * Linux kernel virtual memory manager primitives. 66 * The idea being to have a "virtual" mm in the same way 67 * we have a virtual fs - giving a cleaner interface to the 68 * mm details, and allowing different kinds of memory mappings 69 * (from shared memory to executable loading to arbitrary 70 * mmap() functions). 71 */ 72 73extern struct kmem_cache *vm_area_cachep; 74 75#ifndef CONFIG_MMU 76extern struct rb_root nommu_region_tree; 77extern struct rw_semaphore nommu_region_sem; 78 79extern unsigned int kobjsize(const void *objp); 80#endif 81 82/* 83 * vm_flags in vm_area_struct, see mm_types.h. 84 */ 85#define VM_NONE 0x00000000 86 87#define VM_READ 0x00000001 /* currently active flags */ 88#define VM_WRITE 0x00000002 89#define VM_EXEC 0x00000004 90#define VM_SHARED 0x00000008 91 92/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 93#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 94#define VM_MAYWRITE 0x00000020 95#define VM_MAYEXEC 0x00000040 96#define VM_MAYSHARE 0x00000080 97 98#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 99#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 100#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 101 102#define VM_LOCKED 0x00002000 103#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 104 105 /* Used by sys_madvise() */ 106#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 107#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 108 109#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 110#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 111#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 112#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 113#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 114#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 115#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 116#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 117 118#ifdef CONFIG_MEM_SOFT_DIRTY 119# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 120#else 121# define VM_SOFTDIRTY 0 122#endif 123 124#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 125#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 126#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 127#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 128 129#if defined(CONFIG_X86) 130# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 131#elif defined(CONFIG_PPC) 132# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 133#elif defined(CONFIG_PARISC) 134# define VM_GROWSUP VM_ARCH_1 135#elif defined(CONFIG_METAG) 136# define VM_GROWSUP VM_ARCH_1 137#elif defined(CONFIG_IA64) 138# define VM_GROWSUP VM_ARCH_1 139#elif !defined(CONFIG_MMU) 140# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 141#endif 142 143#ifndef VM_GROWSUP 144# define VM_GROWSUP VM_NONE 145#endif 146 147/* Bits set in the VMA until the stack is in its final location */ 148#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 149 150#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 151#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 152#endif 153 154#ifdef CONFIG_STACK_GROWSUP 155#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 156#else 157#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 158#endif 159 160/* 161 * Special vmas that are non-mergable, non-mlock()able. 162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 163 */ 164#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 165 166/* 167 * mapping from the currently active vm_flags protection bits (the 168 * low four bits) to a page protection mask.. 169 */ 170extern pgprot_t protection_map[16]; 171 172#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 173#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 174#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 175#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 176#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 177#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 178#define FAULT_FLAG_TRIED 0x40 /* second try */ 179#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 180 181/* 182 * vm_fault is filled by the the pagefault handler and passed to the vma's 183 * ->fault function. The vma's ->fault is responsible for returning a bitmask 184 * of VM_FAULT_xxx flags that give details about how the fault was handled. 185 * 186 * pgoff should be used in favour of virtual_address, if possible. If pgoff 187 * is used, one may implement ->remap_pages to get nonlinear mapping support. 188 */ 189struct vm_fault { 190 unsigned int flags; /* FAULT_FLAG_xxx flags */ 191 pgoff_t pgoff; /* Logical page offset based on vma */ 192 void __user *virtual_address; /* Faulting virtual address */ 193 194 struct page *page; /* ->fault handlers should return a 195 * page here, unless VM_FAULT_NOPAGE 196 * is set (which is also implied by 197 * VM_FAULT_ERROR). 198 */ 199}; 200 201/* 202 * These are the virtual MM functions - opening of an area, closing and 203 * unmapping it (needed to keep files on disk up-to-date etc), pointer 204 * to the functions called when a no-page or a wp-page exception occurs. 205 */ 206struct vm_operations_struct { 207 void (*open)(struct vm_area_struct * area); 208 void (*close)(struct vm_area_struct * area); 209 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 210 211 /* notification that a previously read-only page is about to become 212 * writable, if an error is returned it will cause a SIGBUS */ 213 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 214 215 /* called by access_process_vm when get_user_pages() fails, typically 216 * for use by special VMAs that can switch between memory and hardware 217 */ 218 int (*access)(struct vm_area_struct *vma, unsigned long addr, 219 void *buf, int len, int write); 220#ifdef CONFIG_NUMA 221 /* 222 * set_policy() op must add a reference to any non-NULL @new mempolicy 223 * to hold the policy upon return. Caller should pass NULL @new to 224 * remove a policy and fall back to surrounding context--i.e. do not 225 * install a MPOL_DEFAULT policy, nor the task or system default 226 * mempolicy. 227 */ 228 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 229 230 /* 231 * get_policy() op must add reference [mpol_get()] to any policy at 232 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 233 * in mm/mempolicy.c will do this automatically. 234 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 235 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 236 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 237 * must return NULL--i.e., do not "fallback" to task or system default 238 * policy. 239 */ 240 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 241 unsigned long addr); 242 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 243 const nodemask_t *to, unsigned long flags); 244#endif 245 /* called by sys_remap_file_pages() to populate non-linear mapping */ 246 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 247 unsigned long size, pgoff_t pgoff); 248}; 249 250struct mmu_gather; 251struct inode; 252 253#define page_private(page) ((page)->private) 254#define set_page_private(page, v) ((page)->private = (v)) 255 256/* It's valid only if the page is free path or free_list */ 257static inline void set_freepage_migratetype(struct page *page, int migratetype) 258{ 259 page->index = migratetype; 260} 261 262/* It's valid only if the page is free path or free_list */ 263static inline int get_freepage_migratetype(struct page *page) 264{ 265 return page->index; 266} 267 268/* 269 * FIXME: take this include out, include page-flags.h in 270 * files which need it (119 of them) 271 */ 272#include <linux/page-flags.h> 273#include <linux/huge_mm.h> 274 275/* 276 * Methods to modify the page usage count. 277 * 278 * What counts for a page usage: 279 * - cache mapping (page->mapping) 280 * - private data (page->private) 281 * - page mapped in a task's page tables, each mapping 282 * is counted separately 283 * 284 * Also, many kernel routines increase the page count before a critical 285 * routine so they can be sure the page doesn't go away from under them. 286 */ 287 288/* 289 * Drop a ref, return true if the refcount fell to zero (the page has no users) 290 */ 291static inline int put_page_testzero(struct page *page) 292{ 293 VM_BUG_ON(atomic_read(&page->_count) == 0); 294 return atomic_dec_and_test(&page->_count); 295} 296 297/* 298 * Try to grab a ref unless the page has a refcount of zero, return false if 299 * that is the case. 300 */ 301static inline int get_page_unless_zero(struct page *page) 302{ 303 return atomic_inc_not_zero(&page->_count); 304} 305 306extern int page_is_ram(unsigned long pfn); 307 308/* Support for virtually mapped pages */ 309struct page *vmalloc_to_page(const void *addr); 310unsigned long vmalloc_to_pfn(const void *addr); 311 312/* 313 * Determine if an address is within the vmalloc range 314 * 315 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 316 * is no special casing required. 317 */ 318static inline int is_vmalloc_addr(const void *x) 319{ 320#ifdef CONFIG_MMU 321 unsigned long addr = (unsigned long)x; 322 323 return addr >= VMALLOC_START && addr < VMALLOC_END; 324#else 325 return 0; 326#endif 327} 328#ifdef CONFIG_MMU 329extern int is_vmalloc_or_module_addr(const void *x); 330#else 331static inline int is_vmalloc_or_module_addr(const void *x) 332{ 333 return 0; 334} 335#endif 336 337static inline void compound_lock(struct page *page) 338{ 339#ifdef CONFIG_TRANSPARENT_HUGEPAGE 340 VM_BUG_ON(PageSlab(page)); 341 bit_spin_lock(PG_compound_lock, &page->flags); 342#endif 343} 344 345static inline void compound_unlock(struct page *page) 346{ 347#ifdef CONFIG_TRANSPARENT_HUGEPAGE 348 VM_BUG_ON(PageSlab(page)); 349 bit_spin_unlock(PG_compound_lock, &page->flags); 350#endif 351} 352 353static inline unsigned long compound_lock_irqsave(struct page *page) 354{ 355 unsigned long uninitialized_var(flags); 356#ifdef CONFIG_TRANSPARENT_HUGEPAGE 357 local_irq_save(flags); 358 compound_lock(page); 359#endif 360 return flags; 361} 362 363static inline void compound_unlock_irqrestore(struct page *page, 364 unsigned long flags) 365{ 366#ifdef CONFIG_TRANSPARENT_HUGEPAGE 367 compound_unlock(page); 368 local_irq_restore(flags); 369#endif 370} 371 372static inline struct page *compound_head(struct page *page) 373{ 374 if (unlikely(PageTail(page))) 375 return page->first_page; 376 return page; 377} 378 379/* 380 * The atomic page->_mapcount, starts from -1: so that transitions 381 * both from it and to it can be tracked, using atomic_inc_and_test 382 * and atomic_add_negative(-1). 383 */ 384static inline void page_mapcount_reset(struct page *page) 385{ 386 atomic_set(&(page)->_mapcount, -1); 387} 388 389static inline int page_mapcount(struct page *page) 390{ 391 return atomic_read(&(page)->_mapcount) + 1; 392} 393 394static inline int page_count(struct page *page) 395{ 396 return atomic_read(&compound_head(page)->_count); 397} 398 399static inline void get_huge_page_tail(struct page *page) 400{ 401 /* 402 * __split_huge_page_refcount() cannot run 403 * from under us. 404 */ 405 VM_BUG_ON(page_mapcount(page) < 0); 406 VM_BUG_ON(atomic_read(&page->_count) != 0); 407 atomic_inc(&page->_mapcount); 408} 409 410extern bool __get_page_tail(struct page *page); 411 412static inline void get_page(struct page *page) 413{ 414 if (unlikely(PageTail(page))) 415 if (likely(__get_page_tail(page))) 416 return; 417 /* 418 * Getting a normal page or the head of a compound page 419 * requires to already have an elevated page->_count. 420 */ 421 VM_BUG_ON(atomic_read(&page->_count) <= 0); 422 atomic_inc(&page->_count); 423} 424 425static inline struct page *virt_to_head_page(const void *x) 426{ 427 struct page *page = virt_to_page(x); 428 return compound_head(page); 429} 430 431/* 432 * Setup the page count before being freed into the page allocator for 433 * the first time (boot or memory hotplug) 434 */ 435static inline void init_page_count(struct page *page) 436{ 437 atomic_set(&page->_count, 1); 438} 439 440/* 441 * PageBuddy() indicate that the page is free and in the buddy system 442 * (see mm/page_alloc.c). 443 * 444 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 445 * -2 so that an underflow of the page_mapcount() won't be mistaken 446 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 447 * efficiently by most CPU architectures. 448 */ 449#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 450 451static inline int PageBuddy(struct page *page) 452{ 453 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 454} 455 456static inline void __SetPageBuddy(struct page *page) 457{ 458 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 459 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 460} 461 462static inline void __ClearPageBuddy(struct page *page) 463{ 464 VM_BUG_ON(!PageBuddy(page)); 465 atomic_set(&page->_mapcount, -1); 466} 467 468void put_page(struct page *page); 469void put_pages_list(struct list_head *pages); 470 471void split_page(struct page *page, unsigned int order); 472int split_free_page(struct page *page); 473 474/* 475 * Compound pages have a destructor function. Provide a 476 * prototype for that function and accessor functions. 477 * These are _only_ valid on the head of a PG_compound page. 478 */ 479typedef void compound_page_dtor(struct page *); 480 481static inline void set_compound_page_dtor(struct page *page, 482 compound_page_dtor *dtor) 483{ 484 page[1].lru.next = (void *)dtor; 485} 486 487static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 488{ 489 return (compound_page_dtor *)page[1].lru.next; 490} 491 492static inline int compound_order(struct page *page) 493{ 494 if (!PageHead(page)) 495 return 0; 496 return (unsigned long)page[1].lru.prev; 497} 498 499static inline void set_compound_order(struct page *page, unsigned long order) 500{ 501 page[1].lru.prev = (void *)order; 502} 503 504#ifdef CONFIG_MMU 505/* 506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 507 * servicing faults for write access. In the normal case, do always want 508 * pte_mkwrite. But get_user_pages can cause write faults for mappings 509 * that do not have writing enabled, when used by access_process_vm. 510 */ 511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 512{ 513 if (likely(vma->vm_flags & VM_WRITE)) 514 pte = pte_mkwrite(pte); 515 return pte; 516} 517#endif 518 519/* 520 * Multiple processes may "see" the same page. E.g. for untouched 521 * mappings of /dev/null, all processes see the same page full of 522 * zeroes, and text pages of executables and shared libraries have 523 * only one copy in memory, at most, normally. 524 * 525 * For the non-reserved pages, page_count(page) denotes a reference count. 526 * page_count() == 0 means the page is free. page->lru is then used for 527 * freelist management in the buddy allocator. 528 * page_count() > 0 means the page has been allocated. 529 * 530 * Pages are allocated by the slab allocator in order to provide memory 531 * to kmalloc and kmem_cache_alloc. In this case, the management of the 532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 533 * unless a particular usage is carefully commented. (the responsibility of 534 * freeing the kmalloc memory is the caller's, of course). 535 * 536 * A page may be used by anyone else who does a __get_free_page(). 537 * In this case, page_count still tracks the references, and should only 538 * be used through the normal accessor functions. The top bits of page->flags 539 * and page->virtual store page management information, but all other fields 540 * are unused and could be used privately, carefully. The management of this 541 * page is the responsibility of the one who allocated it, and those who have 542 * subsequently been given references to it. 543 * 544 * The other pages (we may call them "pagecache pages") are completely 545 * managed by the Linux memory manager: I/O, buffers, swapping etc. 546 * The following discussion applies only to them. 547 * 548 * A pagecache page contains an opaque `private' member, which belongs to the 549 * page's address_space. Usually, this is the address of a circular list of 550 * the page's disk buffers. PG_private must be set to tell the VM to call 551 * into the filesystem to release these pages. 552 * 553 * A page may belong to an inode's memory mapping. In this case, page->mapping 554 * is the pointer to the inode, and page->index is the file offset of the page, 555 * in units of PAGE_CACHE_SIZE. 556 * 557 * If pagecache pages are not associated with an inode, they are said to be 558 * anonymous pages. These may become associated with the swapcache, and in that 559 * case PG_swapcache is set, and page->private is an offset into the swapcache. 560 * 561 * In either case (swapcache or inode backed), the pagecache itself holds one 562 * reference to the page. Setting PG_private should also increment the 563 * refcount. The each user mapping also has a reference to the page. 564 * 565 * The pagecache pages are stored in a per-mapping radix tree, which is 566 * rooted at mapping->page_tree, and indexed by offset. 567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 568 * lists, we instead now tag pages as dirty/writeback in the radix tree. 569 * 570 * All pagecache pages may be subject to I/O: 571 * - inode pages may need to be read from disk, 572 * - inode pages which have been modified and are MAP_SHARED may need 573 * to be written back to the inode on disk, 574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 575 * modified may need to be swapped out to swap space and (later) to be read 576 * back into memory. 577 */ 578 579/* 580 * The zone field is never updated after free_area_init_core() 581 * sets it, so none of the operations on it need to be atomic. 582 */ 583 584/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 585#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 586#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 587#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 588#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 589 590/* 591 * Define the bit shifts to access each section. For non-existent 592 * sections we define the shift as 0; that plus a 0 mask ensures 593 * the compiler will optimise away reference to them. 594 */ 595#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 596#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 597#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 598#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 599 600/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 601#ifdef NODE_NOT_IN_PAGE_FLAGS 602#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 603#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 604 SECTIONS_PGOFF : ZONES_PGOFF) 605#else 606#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 607#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 608 NODES_PGOFF : ZONES_PGOFF) 609#endif 610 611#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 612 613#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 614#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 615#endif 616 617#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 618#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 619#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 620#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 621#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 622 623static inline enum zone_type page_zonenum(const struct page *page) 624{ 625 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 626} 627 628#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 629#define SECTION_IN_PAGE_FLAGS 630#endif 631 632/* 633 * The identification function is mainly used by the buddy allocator for 634 * determining if two pages could be buddies. We are not really identifying 635 * the zone since we could be using the section number id if we do not have 636 * node id available in page flags. 637 * We only guarantee that it will return the same value for two combinable 638 * pages in a zone. 639 */ 640static inline int page_zone_id(struct page *page) 641{ 642 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 643} 644 645static inline int zone_to_nid(struct zone *zone) 646{ 647#ifdef CONFIG_NUMA 648 return zone->node; 649#else 650 return 0; 651#endif 652} 653 654#ifdef NODE_NOT_IN_PAGE_FLAGS 655extern int page_to_nid(const struct page *page); 656#else 657static inline int page_to_nid(const struct page *page) 658{ 659 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 660} 661#endif 662 663#ifdef CONFIG_NUMA_BALANCING 664#ifdef LAST_NID_NOT_IN_PAGE_FLAGS 665static inline int page_nid_xchg_last(struct page *page, int nid) 666{ 667 return xchg(&page->_last_nid, nid); 668} 669 670static inline int page_nid_last(struct page *page) 671{ 672 return page->_last_nid; 673} 674static inline void page_nid_reset_last(struct page *page) 675{ 676 page->_last_nid = -1; 677} 678#else 679static inline int page_nid_last(struct page *page) 680{ 681 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 682} 683 684extern int page_nid_xchg_last(struct page *page, int nid); 685 686static inline void page_nid_reset_last(struct page *page) 687{ 688 int nid = (1 << LAST_NID_SHIFT) - 1; 689 690 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 691 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 692} 693#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 694#else 695static inline int page_nid_xchg_last(struct page *page, int nid) 696{ 697 return page_to_nid(page); 698} 699 700static inline int page_nid_last(struct page *page) 701{ 702 return page_to_nid(page); 703} 704 705static inline void page_nid_reset_last(struct page *page) 706{ 707} 708#endif 709 710static inline struct zone *page_zone(const struct page *page) 711{ 712 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 713} 714 715#ifdef SECTION_IN_PAGE_FLAGS 716static inline void set_page_section(struct page *page, unsigned long section) 717{ 718 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 719 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 720} 721 722static inline unsigned long page_to_section(const struct page *page) 723{ 724 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 725} 726#endif 727 728static inline void set_page_zone(struct page *page, enum zone_type zone) 729{ 730 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 731 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 732} 733 734static inline void set_page_node(struct page *page, unsigned long node) 735{ 736 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 737 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 738} 739 740static inline void set_page_links(struct page *page, enum zone_type zone, 741 unsigned long node, unsigned long pfn) 742{ 743 set_page_zone(page, zone); 744 set_page_node(page, node); 745#ifdef SECTION_IN_PAGE_FLAGS 746 set_page_section(page, pfn_to_section_nr(pfn)); 747#endif 748} 749 750/* 751 * Some inline functions in vmstat.h depend on page_zone() 752 */ 753#include <linux/vmstat.h> 754 755static __always_inline void *lowmem_page_address(const struct page *page) 756{ 757 return __va(PFN_PHYS(page_to_pfn(page))); 758} 759 760#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 761#define HASHED_PAGE_VIRTUAL 762#endif 763 764#if defined(WANT_PAGE_VIRTUAL) 765#define page_address(page) ((page)->virtual) 766#define set_page_address(page, address) \ 767 do { \ 768 (page)->virtual = (address); \ 769 } while(0) 770#define page_address_init() do { } while(0) 771#endif 772 773#if defined(HASHED_PAGE_VIRTUAL) 774void *page_address(const struct page *page); 775void set_page_address(struct page *page, void *virtual); 776void page_address_init(void); 777#endif 778 779#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 780#define page_address(page) lowmem_page_address(page) 781#define set_page_address(page, address) do { } while(0) 782#define page_address_init() do { } while(0) 783#endif 784 785/* 786 * On an anonymous page mapped into a user virtual memory area, 787 * page->mapping points to its anon_vma, not to a struct address_space; 788 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 789 * 790 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 791 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 792 * and then page->mapping points, not to an anon_vma, but to a private 793 * structure which KSM associates with that merged page. See ksm.h. 794 * 795 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 796 * 797 * Please note that, confusingly, "page_mapping" refers to the inode 798 * address_space which maps the page from disk; whereas "page_mapped" 799 * refers to user virtual address space into which the page is mapped. 800 */ 801#define PAGE_MAPPING_ANON 1 802#define PAGE_MAPPING_KSM 2 803#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 804 805extern struct address_space *page_mapping(struct page *page); 806 807/* Neutral page->mapping pointer to address_space or anon_vma or other */ 808static inline void *page_rmapping(struct page *page) 809{ 810 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 811} 812 813extern struct address_space *__page_file_mapping(struct page *); 814 815static inline 816struct address_space *page_file_mapping(struct page *page) 817{ 818 if (unlikely(PageSwapCache(page))) 819 return __page_file_mapping(page); 820 821 return page->mapping; 822} 823 824static inline int PageAnon(struct page *page) 825{ 826 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 827} 828 829/* 830 * Return the pagecache index of the passed page. Regular pagecache pages 831 * use ->index whereas swapcache pages use ->private 832 */ 833static inline pgoff_t page_index(struct page *page) 834{ 835 if (unlikely(PageSwapCache(page))) 836 return page_private(page); 837 return page->index; 838} 839 840extern pgoff_t __page_file_index(struct page *page); 841 842/* 843 * Return the file index of the page. Regular pagecache pages use ->index 844 * whereas swapcache pages use swp_offset(->private) 845 */ 846static inline pgoff_t page_file_index(struct page *page) 847{ 848 if (unlikely(PageSwapCache(page))) 849 return __page_file_index(page); 850 851 return page->index; 852} 853 854/* 855 * Return true if this page is mapped into pagetables. 856 */ 857static inline int page_mapped(struct page *page) 858{ 859 return atomic_read(&(page)->_mapcount) >= 0; 860} 861 862/* 863 * Different kinds of faults, as returned by handle_mm_fault(). 864 * Used to decide whether a process gets delivered SIGBUS or 865 * just gets major/minor fault counters bumped up. 866 */ 867 868#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 869 870#define VM_FAULT_OOM 0x0001 871#define VM_FAULT_SIGBUS 0x0002 872#define VM_FAULT_MAJOR 0x0004 873#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 874#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 875#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 876 877#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 878#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 879#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 880#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 881 882#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 883 884#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 885 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 886 887/* Encode hstate index for a hwpoisoned large page */ 888#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 889#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 890 891/* 892 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 893 */ 894extern void pagefault_out_of_memory(void); 895 896#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 897 898/* 899 * Flags passed to show_mem() and show_free_areas() to suppress output in 900 * various contexts. 901 */ 902#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 903#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */ 904 905extern void show_free_areas(unsigned int flags); 906extern bool skip_free_areas_node(unsigned int flags, int nid); 907 908int shmem_zero_setup(struct vm_area_struct *); 909 910extern int can_do_mlock(void); 911extern int user_shm_lock(size_t, struct user_struct *); 912extern void user_shm_unlock(size_t, struct user_struct *); 913 914/* 915 * Parameter block passed down to zap_pte_range in exceptional cases. 916 */ 917struct zap_details { 918 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 919 struct address_space *check_mapping; /* Check page->mapping if set */ 920 pgoff_t first_index; /* Lowest page->index to unmap */ 921 pgoff_t last_index; /* Highest page->index to unmap */ 922}; 923 924struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 925 pte_t pte); 926 927int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 928 unsigned long size); 929void zap_page_range(struct vm_area_struct *vma, unsigned long address, 930 unsigned long size, struct zap_details *); 931void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 932 unsigned long start, unsigned long end); 933 934/** 935 * mm_walk - callbacks for walk_page_range 936 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 937 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 938 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 939 * this handler is required to be able to handle 940 * pmd_trans_huge() pmds. They may simply choose to 941 * split_huge_page() instead of handling it explicitly. 942 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 943 * @pte_hole: if set, called for each hole at all levels 944 * @hugetlb_entry: if set, called for each hugetlb entry 945 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 946 * is used. 947 * 948 * (see walk_page_range for more details) 949 */ 950struct mm_walk { 951 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 952 unsigned long next, struct mm_walk *walk); 953 int (*pud_entry)(pud_t *pud, unsigned long addr, 954 unsigned long next, struct mm_walk *walk); 955 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 956 unsigned long next, struct mm_walk *walk); 957 int (*pte_entry)(pte_t *pte, unsigned long addr, 958 unsigned long next, struct mm_walk *walk); 959 int (*pte_hole)(unsigned long addr, unsigned long next, 960 struct mm_walk *walk); 961 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 962 unsigned long addr, unsigned long next, 963 struct mm_walk *walk); 964 struct mm_struct *mm; 965 void *private; 966}; 967 968int walk_page_range(unsigned long addr, unsigned long end, 969 struct mm_walk *walk); 970void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 971 unsigned long end, unsigned long floor, unsigned long ceiling); 972int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 973 struct vm_area_struct *vma); 974void unmap_mapping_range(struct address_space *mapping, 975 loff_t const holebegin, loff_t const holelen, int even_cows); 976int follow_pfn(struct vm_area_struct *vma, unsigned long address, 977 unsigned long *pfn); 978int follow_phys(struct vm_area_struct *vma, unsigned long address, 979 unsigned int flags, unsigned long *prot, resource_size_t *phys); 980int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 981 void *buf, int len, int write); 982 983static inline void unmap_shared_mapping_range(struct address_space *mapping, 984 loff_t const holebegin, loff_t const holelen) 985{ 986 unmap_mapping_range(mapping, holebegin, holelen, 0); 987} 988 989extern void truncate_pagecache(struct inode *inode, loff_t new); 990extern void truncate_setsize(struct inode *inode, loff_t newsize); 991void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 992int truncate_inode_page(struct address_space *mapping, struct page *page); 993int generic_error_remove_page(struct address_space *mapping, struct page *page); 994int invalidate_inode_page(struct page *page); 995 996#ifdef CONFIG_MMU 997extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 998 unsigned long address, unsigned int flags); 999extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1000 unsigned long address, unsigned int fault_flags); 1001#else 1002static inline int handle_mm_fault(struct mm_struct *mm, 1003 struct vm_area_struct *vma, unsigned long address, 1004 unsigned int flags) 1005{ 1006 /* should never happen if there's no MMU */ 1007 BUG(); 1008 return VM_FAULT_SIGBUS; 1009} 1010static inline int fixup_user_fault(struct task_struct *tsk, 1011 struct mm_struct *mm, unsigned long address, 1012 unsigned int fault_flags) 1013{ 1014 /* should never happen if there's no MMU */ 1015 BUG(); 1016 return -EFAULT; 1017} 1018#endif 1019 1020extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1021extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1022 void *buf, int len, int write); 1023 1024long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1025 unsigned long start, unsigned long nr_pages, 1026 unsigned int foll_flags, struct page **pages, 1027 struct vm_area_struct **vmas, int *nonblocking); 1028long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1029 unsigned long start, unsigned long nr_pages, 1030 int write, int force, struct page **pages, 1031 struct vm_area_struct **vmas); 1032int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1033 struct page **pages); 1034struct kvec; 1035int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1036 struct page **pages); 1037int get_kernel_page(unsigned long start, int write, struct page **pages); 1038struct page *get_dump_page(unsigned long addr); 1039 1040extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1041extern void do_invalidatepage(struct page *page, unsigned int offset, 1042 unsigned int length); 1043 1044int __set_page_dirty_nobuffers(struct page *page); 1045int __set_page_dirty_no_writeback(struct page *page); 1046int redirty_page_for_writepage(struct writeback_control *wbc, 1047 struct page *page); 1048void account_page_dirtied(struct page *page, struct address_space *mapping); 1049void account_page_writeback(struct page *page); 1050int set_page_dirty(struct page *page); 1051int set_page_dirty_lock(struct page *page); 1052int clear_page_dirty_for_io(struct page *page); 1053 1054/* Is the vma a continuation of the stack vma above it? */ 1055static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1056{ 1057 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1058} 1059 1060static inline int stack_guard_page_start(struct vm_area_struct *vma, 1061 unsigned long addr) 1062{ 1063 return (vma->vm_flags & VM_GROWSDOWN) && 1064 (vma->vm_start == addr) && 1065 !vma_growsdown(vma->vm_prev, addr); 1066} 1067 1068/* Is the vma a continuation of the stack vma below it? */ 1069static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1070{ 1071 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1072} 1073 1074static inline int stack_guard_page_end(struct vm_area_struct *vma, 1075 unsigned long addr) 1076{ 1077 return (vma->vm_flags & VM_GROWSUP) && 1078 (vma->vm_end == addr) && 1079 !vma_growsup(vma->vm_next, addr); 1080} 1081 1082extern pid_t 1083vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1084 1085extern unsigned long move_page_tables(struct vm_area_struct *vma, 1086 unsigned long old_addr, struct vm_area_struct *new_vma, 1087 unsigned long new_addr, unsigned long len, 1088 bool need_rmap_locks); 1089extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1090 unsigned long end, pgprot_t newprot, 1091 int dirty_accountable, int prot_numa); 1092extern int mprotect_fixup(struct vm_area_struct *vma, 1093 struct vm_area_struct **pprev, unsigned long start, 1094 unsigned long end, unsigned long newflags); 1095 1096/* 1097 * doesn't attempt to fault and will return short. 1098 */ 1099int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1100 struct page **pages); 1101/* 1102 * per-process(per-mm_struct) statistics. 1103 */ 1104static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1105{ 1106 long val = atomic_long_read(&mm->rss_stat.count[member]); 1107 1108#ifdef SPLIT_RSS_COUNTING 1109 /* 1110 * counter is updated in asynchronous manner and may go to minus. 1111 * But it's never be expected number for users. 1112 */ 1113 if (val < 0) 1114 val = 0; 1115#endif 1116 return (unsigned long)val; 1117} 1118 1119static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1120{ 1121 atomic_long_add(value, &mm->rss_stat.count[member]); 1122} 1123 1124static inline void inc_mm_counter(struct mm_struct *mm, int member) 1125{ 1126 atomic_long_inc(&mm->rss_stat.count[member]); 1127} 1128 1129static inline void dec_mm_counter(struct mm_struct *mm, int member) 1130{ 1131 atomic_long_dec(&mm->rss_stat.count[member]); 1132} 1133 1134static inline unsigned long get_mm_rss(struct mm_struct *mm) 1135{ 1136 return get_mm_counter(mm, MM_FILEPAGES) + 1137 get_mm_counter(mm, MM_ANONPAGES); 1138} 1139 1140static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1141{ 1142 return max(mm->hiwater_rss, get_mm_rss(mm)); 1143} 1144 1145static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1146{ 1147 return max(mm->hiwater_vm, mm->total_vm); 1148} 1149 1150static inline void update_hiwater_rss(struct mm_struct *mm) 1151{ 1152 unsigned long _rss = get_mm_rss(mm); 1153 1154 if ((mm)->hiwater_rss < _rss) 1155 (mm)->hiwater_rss = _rss; 1156} 1157 1158static inline void update_hiwater_vm(struct mm_struct *mm) 1159{ 1160 if (mm->hiwater_vm < mm->total_vm) 1161 mm->hiwater_vm = mm->total_vm; 1162} 1163 1164static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1165 struct mm_struct *mm) 1166{ 1167 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1168 1169 if (*maxrss < hiwater_rss) 1170 *maxrss = hiwater_rss; 1171} 1172 1173#if defined(SPLIT_RSS_COUNTING) 1174void sync_mm_rss(struct mm_struct *mm); 1175#else 1176static inline void sync_mm_rss(struct mm_struct *mm) 1177{ 1178} 1179#endif 1180 1181int vma_wants_writenotify(struct vm_area_struct *vma); 1182 1183extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1184 spinlock_t **ptl); 1185static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1186 spinlock_t **ptl) 1187{ 1188 pte_t *ptep; 1189 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1190 return ptep; 1191} 1192 1193#ifdef __PAGETABLE_PUD_FOLDED 1194static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1195 unsigned long address) 1196{ 1197 return 0; 1198} 1199#else 1200int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1201#endif 1202 1203#ifdef __PAGETABLE_PMD_FOLDED 1204static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1205 unsigned long address) 1206{ 1207 return 0; 1208} 1209#else 1210int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1211#endif 1212 1213int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1214 pmd_t *pmd, unsigned long address); 1215int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1216 1217/* 1218 * The following ifdef needed to get the 4level-fixup.h header to work. 1219 * Remove it when 4level-fixup.h has been removed. 1220 */ 1221#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1222static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1223{ 1224 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1225 NULL: pud_offset(pgd, address); 1226} 1227 1228static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1229{ 1230 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1231 NULL: pmd_offset(pud, address); 1232} 1233#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1234 1235#if USE_SPLIT_PTLOCKS 1236/* 1237 * We tuck a spinlock to guard each pagetable page into its struct page, 1238 * at page->private, with BUILD_BUG_ON to make sure that this will not 1239 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1240 * When freeing, reset page->mapping so free_pages_check won't complain. 1241 */ 1242#define __pte_lockptr(page) &((page)->ptl) 1243#define pte_lock_init(_page) do { \ 1244 spin_lock_init(__pte_lockptr(_page)); \ 1245} while (0) 1246#define pte_lock_deinit(page) ((page)->mapping = NULL) 1247#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1248#else /* !USE_SPLIT_PTLOCKS */ 1249/* 1250 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1251 */ 1252#define pte_lock_init(page) do {} while (0) 1253#define pte_lock_deinit(page) do {} while (0) 1254#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1255#endif /* USE_SPLIT_PTLOCKS */ 1256 1257static inline void pgtable_page_ctor(struct page *page) 1258{ 1259 pte_lock_init(page); 1260 inc_zone_page_state(page, NR_PAGETABLE); 1261} 1262 1263static inline void pgtable_page_dtor(struct page *page) 1264{ 1265 pte_lock_deinit(page); 1266 dec_zone_page_state(page, NR_PAGETABLE); 1267} 1268 1269#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1270({ \ 1271 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1272 pte_t *__pte = pte_offset_map(pmd, address); \ 1273 *(ptlp) = __ptl; \ 1274 spin_lock(__ptl); \ 1275 __pte; \ 1276}) 1277 1278#define pte_unmap_unlock(pte, ptl) do { \ 1279 spin_unlock(ptl); \ 1280 pte_unmap(pte); \ 1281} while (0) 1282 1283#define pte_alloc_map(mm, vma, pmd, address) \ 1284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1285 pmd, address))? \ 1286 NULL: pte_offset_map(pmd, address)) 1287 1288#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1290 pmd, address))? \ 1291 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1292 1293#define pte_alloc_kernel(pmd, address) \ 1294 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1295 NULL: pte_offset_kernel(pmd, address)) 1296 1297extern void free_area_init(unsigned long * zones_size); 1298extern void free_area_init_node(int nid, unsigned long * zones_size, 1299 unsigned long zone_start_pfn, unsigned long *zholes_size); 1300extern void free_initmem(void); 1301 1302/* 1303 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1304 * into the buddy system. The freed pages will be poisoned with pattern 1305 * "poison" if it's within range [0, UCHAR_MAX]. 1306 * Return pages freed into the buddy system. 1307 */ 1308extern unsigned long free_reserved_area(void *start, void *end, 1309 int poison, char *s); 1310 1311#ifdef CONFIG_HIGHMEM 1312/* 1313 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1314 * and totalram_pages. 1315 */ 1316extern void free_highmem_page(struct page *page); 1317#endif 1318 1319extern void adjust_managed_page_count(struct page *page, long count); 1320extern void mem_init_print_info(const char *str); 1321 1322/* Free the reserved page into the buddy system, so it gets managed. */ 1323static inline void __free_reserved_page(struct page *page) 1324{ 1325 ClearPageReserved(page); 1326 init_page_count(page); 1327 __free_page(page); 1328} 1329 1330static inline void free_reserved_page(struct page *page) 1331{ 1332 __free_reserved_page(page); 1333 adjust_managed_page_count(page, 1); 1334} 1335 1336static inline void mark_page_reserved(struct page *page) 1337{ 1338 SetPageReserved(page); 1339 adjust_managed_page_count(page, -1); 1340} 1341 1342/* 1343 * Default method to free all the __init memory into the buddy system. 1344 * The freed pages will be poisoned with pattern "poison" if it's within 1345 * range [0, UCHAR_MAX]. 1346 * Return pages freed into the buddy system. 1347 */ 1348static inline unsigned long free_initmem_default(int poison) 1349{ 1350 extern char __init_begin[], __init_end[]; 1351 1352 return free_reserved_area(&__init_begin, &__init_end, 1353 poison, "unused kernel"); 1354} 1355 1356static inline unsigned long get_num_physpages(void) 1357{ 1358 int nid; 1359 unsigned long phys_pages = 0; 1360 1361 for_each_online_node(nid) 1362 phys_pages += node_present_pages(nid); 1363 1364 return phys_pages; 1365} 1366 1367#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1368/* 1369 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1370 * zones, allocate the backing mem_map and account for memory holes in a more 1371 * architecture independent manner. This is a substitute for creating the 1372 * zone_sizes[] and zholes_size[] arrays and passing them to 1373 * free_area_init_node() 1374 * 1375 * An architecture is expected to register range of page frames backed by 1376 * physical memory with memblock_add[_node]() before calling 1377 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1378 * usage, an architecture is expected to do something like 1379 * 1380 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1381 * max_highmem_pfn}; 1382 * for_each_valid_physical_page_range() 1383 * memblock_add_node(base, size, nid) 1384 * free_area_init_nodes(max_zone_pfns); 1385 * 1386 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1387 * registered physical page range. Similarly 1388 * sparse_memory_present_with_active_regions() calls memory_present() for 1389 * each range when SPARSEMEM is enabled. 1390 * 1391 * See mm/page_alloc.c for more information on each function exposed by 1392 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1393 */ 1394extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1395unsigned long node_map_pfn_alignment(void); 1396unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1397 unsigned long end_pfn); 1398extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1399 unsigned long end_pfn); 1400extern void get_pfn_range_for_nid(unsigned int nid, 1401 unsigned long *start_pfn, unsigned long *end_pfn); 1402extern unsigned long find_min_pfn_with_active_regions(void); 1403extern void free_bootmem_with_active_regions(int nid, 1404 unsigned long max_low_pfn); 1405extern void sparse_memory_present_with_active_regions(int nid); 1406 1407#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1408 1409#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1410 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1411static inline int __early_pfn_to_nid(unsigned long pfn) 1412{ 1413 return 0; 1414} 1415#else 1416/* please see mm/page_alloc.c */ 1417extern int __meminit early_pfn_to_nid(unsigned long pfn); 1418#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1419/* there is a per-arch backend function. */ 1420extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1421#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1422#endif 1423 1424extern void set_dma_reserve(unsigned long new_dma_reserve); 1425extern void memmap_init_zone(unsigned long, int, unsigned long, 1426 unsigned long, enum memmap_context); 1427extern void setup_per_zone_wmarks(void); 1428extern int __meminit init_per_zone_wmark_min(void); 1429extern void mem_init(void); 1430extern void __init mmap_init(void); 1431extern void show_mem(unsigned int flags); 1432extern void si_meminfo(struct sysinfo * val); 1433extern void si_meminfo_node(struct sysinfo *val, int nid); 1434 1435extern __printf(3, 4) 1436void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1437 1438extern void setup_per_cpu_pageset(void); 1439 1440extern void zone_pcp_update(struct zone *zone); 1441extern void zone_pcp_reset(struct zone *zone); 1442 1443/* page_alloc.c */ 1444extern int min_free_kbytes; 1445 1446/* nommu.c */ 1447extern atomic_long_t mmap_pages_allocated; 1448extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1449 1450/* interval_tree.c */ 1451void vma_interval_tree_insert(struct vm_area_struct *node, 1452 struct rb_root *root); 1453void vma_interval_tree_insert_after(struct vm_area_struct *node, 1454 struct vm_area_struct *prev, 1455 struct rb_root *root); 1456void vma_interval_tree_remove(struct vm_area_struct *node, 1457 struct rb_root *root); 1458struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1459 unsigned long start, unsigned long last); 1460struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1461 unsigned long start, unsigned long last); 1462 1463#define vma_interval_tree_foreach(vma, root, start, last) \ 1464 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1465 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1466 1467static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1468 struct list_head *list) 1469{ 1470 list_add_tail(&vma->shared.nonlinear, list); 1471} 1472 1473void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1474 struct rb_root *root); 1475void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1476 struct rb_root *root); 1477struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1478 struct rb_root *root, unsigned long start, unsigned long last); 1479struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1480 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1481#ifdef CONFIG_DEBUG_VM_RB 1482void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1483#endif 1484 1485#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1486 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1487 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1488 1489/* mmap.c */ 1490extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1491extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1492 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1493extern struct vm_area_struct *vma_merge(struct mm_struct *, 1494 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1495 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1496 struct mempolicy *); 1497extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1498extern int split_vma(struct mm_struct *, 1499 struct vm_area_struct *, unsigned long addr, int new_below); 1500extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1501extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1502 struct rb_node **, struct rb_node *); 1503extern void unlink_file_vma(struct vm_area_struct *); 1504extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1505 unsigned long addr, unsigned long len, pgoff_t pgoff, 1506 bool *need_rmap_locks); 1507extern void exit_mmap(struct mm_struct *); 1508 1509extern int mm_take_all_locks(struct mm_struct *mm); 1510extern void mm_drop_all_locks(struct mm_struct *mm); 1511 1512extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1513extern struct file *get_mm_exe_file(struct mm_struct *mm); 1514 1515extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1516extern int install_special_mapping(struct mm_struct *mm, 1517 unsigned long addr, unsigned long len, 1518 unsigned long flags, struct page **pages); 1519 1520extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1521 1522extern unsigned long mmap_region(struct file *file, unsigned long addr, 1523 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1524extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1525 unsigned long len, unsigned long prot, unsigned long flags, 1526 unsigned long pgoff, unsigned long *populate); 1527extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1528 1529#ifdef CONFIG_MMU 1530extern int __mm_populate(unsigned long addr, unsigned long len, 1531 int ignore_errors); 1532static inline void mm_populate(unsigned long addr, unsigned long len) 1533{ 1534 /* Ignore errors */ 1535 (void) __mm_populate(addr, len, 1); 1536} 1537#else 1538static inline void mm_populate(unsigned long addr, unsigned long len) {} 1539#endif 1540 1541/* These take the mm semaphore themselves */ 1542extern unsigned long vm_brk(unsigned long, unsigned long); 1543extern int vm_munmap(unsigned long, size_t); 1544extern unsigned long vm_mmap(struct file *, unsigned long, 1545 unsigned long, unsigned long, 1546 unsigned long, unsigned long); 1547 1548struct vm_unmapped_area_info { 1549#define VM_UNMAPPED_AREA_TOPDOWN 1 1550 unsigned long flags; 1551 unsigned long length; 1552 unsigned long low_limit; 1553 unsigned long high_limit; 1554 unsigned long align_mask; 1555 unsigned long align_offset; 1556}; 1557 1558extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1559extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1560 1561/* 1562 * Search for an unmapped address range. 1563 * 1564 * We are looking for a range that: 1565 * - does not intersect with any VMA; 1566 * - is contained within the [low_limit, high_limit) interval; 1567 * - is at least the desired size. 1568 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1569 */ 1570static inline unsigned long 1571vm_unmapped_area(struct vm_unmapped_area_info *info) 1572{ 1573 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1574 return unmapped_area(info); 1575 else 1576 return unmapped_area_topdown(info); 1577} 1578 1579/* truncate.c */ 1580extern void truncate_inode_pages(struct address_space *, loff_t); 1581extern void truncate_inode_pages_range(struct address_space *, 1582 loff_t lstart, loff_t lend); 1583 1584/* generic vm_area_ops exported for stackable file systems */ 1585extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1586extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1587 1588/* mm/page-writeback.c */ 1589int write_one_page(struct page *page, int wait); 1590void task_dirty_inc(struct task_struct *tsk); 1591 1592/* readahead.c */ 1593#define VM_MAX_READAHEAD 128 /* kbytes */ 1594#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1595 1596int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1597 pgoff_t offset, unsigned long nr_to_read); 1598 1599void page_cache_sync_readahead(struct address_space *mapping, 1600 struct file_ra_state *ra, 1601 struct file *filp, 1602 pgoff_t offset, 1603 unsigned long size); 1604 1605void page_cache_async_readahead(struct address_space *mapping, 1606 struct file_ra_state *ra, 1607 struct file *filp, 1608 struct page *pg, 1609 pgoff_t offset, 1610 unsigned long size); 1611 1612unsigned long max_sane_readahead(unsigned long nr); 1613unsigned long ra_submit(struct file_ra_state *ra, 1614 struct address_space *mapping, 1615 struct file *filp); 1616 1617/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1618extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1619 1620/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1621extern int expand_downwards(struct vm_area_struct *vma, 1622 unsigned long address); 1623#if VM_GROWSUP 1624extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1625#else 1626 #define expand_upwards(vma, address) do { } while (0) 1627#endif 1628 1629/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1630extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1631extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1632 struct vm_area_struct **pprev); 1633 1634/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1635 NULL if none. Assume start_addr < end_addr. */ 1636static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1637{ 1638 struct vm_area_struct * vma = find_vma(mm,start_addr); 1639 1640 if (vma && end_addr <= vma->vm_start) 1641 vma = NULL; 1642 return vma; 1643} 1644 1645static inline unsigned long vma_pages(struct vm_area_struct *vma) 1646{ 1647 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1648} 1649 1650/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1651static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1652 unsigned long vm_start, unsigned long vm_end) 1653{ 1654 struct vm_area_struct *vma = find_vma(mm, vm_start); 1655 1656 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1657 vma = NULL; 1658 1659 return vma; 1660} 1661 1662#ifdef CONFIG_MMU 1663pgprot_t vm_get_page_prot(unsigned long vm_flags); 1664#else 1665static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1666{ 1667 return __pgprot(0); 1668} 1669#endif 1670 1671#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1672unsigned long change_prot_numa(struct vm_area_struct *vma, 1673 unsigned long start, unsigned long end); 1674#endif 1675 1676struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1677int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1678 unsigned long pfn, unsigned long size, pgprot_t); 1679int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1680int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1681 unsigned long pfn); 1682int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1683 unsigned long pfn); 1684int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1685 1686 1687struct page *follow_page_mask(struct vm_area_struct *vma, 1688 unsigned long address, unsigned int foll_flags, 1689 unsigned int *page_mask); 1690 1691static inline struct page *follow_page(struct vm_area_struct *vma, 1692 unsigned long address, unsigned int foll_flags) 1693{ 1694 unsigned int unused_page_mask; 1695 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1696} 1697 1698#define FOLL_WRITE 0x01 /* check pte is writable */ 1699#define FOLL_TOUCH 0x02 /* mark page accessed */ 1700#define FOLL_GET 0x04 /* do get_page on page */ 1701#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1702#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1703#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1704 * and return without waiting upon it */ 1705#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1706#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1707#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1708#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1709#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1710 1711typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1712 void *data); 1713extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1714 unsigned long size, pte_fn_t fn, void *data); 1715 1716#ifdef CONFIG_PROC_FS 1717void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1718#else 1719static inline void vm_stat_account(struct mm_struct *mm, 1720 unsigned long flags, struct file *file, long pages) 1721{ 1722 mm->total_vm += pages; 1723} 1724#endif /* CONFIG_PROC_FS */ 1725 1726#ifdef CONFIG_DEBUG_PAGEALLOC 1727extern void kernel_map_pages(struct page *page, int numpages, int enable); 1728#ifdef CONFIG_HIBERNATION 1729extern bool kernel_page_present(struct page *page); 1730#endif /* CONFIG_HIBERNATION */ 1731#else 1732static inline void 1733kernel_map_pages(struct page *page, int numpages, int enable) {} 1734#ifdef CONFIG_HIBERNATION 1735static inline bool kernel_page_present(struct page *page) { return true; } 1736#endif /* CONFIG_HIBERNATION */ 1737#endif 1738 1739extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1740#ifdef __HAVE_ARCH_GATE_AREA 1741int in_gate_area_no_mm(unsigned long addr); 1742int in_gate_area(struct mm_struct *mm, unsigned long addr); 1743#else 1744int in_gate_area_no_mm(unsigned long addr); 1745#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1746#endif /* __HAVE_ARCH_GATE_AREA */ 1747 1748#ifdef CONFIG_SYSCTL 1749extern int sysctl_drop_caches; 1750int drop_caches_sysctl_handler(struct ctl_table *, int, 1751 void __user *, size_t *, loff_t *); 1752#endif 1753 1754unsigned long shrink_slab(struct shrink_control *shrink, 1755 unsigned long nr_pages_scanned, 1756 unsigned long lru_pages); 1757 1758#ifndef CONFIG_MMU 1759#define randomize_va_space 0 1760#else 1761extern int randomize_va_space; 1762#endif 1763 1764const char * arch_vma_name(struct vm_area_struct *vma); 1765void print_vma_addr(char *prefix, unsigned long rip); 1766 1767void sparse_mem_maps_populate_node(struct page **map_map, 1768 unsigned long pnum_begin, 1769 unsigned long pnum_end, 1770 unsigned long map_count, 1771 int nodeid); 1772 1773struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1774pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1775pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1776pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1777pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1778void *vmemmap_alloc_block(unsigned long size, int node); 1779void *vmemmap_alloc_block_buf(unsigned long size, int node); 1780void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1781int vmemmap_populate_basepages(unsigned long start, unsigned long end, 1782 int node); 1783int vmemmap_populate(unsigned long start, unsigned long end, int node); 1784void vmemmap_populate_print_last(void); 1785#ifdef CONFIG_MEMORY_HOTPLUG 1786void vmemmap_free(unsigned long start, unsigned long end); 1787#endif 1788void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1789 unsigned long size); 1790 1791enum mf_flags { 1792 MF_COUNT_INCREASED = 1 << 0, 1793 MF_ACTION_REQUIRED = 1 << 1, 1794 MF_MUST_KILL = 1 << 2, 1795 MF_SOFT_OFFLINE = 1 << 3, 1796}; 1797extern int memory_failure(unsigned long pfn, int trapno, int flags); 1798extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1799extern int unpoison_memory(unsigned long pfn); 1800extern int sysctl_memory_failure_early_kill; 1801extern int sysctl_memory_failure_recovery; 1802extern void shake_page(struct page *p, int access); 1803extern atomic_long_t num_poisoned_pages; 1804extern int soft_offline_page(struct page *page, int flags); 1805 1806extern void dump_page(struct page *page); 1807 1808#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1809extern void clear_huge_page(struct page *page, 1810 unsigned long addr, 1811 unsigned int pages_per_huge_page); 1812extern void copy_user_huge_page(struct page *dst, struct page *src, 1813 unsigned long addr, struct vm_area_struct *vma, 1814 unsigned int pages_per_huge_page); 1815#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1816 1817#ifdef CONFIG_DEBUG_PAGEALLOC 1818extern unsigned int _debug_guardpage_minorder; 1819 1820static inline unsigned int debug_guardpage_minorder(void) 1821{ 1822 return _debug_guardpage_minorder; 1823} 1824 1825static inline bool page_is_guard(struct page *page) 1826{ 1827 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1828} 1829#else 1830static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1831static inline bool page_is_guard(struct page *page) { return false; } 1832#endif /* CONFIG_DEBUG_PAGEALLOC */ 1833 1834#if MAX_NUMNODES > 1 1835void __init setup_nr_node_ids(void); 1836#else 1837static inline void setup_nr_node_ids(void) {} 1838#endif 1839 1840#endif /* __KERNEL__ */ 1841#endif /* _LINUX_MM_H */